ITTC Project

Development and Evaluation of a Range-Gated Step-Frequency Radar

Project Award Date: 12-15-1999


The Radar Systems and Remote Sensing Laboratory is currently working to develop and test a range-gated, step-frequency (RGSF) radar. The primary objectives are to design and build radar operating over the frequency range from 10 to a 1,000 MHz in different modes, and to test its performance in measuring properties of soils that may be similar to Martian soils.

Radars operating at different frequencies and in different modes, such as impulse, step-frequency, and frequency-modulated, continuous-wave (FM-CW), have been widely used for sub-surface, remote-sensing applications. Impulse radar is the most common technique used today for geophysical applications. An impulse radar sends a short RF pulse with three to five cycles of carrier bandwidth through a wideband transmitting antenna. The received pulse containing one to five damped RF oscillations is sampled and stored for further processing. Impulse radar obtains high resolution using a narrow pulse and sensitivity to detect targets at longer ranges by transmitting a pulse with very high-peak power. Higher sensitivity can also be obtained by employing repetitive-trace coherent integration.

A FM-CW radar transmits a wideband, swept-frequency signal. The received signal is mixed with a sample of the transmitted signal to generate a beat signal whose frequency is proportional to the target range, and whose amplitude is proportional to the target scattering characteristics.

In step-frequency radar, the transmitter carrier frequency is stepped over the desired bandwidth at a predetermined interval, and the amplitude and phase of the received signal are measured at each frequency step. The amplitude and phase data are transformed to obtain a signal that is a function of time or range. Step-frequency radar range resolution is indirectly proportional to the bandwidth over which the carrier frequency is stepped, and the unambiguous range is indirectly proportional to the step size.

The main disadvantage of FM-CW and step-frequency radar is the range sidelobes associated with the use of a band-limited transmit signal. The range sidelobes of strong signals from a surface or near-surface target will limit the performance of the system for target detection at long ranges. The minimum detectable signal in a FM-CW or step-frequency radar is rarely limited by receiver thermal noise, but by range sidelobes introduced by antenna leakage or near-surface targets. For step-frequency radar, the effect of these unwanted echoes can be reduced by employing range gating and/or by weighting the received signal for reducing range sidelobes. Range gating improves the sensitivity of short-range radar by suppressing unwanted reflections including antenna leakage and strong signals from near-surface targets. However, very fast switches are required for implementing range gating in short-range applications.

At the University of Kansas, we developed the concept of range-gated, step-frequency radar by combining FM-CW and step-frequency techniques to implement range gating, with filters for short-range applications (United States Patent 5,867,117, Gogineni, et al., February 2, 1999). The system we are developing will operate in a simple FM-CW radar mode; a range-gated, step-frequency radar mode; and a stepped-pulse radar mode to evaluate its performance in sub-surface remote sensing of Mars-type soils.


Faculty Investigator(s): Sivaprasad Gogineni (PI)

Student Investigator(s): Vijaya Ramasami

Project Sponsors

Primary Sponsor(s): NASA Jet Propulsion Laboratory

Partner with ITTC

The Information and Telecommunication Technology Center at the University of Kansas has developed several assistance policies that enhance interactions between the Center and local, Kansas, or national companies. 

ITTC assistance includes initial free consulting (normally one to five hours). If additional support is needed, ITTC will offer one of the following approaches: 

Sponsored Research Agreement

Individuals and organizations can enter into agreements with KUCR/ITTC and provide funds for sponsored research to be performed at ITTC with the assistance of faculty, staff and students.

Licensing and Royalty/Equity Agreement

An ITTC goal is the development of investment-grade technologies for transfer to, and marketing by, local, Kansas, and national businesses. To enhance this process, the Center has developed flexible policies that allow for licensing, royalty, and equity arrangements to meet both the needs of ITTC and the company.

Commercialization Development

Companies with a technology need that can be satisfied with ITTC's resources can look to us for assistance. We can develop a relationship with interested partners that will provide for the development of a technology suited for commercialization.

ITTC Resource Access

ITTC resources, including computers and software systems, may be made available to Kansas companies in accordance with the Center's mission and applicable Regents and University policies.

ITTC Calendar
There are no upcoming events at this time.