PhD Dissertation Defense Service Profile-Aware Control Plane: A Multi-Instance Fixed Point Approximation within A Multi-Granularity VPN Loss Networks Perspective

> Wesam Alanqar, PhD Advisor: Prof. Victor Frost April 25, 2005

Outline

- Problem statement
- Introduction
- Contributions
- Configured VPN service models
- Control plane models
- Analysis methodology
- Mathematical formulation highlights
- Scenarios and performance evaluation metrics
- Mathematical models validation
- Performance analysis results highlights
- Justification for generalizing performance results for SPA
- Conclusions
- Recommendations
- Next steps and future work
- Appendixes:
 - Appendix-A: Detailed mathematical formulation
 - Appendix-B: Detailed performance results (4-node topology)
 - Appendix-C: Detailed performance results (7-node topology- 2 alternate routing)
 - Appendix-D: Detailed performance results (7-node topology- 3 alternate routing)

Information and Telecommunication Technology Center

Problem Statement

- The architectures and functional operation of existing control plane components do not consider the service profile layer parameters
- This lack of harmony between the service profile layer, control plane layer, and network infrastructure layer exist in current IETF and ITU control plane models
- **b** This lack of harmony leads to inefficient utilization of network resources
- Therefore, the problem is to develop a new Service Profile-Aware (SPA) control plane model that provides this harmony and then demonstrate its superiority over existing control plane models
- SPA control plane components were architected to utilize both the service profile layer parameters and network infrastructure detailed resource representation parameters

Introduction: Problem Motivation/Significance

This research proposes a new SPA control plane model

- Detailed description of its architectural and functional operation
- Analytically shows its superiority over existing IETF and ITU control plane models
- ► The performance of the IETF/ ITU/SPA control plane models were analyzed in a common framework from the following perspectives:
 - Transport network granularity realization
 - Operational level
 - Component-level interaction between the transport layer, control plane layer, and the service profile layer

Introduction: Research Approach

This research

- Defined the architectures of the multiple configured VPN service proposed models
- Defined the architectures and functional operation of the control plane components for the three control plane models
- Developed the mathematical models for the traffic management schemes of the three control plane models
 - Used Fixed Point Approximation (FPA) analytical model to compute the performance metrics for the traffic management schemes of the three control plane models
- The superiority of the SPA control plane over IETF/ITU models was analytically demonstrated

Contributions

Developed detailed architectures for the service configuration models from the following three perspectives:

- Service flow connectivity
- Load partitioning flexibility
- Service demand granularity
- Developed architectures for the three control plane models (IETF, ITU, SPA) from the following three perspectives:
 - Transport network granularity realization
 - Component-level
 - Operational-level
- Developed mathematical formulation for each traffic management scheme of the three control plane models using Fixed Point Approximation (FPA)
- Demonstrated the superiority of the SPA over IETF and ITU control plane models using the following performance metrics:
 - Service request blocking probability
 - Permissible "non-blocked" load
 - Transport resources utilization performance metrics
- This work provides a significant shift in network design and traffic management for future wired and wireless networks
 - More efficient utilization of network resources due to SPA enforcement of harmony between the service profile layer, control plane layer, and network infrastructure layer

Information and Telecommunication Technology Center

Configured VPN Service Models

Nine possible service models were considered based on the configured service profile parameters:

- Service flow connectivity (Point-Point, Semi-Meshed, Fully-Meshed)
- Arrival load partitioning flexibility (Dedicated, Shared)

Granular Bandwidth

Configured VPN Service Models "Cont."

Definitions and Notations

Telecommunication

Fully-Meshed Shared Actual (FSA) and **Fully-Meshed Shared Granular (FSG) Service Configurations**

Definitions and Notations

- 1. C_{j} : The physical capacity or bandwidth of link j,
- 2. Dedicated Resource $C_{j}^{\nu D}$: The dedicated capacity on link *j* for configured service *v*.
- 3. Shared Resources C_{i}^{S} : The shared capacity on link *j*.
- 4. VPN Resources C_j^{ν} : The VPN capacity on link *j*. $C_j^{\nu} = C_j^{\nu D} + C_j^{S}$
- 5. λ_{rk}^{ν} : The arrival rate of class k calls between node pair r for configured service v. 6. λ_{rk}^{vD} : The dedicated arrival rate.

7.
$$\lambda_{rk}^{vs}$$
: The shared arrival rate.

- 8. b_k^C : The coarse bandwidth requirement of class k calls
- 9. b_k^G : The granular, sub-rate, bandwidth requirement of b_k^C , in units of bandwidth, circuits
- 10. b_k^A : The actual bandwidth requirement of class k

Analysis focused on Fully-Meshed Shared Granular (FSG) service model

- (point-to-point, semi-meshed) are subset of Fully-Meshed
- Dedicated arrival rate will not benefit from SPA Load Partitioning Function (LPF)
- Coarse service demands will not benefit from _ SPA Inverse Multiplexing Function (IMF)

Control Plane Models- Traffic Management Schemes

Compared the three control plane models based on the following control plane traffic management capabilities:

- Routing update triggers (static vs. state-dependent)
- Routing granularity level (coarse vs. granular)
- Load Partitioning Function (LPF): Static Sharing (SS) vs. Network Engineering (NE)
- Inverse Multiplexing Function (IMF): enabled vs. disabled

• Routing granularity: Routing tables construction based transport granularity level

Load Partitioning Function (LPF):

- Partition the service arrival load into two partitions; dedicated load and shared load
- Has two options; Static Sharing (SS) and Network Engineering (NE)
 - Static Sharing (SS): Statically partition configured service arrival load into two partitions
 - Based on dedicated/shared resources to the VPN resources capacity ratio
 - Network Engineering (NE): Dynamically partition arrival load between dedicated/shared resources
 - Based on dedicated resources blocking probability

Inverse Multiplexing Function (IMF):

- Multiplexing/inverse multiplexing of incoming traffic
- Multiplexing: Sending multiple signals or streams of information on a carrier at the same time
- Inverse Multiplexing (IM): Dividing a data stream into multiple concurrent streams
 - Transmitted at the same time across separate channels
 - Reconstructed at the other end back into the original data stream

nformation and Telecommunication Technology Center

Control Plane Models- Traffic Management Schemes "Cont."

SPA-Dedicated Control Plane Model

Information and Telecommunication Technology Center

Control Plane Models- Traffic Management Schemes "Cont."

Control Plane Models- Transport Network Realization "Vertical View: Multi-Granularity"

Control Plane Models- Transport Network Realization "Vertical View: Network Partitions" 14

Key Takeaway: From a transport resources perspective: Network Partition "VPN-A" IETF control plane model implements Complete Sharing 1. (CS) concept ITU control plane model implements Complete Partitioning 2. (CP) concept **RDB** Network Partition "VPN-C" **LRM** SPA control plane model implements both CP and Virtual 3. **Control Plane** RC RC **Partitioning (VP) concepts** Instance ITU/SPA-Dedicated Control Plane Models Network Partition "VPN-B Three Control Plane Instance with Three RDB partitions for the Three Transport Network Partitions "VPNs" Without inter-control plane instances resource sharing via Load Partitioning Function (LPF) RDB-A Network Partition "VPN-A' LRM-A **Control Plane** RC RĊ **R**C Instance-A RDB-C Network Partition "VPN-C" LRM-C **Control Plane** RC RC RC Instance-C SPA-Shared Control Plane Model **RDB-B** Network Partition "VPN-B" LRM-B Three Control Plane Instance with Three RDB partitions for the Three Transport Network Partitions "VPNs" **Control Plane** With inter-control plane instances resource sharing via Load Partitioning Function (LPF) RC RC RC Instance-B RDB-A Network Partition "VPN-A" LRM-A **Control Plane** RC RC RC Instance-A Resource Sharing via LPF RDB-C Network Partition "VPN-C" · LRM-C **Control Plane** RC RC RC Instance-C **Resource Sharing via LPF** RDB-B Network Partition "VPN-B' LRM-B **Control Plane R**C RC RC Instance-B Information and University of Kansas Telecommunication **Technology Center**

IETF Control Plane Model

One Control Plane Instance with one_RDB for the Three Transport Network Partitions "VPNs"

Analysis Methodology- Fixed Point Approximation (FPA) Steps

Analysis Methodology- Assumptions

Link independence assumption

- Blocking occurs independently from link to link, determined by their respective arrival rates
- This assumption becomes more reasonable as traffic gets heavier

Poisson calls arrivals

- The total offered load to an individual link is also a Poisson process with rate thinned by blocking on other links

All links are assumed to be undirected

Stationary inputs

- Certain random quantities of interest have well-defined averages including:
 - Number of on-going calls on a link of each class
 - Average service request holding time
 - Reduced load on a link
- With these averages we can further assume that there is a stationary probability of choosing a particular route under the state-dependent routing scheme

Minimal route overlapping for analyzed topologies

FPA accuracy increases compared to DES

Analysis Methodology- FPA Modeling Environment

Mathematical Formulation Highlights "Details available in Appendix-A"

Base FPA method was modified based on the unique attributes of each traffic management scheme of the three control plane models

Mathematical formulation steps included:

- CAC for multi-rate demands
 - Modified based on each control plane representation of demand granularity
- Estimating link's reduced load
 - Modified based on each control plane input load handling capability
- Estimating link's admissibility probability
 - Modified based on each control plane representation of transport resources granularity
- Estimating routing probability
 - Modified based on each control plane routing static vs. state-dependent mechanism
- Estimating network blocking probability
 - Modified based on the each control plane representation of network partitions
- Estimating network permissible load
 - Modified based on the each control plane representation of network partitions
- Estimating network utilization
 - Modified based on the each control plane representation of network partitions

Scenarios & Performance Evaluation- Control Plane Parameters & Performance Metrics21

	Routing Probability		Routing Granularity		Control Plane Instance (CPI) Selection	Load Partitioning Function (LPF) enabled		Inverse Multiple xing Function (IMF) enable d	
Component	Static	State- Dependent	Coarse	Granular		W/O	w/	w/o	w/
Coundration		Debeutteur				NE	NE	TIVI	TIVI
IETF	\sim		\sim						
ITU	\checkmark			\sim	\sim				
SPA-Dedicated		\sim		\sim	\sim				
SPA-w/o(NE,IM)		\checkmark		\sim	\checkmark	\checkmark		<	
SPA-w/NE,w/oIM		\sim		\sim	\sim		\checkmark	~	
SPA-w/oNE,w/IM		\checkmark		\sim	\sim	\sim			~
SPA-w/(NE,IM)		\sim		\sim	\checkmark		\sim		\checkmark

Performance	Blocking			Permissible				Utilization				
Metric	probability				load							
Network Partition Level	D	S	V	L	D	S	V	L	D	S	V	L
IETF				~				~				~
ITU	~			~	~			~	~			~
SPA-Dedicated	~			~	~			~	~			~
SPA-Shared	~	~	~	~	~	~	~	~	~	~	\checkmark	~

Information and Telecommunication Technology Center

Scenarios & Performance Evaluation- FPA modeling parameters

Scenarios & Performance Evaluation- Network Topologies Analyzed

Mathematical Models Validation- Credibility of Modeling Results

Accuracy of mathematical models assumptions

- Higher input loads were used to improve the accuracy of results
 - The base method validated that for blocking probabilities under higher input loads, FPA algorithm average percentage error compared to DES is below 5%

– Minimal route overlapping was considered for the 4-node and 7-node topologies analyzed

• The base method validated that under minimal routing overlapping for fully connected and random topologies, FPA algorithm accuracy compared to DES increases

Accuracy of occupancy probability computation

When the output of the of the occupancy probabilities equations was used in the FPA algorithm, validating that the summation of occupancy probabilities of link *j* for all the states is equal to 1 was carried after each FPA convergence, the percentage of error was 0%

Accuracy of routing probability computation

- After each FPA convergence, the routing probability constraint, summation of the routing probability for all the routes between a source-destination pair has to equal 1, was validated
- Percentage error was in the range below 3% for the 7-node topology and 0% for the 4-node topology

Accuracy of LPF and IMF traffic management operations

- <u>LPF sanity check:</u> made sure that the summation of the load applied to the dedicated network resources partitions and the shared network resources partition is equal to the total input load
- <u>IMF sanity check:</u> made sure that the input load before an inverse multiplexing operation is equal to the input load after the inverse multiplexing operation

Information and Telecommunication Technology Center

Mathematical Models Validation- Performance Results Consistent Trends

"7-node topology with both 2 & 3 alternate routing"

Blocking Probability:

- SPA-Dedicated traffic management scheme does not provide any reduction in blocking probability compared to the IETF-DR traffic management scheme
 - But provides higher reduction in blocking probability compared to IETF-SR and ITU-SR traffic management schemes
- The SPA two traffic management schemes with <u>enabled</u> inverse multiplexing lead to the highest reduction in blocking probability, compared to the rest of the traffic management schemes

Permissible Load:

- The SPA two traffic management schemes with <u>enabled</u> inverse multiplexing lead to the highest increase in permissible load compared to the rest of the traffic management schemes
- The SPA-Shared control plane model with <u>disabled</u> inverse multiplexing leads to a reduction in permissible load compared to the IETF-DR traffic management scheme

Utilization:

- SPA-Shared with <u>enabled</u> inverse multiplexing leads to a lower reduction in utilization compared to the IETF-DR traffic management scheme
- SPA-Shared with <u>disabled</u> inverse multiplexing leads to higher reduction in utilization compared to IETF-DR traffic management scheme

Performance Analysis Results Highlights- Blocking Probability "Summary View"

- All SPA traffic management schemes provide a higher reduction in blocking probability compared to the IETF-SR and ITU-SR control plane models
 - Reduction is 0-131% and 39-122% respectively; depending on the SPA traffic management scheme, and SPA number of alternate routes
- When IMF is disabled, IETF-DR traffic management scheme produces less blocking probability than SPA control plane model
- When IMF is enabled, SPA control plane model leads to the highest reduction in blocking probability compared to IETF-DR
 - Reduction of 22-48% depending on the number of alternate routes

Network-Wide Reduction in Blocking Probability (Physical Resources Level)-IETF-DR as reference control plnae model 7-Node Topology (3- Alternate Routing)

Performance Analysis Results Highlights- Permissible Load "Summary View"

- All SPA traffic management schemes, except when IMF is disabled, provide a higher increase in permissible load compared to the IETF-SR and ITU-(DR,SR) control plane models
 - Increase is 120-134% and 110-120% respectively; depending on the SPA traffic management scheme, SPA number of alternate routes, and the IETF/ITU static routing configuration
- Highest increase in permissible load occurs for SPA-"w/oNE,w/IM" traffic management scheme
 Increase is 120-134% compared to IETF-DR control plane model; depending on the number of alternate routes
- While enabling IM, performing load partitioning statically or dynamically does not provide a significant impact on the percentage gain in permissible load
- While disabling IM and regardless of static or dynamic load partitioning for SPA-Shared control plane model, the SPA control plane model provides less permissible load than IETF-DR control plane model

Performance Analysis Results Highlights- Utilization "Summary View"

- All SPA traffic management schemes, except when IMF is enabled, provide a higher reduction in utilization compared to the ITU-(DR,SR) control plane models
 - Reduction is 8-28% depending on the SPA traffic management scheme, number of SPA alternate routes, and the ITU static routing configuration

- **SPA** control plane model provide a reduction in utilization only when IMF is disabled
 - Reduction is 19-23% depending on the SPA traffic management scheme and number of alternate routes
- ► The lowest reduction in utilization occur for "w/(NE,IM)" and "w/oNE,w/IM" SPA traffic management schemes when IMF is configured to enabled Inverse Multiplexing (with IM) and regardless of LPF configuration as static or dynamic partitioning
 - Increase of 2-8% in utilization over the IETF-DR control plane model depending on the number of alternate routes

Justification for Generalizing Performance Analysis Results for SPA

- State-dependent routing distributes the input load across all the identified routes between a source-destination pair based on the traffic occupancy rather than static routing as in IETF/ITU control plane models
 - This leads to: Blocking probability reduction, permissible load slight increase, and utilization reduction
- LPF utilizes both the dedicated resources partition and the shared resources partition for the configured VPN service
 - Thus, the configured VPN service will have more resources than IETF and ITU control plane models
 - This leads to: Blocking probability reduction and utilization reduction
- IMF splits incoming service request flows between a source-destination pair with an actual bandwidth requirement into multiple flows each with granular bandwidth requirement
 - Each granular flow is routed independently across the available routes
 - This leads to: Blocking probability reduction, permissible load increase, and utilization increase

Conclusions

- All SPA traffic management schemes provide a higher reduction in blocking probability compared to the IETF-SR and ITU-SR control plane models
 - Reduction is 0-131% and 39-122% respectively
- When IMF is enabled, SPA control plane model leads to the highest reduction in blocking probability compared to IETF-DR
- All SPA traffic management schemes, except when IMF is disabled, provide a higher increase in permissible load compared to the IETF and ITU control plane models
 - Increase is 120-134% and 110-120% respectively
- SPA-Shared with enabled load sharing and disabled inverse multiplexing provide a higher reduction in utilization compared to all IETF and ITU traffic management schemes
 - Reduction is 8-35%
- The performance analysis results carried on the 7-node topologies for both two and three alternate routes:
 - Validated the hypotheses of this work
 - Indicated a common trend of the superiority of the SPA control plane model over the IETF and ITU control plane models
- Thus, the performance analysis concluded with SPA superiority over existing IETF/ITU control plane models
 - SPA provides a significant shift in network design and traffic management for future wired and wireless networks
 - More efficient utilization of network resources due to SPA enforcement of harmony between the service profile layer, control plane layer, and network infrastructure layer
 Information and

Recommendations

- To achieve <u>maximum</u> blocking probability reduction over IETF and ITU control plane models, SPA components need to be configured as follows:
 - State-dependent routing: Enabled
 - Inverse Multiplexing Function (IMF): Enabled
 - Load Partitioning Function (LPF): configured as Network Engineering (NE)
- To achieve <u>maximum</u> permissible load increase over IETF and ITU control plane models, SPA components need to be configured as follows:
 - State-dependent routing: Enabled
 - Inverse Multiplexing Function (IMF): Enabled
 - Load Partitioning Function (LPF): configured as Static Sharing (SS) or Network Engineering (NE)
- To achieve <u>maximum</u> reduction in utilization over IETF and ITU control plane models, SPA components need to be configured as follows:
 - State-dependent routing: Enabled
 - Inverse Multiplexing Function (IMF): Disabled
 - Load Partitioning Function (LPF): configured as Static Sharing (SS)

Next Steps/Future Work- Multi-Domain Analysis

- Develop methods to predict the performance of the three control plane models for larger topologies
- Hierarchal routing architecture is needed
 - To overcome the current limitations of the routing probability approximation
 - Current FPA mechanism lacks accuracy under large network topologies with <u>flat</u> routing architecture

Next Steps/Future Work- Multi-Domain Analysis "Hierarchal Routing"

April 25, 2005

IETF control plane model

- Routing component advertises the traffic occupancy of the *coarse* granularity levels
- Service request with actual bandwidth requirements (b_k^A) will consume (b_k^C) resources from (C_j)

35

University of Kansas

- A call with bandwidth requirement (b_k^A) will be accepted if the following condition apply:

$$b_k^A \le C_j - \sum_{k \in K} b_k^C n_j^k$$

ITU & SPA-Dedicated control plane models

- Routing component advertises the traffic occupancy of the *fine* granularity levels
- Service request with actual bandwidth requirements (b_k^A) will consume (b_k^A) resources from (C_j)
- A call with bandwidth requirement (b_k^A) will be accepted if the following condition apply:

$$b_k^A \leq C_j^D - \sum_{k \in K} b_k^A n_{jk}^D$$

SPA-Shared control plane model

- *Differs* from both the ITU and SPA-Dedicated control plane models
 - Can enable IMF and further divide the service request demand (b_k^A)into sub-rates or granular demands (b_k^G)
- A call with bandwidth requirement (b_k^A) will be accepted if the following condition apply:

Dedicated Resources: $b_k^G \le C_j^{\nu D} - \sum_{k \in K} b_k^G n_{jk}^{\nu D}$ **Shared Resources:** $b_k^G \le C_j^{\nu S} - \sum_{k \in K} b_k^G n_{jk}^{\nu S}$ **Shared Resources:** $b_k^G \le C_j^{\nu S} - \sum_{k \in K} b_k^G n_{jk}^{\nu S}$

elecommunication fechnology Center

Appendix-A: Mathematical Formulation- Step-2: Estimating Link's Reduced Load

$$\begin{aligned} & \text{IETF control plane model} \\ \lambda_{jk}^{n} &= \lambda_{rk}^{n} q_{rk}^{m} l[j \in r_{m}] \prod_{i \in r_{m}, i \neq j} a_{ik} \longrightarrow \lambda_{jk} = \sum_{r \in R} \sum_{r_{m} \in M_{r}} \lambda_{jk}^{n} & \text{Link } j \text{ reduced load} \\ \text{based on class } k \end{aligned} \\ & \text{ITU & SPA-Dedicated control plane models} \\ \lambda_{jk}^{D_{m}} &= \lambda_{rk}^{D} q_{rk}^{mD} l[j \in r_{m}] \prod_{i \in r_{m}, i \neq j} A_{jk}^{D_{m}} = \sum_{r \in R} \lambda_{jk}^{D_{m}} & \text{Dedicated resources partition } D \text{ reduced} \\ \text{load on Link } j \text{ based on class } k \end{aligned} \\ & \text{SPA-Shared control plane model} (Without NE) \\ \lambda_{rk}^{rD} &= \lambda_{rk}^{r} \cdot \frac{C_{j}^{rD}}{C_{j}^{rD} + C_{j}^{rS}} & \lambda_{ik}^{2} = \sum_{r \in R} \sum_{r_{m} \in M_{r}} \lambda_{jk}^{D_{m}} = \lambda_{rk}^{nD} q_{rk}^{mD} l[j \in r_{m}] \prod_{i \in r_{m}, i \neq j} a_{ik}^{D_{m}} & \lambda_{jk}^{2} = \sum_{r \in R} \sum_{r_{m} \in M_{r}} \lambda_{jk}^{D_{m}} \\ \lambda_{rk}^{rS} &= \lambda_{rk}^{r} \cdot \frac{C_{j}^{rD}}{C_{j}^{rD} + C_{j}^{rS}} & \lambda_{ik}^{2} = (\sum_{\nabla V} \lambda_{ik}^{NS}) & \lambda_{jk}^{2} = \tilde{\lambda}_{rk}^{2} q_{rk}^{MD} l[j \in r_{m}] \prod_{i \in r_{m}, i \neq j} a_{ik}^{R} & \lambda_{jk}^{2} = \sum_{r \in R} \sum_{r_{m} \in M_{r}} \lambda_{jk}^{2} \\ & \text{SPA-Shared control plane model} (With NE) \end{aligned} \\ & \text{SPA-Shared control plane model} (With NE) \\ & \lambda_{rk}^{rS} &= \lambda_{rk}^{r} \cdot \frac{C_{j}^{rD}}{C_{j}^{rD} + C_{j}^{rS}} & \lambda_{ik}^{2} = (\sum_{\nabla V} \lambda_{ik}^{NS}) & \lambda_{ik}^{2} = \sum_{\nabla V} \lambda_{ik}^{2} q_{ik}^{2} n^{m} l[j \in r_{m}] \prod_{i \in r_{m}, i \neq j} a_{ik}^{2} & \lambda_{jk}^{2} = \sum_{r \in R} \sum_{r_{m} \in M_{r}} \lambda_{jk}^{2} \\ & \text{SPA-Shared control plane model} (With NE) \end{aligned} \\ & \text{SPA-Shared control plane model} (With NE) \\ & \text{ME} \lambda_{ik}^{2} = (\sum_{\nabla V} \lambda_{ik}^{NS}) & \text{ME} \lambda_{ik}^{2} = \sum_{r \in R} \sum_{r_{m} \in M_{r}} \lambda_{ik}^{2} + \sum_{r \in R} \sum_{r_{m} \in M_{r}} \lambda_{ik}^{2} n^{m} h_{ik}^{2} + \sum_{r \in R} \sum_{r_{m} \in M_{r}} \lambda_{ik}^{2} n^{m} h_{ik}^{2} + \sum_{r \in R} \sum_{r_{m} \in M_{r}} \lambda_{ik}^{2} n^{m} h_{ik}^{2} n^{m$$
Appendix-A: Mathematical Formulation- Step-3: Estimating Link's Admissibility Probability 37

Appendix-A: Mathematical Formulation- Step-3: Estimating Link's Admissibility Probability 38

avD, G

'Cont.'

►SPA-Shared control plane model "without/NE, with/IM"

$$np_{j}^{\nu D}(n) = \sum_{K} b_{k}^{G} \frac{i\lambda_{jk}^{D}}{\mu_{k}} p_{j}^{\nu D}(n - b_{k}^{G}) \longrightarrow a_{jk}^{\nu D} = \sum_{n=0}^{C_{j}^{\nu D} - b_{k}^{G}}$$

 $p_j^{vD}(n)$ Dedicated resources partition *D* of VPN *v* admissibility probability on link *j* for class *k*

Shared resources partition S admissibility probability on link j for class k

$$np_{j}^{S}(n) = \sum_{K} b_{k}^{G} \frac{i\lambda_{jk}^{S}}{\mu_{k}} p_{j}^{S}(n - b_{k}^{G}) \quad \dots \quad a_{jk}^{S} = \sum_{n=0}^{C_{j}^{S} - b_{k}^{G}} p_{j}^{S}(n) \quad \text{Shared}$$

$$a_{jk}^{v} = \frac{a_{jk}^{vD} \cdot C_{j}^{D} + a_{jk}^{S} \cdot C_{j}^{S}}{C_{j}^{vD} + C_{j}^{S}} \quad \dots \quad a_{jk} = \frac{(\sum_{\forall D} a_{jk}^{D} \cdot C_{j}^{D}) + a_{jk}^{S} \cdot C_{j}^{S}}{C_{j}}$$

Link *j* admissibility probability based on class k

SPA-Shared control plane model "with/(NE,IM)"

$$np_{j}^{\nu D}(n) = \sum_{K} b_{k}^{G} \frac{{}^{NE} \lambda_{jk}^{D} i}{\mu_{k}} p_{j}^{\nu D}(n - b_{k}^{G}) \dots \qquad a_{jk}^{\nu D} = \sum_{n=0}^{C_{j}^{\nu D} - b_{k}^{G}} p_{j}^{\nu D}(n)$$

$$np_{j}^{S}(n) = \sum_{K} b_{k}^{G} \frac{{}^{NE} \lambda_{jk}^{S} i}{\mu_{k}} p_{j}^{S}(n - b_{k}^{G}) \longrightarrow a_{jk}^{S} = \sum_{n=0}^{C_{j}^{S} - b_{k}^{G}} p_{j}^{S}(n)$$
$$a_{jk}^{v} = \frac{a_{jk}^{vD} \cdot C_{j}^{D} + a_{jk}^{S} \cdot C_{j}^{S}}{C_{j}^{vD} + C_{j}^{S}} \longrightarrow a_{jk} = \frac{(\sum_{\forall D} a_{jk}^{D} \cdot C_{j}^{D}) + a_{jk}^{S} \cdot C_{j}^{S}}{C_{j}}$$

Appendix-A: Mathematical Formulation- Step-4: Estimating Routing Probability

SPA-Dedicated control plane model

- Estimating routing probability is carried independently for each dedicated resources partition

$$\Pr[A_n^D(r_m)] = \prod_{j \in (r_m)} \sum_{k=0}^{C_j^D - n} P_j^D(k) \longrightarrow \Pr[A_n^D(r_k - r_m)] = \prod_{j \in (r_k - r_m)} \sum_{k=0}^{C_j^D - n} P_j^D(k) \longrightarrow \Pr[\overline{A}_n^D(r_k - r_m)] = 1 - \prod_{j \in (r_k - r_m)} \sum_{k=0}^{C_j^D - n} P_j^D(k)$$

$$\Pr[A_{n+1}^{D}(r_{m})] = \prod_{j \in (r_{m})} \sum_{k=0}^{C_{j}^{D}-n+1} P_{j}^{D}(k) \Pr[A_{n+1}^{D}(r_{k}-r_{m})] = \prod_{j \in (r_{k}-r_{m})} \sum_{k=0}^{C_{j}^{D}-n+1} P_{j}^{D}(k) \Pr[\overline{A}_{n+1}^{D}(r_{k}-r_{m})] = 1 - \prod_{j \in (r_{k}-r_{m})} \sum_{k=0}^{C_{j}^{D}-n+1} P_{j}^{D}(k)$$

$$\Pr[\widetilde{A}_n^D(r_m)] = \Pr[A_n^D(r_m)] - \Pr[A_{n+1}^D(r_m)]$$

 $q_{rk}^{mD} = \sum_{n=0}^{C_{\min}(r_m)} \prod_{k=1}^{k=m-1} \Pr[\overline{A}_n^D(r_k - r_m)] \cdot \prod_{k=m+1}^{k=M_r} \Pr[\overline{A}_{n+1}^D(r_k - r_m)] \cdot \Pr[\widetilde{A}_n^D(r_m)] \quad \underset{\text{routing}}{\text{Dediction}}$

Dedicated resources partition D of VPN v routing probability on pair r for class k

SPA-Shared control plane model

- Estimating routing probability is carried independently for both dedicated and shared resources partitions
 - Similar set of equations like SPA-dedicated but with different notations

Appendix-A: Mathematical Formulation- Step-5: Estimating Network Blocking Probability 40

 $\sum B^D * C^D$

IETF control plane model

ITU & SPA-Dedicated control plane models

SPA-Shared control plane models

Dedicated resources partition D network-wide blocking probability for class k

 $B_{rk} = \frac{(\sum_{\forall C_j^D} B_{rk}^D * C_j^D) + B_{rk}^S * C_j^S}{C}$ $B_{rk} = \frac{AVR_{r\in R}[B_{rk}]}{C}$ Network-wide blocking probability for class k

Appendix-A: Mathematical Formulation- Step-6: Estimating Network Permissible Load

IETF control plane model $\hat{\lambda}_{rk} = \sum_{i=r_m}^{m_r} q_{rk}^m MIN_{i\in r_m}(\lambda_{jk}) \qquad \hat{\lambda}_k = Avr[\hat{\lambda}_{rk}] \text{ Network-wide permissible "non-blocked" load for class k}$ **ITU & SPA-Dedicated control plane models** $\hat{\lambda}_{rk}^{D} = \sum_{m=1}^{M_{r}} q_{rk}^{mD} \underset{j \in r_{m}}{MIN} (\lambda_{jk}^{D}) \longrightarrow \hat{\lambda}_{rk} = \frac{(\sum_{\forall v} \hat{\lambda}_{rk}^{D} * C_{j}^{D})}{C}$ **SPA-Shared control plane models** $\hat{\lambda}_{rk}^{D} = \sum_{m=1}^{M_r} q_{rk}^{mD} \underbrace{MIN}_{j \in r_m}(\lambda_{jk}^{D}) \qquad \hat{\lambda}_{k}^{D} = \underbrace{Avr}_{r \in R}[\hat{\lambda}_{rk}^{D}] \qquad \hat{\lambda}_{rk} = \frac{(\sum_{\forall v} \hat{\lambda}_{rk}^{D} * C_{j}^{D})}{C}$ Dedicated resources partition D network-wide permissible "non-blocked" load for class k $\hat{\lambda}_{rk}^{S} = \sum_{m=1}^{M_{rk}} q_{rk}^{mS} \underset{j \in r_{m}}{MIN} (\lambda_{jk}^{S}) \qquad \qquad \hat{\lambda}_{k}^{S} = \underset{r \in R}{Avr} [\hat{\lambda}_{rk}^{S}]$ Shared resources partition s network-wide $\hat{\lambda}_{rk}^{v} = \frac{\hat{\lambda}_{rk}^{D} * C_{j}^{D} + \hat{\lambda}_{rk}^{S} * C_{j}^{S}}{C_{j}^{D} + C_{j}^{S}}$ VPN resources partition *v* network-wide permissible "non-blocked" load for class *k* $\hat{\lambda}_{rk} = \frac{\left(\sum_{\forall D} \hat{\lambda}_{rk}^{D} * C_{j}^{D}\right) + \hat{\lambda}_{rk}^{S} * C_{j}^{S}}{C_{i}}$

Information an

Telecommunication

Technology Center

permissible "non-blocked" load for class k

Appendix-A: Mathematical Formulation- Step-7: Estimating Network Utilization

► IETF control plane model

 $U_j = \sum_{n=1}^{C_j} p_j(n)$ $U = Avr_{j \in J}[U_j]$ Network-wide utilization

Network-wide utilization of dedicated network resources partition *D*

SPA-Shared control plane models

$$U_{j}^{S} = \sum_{n=1}^{C_{j}^{S}} p_{j}^{S}(n)$$
 Network-wide utilization of shared network resources partition S for link j

 $U_{j}^{v} = \frac{U_{j}^{D} * C_{j}^{D} + U_{j}^{S} * C_{j}^{S}}{C_{j}^{D} + C_{j}^{S}}$ Network-wide utilization of VPN network resources partition v for link j

$$U_{j} = \frac{\left(\sum_{\forall v} U_{j}^{D} * C_{j}^{D}\right) + U_{j}^{S} * C_{j}^{S}}{C_{j}}$$

Link j utilization based on the utilization of dedicated and shared network resource partitions

$$U = Avr_{j \in J}[U_j]$$

 $U_j^D = \sum_{i=1}^{C_j^D} p_j^D(n)$

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physcial Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-Dedicated

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/o(NE,IM)

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/NE,w/oIM)

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/oNE,w/IM)

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/(NE,IM)

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-Dedicated

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/o(NE,IM)

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/NE,w/oIM)

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/oNE,w/IM)

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/(NE,IM)

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/o(NE,IM)

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/NE,w/oIM

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/oNE,w/IM

4-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/(NE,IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physcial Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-Dedicated

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/o(NE,IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/NE,w/oIM)

60

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/oNE,w/IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/(NE,IM)

<mark>61</mark>

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physcial Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-Dedicated

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/o(NE,IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/NE,w/oIM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/oNE,w/IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/(NE,IM)

<u>66</u>

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/o(NE,IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/NE,w/oIM

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/oNE,w/IM

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 2-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/(NE,IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physcial Resources) 3-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-Dedicated

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/o(NE,IM)

Appendix-D: 7 Node (3 routes) Topology Detailed Results "Blocking probability"

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/NE,w/oIM)

73

Appendix-D: 7 Node (3 routes) Topology Detailed Results "Blocking probability"

74

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/oNE,w/IM)

Appendix-D: 7 Node (3 routes) Topology Detailed Results "Blocking probability"

75

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Blocking Probability (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/(NE,IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physcial Resources) 3-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-Dedicated

76

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/o(NE,IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/NE,w/oIM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-(w/oNE,w/IM)

80

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Permissible Load (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF(DR,SR), ITU(DR,SR), SPA-w/(NE,IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/o(NE,IM)

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/NE,w/oIM

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/oNE,w/IM

7-node Topology (Fully-meshed Service Configuration) Average Network-Wide Utilization (Physical Resources) 3-Alternate Routing, Class-B Arrivals, IETF,ITU, SPA-Dedicated, SPA-w/(NE,IM)

