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Abstract 

Developing distributed applications has always been challenging. 

Controlling all aspects of a distributed system is very difficult, thereby making it 

difficult to debug and test them. Simulating distributed applications contributes to 

a solution of the problem by making debugging and testing manageable, since a 

simulated environment offers more capability to control a wide range of 

parameters that affect the performance of the system.  

This project presents a novel approach to simulating distributed 

applications based on the Reactor pattern. The simulation environment has the 

capability to adapt network models to simulate various kinds of networks. Using 

the simulation environment, we built (1) a Token Ring network; and (2) a network 

implementing the Bully Election algorithm.  These were run in both simulated and 

distributed modes. The standard output generated in both the modes has been 

verified to be the same. 
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Chapter 1 

Introduction 

1.1 Motivation 

Debugging and testing distributed systems has always been challenging. 

This is because of the tremendous difficulty involved in controlling all aspects of a 

distributed system. Identifying the source of a particular problem is complex, 

thereby making debugging difficult. The behavior of the system is non-

deterministic, due to effectively random context switches. The programmer has 

no control over the concurrency exhibited by the system. Certain errors might 

occur due to race conditions (timing-based bugs), which means that they will not 

occur every time the application runs. One solution is to provide the capability of 

running the application in exactly the same manner a second time, so that such 

errors can be replayed and such timing-based bugs can be tracked down. The 

lack of reproducibility of concurrency scenarios in a distributed system hinders 

testing.  

There are many issues involved in building software for distributed 

systems, such as transparency, synchronization, concurrency control, fault-

tolerance, etc. Software that manages all these is bound to be large, which in 

turn complicates debugging and testing. Hence, it is easier to solve the problem 

by trying to simulate the distributed applications prior to actually developing the 

real one. A simulated environment offers more capability to control the 
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performance of distributed systems. Simulations make debugging and testing 

manageable, as it is much easier to identify the source of a problem. Therefore, 

the real application can be developed after the simulated system is completely 

debugged and tested.  

1.2 Proposed Solution 

The goal of this project is to build a simulated environment for developing, 

debugging and testing distributed applications. In the simulated environment, 

distributed applications are run as a single process. Each node in the distributed 

application is run as a separate thread in the process. This requires the presence 

of a thread library which provides the capability of scheduling threads. BThreads 

[1], a POSIX thread library for Linux, is used for this purpose. It is based on the 

BERT Reactor, a software pattern for event demultiplexing and dispatching. 

BERT is designed to facilitate debugging of distributed applications. Handlers for 

specific types of events are registered with the Reactor. The Reactor reacts to 

the events, by detecting them and calling the appropriate event handlers. Thus, 

the debugging information of the application can be obtained from the Reactor by 

getting the state of the different event handlers. 

A virtual timeline is maintained in the simulation environment. Messages 

are not delivered to recipient nodes as soon as they are sent. They are delayed 

to account for network latencies. Messages are delivered only after the simulated 

time that represents the network latency has passed. Scheduling events based 

on a virtual timeline also helps to ensure that the sequence of events that takes 

place in the simulated environment is exactly the same as that in the distributed 
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mode. Network models are used to simulate different kinds of networks, so that 

messages are delivered with delays appropriate to the real network. 

1.3 Organization 

The remainder of the document is organized as follows. Chapter 2 

discusses some of the related work in simulating distributed systems using a 

Reactor pattern. Chapter 3 discusses the design of our system. It also describes 

in detail the implementation of the various classes designed to build a simulation 

environment. Chapter 4 discusses a Token Ring Network and a network that 

implements the Bully election algorithm, both built using the simulation 

environment. It also compares the results obtained to the real distributed system. 

Chapter 5 concludes the document by discussing future work in this area of 

research.  
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Chapter 2 

Related Work 

Numerous mechanisms are employed to simulate distributed systems. 

Among them, the mechanisms discussed in the following sections are most 

closely related to this project. 

2.1 KU PNNI Simulator 

KU PNNI is a simulator for describing, testing and instrumenting any network 

topology where the participating ATM switches employ the Private Network-to-

Network Interface (PNNI) protocol. The main objective of the simulator is to test 

the performance of the PNNI protocol. The simulator was developed on 

Bellcore’s Q.port software [2]. The KU PNNI Simulator is similar to ours, in that it 

is based on a reactor. The reactor is responsible for registering and dispatching 

multiple timer events and also for posting multiple Q.Port internal messages. 

Scheduling of events is done by maintaining virtual time. Events are scheduled 

based on two levels of priority. The user specifies the parameters to setup the 

network and run tests. “The main advantage of the KU PNNI Simulator is that it is 

based on the real ATM switch software and hence it is mostly assumption free” 

[3]. However, our solution provides the following features that are not present in 

the KU PNNI Simulator: 
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• Generic Application Simulation 

It can be used to simulate any distributed application that can be 

instantiated as an object, including the PNNI network performance 

analysis code. The KU PNNI simulator can simulate only PNNI networks.  

• Reproducibility of execution sequence 

Our design presents a framework that supports replaying the execution 

sequence of events in exactly the same manner a second time. This 

makes it easier to debug distributed applications. 

2.2 MONARC Distributed System Simulation 

 MONARC was developed at Caltech for CERN, to perform realistic 

simulation and modeling of distributed computing systems, customized for 

specific physics data processing.  

It models the behavior of the system of site facilities and networks, 

given the assumed physical structure of the computer systems and 

the usage patterns, including the manner in which hundreds of 

physicists will access LHC data. The hardware and networking 

costs, and the performance of a range of possible computer 

systems, as measured by their ability to provide the physicists with 

the requested data in the required time, are the main metrics that 

will be used to evaluate the models [4].  

 

This is similar to our project, in that they use a process-oriented approach 

for discrete event simulation. MONARC is based on Java and it uses the built-in 

thread support for concurrent processing. It uses time dependent response 

functions to describe the behavior of all active components in the system. It also 
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has a network package that models LAN/WAN networks. The main advantage of 

MONARC is that it allows certain parts of the system to be simulated and other 

parts running the real application. However, the following features that our 

simulation environment provides are absent in MONARC. 

• Generic Application Simulation 

It can be used to simulate any distributed application that can be 

instantiated as an object. MONARC is specifically designed to simulate 

physics data processing. Our environment can be used if the physics data 

processing code of MONARC can be instantiated as an object. 

• Reproducibility of execution sequence 

2.3 SimJava 

SimJava was developed at the Institute for Computing Systems 

Architecture, University of Edinburgh. It is a process based discrete event 

simulation package for Java [5] that simulates complex systems. It provides a 

visual representation of the objects during the simulation. Since it is based on 

Java, it can also be incorporated into web pages. It has three packages that 

provide the basic functionality. SimJava simulates static networks. The package 

also provides functions that enable the objects to communicate with one another. 

It maintains a virtual timeline to schedule events. There are a lot of projects 

developed using SimJava such as GridSim, Distributed SimJava and SIMPROD, 

to name a few.The advantages of our simulation environment are the following. 

• Reproducibility of execution sequences. 
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• Consistent Application code, which enables the application to be run in 

distributed mode as well. 

2.4 MPISim 

This was developed at the University of California, Los Angeles. It is used 

to predict the performance of large parallel programs by discrete-event simulation 

[6]. The simulation helps to predict the performance of parallel computation-, 

communication- and I/O-intensive programs written using the Message Passing 

Interface (MPI) library. Existing MPI programs have to be modified to support 

multi-threading so as to be run as a single process in the simulation. It uses 

queues for communication and maintains a virtual clock based on which pending 

events in the simulation are sorted. MPI communication calls are translated to 

non-blocking calls in the simulation. It produces metrics relating to the simulation 

such as predicted performance of the application program in terms of the 

execution time, number and type of I/O operations, performance of the simulator 

and performance of simulated communication. The advantage of our simulation 

environment is the ability to reproduce execution sequences 

 

 

 

2.5 DaSSF 

 Dartmouth SSF (DaSSF) is a synchronized parallel simulator mainly 

employed for Computer Network Simulations [7].  It was developed by Dartmouth 

College, USA. DaSSF is a C++ implementation of the Scalable Simulation 
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Framework (SSF).  DaSSF has the capacity to simulate very large network 

models.  There is a virtual timeline maintained in the simulation.  The 

performance of DaSSF does not degrade in spite of having more entities & 

events added to the system. The API of DaSSF simplifies the expression of 

models. It uses a process-oriented simulation approach, which simplifies the 

modeling effort. DaSSF also provides a set of C++ class libraries. The principal 

classes are Entity, Process, Event, inChannel, and outChannel. Network models 

can be built by writing a C++ program that consists of classes derived from these 

principal classes. “These five base classes provide a truly generic and maximally 

compact interface that is sufficient to model not only telecommunication 

networks, but also many other domains” [8]. DaSSF can be run over a wide 

variety of architectures such as SGI IRIX, SUN Solaris, DEC OSF, Linux and 

Windows.  Parallelism is achieved on these platforms by employing shared 

memory. The advantages of our simulation environment over DaSSF are the 

following. 

• Generic Application Simulation. 

It can be used to simulate any application, not just networks. 

• Reproducibility of execution sequences 
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Chapter 3 

Implementation 

The BERT Reactor [9] is a software pattern for event demultiplexing and 

dispatching that provides an environment for building distributed applications. 

BThreads [1], is a POSIX thread library for Linux based on the BERT Reactor. 

Our project uses BThreads to run distributed applications as a single process 

and to maintain the virtual timeline. Moreover, since BThreads is a user-level 

thread library, each node runs as a user-level thread and the entire distributed 

application is actually run as a single kernel-level thread.  

The simulation environment is implemented in C++. Each application 

object that is using the simulation environment must inherit a base class called 

Application. This class has all the information about the objects that is necessary 

to facilitate simulation. Communication between the different nodes is achieved 

using the SimComm class. The interface for this class is the same for distributed 

mode as for simulated mode. However, the implementation differs. In distributed 

mode the functions are just wrappers to the Socket API. In simulated mode the 

data communication is achieved using queues. The Network class is responsible 

for simulating different kinds of networks and determines the delay involved in 

message transmission. Each application object runs as a separate user-level 

thread. These threads are scheduled to run based on their virtual time. An object 
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of SetUp class is created and is responsible for setting up the simulation. The 

functionality of the different classes is explained in detail below. 

3.1 BThreads 

Our project uses BThreads [1] to control thread execution sequences. 

Moreover, since this thread library is based on the BERT Reactor, all events that 

affect concurrency can be recorded and later replayed. These events include I/O, 

signals and timers. The simulation environment is thus based on an event-driven 

framework that acts as the controlling point for all events that affect concurrency 

since all such events can be captured at this point. It is then possible to record 

such events so that they can be used later to replay execution sequences.  

This project uses BThreads to run distributed applications as single-

threaded processes. It runs each of the different instances of the application as a 

single user-level thread using the BThreads library. Also, BThreads provides an 

option to set our own scheduling function. Thus, using BThreads helps to 

schedule the threads based on the virtual time.  

3.2 Design 
 

The primary design of the simulation is shown in figure 3.1. SetUp creates 

as many instances of the distributed application as specified for the simulation. It 

then spawns a user-level thread for every application object. It also creates 

another thread for an object of the SignalThreads class. The total number of 

objects that participate in the simulation is passed to the constructor function of 

the application objects. It is necessary that the constructor function of the 
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application be designed to pass this to the parent class Application. The 

scheduler has two functions, one to enqueue an application object thread to the 

ready queue and the other to dequeue it. Threads are enqueued in the ready 

queue based on their virtual time. The ready queue is thus a priority queue where 

the thread with the lowest virtual time is at the head and the highest is at the tail. 

When threads have the same virtual time, they are enqueued based on a FIFO 

discipline. Threads are dequeued from the head. The virtual time of each process 

is incremented by its elapsed execution in every time slice, before enqueuing the 

process on the ready queue. The SimComm class maintains a set of queues for 

data communication. When a node sends a message, it is timestamped with the 

receive time. The receive time of any message is determined by adding the 

virtual time of the sender to the delay obtained from the Network class.  
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 Figure 3.1: Simulation Design 
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 Whenever a process tries to receive a message, it will block if the sender 

has not yet sent the message. Each thread has a condition variable associated 

with it. When a thread receives a message, its virtual time has to be more than 

the receive time stamped on the message. If not, the thread’s state is changed to 

waiting, and it waits on the condition variable. At this time, the thread is moved 

from the ready queue to the waiting queue. When the SignalThreads object runs 

it determines the waiting thread with the lowest virtual time and increments its 

virtual time to that of the next highest thread. It then signals the waiting thread, 

which is added to the ready queue from the waiting queue. If the virtual time is 

still less than the receive time of the message, the thread waits again. This 

repeats until the virtual time is increased to a value high enough to receive the 

message. The SignalThreads object runs as long as there is at least one 

application object running, after which it exits. Thus, distributed applications are 

simulated as a single-threaded process running on a virtual timeline, 

incorporating network delays. 

3.3 Description of Classes 

3.3.1 Simulated Mode 

3.3.1.1 Setup 

Setup is responsible for starting the simulation. The simulation parameters 

are specified in a configuration file. Eventually, Netspec [10] will supply these 

parameters. SetUp creates as many application objects as specified by the 

configuration file with the given parameters.  It then creates the user-level 

threads for these objects and the SignalThreads object. 
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SetUp forms the core part of the simulation by creating the data structures 

necessary for the simulation. These include pointers to application objects, a 

mapping of the application object to its thread ID and condition variables and 

mutexes for the application objects. 

3.3.1.2 Application 

 

This class is the base class that each application object must inherit. It is 

responsible for maintaining all information about the objects necessary for the 

simulation. It maintains the virtual time and the state (waiting or not) of the 

application objects. It also has wrapper functions for the communication functions 

provided by SimComm. The interface for this class is shown in figure 3.2. 

SetUp determines the set of objects that participate in the simulation. The 

application object class must have a constructor function that accepts this value. 

SetUp passes this value to the application objects while instantiating them. The 

application in turn passes this to its parent, the Application class. Application has 

a global pointer to an instance of the SimComm class. This ensures that all 

application objects access the same instance of the SimComm class. Application 

has a constructor function that takes the count of the total objects participating in 

the simulation and passes this value to the SimComm class. It provides functions 

that are used by SimComm and SignalThreads to determine the state of an 

application object and to modify it. It also provides functions that are used by 

SimComm, SignalThreads and the scheduler to determine the virtual time of the 

application objects and modify them. The Application class also provides wrapper 

functions to those implemented by SimComm. It accesses these functions 
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through the global SimComm object. Thus, whenever an application object needs 

to perform the functions associated with communication, it just needs to make 

calls to these wrapper functions 

class Application 
{ 
  public: 
    Application(); 
    Application(int); 
    long long getClock(); 
    void setClock(long long); 
    void setBlocked(bool); 
    bool getBlocked(); 
    void Send(int,void **,int); 
    int Recv(int,void **,int); 
    int Close(int); 
  private: 
    long long clock; 
    bool blocked; 
}; 

Figure 3.2: Application Class Interface 

3.3.1.3 SimComm 

An essential requirement for a simulation environment is the ability to 

provide functions that enable communication between the various parts of the 

distributed application. The SimComm class provides this functionality. The 

interface for this class is the same for both the distributed and simulated modes. 

This helps to keep the application code consistent. However, the implementation 

differs for the two modes. The application is unaware of the existence of this 

class. It accesses the functions of this class through the wrapper functions that 

the Application class provides. The interface is shown in figure 3.3.  

Communication between the various nodes is achieved using queues. 

Queues allow unidirectional flow of data. Two queues are created per process 
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pair. Hence, if there are N objects involved in the simulation, N2 queues are 

created. Since, queues are always allocated in pairs, the index of a queue an 

object reads from is always the 1’s complement of the index of the queue it writes 

to. For example, queue pairs will have indices (0, 1), (2, 3), etc. These queues 

are stored in an array. The index to this array of queues is the connection 

descriptor that represents the connection between any two nodes.   

The SimComm class maintains a table of allocated queues. Queues are 

allocated in pairs. Before a queue is allocated its status is invalid. Whenever an 

object requests a connection with another object, the table is first checked to 

determine if the queue has already been allocated. If so, the index of the 

allocated queue is returned to the calling object. If not, two queues are allocated 

and the index of one of them is returned. The other index will be returned to the 

other object when it requests a connection with the first. The status of the two 

queues is then changed to valid.  

When a node sends data, the status of the queue to which the data is to 

be sent is checked to determine if it is valid. If so, the receive time of the 

message is computed by adding the virtual time of the sender to the delay 

obtained from the Network class. The data to be sent is timestamped with this 

receive time and is added to the queue. Send is a blocking call. Hence, a 

message can be sent only if the queue is empty. If the queue has data, the 

sender has to block until this data is received. 

When a node attempts to receive a message, the status of the queue is 

checked. If it is valid, the index of the queue it reads from is determined by 
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computing the 1’s complement of its connection descriptor. If the queue has no 

data, the receiving object blocks until data arrives. If the data is present, the 

virtual time of the object must be more than the receive time of the message in 

order to maintain the virtual timeline. If so, it receives the message. If not, it waits 

on a condition variable and later gets signaled by the SignalThreads object. 

After the application object performs all communication, it closes the connection 

descriptor, which changes the status of the corresponding queue to closed. 

class SimComm 
{ 
  public: 
    SimComm(); 
    void setTotalObj(int); 
    int getConnection(struct sockaddr_in *, 

struct sockaddr_in *); 
    int Send(int,void **,int,void *); 
    int Recv(int,void**,int,void *); 
    int Close(int); 
  private: 
    int totalObj; 
    vector<string> Queue_ID_tbl; 
    queue <void*> * Queues; 
    string* QueueStat; 
}; 

Figure 3.3: SimComm Class Interface 

This class has four functions that enable the various nodes to 

communicate with one another. 

getConnection 

The first step involved in building a communication channel between any 

two parts of the distributed application is establishing a connection between 

them. The getConnection function of the class connects two nodes of the 

distributed system. The prototype of the function is given below. 
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int SimComm::getConnection(struct sockaddr_in * my_ID,struct 

sockaddr_in * peer_ID) 

where, 

my_ID is the address of the node requesting the connection 

peer_ID is the address of the node to which the connection must be established 

Return Value: 

On successful completion getConnection returns a descriptor that is used for 

further communication. Otherwise it returns –1. 

Send 

The Send function of the class sends a message from one node to 

another.  The prototype of the function is given below. 

int SimComm::Send(int ID,void ** data, int size,void * app_ptr) 

where, 

ID is the connection descriptor 

data is the message that is to be sent 

size is the size of the message to be sent in bytes 

and app_ptr is a pointer to the node that is sending the message. 

Return Value: 

On successful completion Send returns the number of bytes that were sent. 

Otherwise it returns –1. 

Recv 

The Recv function of the class enables a node to receive a message. The 

prototype of the function is given below. 
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int SimComm::Recv(int ID,void ** data,int size,void * app_ptr) 

where, 

ID is the connection descriptor 

data is the buffer to hold the received message 

size is size of the message to be received in bytes 

and app_ptr is a pointer to the node that is receiving the message. 

Return Value: 

On successful completion Recv returns the number of bytes that is received. 

Otherwise it returns –1. 

Close 

After all communication is complete the established connection must be 

closed. The Close function of the API fulfills this purpose. The prototype of the 

function is given below. 

int SimComm::Close(int ID) 

where, 

ID is the descriptor of the connection to be closed. 

Return Value: 

On successful completion Close returns 0. Otherwise it returns –1. 

3.3.1.4 Network 

The Network class is responsible for modeling the network that is being 

simulated, by ascertaining the delay associated with message transmission from 

one node to another. Presently, this class does not model any particular network. 

Whenever SimComm contacts it, it returns a constant delay after which the 
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message is to be received. The application object is not aware of this class. This 

class is in a rudimentary form; it has just one function. The section on future work 

discusses how to make it model real networks. The interface is shown figure 3.4. 

 
class Network 
{ 
  public: 
  Network(); 
  long long getDelay(); 
}; 

Figure 3.4: Network Class Interface 

3.3.1.5 SignalThreads 

When a node tries to receive a message and its virtual time is less than 

the receive time stamped on any message sent to it, it waits on a condition 

variable associated with the message queue. This causes the application object 

to be removed from the ready queue and added to the waiting queue.  Setup 

creates a thread for an object of the SignalThreads class. This class inherits from 

Application, so that it also has access to the virtual time. This class is responsible 

for signaling blocked threads. The SignalThreads object runs as long as there 

are application objects still running. The interface of this class is shown in figure 

3.5. 

This class has access to pointers of all application objects running in the 

simulation.  The Unblock function signals waiting threads. This function first sorts 

the application objects based on their virtual times so that the ordering of objects 

is the same as the ready queue (with the exception that waiting objects will be 

missing in the ready queue). It then determines the first blocked object in this list 
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and increments its virtual time to that of the next highest object. It then signals 

the object, causing it to be moved from the waiting queue to the ready queue. 

The application object receives the message if the increased virtual time is 

greater than the receive time of the message. Otherwise the object waits again, 

until SignalThreads increases its virtual time high enough to receive a message. 

 

class SignalThreads: public Application 
{ 
  public: 
  SignalThreads(); 
  void Unblock(void *, int); 
}; 

Figure 3.5: SignalThreads Class Interface 

3.3.2 Distributed Mode 

3.3.2.1 SetUp 

The functionality provided by SetUp in distributed mode is minimal 

compared to the simulated mode. It creates just one instance of the application 

object by reading the configuration file. Also there are no threads spawned to run 

this object. SetUp runs the application object in the main thread and exits.  

3.3.2.2 Application 

Application objects must inherit from Application for the distributed mode 

also. In this mode, the Application class just provides the wrapper functions for 

SimComm. The other functions are needed only for the simulation. The 

Application class provides a constructor function that takes as an argument the 
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count of the total objects participating in the simulation. In distributed mode this is 

equal to one, since each node now runs as a separate process. However, this 

constructor function does not do anything meaningful. It is present only to 

maintain consistency of the application code between simulated and distributed 

modes. 

3.3.2.3 SimComm 

The SimComm class uses the Socket API in order to provide 

communication in distributed mode. Since the application calls the getConnection 

function when it requests a connection with another node, SimComm has to 

ensure that one node blocks on the accept call and the other blocks on the 

connect call until the connection is established. This is achieved by representing 

the address in an integer format. The node with a lower value blocks on the 

connect call while that with a higher value blocks on the accept call. The 

getConnection function returns a socket to the calling node. The Send and Recv 

functions read and write respectively to the corresponding sockets. Close is 

called to close a socket. These functions return the values that the Socket API 

returns. 
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Chapter 4 

Testing 

The design of the simulation environment was described in the previous 

section. Its performance was tested by (1) simulating a Token Ring network and 

(2) simulating a network where the nodes elect a leader based on the Bully 

Election algorithm. These applications were run in both distributed and simulated 

modes. The standard output generated in both modes were compared. 

4.1 Token Ring Network  

Each Token Ring application object represents a node in a Token Ring 

network. Each node establishes a connection with its neighboring nodes. It waits 

until it receives the token from the previous node, prints the token and then 

passes it to the next node. The user specifies the number of times the token 

should loop around the network. The code for the Token Ring application 

remains the same in both modes. 

4.1.1 Design 

Each Token Ring application object needs to know the following 

information: its ID in the network, the local address of the host machine to which 

it binds, the port number on which it runs, the address and the port number on 

which its previous node and next node run, and the number of times the token 

should loop around the network. It also needs to know if it is the node that 

generates the token or not. The information about the port number and IP 
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address is used to create sockets in distributed mode, and is used to create an 

identifier to associate the node with its queue in simulated mode.  

The first step is to set up the network using the Setup function of the 

TokenRingApp class. This function establishes a connection between each node 

of the network with its neighbors. The node that generates the token establishes 

a connection first with its next node and then with the previous node. Each other 

node establishes a connection with its previous node before connecting with its 

next node. This does not matter for simulated mode. However, if this was not 

done in distributed mode, application objects might block or the socket 

descriptors for the previous and next node may be swapped due to the order in 

which connection requests arrive. For example, consider a network with 5 nodes 

numbered 1 through 5. If all nodes try to establish a connection with the previous 

node and then with the next node, then node 5 blocks on an accept call from 

node 4, node 4 from node 3, and so on. However node 1 will block on a connect 

call to node 5 (its previous node). Since node 5 is already blocked on an accept 

call, it accepts the connection from node 1, assuming that it is node 4. Hence, 

node 5 misinterprets the socket it has established with node 1 as a socket it 

established with node 4. In simulated mode this does not happen since there are 

no accept or connect calls. 

Once the connection has been established with neighboring nodes, the 

starter node generates the token. All other nodes read the token from the 

previous node. After the token has been generated or read, the node prints its ID, 

the number of times the token has looped around the network and its value. After 
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the token has looped around a sufficient number of times, the node closes 

connections with its neighbors and exits. 

4.1.2 Configuration file 

A configuration file specifies the structure of the Token Ring network. The 

layout of the file is shown in Table 4.1. 

 

Field Name 

Node ID 

Next node pointer 

Previous node pointer 

Address 

Port number 

 

Table 4.1: Layout of Configuration file for Token Ring network 

The first field is the ID of the node. It is a string that uniquely represents a 

node of the Token Ring.  Next node pointer is the ID that corresponds to the next 

node. Previous node pointer is the ID that corresponds to the previous node. The 

next field is the local address of the host to which the node binds. The last field is 

the port number on which to listen. The fields in the configuration file are space 

delimited. The configuration file used for testing the simulation environment is 

shown in figure 4.1. 

 

 

 

 

Figure 4.1: Configuration file used in simulating Token Ring network 

ID01 ID05 ID02 kermit.ittc.ku.edu 10001 
ID02 ID01 ID03 diannao.ittc.ku.edu 10002 
ID03 ID02 ID04 scooter.ittc.ku.edu 10003 
ID04 ID03 ID05 waldorf.ittc.ku.edu 10004 
ID05 ID04 ID01 marcus.ittc.ku.edu 10005 
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4.1.3 Distributed mode 

The user supplies the path to the configuration file and the number of 

times the token should loop around the network as command-line arguments. 

SetUp then reads the configuration file. The first node as specified in the 

configuration file is the starter of the network. The application objects are created 

with the specified parameters and are run as separate processes.  

In the example used for testing, a Token Ring with 5 nodes is created. The 

token is specified to loop around the network twice. The standard output from the 

various nodes is shown in figure 4.2. Each node prints its ID, the number of times 

the token has already looped around the network and the token. 

Since the node with ID “ID01” is the first node specified in the 

configuration file, SetUp designates it as the starter. So it thus generates the 

token. The token passing does not begin until all nodes are running and the 

connection is established. After that, ID01 generates the token and prints it. It 

then blocks on the Recv call waiting for the token to be passed to it by ID05 since 

the token must loop twice. At this point, ID02 reads the token from ID01 and 

passes it to ID03. Each node reads the token from the previous node, print its 

value and passes it to the next node. The nodes pass the token for as many 

times as the user specifies. The nodes remain blocked in the Recv call until the 

previous node writes to them. After completion, the nodes close the connection 

and exit. 
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Figure 4.2: Standard output of the Token Ring network for Distributed mode 

kermit [22] % SetUp ID01 config.txt 2 
 
Machine ID ID01 
LOOP COUNT 1 
Token: TOKEN 
 
Machine ID ID01 
LOOP COUNT 2 
Token: TOKEN 
 
diannao [119] % SetUp ID02 config.txt 2 
 
Machine ID ID02 
LOOP COUNT 1 
Token: TOKEN 
 
Machine ID ID02 
LOOP COUNT 2 
Token: TOKEN 
 
scooter [19] % SetUp ID03 config.txt 2 
 
Machine ID ID03 
LOOP COUNT 1 
Token: TOKEN 
 
Machine ID ID03 
LOOP COUNT 2 
Token: TOKEN 
 
waldorf [4] % SetUp ID04 config.txt 2 
 
Machine ID ID04 
LOOP COUNT 1 
Token: TOKEN 
 
Machine ID ID04 
LOOP COUNT 2 
Token: TOKEN 
 
marcus [11] % SetUp ID05 config.txt 2 
 
Machine ID ID05 
LOOP COUNT 1 
Token: TOKEN 
 
Machine ID ID05 
LOOP COUNT 2 
Token: TOKEN 
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4.1.4 Simulated mode 

In simulated mode, the user specifies the path of the configuration file and 

the number of times the token should loop around the network. SetUp creates 

the application objects with the specific parameters.  

It parses the configuration file shown in figure 4.1 and creates five Token 

Ring objects and runs them in a separate user-level thread. An object of 

SignalThreads is also created and is run in another thread. The standard output 

of the simulation is shown in figure 4.3. Each node prints its ID, the number of 

times the token has already looped around the network and the token. 

In simulated mode also, node ID01 is designated to be the starter. It 

generates the token, prints it and passes it to node ID02. It then waits for the 

token to be passed to it by ID05. As seen from the output, each node receives 

the token from the previous node, prints its value and passes it over to the next 

node. As seen from figures 4.2 and 4.3 the standard output generated in both 

modes is the same. 
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Figure 4.3: Standard output of the Token Ring network for Simulated mode 

diannao [2] % SetUp config.txt 2 
 
Machine ID ID01 
LOOP COUNT 1 
Token: TOKEN 
 
Machine ID ID02 
LOOP COUNT 1 
Token: TOKEN 
 
Machine ID ID03 
LOOP COUNT 1 
Token: TOKEN 
 
Machine ID ID04 
LOOP COUNT 1 
Token: TOKEN 
 
Machine ID ID05 
LOOP COUNT 1 
Token: TOKEN 
 
Machine ID ID01 
LOOP COUNT 2 
Token: TOKEN 
 
Machine ID ID02 
LOOP COUNT 2 
Token: TOKEN 
 
Machine ID ID03 
LOOP COUNT 2 
Token: TOKEN 
 
Machine ID ID04 
LOOP COUNT 2 
Token: TOKEN 
 
Machine ID ID05 
LOOP COUNT 2 
Token: TOKEN 
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In order to better understand the output of simulated mode, the concept of 

a virtual timeline must be understood. The exact sequence of events that occur is 

shown in figure 4.4. For testing purposes, the Network class returns a constant 

delay of 10 milliseconds. Since at the start of the simulation all objects have 

virtual time 0, they are on the ready queue in FIFO order. Thus, when the 

scheduler dequeues the objects, ID01 is the first node to run. 

As seen in figure 4.4, at virtual time 0, ID01 generates the token, prints its 

value and passes it to ID02. It then waits for ID05 to pass it back to it for the next 

loop. At this point, ID03, ID04 and ID05 are blocked for the previous node to pass 

the token to them. However, ID02 has to wait until the network delay has expired 

though ID01 has passed the token. Thus, it is waiting for the delay to expire, 

while other nodes are waiting for their respective previous nodes to pass the 

token to them.  The difference is that ID02 is in the waiting queue while the other 

nodes are in the ready queue. This is because ID02 waits on a condition 

variable, while the other nodes wait on a loop that breaks when the token is 

passed. 

When the SignalThreads object runs, it checks for waiting objects and 

increments their virtual times to that of the next highest node. At this time, ID02 is 

the only waiting object. SignalThreads increases its virtual time to 96.927 

milliseconds, that of ID01, the next highest node and signals it. This causes ID02 

to be added to the ready queue. The increased virtual time however, is less than 

the receive time of the message, so it waits again. After sufficient time has 

elapsed, SignalThreads increases the virtual time of ID02 to 196.916 
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ID01 

 
 
 
 
 
 
 
 
 
VT        0 
 
 
 
ID02 
 
 
 
 
 
 
 
 
 
 
VT      0                    196916000 
 
 
 
ID03 
 
 
 
 
 
 
 
 
 
 
VT         0          196916000     300552000  
 
 

Figure 4.4: Virtual timeline showing the sequence of events for the Token Ring 
network. 
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until ID01 
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Waits since 
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is less than 
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(206916000) 
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prints and 
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ID04.  Blocks 

until ID02 

passes token 
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ID04 
 
 
 
 
 
 
 
 
 
 
VT          0       300552000   496891000 
 
 
 
ID05 
 
 
 
 
 
 
 
 
 
 
 
VT 0                                                                  496891000        526883000 
 
 
 

Figure 4.4 (Continued) 

Blocks for 

ID03 to pass 
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receive time 

(310552000) 

Receives token 

from ID03, 

prints and 
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ID05.  Blocks 

until ID03 

passes token 

 

Blocks for 

ID04 to pass 

token 

Waits since 

virtual time   

is less than 

receive time 

(506891000) 

Receives token 

from ID04, 

prints and 

passes it to 

ID01.  Blocks 

until ID04 

passes token 
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milliseconds, a value high enough to receive the message. ID02 then receives 

the token, prints it and passes it to ID03. It then waits for ID01 to pass the token 

back to it for the next loop. 

At this point, ID03 no longer waits for the token to be passed. However, it 

will wait for the network delay to elapse before it can receive the token. The 

virtual time of ID03 is increased in the same manner as ID02. Each node blocks 

until the previous node sends the token, waits for its virtual time to be high 

enough to receive the token and passes the token to the next node. Thus, in the 

simulated mode, the sequence of events that happens is exactly the same as 

those that happen in the distributed mode. 

4.2 Bully Algorithm 

Each application object represents a node in an arbitrary network that 

implements the bully election algorithm to elect a leader. The purpose of this 

application is to stress the simulation environment by making it handle intense 

communication between the application objects, since communication between 

nodes in the Token Ring network is trivial. Moreover, there is a greater amount of 

concurrency involved in this application. Hence, it tests the performance of the 

simulation environment better than the Token Ring application. The code for this 

application also remains the same in both modes. 

4.2.1 Design 

Each application object needs to know the following information: its ID in 

the network, the IP address and port number on which it runs and the IP address 
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and the port number on which all other processes in the network run, their IDs 

and the total number of nodes in the network. The first step is to set up 

connections with all other nodes in the network. The GetConnection function of 

the Bully class takes care of this. Connection descriptors to nodes with a lower ID 

are stored in one array and to nodes with a higher ID in another array. This is 

done because each node tries to receive election messages from all the lower 

nodes. Since Recv is a blocking call, we must ensure that a node does not try to 

receive a message from any of the higher nodes. Maintaining two arrays for 

storing connection descriptors identifies connections on which to receive election 

messages. Once the connection is established, each node attempts to receive a 

message from all nodes with a lower ID. If the message is an election message, 

it sends back an acknowledgement. After it has received and acknowledged 

messages from all nodes with a lower ID, it sends an election message to all 

nodes with a higher ID. After that, it attempts to receive a message from all 

nodes with a higher ID. If it receives an acknowledgement message from at least 

one node with a higher ID, it loses the election. The leader is thus the node with 

the highest ID. The leader prints the result to standard output. The connections 

with all nodes are closed and the application exits. 

4.2.2 Configuration file 

The configuration file specifies information about the nodes of the network. 

The layout of the file is shown in Table 4.2. 
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Field Name 

Node ID 

IP address 

Port number 

 

Table 4.2: Layout of Configuration file for network implementing Bully Algorithm 

 

The first field is the ID of the node. It is an integer that uniquely represents 

a node in the network.  The next field is the local address of the host to which the 

node binds. The last field is the port number on which to listen. The fields in the 

configuration file are space delimited. The configuration file used for testing the 

simulation environment in figure 4.5 

 

 

 

 

Figure 4.5 Configuration file used in simulating a network implementing Bully 
Algorithm 

 

4.2.3 Distributed mode 

The user supplies the path to the configuration file as a command-line 

argument. SetUp reads the configuration file and creates the application objects 

with the specified parameters and runs them as separate processes.  

As seen from the configuration file shown in figure 4.5, a network with 5 

nodes is created. The standard output from the various nodes is shown in figure 

4.6. The leader prints its ID and the message that it won the election. 

0001 diannao.ittc.ku.edu 10001 
0002 marcus.ittc.ku.edu 10002 
0003 kermit.ittc.ku.edu 10003 
0004 scooter.ittc.ku.edu 10004 
0005 waldorf.ittc.ku.edu 10005 
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In the simulated mode as well, node ID01 is designated to be the starter. It 

generates the token, prints it and passes it over to node ID02. It then waits for 

the token to be passed to it by ID05. As seen from the output, each node 

receives the token from the previous node, prints its value and passes it over to 

the next node. The interleaving of the print statements makes it obvious that the 

token gets passed correctly from one node to the next. 

 

 
 
 
 
 Figure 4.6 Standard output of the Bully Algorithm for the Distributed mode 

The election does not begin until all nodes are running and connections 

are established. After that, each node blocks on the Recv call waiting for nodes 

with a lower ID to send an election message. Upon receiving the election 

message, an acknowledgement is sent. The node then sends an election 

message to all nodes with a higher ID. It loses if it gets an acknowledgement 

message back from at least one of them. The winner is thus the node with the 

highest ID. As seen from figure 4.6, node 0005 is elected to be the leader. The 

winner prints its ID and the message that it won the election. After completion, 

the nodes close connections with other nodes and exit. 

4.2.4 Simulated mode 

In simulated mode, the user specifies the path of the configuration file as a 

command-line argument. SetUp creates the application objects with the specific 

parameters. It parses the configuration file shown in figure 4.5 and creates ten 

diannao [42] % SetUp 0001 config.txt 
diannao [43] % 
 
marcus [21] % SetUp 0002 config.txt 
marcus [22] %  
 
kermit [27] % SetUp 0003 config.txt 
kermit [28] %  
 
scooter [24] % SetUp 0004 config.txt 
scooter [25] %  
 
waldorf [9] % SetUp 0005 config.txt 
My ID is 0005. I have won the election.  
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application objects and runs them in a separate user-level thread. An object of 

SignalThreads is also created and is run in another user-level thread. The 

standard output of the simulation is shown in figure 4.7. The winner prints its ID 

and the message that it won the election. As seen from figure 4.7, node 0005 is 

elected to be the leader. 

 

 
 
 

 
Figure 4.7: Standard output of the Bully Algorithm for the Simulated mode 

 
It can be seen that the communication and concurrency involved with the 

Bully algorithm is much more than that with the Token Ring. Hence, it clearly 

tests the simulation environment more vigorously. The virtual timeline for the 

bully algorithm is not shown since the number of objects involved is much greater 

than that in the Token Ring, thereby increasing the difficulty to represent it. The 

concept however remains the same.  

diannao [29] % SetUp config.txt 
My ID is 0005. I have won the election. 
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Chapter 5 

Conclusions and Future Work 

This project presents a novel approach to simulating distributed 

applications. It makes use of a user-level threading library working on top of a 

Reactor pattern. This framework supports replaying the execution sequence of 

events in exactly the same manner a second time, making it easier to debug 

distributed applications. 

The simulation environment requires applications to use the 

communication interface (SimComm) for sending and receiving messages. The 

application code for both the simulated and the distributed mode remains the 

same. Thus, the applications can be built using the simulation environment and 

without any changes can be run in distributed mode.  

To use the simulation, distributed applications must be designed to be 

instantiated as C++ objects. A class is implemented to provide for the 

communication between the various objects in the simulation. Network models 

can be incorporated to deliver messages with delays appropriate to real 

networks. The simulation also maintains a virtual timeline that enables 

sequencing of events in a manner exactly the same as that of distributed 

systems.  

The simulation environment was also tested by simulating a Token Ring 

network with five nodes. The resulting output conforms to that obtained by 

running the application in distributed mode. Also, objects wait for network delays 
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to expire before receiving messages. This confirms the ability of the simulation 

environment to adapt network models. 

5.1 Future Work 

• Since the BERT Reactor is the core of the simulation, it can be used to 

record all debugging information. The simulation can be extended to 

replay execution sequences.  

• Presently, the network model returns a constant delay. It can be extended 

to make it simulate real networks. The delay can be calculated based on 

the message size, bandwidth, source node, and destination node.
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