
High Fidelity Simulation of Distributed

Applications

by

Vijay Kalpathi Ramanathan

B.E (Electronics and Communication Engineering),

Bharathiar University, Coimbatore, India

Submitted to the Department of Electrical Engineering and Computer

Science and the Faculty of the Graduate School of the University of

Kansas in partial fulfillment of the requirements for the degree of Master of

Science.

Dr. Jerry James, Chair

Dr. Douglas Niehaus, Member

Dr. Susan Gauch, Member

Date Project Accepted

 i

To my parents and my brother.

 ii

Acknowledgements

I would like to express my sincere gratitude to Dr. Jerry James, my faculty

advisor and committee chair, for his guidance, support and encouragement

throughout my research work. It has been a great pleasure working with him. I

am extremely grateful to him for having provided me with an opportunity to work

on this project.

I would like to thank Dr. Douglas Niehaus for providing me with valuable

guidance and help during the course of the project. I would also like to thank Dr.

Susan Gauch for serving on my masters committee.

I thank my project team members Rajiv, Radha and Dushyanth for their

co-operation and support.

Special thanks to my parents and my brother for their support,

encouragement and love that they have been giving me all these days.

 iii

Abstract

Developing distributed applications has always been challenging.

Controlling all aspects of a distributed system is very difficult, thereby making it

difficult to debug and test them. Simulating distributed applications contributes to

a solution of the problem by making debugging and testing manageable, since a

simulated environment offers more capability to control a wide range of

parameters that affect the performance of the system.

This project presents a novel approach to simulating distributed

applications based on the Reactor pattern. The simulation environment has the

capability to adapt network models to simulate various kinds of networks. Using

the simulation environment, we built (1) a Token Ring network; and (2) a network

implementing the Bully Election algorithm. These were run in both simulated and

distributed modes. The standard output generated in both the modes has been

verified to be the same.

 iv

Table of Contents

1. Introduction………………………………………………………………1

 1.1 Motivation………………………………………………………………..1

 1.2 Proposed Solution……………………………………………..…….….2

 1.3 Organization of Report………………………………………………….3

2. Related Work…………………………………………………………….4

2.1 KU PNNI Simulator……………………………………………………..4

2.2 MONARC Distributed System Simulation……………………………5

2.3 SimJava…………………………………….……………………………6

2.4 MPISim……………………………………......…………………………7

2.5 DaSSF……………………………………………………………………8

3. Implementation………………………………………………………...10

3.1 BThreads……………………………………………………………….11

3.2 Design…………………………………………………………………..12

3.3 Description of Classes………………………………………….….…14

3.3.1 Simulated Mode……………………………………………………...14

3.3.1.1 SetUp…………………………………………………………….14

3.3.1.2 Application……………………………………………………….15

 v

3.3.1.3 SimComm………………………………………………………..16

3.3.1.4 Network…………………………………………………………..21

3.3.1.5 SignalThreads……………………………….………………….21

3.3.2 Distributed Mode……………………………………….…………….23

3.3.2.1 SetUp………………………………………………………….…23

3.3.2.2 Application……………………………………………………….23

3.3.2.3 SimComm………………………………………………………..23

4 Testing……………………………………………………………………...25

4.1 Token Ring Application ………………………………………………25

4.1.1 Design…………………………………………………………………25

4.1.2 Configuration file …………………………….……………………27

4.1.3 Distributed Mode……………………………………………………..28

4.1.4 Simulated Mode……………………………………………………...29

4.2 Bully Algorithm…………………………………………………………35

4.2.1 Design…………………………………………………………………36

4.2.2 Configuration file…………………………….……………………36

4.2.3 Distributed Mode..……………………………………………………37

4.2.4 Simulated Mode……………………………………………………...38

5 Conclusions and Future Work………………………………………….41

 vi

5.1 Future Work……………………………………………………………42

Bibliography……………………………………………………………………43

 vii

List of Tables

4.1 Layout of Configuration file for Token Ring network ………………..27

4.2 Layout of Configuration file for implementing Bully Algorithm……...37

 viii

List of Figures

3.1. Simulation Design……………………………………………………….13

3.2 Application Class Interface…………………………………………….16

3.3 SimComm Class Interface……………………………………………..18

3.4 Network class Interface………………………………………………...21

3.5 SignalThreads Class Interface………………………………………...22

4.1 Configuration file used in simulating Token Ring network……….…27

4.2 Standard output of the Token Ring network for the Distributed

mode……………………………………………………………………..30

4.3 Standard output of the Token Ring network for the Simulated

mode……………………………………………………………………...31

4.4 Virtual timeline showing sequence of events for the Token Ring

network…………………………………………………………………...34

4.5 Configuration file used in simulating a network implementing Bully

Algorithm……….………………………………………………………...37

4.6 Standard output of the Bully Algorithm for the Distributed mode…..39

4.7 Standard output of the Bully Algorithm network for the Simulated

mode……………………………………………………………………...39

 1

Chapter 1

Introduction

1.1 Motivation

Debugging and testing distributed systems has always been challenging.

This is because of the tremendous difficulty involved in controlling all aspects of a

distributed system. Identifying the source of a particular problem is complex,

thereby making debugging difficult. The behavior of the system is non-

deterministic, due to effectively random context switches. The programmer has

no control over the concurrency exhibited by the system. Certain errors might

occur due to race conditions (timing-based bugs), which means that they will not

occur every time the application runs. One solution is to provide the capability of

running the application in exactly the same manner a second time, so that such

errors can be replayed and such timing-based bugs can be tracked down. The

lack of reproducibility of concurrency scenarios in a distributed system hinders

testing.

There are many issues involved in building software for distributed

systems, such as transparency, synchronization, concurrency control, fault-

tolerance, etc. Software that manages all these is bound to be large, which in

turn complicates debugging and testing. Hence, it is easier to solve the problem

by trying to simulate the distributed applications prior to actually developing the

real one. A simulated environment offers more capability to control the

 2

performance of distributed systems. Simulations make debugging and testing

manageable, as it is much easier to identify the source of a problem. Therefore,

the real application can be developed after the simulated system is completely

debugged and tested.

1.2 Proposed Solution

The goal of this project is to build a simulated environment for developing,

debugging and testing distributed applications. In the simulated environment,

distributed applications are run as a single process. Each node in the distributed

application is run as a separate thread in the process. This requires the presence

of a thread library which provides the capability of scheduling threads. BThreads

[1], a POSIX thread library for Linux, is used for this purpose. It is based on the

BERT Reactor, a software pattern for event demultiplexing and dispatching.

BERT is designed to facilitate debugging of distributed applications. Handlers for

specific types of events are registered with the Reactor. The Reactor reacts to

the events, by detecting them and calling the appropriate event handlers. Thus,

the debugging information of the application can be obtained from the Reactor by

getting the state of the different event handlers.

A virtual timeline is maintained in the simulation environment. Messages

are not delivered to recipient nodes as soon as they are sent. They are delayed

to account for network latencies. Messages are delivered only after the simulated

time that represents the network latency has passed. Scheduling events based

on a virtual timeline also helps to ensure that the sequence of events that takes

place in the simulated environment is exactly the same as that in the distributed

 3

mode. Network models are used to simulate different kinds of networks, so that

messages are delivered with delays appropriate to the real network.

1.3 Organization

The remainder of the document is organized as follows. Chapter 2

discusses some of the related work in simulating distributed systems using a

Reactor pattern. Chapter 3 discusses the design of our system. It also describes

in detail the implementation of the various classes designed to build a simulation

environment. Chapter 4 discusses a Token Ring Network and a network that

implements the Bully election algorithm, both built using the simulation

environment. It also compares the results obtained to the real distributed system.

Chapter 5 concludes the document by discussing future work in this area of

research.

 4

Chapter 2

Related Work

Numerous mechanisms are employed to simulate distributed systems.

Among them, the mechanisms discussed in the following sections are most

closely related to this project.

2.1 KU PNNI Simulator

KU PNNI is a simulator for describing, testing and instrumenting any network

topology where the participating ATM switches employ the Private Network-to-

Network Interface (PNNI) protocol. The main objective of the simulator is to test

the performance of the PNNI protocol. The simulator was developed on

Bellcore’s Q.port software [2]. The KU PNNI Simulator is similar to ours, in that it

is based on a reactor. The reactor is responsible for registering and dispatching

multiple timer events and also for posting multiple Q.Port internal messages.

Scheduling of events is done by maintaining virtual time. Events are scheduled

based on two levels of priority. The user specifies the parameters to setup the

network and run tests. “The main advantage of the KU PNNI Simulator is that it is

based on the real ATM switch software and hence it is mostly assumption free”

[3]. However, our solution provides the following features that are not present in

the KU PNNI Simulator:

 5

• Generic Application Simulation

It can be used to simulate any distributed application that can be

instantiated as an object, including the PNNI network performance

analysis code. The KU PNNI simulator can simulate only PNNI networks.

• Reproducibility of execution sequence

Our design presents a framework that supports replaying the execution

sequence of events in exactly the same manner a second time. This

makes it easier to debug distributed applications.

2.2 MONARC Distributed System Simulation

 MONARC was developed at Caltech for CERN, to perform realistic

simulation and modeling of distributed computing systems, customized for

specific physics data processing.

It models the behavior of the system of site facilities and networks,

given the assumed physical structure of the computer systems and

the usage patterns, including the manner in which hundreds of

physicists will access LHC data. The hardware and networking

costs, and the performance of a range of possible computer

systems, as measured by their ability to provide the physicists with

the requested data in the required time, are the main metrics that

will be used to evaluate the models [4].

This is similar to our project, in that they use a process-oriented approach

for discrete event simulation. MONARC is based on Java and it uses the built-in

thread support for concurrent processing. It uses time dependent response

functions to describe the behavior of all active components in the system. It also

 6

has a network package that models LAN/WAN networks. The main advantage of

MONARC is that it allows certain parts of the system to be simulated and other

parts running the real application. However, the following features that our

simulation environment provides are absent in MONARC.

• Generic Application Simulation

It can be used to simulate any distributed application that can be

instantiated as an object. MONARC is specifically designed to simulate

physics data processing. Our environment can be used if the physics data

processing code of MONARC can be instantiated as an object.

• Reproducibility of execution sequence

2.3 SimJava

SimJava was developed at the Institute for Computing Systems

Architecture, University of Edinburgh. It is a process based discrete event

simulation package for Java [5] that simulates complex systems. It provides a

visual representation of the objects during the simulation. Since it is based on

Java, it can also be incorporated into web pages. It has three packages that

provide the basic functionality. SimJava simulates static networks. The package

also provides functions that enable the objects to communicate with one another.

It maintains a virtual timeline to schedule events. There are a lot of projects

developed using SimJava such as GridSim, Distributed SimJava and SIMPROD,

to name a few.The advantages of our simulation environment are the following.

• Reproducibility of execution sequences.

 7

• Consistent Application code, which enables the application to be run in

distributed mode as well.

2.4 MPISim

This was developed at the University of California, Los Angeles. It is used

to predict the performance of large parallel programs by discrete-event simulation

[6]. The simulation helps to predict the performance of parallel computation-,

communication- and I/O-intensive programs written using the Message Passing

Interface (MPI) library. Existing MPI programs have to be modified to support

multi-threading so as to be run as a single process in the simulation. It uses

queues for communication and maintains a virtual clock based on which pending

events in the simulation are sorted. MPI communication calls are translated to

non-blocking calls in the simulation. It produces metrics relating to the simulation

such as predicted performance of the application program in terms of the

execution time, number and type of I/O operations, performance of the simulator

and performance of simulated communication. The advantage of our simulation

environment is the ability to reproduce execution sequences

2.5 DaSSF

 Dartmouth SSF (DaSSF) is a synchronized parallel simulator mainly

employed for Computer Network Simulations [7]. It was developed by Dartmouth

College, USA. DaSSF is a C++ implementation of the Scalable Simulation

 8

Framework (SSF). DaSSF has the capacity to simulate very large network

models. There is a virtual timeline maintained in the simulation. The

performance of DaSSF does not degrade in spite of having more entities &

events added to the system. The API of DaSSF simplifies the expression of

models. It uses a process-oriented simulation approach, which simplifies the

modeling effort. DaSSF also provides a set of C++ class libraries. The principal

classes are Entity, Process, Event, inChannel, and outChannel. Network models

can be built by writing a C++ program that consists of classes derived from these

principal classes. “These five base classes provide a truly generic and maximally

compact interface that is sufficient to model not only telecommunication

networks, but also many other domains” [8]. DaSSF can be run over a wide

variety of architectures such as SGI IRIX, SUN Solaris, DEC OSF, Linux and

Windows. Parallelism is achieved on these platforms by employing shared

memory. The advantages of our simulation environment over DaSSF are the

following.

• Generic Application Simulation.

It can be used to simulate any application, not just networks.

• Reproducibility of execution sequences

 9

Chapter 3

Implementation

The BERT Reactor [9] is a software pattern for event demultiplexing and

dispatching that provides an environment for building distributed applications.

BThreads [1], is a POSIX thread library for Linux based on the BERT Reactor.

Our project uses BThreads to run distributed applications as a single process

and to maintain the virtual timeline. Moreover, since BThreads is a user-level

thread library, each node runs as a user-level thread and the entire distributed

application is actually run as a single kernel-level thread.

The simulation environment is implemented in C++. Each application

object that is using the simulation environment must inherit a base class called

Application. This class has all the information about the objects that is necessary

to facilitate simulation. Communication between the different nodes is achieved

using the SimComm class. The interface for this class is the same for distributed

mode as for simulated mode. However, the implementation differs. In distributed

mode the functions are just wrappers to the Socket API. In simulated mode the

data communication is achieved using queues. The Network class is responsible

for simulating different kinds of networks and determines the delay involved in

message transmission. Each application object runs as a separate user-level

thread. These threads are scheduled to run based on their virtual time. An object

 10

of SetUp class is created and is responsible for setting up the simulation. The

functionality of the different classes is explained in detail below.

3.1 BThreads

Our project uses BThreads [1] to control thread execution sequences.

Moreover, since this thread library is based on the BERT Reactor, all events that

affect concurrency can be recorded and later replayed. These events include I/O,

signals and timers. The simulation environment is thus based on an event-driven

framework that acts as the controlling point for all events that affect concurrency

since all such events can be captured at this point. It is then possible to record

such events so that they can be used later to replay execution sequences.

This project uses BThreads to run distributed applications as single-

threaded processes. It runs each of the different instances of the application as a

single user-level thread using the BThreads library. Also, BThreads provides an

option to set our own scheduling function. Thus, using BThreads helps to

schedule the threads based on the virtual time.

3.2 Design

The primary design of the simulation is shown in figure 3.1. SetUp creates

as many instances of the distributed application as specified for the simulation. It

then spawns a user-level thread for every application object. It also creates

another thread for an object of the SignalThreads class. The total number of

objects that participate in the simulation is passed to the constructor function of

the application objects. It is necessary that the constructor function of the

 11

application be designed to pass this to the parent class Application. The

scheduler has two functions, one to enqueue an application object thread to the

ready queue and the other to dequeue it. Threads are enqueued in the ready

queue based on their virtual time. The ready queue is thus a priority queue where

the thread with the lowest virtual time is at the head and the highest is at the tail.

When threads have the same virtual time, they are enqueued based on a FIFO

discipline. Threads are dequeued from the head. The virtual time of each process

is incremented by its elapsed execution in every time slice, before enqueuing the

process on the ready queue. The SimComm class maintains a set of queues for

data communication. When a node sends a message, it is timestamped with the

receive time. The receive time of any message is determined by adding the

virtual time of the sender to the delay obtained from the Network class.

 12

 Figure 3.1: Simulation Design

BERT REACTOR

SetUp

Reads

config file

and creates

app

objects.

Threads

App

SignalThreads

Scheduler

queues

Ready

Waiting

Application

The base

class of the

application

object

SimComm

Responsible

for

communication

Network

Models the

network

Return

delay

Moves app object to

waiting queue using

condition variables

BThreads

Get delay

Config file/

Netspec

(future)

 13

 Whenever a process tries to receive a message, it will block if the sender

has not yet sent the message. Each thread has a condition variable associated

with it. When a thread receives a message, its virtual time has to be more than

the receive time stamped on the message. If not, the thread’s state is changed to

waiting, and it waits on the condition variable. At this time, the thread is moved

from the ready queue to the waiting queue. When the SignalThreads object runs

it determines the waiting thread with the lowest virtual time and increments its

virtual time to that of the next highest thread. It then signals the waiting thread,

which is added to the ready queue from the waiting queue. If the virtual time is

still less than the receive time of the message, the thread waits again. This

repeats until the virtual time is increased to a value high enough to receive the

message. The SignalThreads object runs as long as there is at least one

application object running, after which it exits. Thus, distributed applications are

simulated as a single-threaded process running on a virtual timeline,

incorporating network delays.

3.3 Description of Classes

3.3.1 Simulated Mode

3.3.1.1 Setup

Setup is responsible for starting the simulation. The simulation parameters

are specified in a configuration file. Eventually, Netspec [10] will supply these

parameters. SetUp creates as many application objects as specified by the

configuration file with the given parameters. It then creates the user-level

threads for these objects and the SignalThreads object.

 14

SetUp forms the core part of the simulation by creating the data structures

necessary for the simulation. These include pointers to application objects, a

mapping of the application object to its thread ID and condition variables and

mutexes for the application objects.

3.3.1.2 Application

This class is the base class that each application object must inherit. It is

responsible for maintaining all information about the objects necessary for the

simulation. It maintains the virtual time and the state (waiting or not) of the

application objects. It also has wrapper functions for the communication functions

provided by SimComm. The interface for this class is shown in figure 3.2.

SetUp determines the set of objects that participate in the simulation. The

application object class must have a constructor function that accepts this value.

SetUp passes this value to the application objects while instantiating them. The

application in turn passes this to its parent, the Application class. Application has

a global pointer to an instance of the SimComm class. This ensures that all

application objects access the same instance of the SimComm class. Application

has a constructor function that takes the count of the total objects participating in

the simulation and passes this value to the SimComm class. It provides functions

that are used by SimComm and SignalThreads to determine the state of an

application object and to modify it. It also provides functions that are used by

SimComm, SignalThreads and the scheduler to determine the virtual time of the

application objects and modify them. The Application class also provides wrapper

functions to those implemented by SimComm. It accesses these functions

 15

through the global SimComm object. Thus, whenever an application object needs

to perform the functions associated with communication, it just needs to make

calls to these wrapper functions

class Application
{
 public:
 Application();
 Application(int);
 long long getClock();
 void setClock(long long);
 void setBlocked(bool);
 bool getBlocked();
 void Send(int,void **,int);
 int Recv(int,void **,int);
 int Close(int);
 private:
 long long clock;
 bool blocked;
};

Figure 3.2: Application Class Interface

3.3.1.3 SimComm

An essential requirement for a simulation environment is the ability to

provide functions that enable communication between the various parts of the

distributed application. The SimComm class provides this functionality. The

interface for this class is the same for both the distributed and simulated modes.

This helps to keep the application code consistent. However, the implementation

differs for the two modes. The application is unaware of the existence of this

class. It accesses the functions of this class through the wrapper functions that

the Application class provides. The interface is shown in figure 3.3.

Communication between the various nodes is achieved using queues.

Queues allow unidirectional flow of data. Two queues are created per process

 16

pair. Hence, if there are N objects involved in the simulation, N2 queues are

created. Since, queues are always allocated in pairs, the index of a queue an

object reads from is always the 1’s complement of the index of the queue it writes

to. For example, queue pairs will have indices (0, 1), (2, 3), etc. These queues

are stored in an array. The index to this array of queues is the connection

descriptor that represents the connection between any two nodes.

The SimComm class maintains a table of allocated queues. Queues are

allocated in pairs. Before a queue is allocated its status is invalid. Whenever an

object requests a connection with another object, the table is first checked to

determine if the queue has already been allocated. If so, the index of the

allocated queue is returned to the calling object. If not, two queues are allocated

and the index of one of them is returned. The other index will be returned to the

other object when it requests a connection with the first. The status of the two

queues is then changed to valid.

When a node sends data, the status of the queue to which the data is to

be sent is checked to determine if it is valid. If so, the receive time of the

message is computed by adding the virtual time of the sender to the delay

obtained from the Network class. The data to be sent is timestamped with this

receive time and is added to the queue. Send is a blocking call. Hence, a

message can be sent only if the queue is empty. If the queue has data, the

sender has to block until this data is received.

When a node attempts to receive a message, the status of the queue is

checked. If it is valid, the index of the queue it reads from is determined by

 17

computing the 1’s complement of its connection descriptor. If the queue has no

data, the receiving object blocks until data arrives. If the data is present, the

virtual time of the object must be more than the receive time of the message in

order to maintain the virtual timeline. If so, it receives the message. If not, it waits

on a condition variable and later gets signaled by the SignalThreads object.

After the application object performs all communication, it closes the connection

descriptor, which changes the status of the corresponding queue to closed.

class SimComm
{
 public:
 SimComm();
 void setTotalObj(int);
 int getConnection(struct sockaddr_in *,

struct sockaddr_in *);
 int Send(int,void **,int,void *);
 int Recv(int,void**,int,void *);
 int Close(int);
 private:
 int totalObj;
 vector<string> Queue_ID_tbl;
 queue <void*> * Queues;
 string* QueueStat;
};

Figure 3.3: SimComm Class Interface

This class has four functions that enable the various nodes to

communicate with one another.

getConnection

The first step involved in building a communication channel between any

two parts of the distributed application is establishing a connection between

them. The getConnection function of the class connects two nodes of the

distributed system. The prototype of the function is given below.

 18

int SimComm::getConnection(struct sockaddr_in * my_ID,struct

sockaddr_in * peer_ID)

where,

my_ID is the address of the node requesting the connection

peer_ID is the address of the node to which the connection must be established

Return Value:

On successful completion getConnection returns a descriptor that is used for

further communication. Otherwise it returns –1.

Send

The Send function of the class sends a message from one node to

another. The prototype of the function is given below.

int SimComm::Send(int ID,void ** data, int size,void * app_ptr)

where,

ID is the connection descriptor

data is the message that is to be sent

size is the size of the message to be sent in bytes

and app_ptr is a pointer to the node that is sending the message.

Return Value:

On successful completion Send returns the number of bytes that were sent.

Otherwise it returns –1.

Recv

The Recv function of the class enables a node to receive a message. The

prototype of the function is given below.

 19

int SimComm::Recv(int ID,void ** data,int size,void * app_ptr)

where,

ID is the connection descriptor

data is the buffer to hold the received message

size is size of the message to be received in bytes

and app_ptr is a pointer to the node that is receiving the message.

Return Value:

On successful completion Recv returns the number of bytes that is received.

Otherwise it returns –1.

Close

After all communication is complete the established connection must be

closed. The Close function of the API fulfills this purpose. The prototype of the

function is given below.

int SimComm::Close(int ID)

where,

ID is the descriptor of the connection to be closed.

Return Value:

On successful completion Close returns 0. Otherwise it returns –1.

3.3.1.4 Network

The Network class is responsible for modeling the network that is being

simulated, by ascertaining the delay associated with message transmission from

one node to another. Presently, this class does not model any particular network.

Whenever SimComm contacts it, it returns a constant delay after which the

 20

message is to be received. The application object is not aware of this class. This

class is in a rudimentary form; it has just one function. The section on future work

discusses how to make it model real networks. The interface is shown figure 3.4.

class Network
{
 public:
 Network();
 long long getDelay();
};

Figure 3.4: Network Class Interface

3.3.1.5 SignalThreads

When a node tries to receive a message and its virtual time is less than

the receive time stamped on any message sent to it, it waits on a condition

variable associated with the message queue. This causes the application object

to be removed from the ready queue and added to the waiting queue. Setup

creates a thread for an object of the SignalThreads class. This class inherits from

Application, so that it also has access to the virtual time. This class is responsible

for signaling blocked threads. The SignalThreads object runs as long as there

are application objects still running. The interface of this class is shown in figure

3.5.

This class has access to pointers of all application objects running in the

simulation. The Unblock function signals waiting threads. This function first sorts

the application objects based on their virtual times so that the ordering of objects

is the same as the ready queue (with the exception that waiting objects will be

missing in the ready queue). It then determines the first blocked object in this list

 21

and increments its virtual time to that of the next highest object. It then signals

the object, causing it to be moved from the waiting queue to the ready queue.

The application object receives the message if the increased virtual time is

greater than the receive time of the message. Otherwise the object waits again,

until SignalThreads increases its virtual time high enough to receive a message.

class SignalThreads: public Application
{
 public:
 SignalThreads();
 void Unblock(void *, int);
};

Figure 3.5: SignalThreads Class Interface

3.3.2 Distributed Mode

3.3.2.1 SetUp

The functionality provided by SetUp in distributed mode is minimal

compared to the simulated mode. It creates just one instance of the application

object by reading the configuration file. Also there are no threads spawned to run

this object. SetUp runs the application object in the main thread and exits.

3.3.2.2 Application

Application objects must inherit from Application for the distributed mode

also. In this mode, the Application class just provides the wrapper functions for

SimComm. The other functions are needed only for the simulation. The

Application class provides a constructor function that takes as an argument the

 22

count of the total objects participating in the simulation. In distributed mode this is

equal to one, since each node now runs as a separate process. However, this

constructor function does not do anything meaningful. It is present only to

maintain consistency of the application code between simulated and distributed

modes.

3.3.2.3 SimComm

The SimComm class uses the Socket API in order to provide

communication in distributed mode. Since the application calls the getConnection

function when it requests a connection with another node, SimComm has to

ensure that one node blocks on the accept call and the other blocks on the

connect call until the connection is established. This is achieved by representing

the address in an integer format. The node with a lower value blocks on the

connect call while that with a higher value blocks on the accept call. The

getConnection function returns a socket to the calling node. The Send and Recv

functions read and write respectively to the corresponding sockets. Close is

called to close a socket. These functions return the values that the Socket API

returns.

 23

Chapter 4

Testing

The design of the simulation environment was described in the previous

section. Its performance was tested by (1) simulating a Token Ring network and

(2) simulating a network where the nodes elect a leader based on the Bully

Election algorithm. These applications were run in both distributed and simulated

modes. The standard output generated in both modes were compared.

4.1 Token Ring Network

Each Token Ring application object represents a node in a Token Ring

network. Each node establishes a connection with its neighboring nodes. It waits

until it receives the token from the previous node, prints the token and then

passes it to the next node. The user specifies the number of times the token

should loop around the network. The code for the Token Ring application

remains the same in both modes.

4.1.1 Design

Each Token Ring application object needs to know the following

information: its ID in the network, the local address of the host machine to which

it binds, the port number on which it runs, the address and the port number on

which its previous node and next node run, and the number of times the token

should loop around the network. It also needs to know if it is the node that

generates the token or not. The information about the port number and IP

 24

address is used to create sockets in distributed mode, and is used to create an

identifier to associate the node with its queue in simulated mode.

The first step is to set up the network using the Setup function of the

TokenRingApp class. This function establishes a connection between each node

of the network with its neighbors. The node that generates the token establishes

a connection first with its next node and then with the previous node. Each other

node establishes a connection with its previous node before connecting with its

next node. This does not matter for simulated mode. However, if this was not

done in distributed mode, application objects might block or the socket

descriptors for the previous and next node may be swapped due to the order in

which connection requests arrive. For example, consider a network with 5 nodes

numbered 1 through 5. If all nodes try to establish a connection with the previous

node and then with the next node, then node 5 blocks on an accept call from

node 4, node 4 from node 3, and so on. However node 1 will block on a connect

call to node 5 (its previous node). Since node 5 is already blocked on an accept

call, it accepts the connection from node 1, assuming that it is node 4. Hence,

node 5 misinterprets the socket it has established with node 1 as a socket it

established with node 4. In simulated mode this does not happen since there are

no accept or connect calls.

Once the connection has been established with neighboring nodes, the

starter node generates the token. All other nodes read the token from the

previous node. After the token has been generated or read, the node prints its ID,

the number of times the token has looped around the network and its value. After

 25

the token has looped around a sufficient number of times, the node closes

connections with its neighbors and exits.

4.1.2 Configuration file

A configuration file specifies the structure of the Token Ring network. The

layout of the file is shown in Table 4.1.

Field Name

Node ID

Next node pointer

Previous node pointer

Address

Port number

Table 4.1: Layout of Configuration file for Token Ring network

The first field is the ID of the node. It is a string that uniquely represents a

node of the Token Ring. Next node pointer is the ID that corresponds to the next

node. Previous node pointer is the ID that corresponds to the previous node. The

next field is the local address of the host to which the node binds. The last field is

the port number on which to listen. The fields in the configuration file are space

delimited. The configuration file used for testing the simulation environment is

shown in figure 4.1.

Figure 4.1: Configuration file used in simulating Token Ring network

ID01 ID05 ID02 kermit.ittc.ku.edu 10001
ID02 ID01 ID03 diannao.ittc.ku.edu 10002
ID03 ID02 ID04 scooter.ittc.ku.edu 10003
ID04 ID03 ID05 waldorf.ittc.ku.edu 10004
ID05 ID04 ID01 marcus.ittc.ku.edu 10005

 26

4.1.3 Distributed mode

The user supplies the path to the configuration file and the number of

times the token should loop around the network as command-line arguments.

SetUp then reads the configuration file. The first node as specified in the

configuration file is the starter of the network. The application objects are created

with the specified parameters and are run as separate processes.

In the example used for testing, a Token Ring with 5 nodes is created. The

token is specified to loop around the network twice. The standard output from the

various nodes is shown in figure 4.2. Each node prints its ID, the number of times

the token has already looped around the network and the token.

Since the node with ID “ID01” is the first node specified in the

configuration file, SetUp designates it as the starter. So it thus generates the

token. The token passing does not begin until all nodes are running and the

connection is established. After that, ID01 generates the token and prints it. It

then blocks on the Recv call waiting for the token to be passed to it by ID05 since

the token must loop twice. At this point, ID02 reads the token from ID01 and

passes it to ID03. Each node reads the token from the previous node, print its

value and passes it to the next node. The nodes pass the token for as many

times as the user specifies. The nodes remain blocked in the Recv call until the

previous node writes to them. After completion, the nodes close the connection

and exit.

 27

Figure 4.2: Standard output of the Token Ring network for Distributed mode

kermit [22] % SetUp ID01 config.txt 2

Machine ID ID01
LOOP COUNT 1
Token: TOKEN

Machine ID ID01
LOOP COUNT 2
Token: TOKEN

diannao [119] % SetUp ID02 config.txt 2

Machine ID ID02
LOOP COUNT 1
Token: TOKEN

Machine ID ID02
LOOP COUNT 2
Token: TOKEN

scooter [19] % SetUp ID03 config.txt 2

Machine ID ID03
LOOP COUNT 1
Token: TOKEN

Machine ID ID03
LOOP COUNT 2
Token: TOKEN

waldorf [4] % SetUp ID04 config.txt 2

Machine ID ID04
LOOP COUNT 1
Token: TOKEN

Machine ID ID04
LOOP COUNT 2
Token: TOKEN

marcus [11] % SetUp ID05 config.txt 2

Machine ID ID05
LOOP COUNT 1
Token: TOKEN

Machine ID ID05
LOOP COUNT 2
Token: TOKEN

 28

4.1.4 Simulated mode

In simulated mode, the user specifies the path of the configuration file and

the number of times the token should loop around the network. SetUp creates

the application objects with the specific parameters.

It parses the configuration file shown in figure 4.1 and creates five Token

Ring objects and runs them in a separate user-level thread. An object of

SignalThreads is also created and is run in another thread. The standard output

of the simulation is shown in figure 4.3. Each node prints its ID, the number of

times the token has already looped around the network and the token.

In simulated mode also, node ID01 is designated to be the starter. It

generates the token, prints it and passes it to node ID02. It then waits for the

token to be passed to it by ID05. As seen from the output, each node receives

the token from the previous node, prints its value and passes it over to the next

node. As seen from figures 4.2 and 4.3 the standard output generated in both

modes is the same.

 29

Figure 4.3: Standard output of the Token Ring network for Simulated mode

diannao [2] % SetUp config.txt 2

Machine ID ID01
LOOP COUNT 1
Token: TOKEN

Machine ID ID02
LOOP COUNT 1
Token: TOKEN

Machine ID ID03
LOOP COUNT 1
Token: TOKEN

Machine ID ID04
LOOP COUNT 1
Token: TOKEN

Machine ID ID05
LOOP COUNT 1
Token: TOKEN

Machine ID ID01
LOOP COUNT 2
Token: TOKEN

Machine ID ID02
LOOP COUNT 2
Token: TOKEN

Machine ID ID03
LOOP COUNT 2
Token: TOKEN

Machine ID ID04
LOOP COUNT 2
Token: TOKEN

Machine ID ID05
LOOP COUNT 2
Token: TOKEN

 30

In order to better understand the output of simulated mode, the concept of

a virtual timeline must be understood. The exact sequence of events that occur is

shown in figure 4.4. For testing purposes, the Network class returns a constant

delay of 10 milliseconds. Since at the start of the simulation all objects have

virtual time 0, they are on the ready queue in FIFO order. Thus, when the

scheduler dequeues the objects, ID01 is the first node to run.

As seen in figure 4.4, at virtual time 0, ID01 generates the token, prints its

value and passes it to ID02. It then waits for ID05 to pass it back to it for the next

loop. At this point, ID03, ID04 and ID05 are blocked for the previous node to pass

the token to them. However, ID02 has to wait until the network delay has expired

though ID01 has passed the token. Thus, it is waiting for the delay to expire,

while other nodes are waiting for their respective previous nodes to pass the

token to them. The difference is that ID02 is in the waiting queue while the other

nodes are in the ready queue. This is because ID02 waits on a condition

variable, while the other nodes wait on a loop that breaks when the token is

passed.

When the SignalThreads object runs, it checks for waiting objects and

increments their virtual times to that of the next highest node. At this time, ID02 is

the only waiting object. SignalThreads increases its virtual time to 96.927

milliseconds, that of ID01, the next highest node and signals it. This causes ID02

to be added to the ready queue. The increased virtual time however, is less than

the receive time of the message, so it waits again. After sufficient time has

elapsed, SignalThreads increases the virtual time of ID02 to 196.916

 31

ID01

VT 0

ID02

VT 0 196916000

ID03

VT 0 196916000 300552000

Figure 4.4: Virtual timeline showing the sequence of events for the Token Ring
network.

Generates,

prints, passes

token to ID02.

Blocks until

ID05 passes

token

Blocks for

ID02 to pass

token

Waits since

virtual time

is less than

receive time

(10000000)

Receives token

from ID01,

prints and

passes it to

ID03. Blocks

until ID01

passes token

Waits since

virtual time

is less than

receive time

(206916000)

Receives token

from ID02,

prints and

passes it to

ID04. Blocks

until ID02

passes token

 32

ID04

VT 0 300552000 496891000

ID05

VT 0 496891000 526883000

Figure 4.4 (Continued)

Blocks for

ID03 to pass

token

Waits since

virtual time

is less than

receive time

(310552000)

Receives token

from ID03,

prints and

passes it to

ID05. Blocks

until ID03

passes token

Blocks for

ID04 to pass

token

Waits since

virtual time

is less than

receive time

(506891000)

Receives token

from ID04,

prints and

passes it to

ID01. Blocks

until ID04

passes token

 33

milliseconds, a value high enough to receive the message. ID02 then receives

the token, prints it and passes it to ID03. It then waits for ID01 to pass the token

back to it for the next loop.

At this point, ID03 no longer waits for the token to be passed. However, it

will wait for the network delay to elapse before it can receive the token. The

virtual time of ID03 is increased in the same manner as ID02. Each node blocks

until the previous node sends the token, waits for its virtual time to be high

enough to receive the token and passes the token to the next node. Thus, in the

simulated mode, the sequence of events that happens is exactly the same as

those that happen in the distributed mode.

4.2 Bully Algorithm

Each application object represents a node in an arbitrary network that

implements the bully election algorithm to elect a leader. The purpose of this

application is to stress the simulation environment by making it handle intense

communication between the application objects, since communication between

nodes in the Token Ring network is trivial. Moreover, there is a greater amount of

concurrency involved in this application. Hence, it tests the performance of the

simulation environment better than the Token Ring application. The code for this

application also remains the same in both modes.

4.2.1 Design

Each application object needs to know the following information: its ID in

the network, the IP address and port number on which it runs and the IP address

 34

and the port number on which all other processes in the network run, their IDs

and the total number of nodes in the network. The first step is to set up

connections with all other nodes in the network. The GetConnection function of

the Bully class takes care of this. Connection descriptors to nodes with a lower ID

are stored in one array and to nodes with a higher ID in another array. This is

done because each node tries to receive election messages from all the lower

nodes. Since Recv is a blocking call, we must ensure that a node does not try to

receive a message from any of the higher nodes. Maintaining two arrays for

storing connection descriptors identifies connections on which to receive election

messages. Once the connection is established, each node attempts to receive a

message from all nodes with a lower ID. If the message is an election message,

it sends back an acknowledgement. After it has received and acknowledged

messages from all nodes with a lower ID, it sends an election message to all

nodes with a higher ID. After that, it attempts to receive a message from all

nodes with a higher ID. If it receives an acknowledgement message from at least

one node with a higher ID, it loses the election. The leader is thus the node with

the highest ID. The leader prints the result to standard output. The connections

with all nodes are closed and the application exits.

4.2.2 Configuration file

The configuration file specifies information about the nodes of the network.

The layout of the file is shown in Table 4.2.

 35

Field Name

Node ID

IP address

Port number

Table 4.2: Layout of Configuration file for network implementing Bully Algorithm

The first field is the ID of the node. It is an integer that uniquely represents

a node in the network. The next field is the local address of the host to which the

node binds. The last field is the port number on which to listen. The fields in the

configuration file are space delimited. The configuration file used for testing the

simulation environment in figure 4.5

Figure 4.5 Configuration file used in simulating a network implementing Bully
Algorithm

4.2.3 Distributed mode

The user supplies the path to the configuration file as a command-line

argument. SetUp reads the configuration file and creates the application objects

with the specified parameters and runs them as separate processes.

As seen from the configuration file shown in figure 4.5, a network with 5

nodes is created. The standard output from the various nodes is shown in figure

4.6. The leader prints its ID and the message that it won the election.

0001 diannao.ittc.ku.edu 10001
0002 marcus.ittc.ku.edu 10002
0003 kermit.ittc.ku.edu 10003
0004 scooter.ittc.ku.edu 10004
0005 waldorf.ittc.ku.edu 10005

 36

In the simulated mode as well, node ID01 is designated to be the starter. It

generates the token, prints it and passes it over to node ID02. It then waits for

the token to be passed to it by ID05. As seen from the output, each node

receives the token from the previous node, prints its value and passes it over to

the next node. The interleaving of the print statements makes it obvious that the

token gets passed correctly from one node to the next.

 Figure 4.6 Standard output of the Bully Algorithm for the Distributed mode

The election does not begin until all nodes are running and connections

are established. After that, each node blocks on the Recv call waiting for nodes

with a lower ID to send an election message. Upon receiving the election

message, an acknowledgement is sent. The node then sends an election

message to all nodes with a higher ID. It loses if it gets an acknowledgement

message back from at least one of them. The winner is thus the node with the

highest ID. As seen from figure 4.6, node 0005 is elected to be the leader. The

winner prints its ID and the message that it won the election. After completion,

the nodes close connections with other nodes and exit.

4.2.4 Simulated mode

In simulated mode, the user specifies the path of the configuration file as a

command-line argument. SetUp creates the application objects with the specific

parameters. It parses the configuration file shown in figure 4.5 and creates ten

diannao [42] % SetUp 0001 config.txt
diannao [43] %

marcus [21] % SetUp 0002 config.txt
marcus [22] %

kermit [27] % SetUp 0003 config.txt
kermit [28] %

scooter [24] % SetUp 0004 config.txt
scooter [25] %

waldorf [9] % SetUp 0005 config.txt
My ID is 0005. I have won the election.

 37

application objects and runs them in a separate user-level thread. An object of

SignalThreads is also created and is run in another user-level thread. The

standard output of the simulation is shown in figure 4.7. The winner prints its ID

and the message that it won the election. As seen from figure 4.7, node 0005 is

elected to be the leader.

Figure 4.7: Standard output of the Bully Algorithm for the Simulated mode

It can be seen that the communication and concurrency involved with the

Bully algorithm is much more than that with the Token Ring. Hence, it clearly

tests the simulation environment more vigorously. The virtual timeline for the

bully algorithm is not shown since the number of objects involved is much greater

than that in the Token Ring, thereby increasing the difficulty to represent it. The

concept however remains the same.

diannao [29] % SetUp config.txt
My ID is 0005. I have won the election.

 38

Chapter 5

Conclusions and Future Work

This project presents a novel approach to simulating distributed

applications. It makes use of a user-level threading library working on top of a

Reactor pattern. This framework supports replaying the execution sequence of

events in exactly the same manner a second time, making it easier to debug

distributed applications.

The simulation environment requires applications to use the

communication interface (SimComm) for sending and receiving messages. The

application code for both the simulated and the distributed mode remains the

same. Thus, the applications can be built using the simulation environment and

without any changes can be run in distributed mode.

To use the simulation, distributed applications must be designed to be

instantiated as C++ objects. A class is implemented to provide for the

communication between the various objects in the simulation. Network models

can be incorporated to deliver messages with delays appropriate to real

networks. The simulation also maintains a virtual timeline that enables

sequencing of events in a manner exactly the same as that of distributed

systems.

The simulation environment was also tested by simulating a Token Ring

network with five nodes. The resulting output conforms to that obtained by

running the application in distributed mode. Also, objects wait for network delays

 39

to expire before receiving messages. This confirms the ability of the simulation

environment to adapt network models.

5.1 Future Work

• Since the BERT Reactor is the core of the simulation, it can be used to

record all debugging information. The simulation can be extended to

replay execution sequences.

• Presently, the network model returns a constant delay. It can be extended

to make it simulate real networks. The delay can be calculated based on

the message size, bandwidth, source node, and destination node.

 40

Bibliography

[1] Penumarthy Sreenivas Sunil. “Design and Implementation of a User-Level

Thread Library for Testing and Reproducing Concurrency Scenarios”. Master’s

thesis, The University of Kansas, 2002.

[2] Information and Telecommunication Technology Center, The University of

Kansas. “KU PNNI Simulator User’s Manual Version 1.2”, January 2000.

[3] Sandeep Bhat, Doug Niehaus, Victor Frost. “A Performance Evaluation

Architecture for PNNI”. Master’s thesis, The University of Kansas, 1998.

[4] Iosif C. Legrand. “MONARC Distributed System Simulation”. June 1999.

 http://monarc.web.cern.ch/MONARC/

 [5] Fred Howell and Ross McNab. "SimJava: a Discrete Event Simulation

Package for Java with Applications in Computer Systems Modeling", First

International Conference on Web-based Modeling and Simulation, San Diego

CA, Society for Computer Simulation, Jan 1998.

[6] S.Prakash and R.L.Bagrodia. “MPI-SIM: Using Parallel Simulation to Evaluate

MPI Programs”. 1998 Winter Simulation Conference (WSC98), 1998.

[7] Jason Liu, David M. Nicol, Brian J. Premore and Anna L. Poplawski.

“Performance Prediction of a Parallel Simulator”. Proceedings of the Parallel and

Distributed Simulation Conference (PADS'99), Atlanta, GA 1999

[8] “Dartmouth Scalable Simulation Framework”

 http://www.cs.dartmouth.edu/~jasonliu/projects/ssf/

 41

[9] Rajkumar Girimaji. “Reactor, a Software Pattern for Building, Simulating, and

Debugging Distributed Systems”. Master’s thesis, The University of Kansas,

2002.

 [10] “NetSpec: A Tool for Network Experimentation and Measurement”

 http://www.tisl.ukans.edu/netspec/

