# Security in the Ambient Computational Environment

S.Vidyaraman

Thesis defense for the degree of Master of Science in *Computer Engineering* University of Kansas



August 14<sup>th</sup>, 2002

Committee: Dr.Joseph. B Evans (Chair) Dr.Gary.J Minden Dr.Arvin Agah

Information and Telecommunication Technology Center

Slide 1 of 31

## Acknowledgements

Thanks to the ACE development team and the Management! I have had a wonderful time here at ITTC and KU.





#### Overview

- Background
- Security Issues Addressed
- Security Services Implemented
- Typical Scenarios
- Analysis
- Summary & Future Work
- Q&A



Slide 3 of 31



# Background

- ACE : Ambient Computational Environment
- Its all about reinventing the 4 wheels of the car. But then .....
- Entities in ACE
  - ACE Services
  - ACE Users



Felecommunication Technoloav Center

Slide 4 of 31













- Services communicate within themselves.
  - Network Commands
  - Data Streams (Audio and Video)
- Users
  - Authentication
- The Users Workspace is a VNC Session.
- How do we identify both Users and Services?



Information and Telecommunication = Technology Center

# Security Services Implemented

• Remote Connection Manager



- Certificate Authority
- Certificate Distribution System
- Key Manager



Slide 8 of 31



# Security Services Implemented

- <u>Remote Connection Manager</u>
  - Functionality
  - DH Key Establishment
  - <u>SPEKE Protocol</u>
- Certificate Authority
- Certificate Distribution System
- Key Manager



Slide 9 of 31



### Remote Connection Manager

- Gateway to the ACE Domain from Outside
- Functions:
  - Authenticate the user
  - Establish a shared session key



- At present, it implements the SPEKE protocol
  - A Variant of the Diffie-Hellman Key establishment
  - One of the *strong* authentication mechanisms with (even) weak passwords
  - Minimum (3) number of passes
  - Protects against dictionary attacks



Information and Telecommunication — Technology Center



#### SPEKE Protocol

| Secure                               |              | Alice                                                                |               | Bob                                                                |
|--------------------------------------|--------------|----------------------------------------------------------------------|---------------|--------------------------------------------------------------------|
| Password-authenticated               |              | All operations are mod p                                             |               |                                                                    |
| Exponential                          |              | $\mathbf{Q}_{\mathbf{A}} = \mathbf{S}^{(2   \mathbf{R}} \mathbf{A})$ | $\rightarrow$ |                                                                    |
| Key                                  | Кеу          |                                                                      | ÷             | $\mathbf{Q}_{\mathbf{B}} = \mathbf{S}^{(2 \mathbf{R} \mathbf{B})}$ |
| Exchange                             | Exchange     | $\mathbf{K} = \mathbf{Q}_{\mathbf{B}}^{(2 \mathbf{R} \mathbf{A})}$   |               | $\mathbf{K} = \mathbf{Q}_{\mathbf{A}}^{(2 \mathbf{R} \mathbf{B})}$ |
| 8-                                   |              | Abort if K< 2                                                        |               | Abort if K< 2                                                      |
| The generator g is now the           |              |                                                                      |               |                                                                    |
| squared hash of the password S       |              |                                                                      | <del>\</del>  | $\mathbf{V}_1 = \mathbf{h}(\mathbf{h}(\mathbf{K}))$                |
|                                      | Verification | $\mathbf{V}_2 = \mathbf{h}(\mathbf{K})$                              | $\rightarrow$ |                                                                    |
|                                      |              | Abort if<br>V <sub>1</sub> != h(h(K))                                |               | Abort if<br>V <sub>2</sub> != h(K)                                 |
| Information and<br>Telecommunication | ) <u> </u>   | ·                                                                    |               | vraity of Kanaa                                                    |
| Technology Cente                     | r Slid       | e 12 of 31                                                           | Unive         | isity of MailSas                                                   |

### Security Services Implemented

• Remote Connection Manager



- Public Key Infrastructure (PKI based Services)
  - <u>Certificate Authority</u>
  - <u>Certificate Distribution System</u>
- Key Manager



Slide 13 of 31





Certificate Authority



- Provides identification to users and daemons
- Issues X509 digital certificates to users & daemons
- Revokes the user / daemon certificate when necessary
  - Creates a CRL for all the certificates revoked
- Notifies the issued & Revoked Certificates to the Certificate Distribution Daemon



Information and Telecommunication — Technology Center

# Certificate Distribution System



- Function: To distribute all valid user / daemon certificates
- Answers queries from ACE services regarding validity of certificates
- Publishes the list of valid certificates and the Certificate Revocation List (CRL) on a publicly accessible LDAP service



Information and Telecommunication <del>=</del> Technology Center

#### ACE Root Certificate

- Same Issuer and Subject
- Essentially a self signed Certificate
- Signature Algorithm: md5withRSA
- Thumbprint Algorithm: sha1

| ihow: <all></all>                                                                                                                |                                         |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Field                                                                                                                            | Value                                   |
| 🛅 Serial Number                                                                                                                  | 01                                      |
| 🚍 Signature Algorithm                                                                                                            | md5RSA                                  |
| E Issuer                                                                                                                         | Research & Developement, ACE: ITTC Doma |
| Calid From                                                                                                                       | Monday, April 08, 2002 4:32:26 AM       |
| 🗖 Valid To                                                                                                                       | Friday, June 07, 2002 4:32:26 AM        |
| Subject                                                                                                                          | Research & Developement, ACE: ITTC Doma |
| Public Key                                                                                                                       | RSA (2048 Bits)                         |
| <u> </u>                                                                                                                         |                                         |
| CN = ACE: ITTC Domain<br>T = Certificate Authority<br>C = USA<br>L = Lawrence<br>E = ace@ittc.ku.edu<br>0 = University of Kansas |                                         |
|                                                                                                                                  |                                         |
|                                                                                                                                  | Edit Properties                         |



Information and Telecommunication Technology Center

#### ACE Certificate Revocation List

| Certificate Rev                                  | ocation List Information         | <u>R</u> evoked certificates: |                                    |
|--------------------------------------------------|----------------------------------|-------------------------------|------------------------------------|
| 8-1                                              |                                  | Serial Number                 | Revocation Date                    |
| Field                                            | Value                            | 03                            | Wednesday, May 08, 20              |
|                                                  | V2                               |                               |                                    |
| - Issuer                                         | Research & Developement, ACE: I  |                               |                                    |
| Effective Date                                   | Wednesday, May 08, 2002 4:34:22  |                               |                                    |
| 💳 Next Update                                    | Tuesday, May 07, 2002 4:32:30 AM |                               |                                    |
| 💳 Signature Algorithm                            | md5RSA                           | Revocation entry              |                                    |
|                                                  |                                  | Field                         | Value                              |
|                                                  |                                  | Serial Number                 | 03                                 |
|                                                  |                                  | Revocation Date               | Wednesday, May 08, 2002 4:34:22 AM |
|                                                  |                                  |                               |                                    |
|                                                  |                                  |                               |                                    |
| /alue:                                           |                                  |                               |                                    |
| JU = Hesearch & Develop<br>CN = ACE: ITTC Domain | pement                           |                               |                                    |
| F = Certificate Authority                        |                                  | Wednesday, May 08, 2          | UU2 4:34:22 AM                     |
| C = USA                                          |                                  |                               |                                    |
| . = Lawrence<br>F = ace@itto ku edu              |                                  |                               |                                    |
| ) = University of Kansas                         |                                  |                               |                                    |
|                                                  |                                  |                               |                                    |
|                                                  |                                  |                               |                                    |
|                                                  | OK                               |                               | OK                                 |
|                                                  |                                  |                               |                                    |

# Security Services Implemented

• Remote Connection Manager



- Certificate Authority
- Certificate Distribution System
- <u>Key Manager</u>



Slide 18 of 31





- One time session
- Conference
- All issued keys are stored in a PBE encrypted keystore



Information and Telecommunication <del>—</del> Technology Center

# **Typical Scenarios**

• Remote Authentication

• Certification Process



Slide 20 of 31



#### Possible Remote Authentication Procedure



#### **Remote Authentication Process**







- Password / IButton ID / Fingerprint ID
- Standard encryption



Information and Telecommunication — Technology Center

# Analysis



- 3. What new problems have been added?
  - Addition overhead of managing a limited PKI
  - Additional vulnerability to social engineering problems
    - Passwords can be changed once a compromise is detected
    - Not true with IButton and Fingerprint data
- Extraneous issues!
  - Java
  - API calls & Key lengths





elecommunication Technoloav Center

Slide 25 of 31

#### Summary

- The following services have been prototyped in this thesis
  - A Rudimentary Key Manager
  - A Certificate Authority
  - A Certificate Distribution System
  - A Remote Connection Manager
- But then .....Security is a process, not a product.



Slide 26 of 31

### Future Work

- Implement a (m,l)- threshold b-secure t-group key distribution scheme
  - Number of centers: *m*
  - Minimum number of centers required: *l*
  - (*l*-1) center & b user compromise doesn't compromise the system
- Better storage system for CA Keys and Certificates



Slide 27 of 31



#### X.509 Digital Certificate Fields

| Certificate field       | Description                                                                                                                                                                               |  |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Version                 | The X.509 version number.                                                                                                                                                                 |  |  |  |
| Serial number           | The unique serial number that the issuing certification authority assigns to the certificate. The serial number is unique for all certificates issued by a given certification authority. |  |  |  |
| Signature<br>algorithm  | The hash algorithm that the certification authority uses to digitally sign the certificate.                                                                                               |  |  |  |
| Issuer                  | Information regarding the certification authority that issued the certificate.                                                                                                            |  |  |  |
| Subject                 | The name of the individual or certification authority to which (whom) the certificate is issued. This may be a full name and e-mail name or some other personal identifier.               |  |  |  |
| Public key              | The public key type and length associated with the certificate.                                                                                                                           |  |  |  |
| Thumbprint<br>algorithm | The hash algorithm that generates a digest of data (or thumbprint) for digital signatures                                                                                                 |  |  |  |
| Thumbprint              | The digest (or thumbprint) of the certificate data.                                                                                                                                       |  |  |  |
| Infor<br>Tele<br>Tele   | mation and<br>communication Slide 29 of 31 University of Kansas                                                                                                                           |  |  |  |

### SPEKE Vs DH-EKE

| modulus p is hugediscrete log attackD Stest Qx != 0, when un-encryptedforcing K=0D Sp-1 has large prime factor qPohlig-Hellman log computationD Sencrypted Qx randomly padded.leakage from Es(Qx)Dbase is primitive root of ppartition attack on Es(Qx)Dbase is a generator of qpartition attack on QxSbase = Sx mod ppassword-in-exponent attackSfirst receiver of verification of K mustsfinding password S using chosen Rx, Qx, and password dictionaryDuse one-way hash of Knarrowing attacks on Ek(Qx)Dhigh bits of p must be 1partition attack on Ek(Qx)DReceiver of clear Qx abort if K is small<br>order. or Encrypt QA, QB.subgroup confinement of KSAbort if K has small ordersubgroup confinement of KS                                    | Constraint                                                                         | Prevents Attack by:                                                              | <b>Applies to</b> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------|
| test $Q_x$ != 0, when un-encryptedforcing K=0D Sp-1 has large prime factor qPohlig-Hellman log computationD Sencrypted $Q_x$ randomly padded.leakage from $E_S(Q_x)$ Dbase is primitive root of ppartition attack on $E_S(Q_x)$ Dbase is a generator of qpartition attack on $Q_x$ Sbase = $S_x$ mod ppassword-in-exponent attackSfirst receiver of verification of K must<br>encrypt $Q_x$ finding password Susing chosen $R_x, Q_x$ ,<br>$E_K(x)$ and password dictionaryD Suse one-way hash of Kpartition attack on $E_K(Q_x)$ Dhigh bits of p must be 1partition attack on $E_K(Q_x)$ DReceiver of clear $Q_x$ abort if K is small<br>order, or Encrypt $Q_A, Q_B$ subgroup confinement of KSAbort if K has small ordersubgroup confinement of KS | modulus p is huge                                                                  | discrete log attack                                                              | D S               |
| p-1 has large prime factor qPohlig-Hellman log computationD Sencrypted Qx randomly padded.leakage from Es(Qx)Dbase is primitive root of ppartition attack on Es(Qx)Dbase is a generator of qpartition attack on QxSbase = Sx mod ppassword-in-exponent attackSfirst receiver of verification of K must bfinding password Susing chosen Rx, Qx, QxDuse one-way hash of Knarrowing attacks on Es(Qx)DShigh bits of p must be 1partition attack on Es(Qx)DReceiver of clear Qx abort if K is small order. or Encrypt QA, QB.subgroup confinement of KSAbort if K has small ordersubgroup confinement of KS                                                                                                                                               | test Q <sub>x</sub> != 0, when un-encrypted                                        | forcing K=0                                                                      | D S               |
| encrypted Qx randomly padded.leakage from Es(Qx)Dbase is primitive root of ppartition attack on Es(Qx)Dbase is a generator of qpartition attack on QxSbase = Sx mod ppassword-in-exponent attackSfirst receiver of verification of K must<br>encrypt Qxfinding password S using chosen Rx, Qx, Qx<br>EK(x) and password dictionaryDuse one-way hash of Knarrowing attacksD Shigh bits of p must be 1partition attack on Ek(Qx)DReceiver of clear Qx abort if K is small<br>order. or Encrypt QA, QB.subgroup confinement of KSAbort if K has small ordersubgroup confinement of KS                                                                                                                                                                    | p-1 has large prime factor q                                                       | Pohlig-Hellman log computation                                                   | D S               |
| base is primitive root of ppartition attack on $E_S(Q_x)$ Dbase is a generator of qpartition attack on $Q_x$ Sbase = $S_x$ mod ppassword-in-exponent attackSfirst receiver of verification of K must encrypt $Q_x$ finding password Susing chosen $R_x, Q_x$ , $Q_x$ Duse one-way hash of Knarrowing attacksDShigh bits of p must be 1partition attack on $E_K(Q_x)$ DReceiver of clear $Q_x$ abort if K is small ordersubgroup confinement of KDAbort if K has small ordersubgroup confinement of KS                                                                                                                                                                                                                                                 | encrypted $Q_x$ randomly padded.                                                   | leakage from $E_{S}(Q_{x})$                                                      | D                 |
| base is a generator of qpartition attack on Q_xSbase = S_x mod ppassword-in-exponent attackSfirst receiver of verification of K must<br>encrypt Q_xfinding password S using chosen R_x, Q_x, Q_xDuse one-way hash of Knarrowing attacksD Shigh bits of p must be 1partition attack on E_K(Q_x)DReceiver of clear Q_x abort if K is small<br>order. or Encrypt Q_A, Q_B.subgroup confinement of KSAbort if K has small ordersubgroup confinement of KS                                                                                                                                                                                                                                                                                                 | base is primitive root of p                                                        | partition attack on $E_S(Q_x)$                                                   | D                 |
| base = Sx mod ppassword-in-exponent attackSfirst receiver of verification of K must<br>encrypt Qxfinding password S using chosen Rx, Qx, Qx<br>EK(x) and password dictionaryDuse one-way hash of Knarrowing attacksD Shigh bits of p must be 1partition attack on EK(Qx)DReceiver of clear Qx abort if K is small<br>order. or Encrypt QA, QB.subgroup confinement of KSAbort if K has small ordersubgroup confinement of KS                                                                                                                                                                                                                                                                                                                          | base is a generator of q                                                           | partition attack on $Q_x$                                                        | S                 |
| first receiver of verification of K must<br>encrypt Q_xfinding password S using chosen R_x, Q_x,<br>DDuse one-way hash of Knarrowing attacksD Shigh bits of p must be 1partition attack on E_K(Q_x)DReceiver of clear Q_x abort if K is small<br>order. or Encrypt Q_A, Q_B.subgroup confinement of KDAbort if K has small ordersubgroup confinement of KS                                                                                                                                                                                                                                                                                                                                                                                            | <b>base</b> = $S_x \mod p$                                                         | password-in-exponent attack                                                      | S                 |
| use one-way hash of Knarrowing attacksD Shigh bits of p must be 1partition attack on $E_K(Q_x)$ DReceiver of clear $Q_x$ abort if K is small<br>order. or Encrypt $Q_A, Q_B$ .subgroup confinement of KDAbort if K has small ordersubgroup confinement of KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | first receiver of verification of K must encrypt $\boldsymbol{Q}_{\boldsymbol{x}}$ | finding password S using chosen $R_x$ , $Q_x$ , $E_K(x)$ and password dictionary | D                 |
| high bits of p must be 1partition attack on $E_K(Q_x)$ DReceiver of clear $Q_x$ abort if K is small<br>order. or Encrypt $Q_A, Q_B$ .subgroup confinement of KDAbort if K has small ordersubgroup confinement of KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | use one-way hash of K                                                              | narrowing attacks                                                                | D S               |
| Receiver of clear Qx abort if K is small<br>order. or Encrypt QA, QB.subgroup confinement of KDAbort if K has small ordersubgroup confinement of KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | high bits of p must be 1                                                           | partition attack on $\mathbf{E}_{\mathbf{K}}(\mathbf{Q}_{\mathbf{x}})$           | D                 |
| Abort if K has small ordersubgroup confinement of KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Receiver of clear $Q_x$ abort if K is small order. or Encrypt $Q_A$ , $Q_B$ .      | subgroup confinement of K                                                        | D                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Abort if K has small order                                                         | subgroup confinement of K                                                        | S                 |



Information and Telecommunication -Technology Center

Slide 30 of 31

# Navigation

- ACE Entities
  - <u>Services</u>
  - <u>Users</u>
- Services
  - <u>Remote Connection Manager</u>
  - <u>Certificate Authority</u>
    - <u>Certificate</u>
    - <u>Certificate Revocation</u>
      <u>List</u>
  - <u>Certificate Distribution</u> <u>System</u>
  - <u>Key Manager</u>



Information and Telecommunication Technology Center • <u>SPEKE</u>

- <u>Diffie-Hellman</u>
- Scenarios
  - <u>Remote Authentication</u>
  - <u>Certification</u>
- <u>Analysis</u>

Slide 31 of 31

• <u>Distributed Key</u> <u>Manager</u>