• Welcome

- Welcome
- Committee
 - Dr. Arvin Agah, Professor in Charge
 - Dr. Victor Frost
 - Dr. Costas Tsatsoulis

Problem and Solution Overview Playing Go

Problem and Solution Overview Playing Go Relevant Computational Methods

- Playing Go
- Relevant Computational Methods
- State of the Art
 - Genetic algorithms
 - Traditional programs

- Playing Go
- Relevant Computational Methods
- State of the Art
 - Genetic algorithms
 - Traditional programs
- Implementation

- Playing Go
- Relevant Computational Methods
- State of the Art
 - Genetic algorithms
 - Traditional programs
- Implementation
- Experiments and Results

- Playing Go
- Relevant Computational Methods
- State of the Art
 - Genetic algorithms
 - Traditional programs
- Implementation
- Experiments and Results
- Conclusion
 - Contributions
 - Limitations
 - Future

Introduction to Go

• Perfect Information

Introduction to Go

Perfect Information Board is 19 by 19

Perfect Information Board is 19 by 19 Two players

Perfect Information
Board is 19 by 19
Two players
Territory

- Perfect Information
- Board is 19 by 19
- Two players
- Territory
- Capturing

- Go has simple rules, but tactics and strategies are complex
 - Go has emergent complexity
 - Multiagent systems have emergent complexity

- Go has simple rules, but tactics and strategies are complex
 - Go has emergent complexity
 - Multiagent systems have emergent complexity
- Current go programs play on a beginner level, why?

- Go has simple rules, but tactics and strategies are complex
 - Go has emergent complexity
 - Multiagent systems have emergent complexity
- Current go programs play on a beginner level, why?

 Search space 	Search Ply	Go	Chess	Checkers
	1	361	20	7
	2	129,960	400	49
	3	445,145,640	approx. 10,000	approx. 343

• Use multiple agents to suggest solutions based on a narrow world perspective • Use multiple agents to suggest solutions based on a narrow world perspective

Bring these solutions together to obtain a better overall solution

- Use multiple agents to suggest solutions based on a narrow world perspective
- Bring these solutions together to obtain a better overall solution
- Agents are not fully decentralized

- Use multiple agents to suggest solutions based on a narrow world perspective
- Bring these solutions together to obtain a better overall solution
- Agents are not fully decentralized
- Algorithmic composition of individual agent solutions

- Use multiple agents to suggest solutions based on a narrow world perspective
- Bring these solutions together to obtain a better overall solution
- Agents are not fully decentralized
- Algorithmic composition of individual agent solutions
- Illustrate this method in a non-trivial environment: go

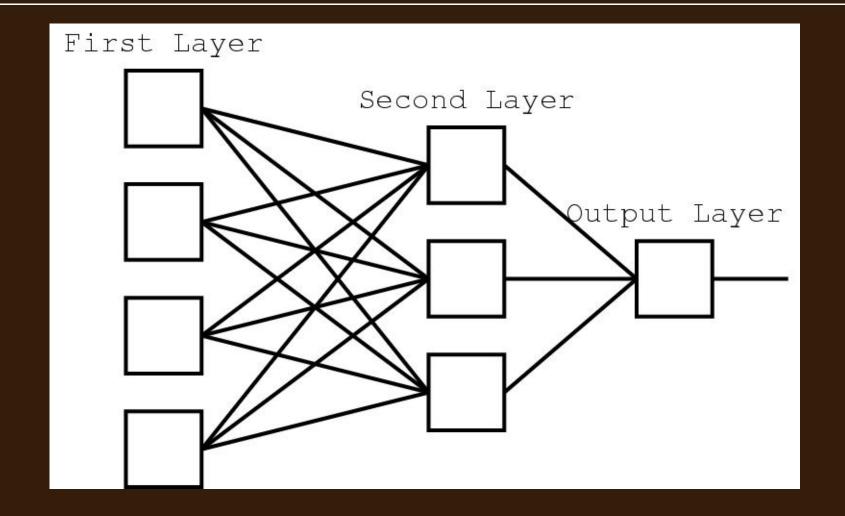
• Multiagent Architecture

- Specialized agents
- Each has its own perspective of the game
- Outputs an array representing move qualities

• Multiagent Architecture

- Specialized agents
- Each has its own perspective of the game
- Outputs an array representing move qualities
- Agents connected via a summation network to generate output
 - No communication

– Allows a passive combination of agent output into a solution


• Multiagent Architecture

- Specialized agents
- Each has its own perspective of the game
- Outputs an array representing move qualities
- Agents connected via a summation network to generate output
 - No communication
 - Allows a passive combination of agent output into a solution
- Weights for this network were evolved using genetic algorithms

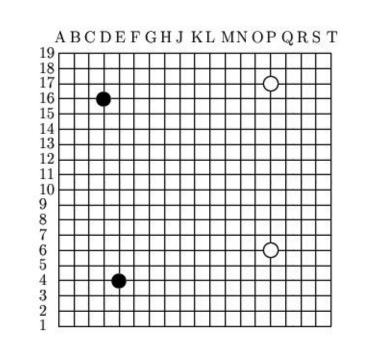
• Network weights are four-bit integers

Network weights are four-bit integers These four-bit integers make up chromosome

- Network weights are four-bit integers
- These four-bit integers make up chromosome
- Extra bits at the end of chromosome are available
 - Extra bits for internal use by agents
 - Extender agent uses these extra bits

Traditional search provides little help

Traditional search provides little help Complex


Traditional search provides little help Complex

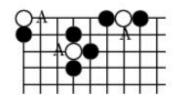
• Heavily pattern-oriented

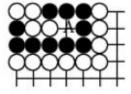
- Traditional search provides little help
 Complex
- Heavily pattern-oriented
- Unsolved now and in the near future

- Traditional search provides little help
 Complex
- Heavily pattern-oriented
- Unsolved now and in the near future
- Analogues to more complex environments
 - Local versus global concerns
 - Many choices at any point
 - Adversarial

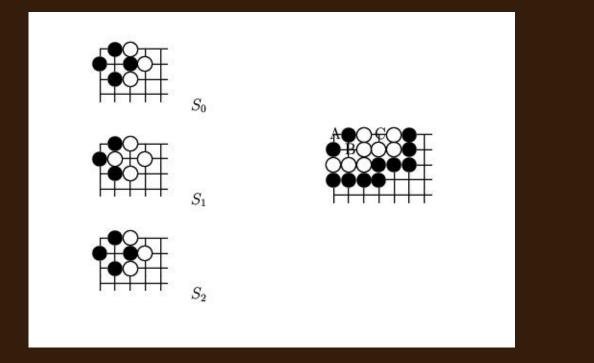
The Go Board

Playing Go (continued)

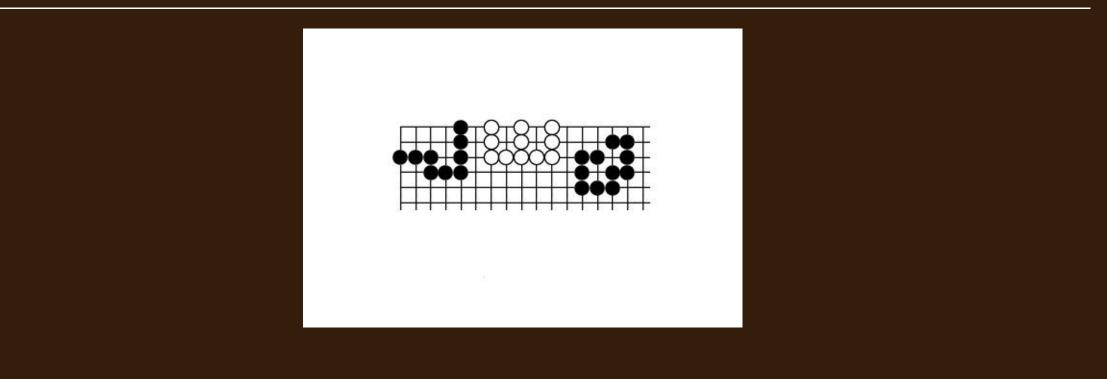



Playing Go (continued)

• Groups • Eyes


Groups Eyes Live and Dead Stones

Capturing



Ko and Seki Rules

Territory

Playing Go (continued)

ScoringOther board sizes

Scoring Other board sizes Handicaps

• Random search

Random search Populations

• Random search

- Populations
- Chromosomes representing parameters or solutions

- Random search
- Populations
- Chromosomes representing parameters or solutions
 Fitness functions

- Random search
- Populations
- Chromosomes representing parameters or solutions
- Fitness functions
- Crossover, mating, and mutations

• Autonomous agents

Autonomous agentsSense environment

Autonomous agentsSense environment

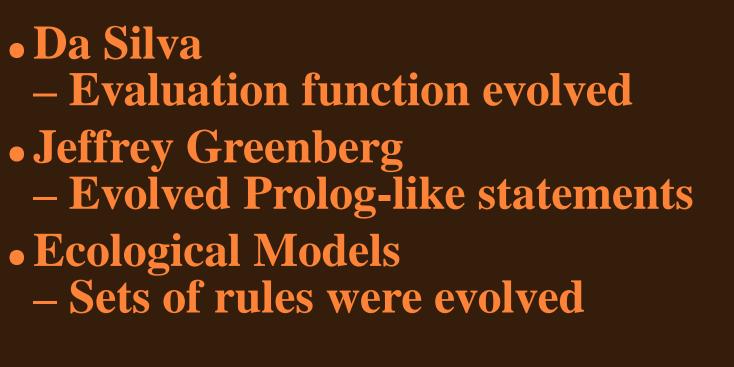
• Interacts with environment

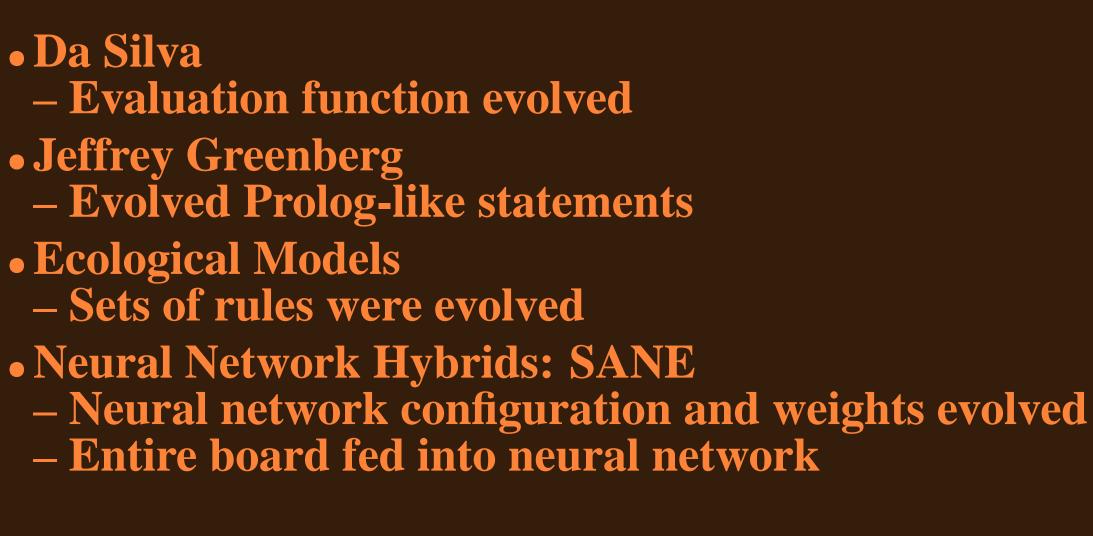
- Autonomous agents
- Sense environment
- Interacts with environment
- Cooperative or adversarial

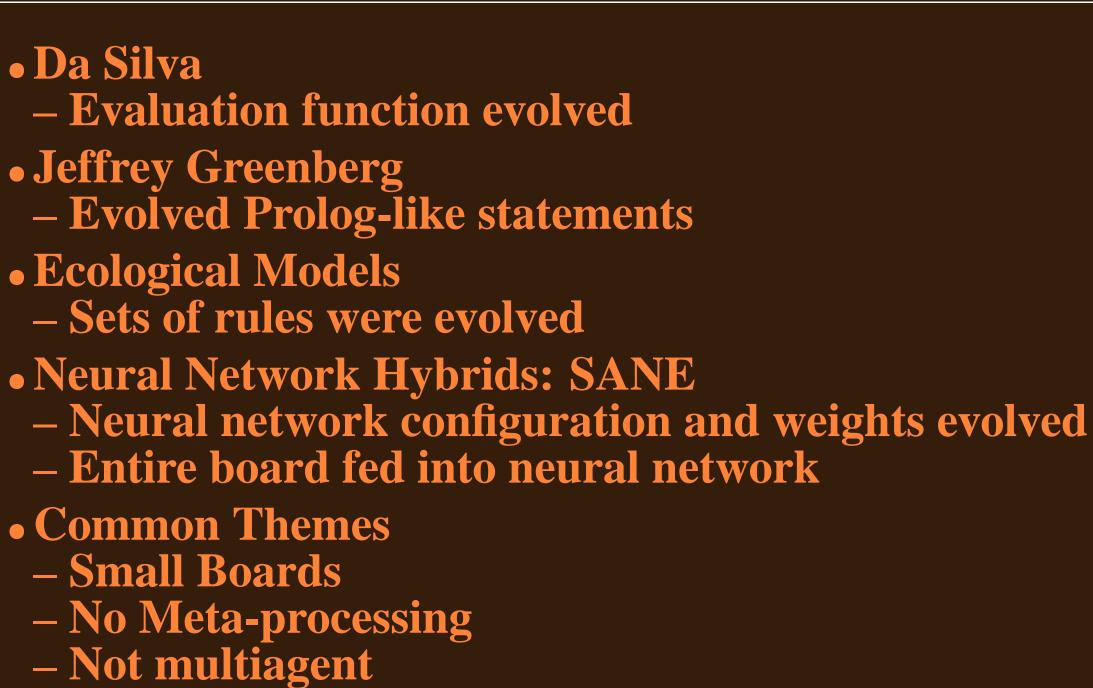
• No Soft Methods

No Soft Methods

• Müller


- Patricia trees variant
- 3000 pattern database


- No Soft Methods
- Müller
 - Patricia trees variant
 - 3000 pattern database
- Many Faces of Go
 - Opening database of 45,000 moves
 - Pattern database of 1000 patterns
 - 200 rules hardcoded


- No Soft Methods
- Müller
 - Patricia trees variant
 - 3000 pattern database
- Many Faces of Go
 - Opening database of 45,000 moves
 - Pattern database of 1000 patterns
 - 200 rules hardcoded
- Others
 - Patterns
 - Try to create small set of possible moves to look into

• Da Silva – Evaluation function evolved

Da Silva Evaluation function evolved Jeffrey Greenberg Evolved Prolog-like statements

Support Classes

• Bit-level operations for Stone class for speed

Bit-level operations for Stone class for speed Board class is a 1D array of stone classes

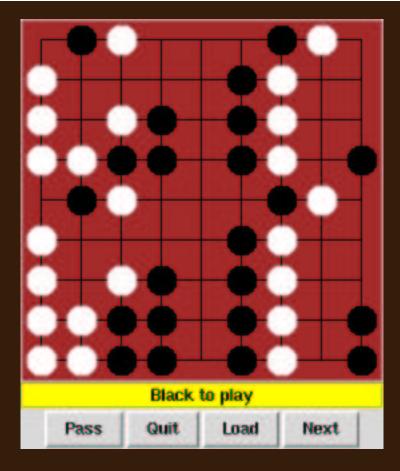
Bit-level operations for Stone class for speed Board class is a 1D array of stone classes Game class is a linked list of Boards

- Bit-level operations for Stone class for speed
- Board class is a 1D array of stone classes
- Game class is a linked list of Boards
- Probability Board class
 - Parallel to board array
 - Each offset is a move quality
 - Summation, normalization, and scaling provided
 Spin

Interfaces

• Moderator class, a template

Interfaces


Moderator class, a template Multiagent genetic algorithm player

Interfaces

Moderator class, a template
Multiagent genetic algorithm player
Genetic algorithm trainer player

Fitness function

Agents

• Random

Random Follower

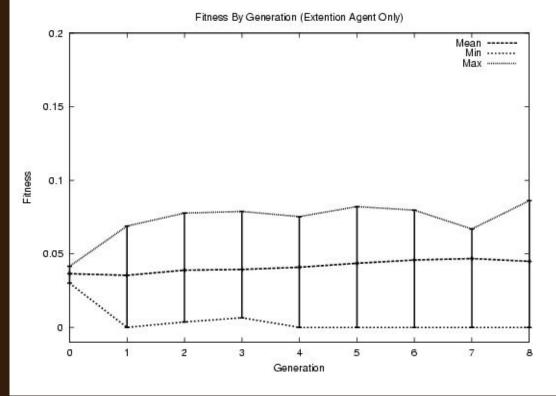
- Random
 Follower
 Opener
- Capture

- Random
- Follower
- Opener
- Capture
- Tiger's Mouth

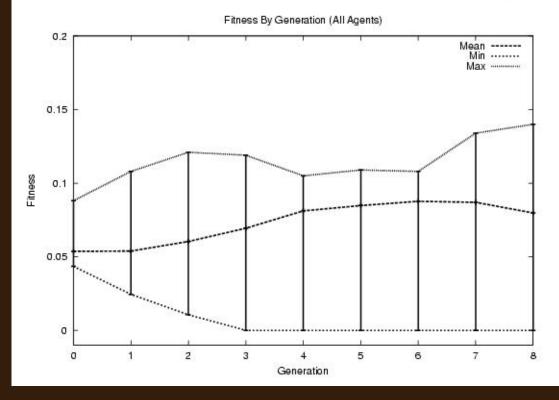
- Random
- Follower
- Opener
- Capture
- Tiger's Mouth
- Extender
 - Uses GA values internally

Experiments Overview

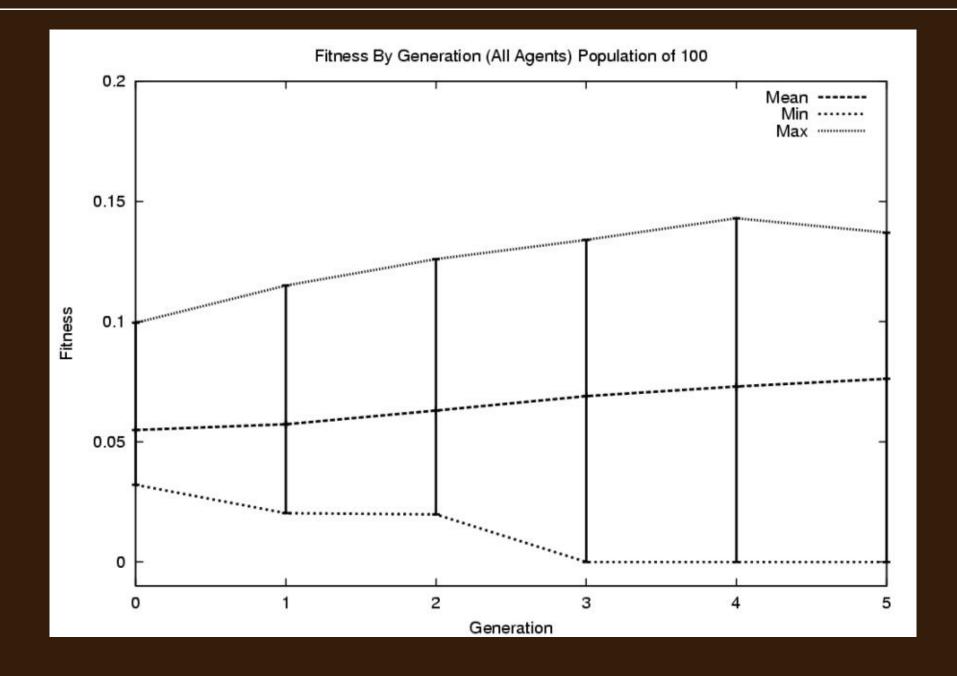
• Each Agent Individually

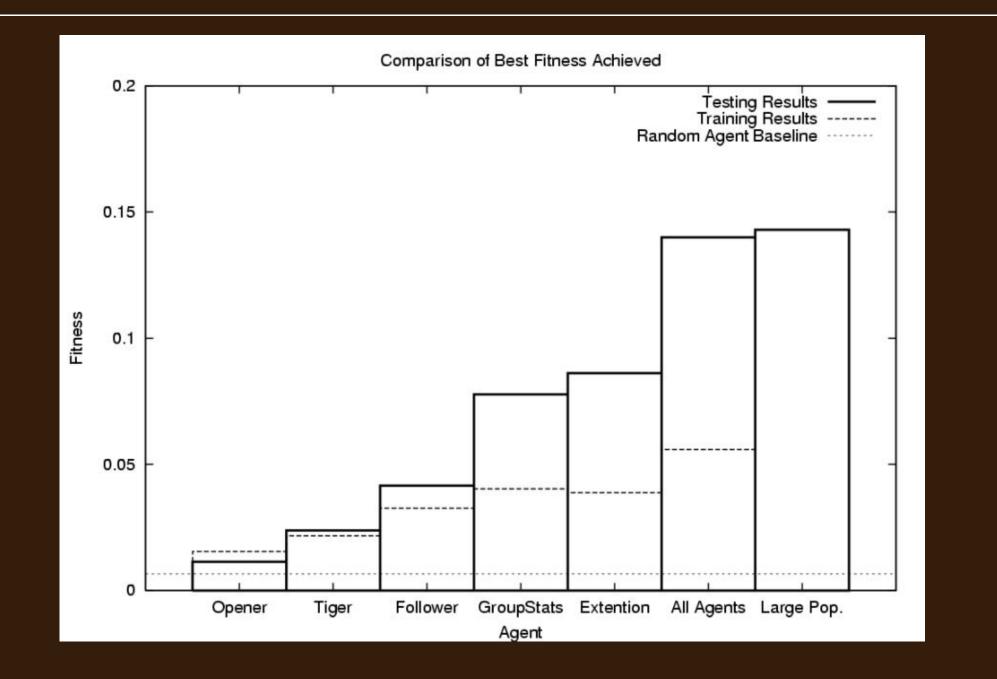

Each Agent IndividuallyRandom Agent

Each Agent Individually Random Agent Multiagent


- Each Agent Individually
- Random Agent
- Multiagent
- GA parameters
 - Crossover 0.4
 - Mutation 0.0333
 - Population size: 10 and 100

		Generation	Max	Min	Mean	Std. Dev.	Sumfitness]
		0	0.0777	0.0777	0.0777	7.85e-09	0.777	
		1	0.0777	0.0777	0.0777	2.95e-05	0.777	
		2	0.0777	0.0777	0.0777	2.95e-05	0.777	
		3	0.0777	0.0777	0.0777	0.00181	0.777	
		4	0.0777	0.0777	0.0777	0.00181	0.777	1
		5	0.0777	0.0777	0.0777	0.0142	0.777	
		6	0.0777	0.0777	0.0777	0.0142	0.777	
		7	0.0777	0.0777	0.0777	0.0397	0.777	
		8	0.0777	0.0777	0.0777	0.0397	0.777	
			F	itness By Ge	eneration (Ca	apturer Agent)		
	0.2					1	- i - i -	
	-							
	0.15	-						1
52								
Fitness	0.1	•						1
ш		·····				·····	-++	
		9 B			22	<u>80</u>	92 - 24	
	0.05	_						
	0.05	59						
	0							
	1	<u> </u>	1				1 1	
	0	1	2	з	4 Generation	5	6 7	8
					Generation			


Generation	Max	Min	Mean	Std. Dev.	Sumfitness
0	0.0415	0.0301	0.0365	0.00428	0.365
1	0.0689	0	0.0354	0.0319	0.354
2	0.0777	0.0037	0.0389	0.0347	0.389
3	0.0788	0.00656	0.0394	0.0641	0.394
4	0.0753	2.76e-10	0.0409	0.0667	0.409
5	0.0821	8.1e-09	0.0436	0.0899	0.436
6	0.0797	5.57e-09	0.0458	0.0893	0.458
7	0.0669	0	0.0468	0.102	0.468
8	0.0861	0	0.0449	0.105	0.449


Generation	Max	Min	Mean	Std. Dev.	Sumfitness
0	0.0881	0.0435	0.0537	0.0138	0.537
1	0.108	0.0245	0.0539	0.0454	0.539
2	0.121	0.0106	0.0604	0.0575	0.604
3	0.119	3.49e-10	0.0694	0.0865	0.694
4	0.105	3.15e-09	0.0812	0.0867	0.812
5	0.109	2.82e-09	0.0848	0.103	0.848
6	0.108	2.15e-09	0.0877	0.103	0.877
7	0.134	0	0.087	0.113	0.87
8	0.14	0	0.0798	0.118	0.798

Results of Multiagent Experiment: Large Population

Comparison Plot

Results Summary (Multiagent, Population 100)

• 0.143 Highest fitness

0.143 Highest fitness 0.076 Highest mean fitness

- 0.143 Highest fitness
- 0.076 Highest mean fitness
- Student's T-test
 - T-test, 100 population confidence: 3.89E-21
 - T-test, 10 population confidence: 5.04E-4

Contributions

• Unique approach to go

Contributions

Unique approach to go Probabilistic methods for go

Contributions

Unique approach to go
Probabilistic methods for go
Multiagent paradigm

- Unique approach to go
 Probabilistic methods for go
 Multiagent paradigm
- Scalability

• Board Size

Board SizeNumber of Agents

- Board Size
- Number of Agents
- Time to run genetic algorithms
 - Training sets
 - Populations
 - Larger summation networks
 - Generations

- Board Size
- Number of Agents
- Time to run genetic algorithms
 - Training sets
 - Populations
 - Larger summation networks
 - Generations
- Programmer's knowledge of go

• Larger population size

Larger population size Larger board size

Larger population size
Larger board size
More agents

- Larger population size
- Larger board size
- More agents
- Agents of higher complexity

- Larger population size
- Larger board size
- More agents
- Agents of higher complexity
- Larger summation network

• Thank You

Thank You Thread Pools

- Thank You
 Thread Pools
- Search

- Thank You
- Thread Pools
- Search
- Minimax

- Thank You
- Thread Pools
- Search
- Minimax
- Dr. Arvin Agah

- Thank You
- Thread Pools
- Search
- Minimax
- Dr. Arvin Agah
- Committee

- Thank You
- Thread Pools
- Search
- Minimax
- Dr. Arvin Agah
- Committee
- Texts
 - Genetic Algorithms in Search Optimization, and Machine Learning
 - Numerical Recipes in C: The Art of Scientific Computing