USING WIRELESS COMMUNICATIONS FOR LOCATION-BASED
SERVICES

by

Timothy J. Dawbarn

B.S.M.E. University of Michigan, Dearborn Michigan 1995

Submitted to the Department of Electrical Engineering and Computer Science and
the Faculty of the University of Kansas in partial fulfillment of the requirements
for the degree of Master of Science

Dr. Joseph Evans
Professor in Charge

Dr. Victor Frost
Committee Member

Dr. Jeremiah James
Committee Member

Date Defended: August 5, 2003

UNIVERSITY OF KANSAS
ABSTRACT

USING WIRELESS COMMUNICATIONS
FOR LOCATION-BASED SERVICES

By Tim Dawbarn

Chairperson of the Supervisory Committee: Professor Dr. Joseph Evans
Department of Electrical Engineering and Computer Science

Providers of location-based services are currently faced with what might be referred to as
the “last block” problem. That is, locating users to the nearest city block can be done
readily using relatively mature technologies, but offering services to users based on what
room they are in, or where they are standing in that room, is still a challenge. The
architecture proposed in this document uses wireless communications to solve this
problem. The document further describes several implementations of this architecture
designed to utilize the finer grained location information to provide users with useful

setrvices.

TABLE OF CONTENTS

1. Introduction

1.1. What are Location-Based ServiCes?........cvuerrereeeirencreinecrrineereeceeineereeneenes 1
120 MOUVALON ..ttt 1
1.3, Project GOAlS ... 2
1.4. Layout of this DOCUMENT ...c.vcuiuricrriericirtieicitieetteeeece e saenene 2

2. Background

2.1 VISION ottt 4
2.2, Supporting TeChNOIOGIESc.cvieuiiriciiiiciiiiccee s 5
2210 IRDA s 5
2220 OBEX . 6
2.2.3. IEEE 802 11Dt sssssssanes 8
224, APACKE i 9
225, MySQL...oiiiiiiiictciicii s 9
2.2.0. XT0 ot 10
227 HEYU cooutciiiccicci s 10
2.2.8. VECAL i 11
2.3. Related WOrK ..o sssaees 11
2310 CHICKEL e 12
232, CDPD s 12
2.3.3. RiCE UNIVELSItY it sssssses 13

2.4, This APPLOACH......iiiiiiiici s saees 14

3. Atrchitecture

3.1 OVEIVIEW woeivriiuieiincireietetsese bbbttt ettt ettt neaees 15
3.2, BEACOMN .ttt 16
3.3, CHENt DEVICE .uvueiieieirecieiticiriceseeie ettt eesesees 17
3.4, CHENE SOFEWALE ...uviveriviecieieicireieicireie ettt ssese e ssts e tae s sssaesaenens 18
3.5, INCEWOTK ettt ses 19
3.0. SELVEL DIEVICE...cucuiviiciiiiciieirie et saas 19
3.7, SEIVEL SOTEWALE w.ecvuveviieciieieirieieiectetneicieeeie ettt enesesees 20

4. Implementation

4.1, TeChNOIOZIEScuuvuiieiiiiiciii e eaes 21
411, BEACONS .ttt 21
4.1.2. CHENt DEVICE vttt sseese e seeesenes 23
4.1.3. CHENt SOFEWALE w..cvuvrierrciriecieiriictieeieitieetstiene e ssesessesens 23

4.1.3.1. OVEIVIEW corvrvriiaeieieiseiseseieisese et sesseae s ssese e ssesessesseseen 23
4.1.3.2. TEODEXCHEN ettt saesene 24
4.1.3.3. SEOLEVCALA ..t 30
4.1.3.4. Pocket Internet EXplOLer ... 31
4140 NEEWOLK oottt eesenes 31
4.1.5. Server DEVICE ...ttt 32
4.1.6. Server SOLEWALC.. ..ot seaees 32
4.1.6.1. APACKE ... 32
4.1.6.2. MYSQL SEIVET .. 33
4.1.6.3. CGI SCLIPLS oot 33

4.2, APPUCALONS ..o sanes 34

4.2.1. Location INformation.....ccucececeerceeinenceenecerineerseeseiseeseesesessesesenes 34
42.2. Environmental AUtOMAtION.....cvvueverieercrnieemernierenneessesensessesensenens 35
4.2.3. Location AUthENtCAtON ...cccuveeeuereeeireereereierrineeeseeeseeseseseeseseseeseseses 37
42.4. Zero-Click Purchaseccvcvcininiciniciciniccnicceecsceecnesenenene 39
4.2.5. BuSINess Card......coooeueurecueiriciriniecinieeeineeieeessesesesseesessesesessesesesseseses 41

5. Testing and Results

5.1. Hardware and Software ReqUIfements ..o 44
5.2 TSt PlAN ettt 45
52,1, SYStem TeStS ittt 45
522, Location INformation......ccceicuneecicenieneeneeieeneeseeseeesessesesseens 47
5.2.3. Location AuthentiCationcceeeueercecureneeeirecreeneceeireecrsenesesseesennesenes 47
5.24. Zero-Click PULChaseccuiueiciniecicinieiciniccireciciseeeeseeeseeseecneens 48
5.2.5. Business Card.....ccoeurereeurecuninecininecinenceeineeieiseseseesesessssesesseesessesenes 49
5.2.6. Environmental AUtOMAtON....c.ouecveurieevcrrieereerieeieirieieeseeeneeseeeneen. 50
5.3. REHADIILY wucvuveieiaierieieieneieeie e nsensensennes 51
5.3.1. Network Failure ..o esseeeseeseseseens 52
5.3.2. Setrver Fallure .ottt sseeseaseaeees 52
5.3.3. Client Device Failureccveeineeiciniciciniceiriccineceeneeeeseecnenn. 53
5.3.4. Beacon Failure ...t 53
5.4, SCALADIILY ...uvuveiriiciiriciccce ettt 54

6. Conclusions and Future Work

0.1, CONCIUSIONS c.tttetiereeteteeteeteereeeeres et et et eeeeesesseesestestessessessessessesssententensessessesnesses

0.2, FULULE WOLK ottt ettt saest ettt sae st sesse st et ssessenesaessesesressone

v

LIST OF FIGURES

Number
2.1 IRDA physical layer encoding

2.2 ItLLAP frame structure

2.3 OBEX Header Identifiers

2.4 Sample OBEX packet

3.1 LBS system architecture

3.2 Client softwatre architecture

4.1 Sample beacon URL broadcast

4.2 IrObexClient

4.3 Tools Menu

4.4 Settings Screen

4.5 Addresses Screen

4.6 IrtObexClient flowchart

4.7 Pocket Internet Explorer

4.8 Purchase confirmation from zeroclick.pl

4.9 The results of the getorders.pl CGI script

4.10 Receiving a business card

Page

16

18

22

24

25

26

27

30

31

40

41

42

Number

LIST OF FIGURES

5.1 Encrypted login data packet captured with tcpdump

5.2 Heyu log file

5.3 Infrared port error screen

vi

Page
48

51

52

ACKNOWLEDGMENTS

The author wishes to thank the good people at Coca-Cola for providing tasty beverages

that are both high in caffeine and contain a lot of sugar.

vii

Chapter 1

INTRODUCTION

1.1 What are Location-Based Services?

Location-based applications or services are those in which the location of a person or an
object is used to shape or focus the application or service [1]. Some common examples
of location-based services are using a mobile telephone to find the nearest coffee shop,
or getting driving directions using a handheld GPS unit. The location-based services
focused on in this document are more local in nature. Services based on the user’s

location within a building or room are the concern.

1.2 Motivation

Mature and widely used technologies like GPS, Angle of Arrival, and Time Difference of
Arrival are good for locating users with a fairly large margin of error, but finer-grained
location technologies are not as prevalent. Users can obtain directions to the nearest
shopping mall from their approximate location with relative ease, but locating a
particular store in the mall is still left to traditional methods. Furthermore, technologies
that offer users services once they have reached their destinations are mostly non-
existent. The current state of location-based technologies is analogous to the “last mile”
problem in broadband networking: bringing the technology to the neighborhood level

had been successful, but continuing on to every doorstep presented a challenge. A new

technology is needed to bridge this gap. The technology needs to be relatively

inexpensive, scalable, and easily adopted by end users.

1.3 Project Goals

There are two main goals for this project. The first goal is to develop a technology that

bridges the gap in location-based services by providing finer-grained location

information to computing devices. The second is to develop a suite of applications

which utilize the increase in location accuracy to provide end users with useful services.

1.4 Layout of this Document

This document is organized into the following sections:

Introduction — This is an overview of the proposed system and why it is needed
Background — This is information that is necessary for a better understanding of
this project.

Architecture — Detailed description of what the system does and how it is
accomplished.

Implementation — Description of a real system that follows the specifications
described in architecture.

Results — Description of the test environment built to evaluate the implemented

system and the results of the testing.

® (Conclusions and Future Work — Documentation of the lessons learned from this

project and ideas for how to improve it in the future.

Chapter 2

BACKGROUND

2.1 Vision

The goals of this project are to create a system that will enable fine-grained location-
based services and to create applications that utilize this system. The user will be able to
access services based on the building, store, apartment, or office they happen to be
standing in. The services will be offered in formats that users are already familiar with,
such as web pages, in order to lessen the learning curve. This document will describe an
architecture that enables the achievement of these goals. The architecture will be
implemented with minimal cost and will utilize equipment that already has a large

installed user base.

2.2 Supporting Technologies

2.21IRDA

“Infrared Data Association is an International Organization that creates and promotes
interoperable, low cost infrared data interconnection standards that support a walk-up,
point-to-point user model. The Infrared Data Association standards support a broad
range of appliances, computing and communication devices” [2]. Among the standards

specified are those which define the physical layer IrPHY), and the data link layer (ItLLAP).

IrPHY specifies how the actual infrared light is modulated in order to communicate data.
The physical layer is similar to serial communications but with a change to the duty cycle.
The actual on-time of the infrared light is much less than the off-time in an effort to save

battery power. Each byte is transferred with one start bit (0) and one stop bit (1) with no

parity.
UART Frame
ST‘? r‘tL Data Bits g}[?p —
0 1 | 0 ‘ 1 0 0 1 1 0 1
=0
— IR Frame R Stcr:
—3 Bit Data Bits * Bit
u" 1 0 ” 1 u" 0 " ‘1 1 ﬂ-" 1

Bit _* k— Pulse Width
Time IME Bit Tirme

2.1: IRDA physical layer encoding

Figure

ItLAP specifies how a data frame is constructed and transmitted. First a number of
(normally 10) beginning of frame bytes (OxFF) are sent followed by one start of frame
byte(0xC0). Next the IrlLAP payload which consists of address, control, and information
fields is sent. The payload is followed by a 16 bit frame check sequence generated using
the CRC-CCITT algorithm on the payload data. Finally one end of frame byte (0xC1) is

sent.

XBOFs ROl [rLAP Payload FCS EOI

Figure 2.2: IrLAP frame structure

All of the infrared communications used in the implementations of this system conform to

the ItPHY and Irt[LAP standards.

2.2.2 OBEX

Object Exchange Protocol or OBEX is a higher level protocol developed by the IRDA for
the exchange of data objects between devices. OBEX will work on top of many lower
level protocols including infrared, TCP/IP, and Bluetooth. It has been described as similar
to a binary HTTP protocol. The OBEX specification consists of two major parts: a
protocol and an application framework. “The OBEX protocol is a session level protocol
that specifies the structure of the conversation between devices” [3]. The protocol also

defines a method for describing objects. The structure of the description is very similar to

8

HTTP. Data is organized into various headers which are specified by a header identifier
and followed by the associated data which may include length, name, type, and other

information about the object.

HI - identifier header name Description

0xC0 Count Number of objects (used by Connect)

0x01 Name name of the object (often a file name)

Ox42 Type type of object - e.g. text, html, binary, manufacturer specific
0xC3 Length the length of the object in bytes

Ox44 Time date/time stamp — ISO 8601 version - preferred

0xC4 dateltime stamp — 4 byte version (for compatibility only)
0x05 Description text description of the object

0x46 Target name of service thal operation is targeted to

Ox47 HTTP an HTTP 1.x header

Ox48 Body a chunk of the object body.

0x49 End of Body the final chunk of the object body

Ox4A Who identifies the OBEX application, used to tell if talking to a peer
0xCB Connection Id an identifier used for OBEX connection multiplexing

0x4C App. Parameters exiended application request & response information

0x4D Auth. Challenge authentication digest-challenge

Ox4E Auth. Response authentication digest-response

Ox4F Object Class OBEX Object class of object

0x10to 0x2F reserved this range includes all combinations of the upper 2 bits
0x30 to O0x3F user defined this range includes all combinations of the upper 2 bits

Figure 2.3: OBEX Header Identifiers

Along with the data headers, the full OBEX standard defines many directives for
performing various actions such as transferring a file or establishing a connection. For this
system, communications are limited to a subset of the session protocol that deals with
connectionless data transfer. This subset is referred to as Ultra OBEX. In Ultra OBEX
only two directives are supported: PUT and GET. This system is primarily concerned
with the PUT command. The structure of an OBEX packet is typically a directive
followed by headers. The following sequence corresponds to the transfer of a file called

“myurl.url” using an OBEX PUT.

Bytes Meaning

0x82 PUT command final bit set
0x0038 Length of OBEX packet

0x01 Name Header ID

0x0017 Length of Name Header
myurl.url Name Data Unicode Null Term
0xC3 File Length Header ID
0x00000016 File Length

0x49 File Body Header ID Final Segment
0x0019 Length of File Body Header
http:/ /www.ittc.ku.edu File Body Data

Figure 2.4: Sample OBEX packet

2.2.3 IEEE 802.11b

Mobile devices are important tools for location-based services. The devices and the
applications that run on them are even more useful if they are connected to some type of
network. While any type of network connection will work, it makes sense for a mobile
device to have a wireless connection. Many technologies exist for wireless networking
including Bluetooth, GPRS, and IEEE 802.11. An Internet connection via IEEE 802.11b
was chosen for this project because of its availability, wide range of support, and flexibility,
but it should be noted that other technologies may eventually play a more significant role
in these types of applications. The IEEE 802.11b protocol allows for data transfer rates as
high as 11 megabits per second from distances up to 160 meters and data transfer at
degraded rates from as much as 550 meters. IEEE 802.11b devices can obtain an Internet
address automatically from a DHCP server and employ various encryption methods

(WEP) to avoid sending clear text through the air. IEEE 802.11b cards are available in

10

both PCMCIA and compact flash formats and work with a wide variety of mobile

computing devices.

2.2.4 Apache HTTP server

Offering location-based services to users in the form of a web page is very convenient. In
order to provide web pages over the network, we need a server that is running web server
software. The Apache HTTP Server was chosen for the implementations in this project.
The Apache HTTP Server is a project of the Apache Software Foundation. It is an open-
source HT'TP server for modern operating systems including UNIX and Windows NT.
The goal of the Apache HTTP Server project is to provide a secure, efficient and

extensible server that provides HT'TP services in sync with the current HTTP standards

[4]-

Apache is the most popular web server on the Internet and is the one used for this project.
The Apache HTTP Server used includes support for the Common Gateway Interface
(CGI), and Secure Socket Layer (SSL) communications both of which are used for this

project.

2.2.5 MySQL

MySQL is an open source relational database management system. The MySQL database
server is the world's most popular open source database. It is fast and easy to customize.

The server can be run with strict transaction control or with transactionless disk access [5].

11

As the name implies, the MySQL server supports queries and commands written in the
Structured Query Language (SQL). Although not every SQL command is supported by

MySQL server [6], all capabilities needed by this project are available.

2.2.6 X10

X10[7] is a relatively old but still widely used technology for home automation. Devices
that implement the X10 protocol can be controlled via signals that are transported across
electrical wiring. The item to be controlled (lamp or small appliance) is plugged into an
X10 module. The module is then plugged into a regular wall outlet. A special control
module (CM11A) which is connected to a computer’s serial port is also plugged into a
different wall outlet. The computer can then send X10 commands through the electrical
wiring to various modules to turn devices on and off. Cameras, thermostats, and security

equipment that communicate using the X10 protocol are also available.

2.2.7 Heyu

Heyu is a Linux program that will operate the CM11A computer to X10 interface. It can
control X10 devices, set the CM11A interface clock, and monitor X10 signals that are
transmitted over the AC power lines. It is capable of uploading macros and timers to
the CM11A for stand-alone execution. It is tailored to Linux, but it should work with
other UNIX systems. Heyu has a command line interface for controlling X10 devices.
For example, the following command turns the device connected to module Al on.

>heyu turn al on

12

2.2.8 vCard

vCard is a standard maintained by the Internet Mail Consortium. “vCard automates the
exchange of personal information typically found on a traditional business card. vCard is
used in applications such as Internet mail, voice mail, Web browsers, telephony
applications, call centers, video conferencing, PIMs (Personal Information Managers),
PDAs (Personal Data Assistants), pagers, fax, office equipment, and smart cards. vCard
information goes way beyond simple text, and includes elements like pictures, company
logos, live Web addresses, and so on” [13]. A simple vCard can be just plain text. The

following is an example of a simple vCard with just the name and two telephone numbers.

BEGIN:VCARD

VERSION:2.1

N:Friday;Fred

TEL; WORK; VOICE:+1-213-555-1234
TEL; WORK; FAX:+1-213-555-5678
END : VCARD

2.3 Related Work

Some projects that employ concepts that are similar to those presented in this document
are the Cricket project [8] at the MIT computer science laboratory, a CDPD-based user
location system developed by AT&T labs [9], and the 802.11 based system implemented at

the Rice University Department of Computer Science [11].

2.3.1 Cricket

13

The Cricket project is an in-building location support system which utilizes beacons that
broadcast via radio frequency and ultrasound as its enabling technologies. Applications
on mobile and static nodes determine their location by listening to information sent
from various beacons spread throughout a building. There is no central server and the
Cricket system does not track individual users’ locations. The system instead allows

applications to determine their location and the share it with whomever they please.

The Cricket project seems to work well but there are two limitations. First, the
implementation requires new unique hardware on both the user and provider ends.
Second, since the user applications determine their location based on the distance from a

beacon, the beacons themselves need to be placed somewhat scientifically.

2.3.2CDPD

Researchers at AT&T labs and the University of Rome developed a system which uses
Cellular Digital Packet Data (CDPD) to determine the location of users and offer
services [9]. Their approach works nationwide on devices that communicate on a
cellular network. The user’s mobile device first determines the unique identification
number of the base station that it is currently communicating with. Next, the base
station ID is translated into a geographical location by means of a central server with a
database of base station IDs and their locations. The location data is then transferred to

information services providers through requests to a location server or by means of a

proxy.

14

A good feature of this system is that it does not require any additional hardware to
implement. A disadvantage, however, is that the inaccuracy of the location data is equal

to the cell size, which can be quite large.

2.3.2 Rice University, Department of Computer Science

A project done at Rice University Department of Computer Science [11] uses only
wireless Ethernet (802.11) to determine location information. The system works by
measuring the signal strength of multiple base stations and then comparing the strength
signature to a database of measured signatures using a Bayesian model to estimate

location.

This system has the advantage of not requiring any specialized hardware but it also has
some disadvantages. The system requires a significant amount of training to develop a
state space with known signatures. If an access point is moved or added, or the
arrangement of objects in the building changes significantly, the system will have to be
retrained. Since 802.11 operates at the resonance frequency of water, humans tend to
absorb signal. Because of this, the strength signatures will tend to differ as more people

enter a room or building.

2.4 This Approach

A goal of the system proposed in this document is to provide very fine-grained location-

based services to users in a relatively transparent manner. On the provider end, the system

15

must be cost effective, flexible, and easy to install. This system will use low-cost beacons
that broadcast location information via infrared to mobile computing devices such as
personal digital assistants or smart phones. Many standard mobile computing devices can

be used without any hardware modifications.

16

Chapter 3

ARCHITECTURE

3.1 Overview

The architecture described in this chapter provides a sufficient guideline for constructing a
location-based services system. Details of sample implementations are given in the next

chapter.

The system can be broken down into the following items which are described in this

chapter:

® Beacon

® (lient Device

® (lient Software
® Network

® Server Device

® Server Software
The system operates in a manner consistent with the diagram in figure 3.1. A user,
carrying a mobile device that is running the client software, moves within the broadcast
range of the beacon. The beacon broadcasts data that is related to its own location. The
mobile device receives the broadcast and forwards it to the client software. The client
software determines the type of location data received and then calls the appropriate

handler application. If the data type that is received refers to a network resource, the

17

handler application makes a request to a server over the network. The server responds

with a service that is based on the location where the user made contact with the beacon.

System Architecture Diagram

Client Device Server

Handler Application Network “

Gateway Script Database
Location Client Software
Information

Applications
on Server

Handler Application

External
Devices

Figure 3.1: LBS System Architecture

3.2 Beacon

A beacon is a device which periodically broadcasts location information. It does not
establish or maintain any connections. The information it transmits is not encrypted and is
universally available. The beacon’s location information is programmed with the location

information once by the administrator and it acts autonomously from then on.

Since the beacon broadcasts information specific to its location, the physical method of

data transfer is important. For example, the following questions should be answered.

18

Should the signal pass through walls, or bounce around corners? How far should the

signal reach? Is the direction of receipt important?

The location information that is transmitted by the beacon can be one of two types:
physical location, or logical location. Examples of physical location are longitude and
latitude, or distance and angle from a known point. Logical locations are things like
Starbucks, Nichols Hall, or Room 237. Typical location-based systems normally first
determine the physical location and then map it to the logical. In this system, the beacon

can broadcast either logical or physical location information.

3.3 Client Device

A user who wants to take advantage of location-based services needs to have some kind of
mobile computing device that can access the system as a client. The device must have
sufficient hardware to receive the location information from the beacon. The device must
also be able to access a pool of location-specific resources once it has received the
information from the beacon. This is typically done with some type of network access but
could also be a local database. Lastly, the client device needs to be programmable in some
way. There are many PDA type devices on the market that meet these criteria and there

are a few mobile telephones that are perhaps even better candidates.

19

3.4 Client Software

The client device needs to have custom software installed that listens for beacons, parses
the information received, and accesses the appropriate services. The client software needs
to be as transparent as possible, but still allow the user to control the level of automation.
The user should also be able to stop and start the software as needed. The client software
should make an effort to provide some reduced functionality when a network connection
is not available. The client software should be fault tolerant. It should be able to handle

erroneous beacon broadcasts and network failures without crashing.

The client software should consist of at least two components: a user interface and a

beacon data parser.

Client Application Architecture
Diagram

User Input—p» User Interface

Settings

Location

Informationg’ Beacon Data Parser

Handler Application Handler Application Handler Application

Figure 3.2: Client Software Architecture

20

The user interface will allow the user to configure some of the application options and will

provide a means for prompting the user when interaction is necessary.

The beacon data parser component will listen on some interface for incoming data from
beacons. When data is received, the parser will check for errors, and then process the data.
The data parser will call the appropriate handler application once the data has been

processed.

3.5 Network

As stated before, the client device needs to have access to a pool of location-based
resources. Since most mobile devices have somewhat limited memory and storage, it
would normally make sense to access these resources via a network. The network
accessed could be a LAN, an intranet or the Internet depending on where the resources
are located. An “always on” type of connection would provide for a more seamless user
experience but is not strictly necessary. Since location-based services are most useful with
mobile devices, wireless networking technologies such as 802.11 or GPRS are the most

practical type of connectivity.

3.6 Server Device

If the location-based services atre to be served from a network, there is a need for a server
device that responds to client requests. The server needs to have a physical connection to
the network that clients are going to use for requests and it needs to be able to take some

21

action based on the request. The server could be a desktop, a dedicated server, special

purpose hardware, or another PDA as long as it has a connection to the same network as

the client.

3.7 Server Software

The server needs to have software that listens for client requests and responds to those
requests. The response could be a single transfer of data as in the HTTP protocol or it
could establish a connection as might occur with FTP. For some applications, it may be
useful for the server software to have some type of gateway interface in order allow client
requests to control external software. Lastly it may be useful for the server to have access

to a database to maintain information that is specific to users and locations.

22

Chapter 4

IMPLEMENTATION

4.1 Technologies

4.1.1 Beacons

The beacons used in this implementation communicate information to the client devices
using infrared light pulses. The data encoding, error correction, object encapsulation, and
pulse timing used is consistent with the specifications prepared by the Infrared Data
Association (IRDA). The specific protocols implemented are IrPHY, IrLLAP, and a subset

of IrOBEX called ultra OBEX.

The beacons are implemented using low-cost electrical components that are commonly
available. The central component of the beacon is a programmable microcontroller with
built-in EEPROM memory. This memory holds the location specific information and can
be reprogrammed by the system administrators with a desktop computer. The end user

does not need to be aware of the beacon internals.

The beacons in this implementation are used to broadcast two types of information. The
first is a URL (Uniform Resource Locator) or web address. In order to send the URL, the
beacon needs to send an OBEX PUT packet with the size, type, and data headers. The
rest of the OBEX headers can be omitted. The sequence of bytes that the beacon needs

to send in order to broadcast a particular URL is given in figure 4.1.
23

Bytes Meaning

FF Beginning of frame sync

FF

FF

FF

FF

FF

FF

FF

FF

FF

Co Start of frame indicator

70 Source Address

70 Destination Address

0x82 PUT command final bit set

0x0038 Length of OBEX packet

0x01 Name Header ID

0x0017 Length of Name Header

myurl.url Name Data Unicode Null Term

0xC3 File Length Header ID

0x00000016 File Length

0x49 File Body Header ID Final

0x0019 Segment

http:/ /www.ittc.ku.edu | Length of File Body Header
File Body Data

FCS1 16 bit Checksum

FCS2

C1 End of Frame

Figure 4.1: Sample beacon URL broadcast

The second type of beacon broadcast is vCard data This is very similar to the URL

broadcast except now the OBEX type header is text/x-vcard instead of text/x-utl.

24

4.1.2 Client Device

The client device used in this implementation is a Compaq iPAQ 3150. It has a 200 MHz
Intel StrongARM processor and 32 Megabytes total internal memory. The internal
memory is used for both application data, and system RAM. The operating system used
on the device is Microsoft PocketPC OS which is otherwise known as Windows CE 3.0.
The iPAQ slides into a backpack which provides the PCMCIA support necessary for
adding a network interface card. The iPAQ is equipped with a built in infrared data port

which is located near the top end of the device.

4.1.3 Client Software

4.1.3.1 Overview

There are three applications which are used on the client device for this implementation:
IrObexClient, VCardStore, and Microsoft Pocket Internet Explorer. IrObexClient listens
for beacon broadcasts and then passes the information to the appropriate handler
application. VCardStore is a handler application that stores business card information and
Internet Explorer handles URLs. In the implementations described in this paper, the
beacons are only used to send vCards or URLSs, but the system could be modified to send

and receive any type of file.

25

4.1.3.2 ItObexClient

IrObexClient was written in C++ using Microsoft Visual C++ for embedded systems and
the Microsoft PocketPC platform SDK. The visual tools in the IDE were used to develop

the graphical elements of the user interface.

E.|] IrObexClient
IrObesClient .2

Tools E|*

Figure 4.2: IrObexClient

The software behaves in the following manner. When the software is started, a window
appears which displays the name “IrObexClient” and the version. At the bottom of the

screen is a Tools menu. If no errors occur, this is all that is displayed until a beacon is

encountered.

26

Clicking on Tools brings up the tools menu. It has three selections: about, settings, and

addresses.

E.i] IrObexClient
IrObexClient v, 2

About
Settings
Addresses

Figure 4.3: Tools Menu

IrObexClient has some user-configurable options that can be set from the “Tools-
>Settings” menu. The two options available are “Auto open URL” and “Auto Save
vCard.” The first option sets whether or not the user should be prompted before opening
a URL. The second option controls whether the user will be prompted before saving a

received vCard to the contacts list.

27

E.]IrObexClient Settings 5:04p |

Auto open LRL

[] Auto save contact

Tools E|*

Figure 4.4: Setting Screen

Upon receiving a URL from a beacon, the client software launches Internet Explorer
which accesses the web page pointed to by the URL. If the “auto-open URL” option is
not enabled, the user is prompted first before it is opened. When a vCard is received, it is
either automatically saved to the contacts database or the user is prompted with a “you
have received a business card” message if “auto-save contacts” is not enabled. If the
“auto-save contacts” option is enabled, the user will not notice the receipt of a business

card until he/she looks at the list of contacts.

Before sending a URL to Internet Explorer to be opened, the client software first checks
the URL to see if the resource is available. If it is not, the software gives the user the
option to save the URL for later review. Saved addresses can be accessed by selecting the
addresses option from the tools menu.

28

E.{| IrObexClient

Open Delete

Tools E|4

Figure 4.5: Addresses Screen

The following is a description of the functions contained in the client software and the
sequence in which they are executed. See Appendix A for the client software source code.
The program entry point is the WinMain function. The first function called inside
WinMain is Initlnstance. This function takes care of initializing the program and creating
the windows and dialogs necessary for this application. Next an instance of IrdaParser is

created.

IrdaParser is a class whose purpose is to listen for and process objects received via the
infrared port. The objects are sent using the OBEX protocol which is in turn
encapsulated by the IRLAP protocol. The IrdaParser needs to parse both protocols in

order to receive the data.

29

After creating the instance of IrdaParser, the program calls its public startIR member
function. This function first finds the COM port that is associated with the infrared port
and opens it for reading. Next it sets some communications parameters before creating

the main read thread.

Once created, the read thread continuously attempts to read bytes from the infrared port
into a buffer. When some bytes are received, the buffer is passed to getFrame. The
getFrame function searches the buffer for a valid IRDA frame. In order for a frame to be
valid, it needs to begin with the correct start-of-frame character, have valid address and
control bytes, and have a computed checksum which matches the one transmitted. If a
valid frame is found, the frame type along with the buffer index where the frame begins is
returned. At present ULTRA_OBEX_FRAME is the only frame type that is used. If no
frame is found, the INVALID_FRAME type 1is returned. If the
ULTRA_OBEX_FRAME type is returned, the buffer along with the start-of-frame index

is passed to parseUltraObex.

The parseUltraObex function processes and stores data contained in the various OBEX
headers sent out by the beacon. The headers include length, name, type, and body fields
among others. The most important headers for this system are the body and the type.
The type identifies the type of information that has been received and dictates which
handler application is called. MIME conventions are used to represent the type such as
“text/x-utl” for a URL or “text/x-vcard” for vCatrd information. The body header

contains the actual data associated with the specified type. If the type is a URL, the body
30

header contains a web address if it is a vCard, the body includes the name, phone number,
and other business card information. After the parsing the OBEX frame, the information
gathered from the headers is passed to the processFile function. The processFile function

calls either processURL or processVCard depending on the value of the type field.

The processURL function simply converts the URL string to Unicode and then passes it
to the openlocation function. openLocation first compares the URL string to the last
URL opened before proceeding. This is to avoid reopening the same page repeatedly
while standing in front of a beacon. Next the function checks to see if the auto-open URL
option is enabled. If is not, the user is prompted before proceeding. After this step, the
function uses the checkServer function to check for an active connection to the Internet.
If one is found, Internet Explorer is called with the URL string as a command line option.
If there is no Internet connection, the user is asked whether they want to save the URL to
a list in order to open it later. The program maintains a list of saved URLs that can be

accessed at any time from the “Tools” menu.

processVCard stores the card information in a temporary file and then calls the

StoreVCard application with the file name as a parameter.

31

‘ Start \

3

Farse OBEX

h 4

¥
Open IR port

Read bytes
Into buffer

—] —!

M Bytes
read?

Y

Check for IRCA
frame

I

Headers

h J

Get file type

Yalid
frame?

Internet
Explorer

ltra OEE
Frame?

5 file &
WCard?

StoreVCard

4.1.3.3 StoreVCard

to saveContact.

create an instance of a Pocket Outlook application object.

Figure 4.3 IrObexClient Flowchart

Finally the new contact is saved and the COM instance is released.

32

The StoreVCard program has two important functions: processVCard, and saveContact.
The processVCard function opens the temporary file that was created by IrObexClient

and then parses the file to extract the business card data. The extracted data is then passed

The saveContact function uses Microsoft COM (Common Object Model) technology to
After logging on to the
application, the function gets the current list of contacts in the database, and then adds a

new one. Next the function sets the name, phone number, email, etc. of the new entry.

4.1.3.4 Microsoft Pocket Internet Explorer

Microsoft Pocket Internet Explorer is a web browser built specifically for Microsoft

PocketPC devices.

E-:ﬂ Internet Explorer 3:21p

lazlo.itte ku.edufroomz237 -

Welcome to room
237

The people in this room

are:
Doug Bowen

Tim Dawbarn
Tim Newman

Steve Pennington

Yiew Tools i

Figure 4.4: Pocket Internet Explorer

It is similar to its desktop equivalent except that it does not include support for scripting,
java applets, or plugins. It does however support cookies, and SSL. communications. Both

of which are utilized by the applications in section 4.2.

4.1.4 Network

An 802.11b wireless network is used in this implementation. The iPAQ is equipped with a

Linksys WPC11 802.11b adapter. The adapter receives an IP address, DNS addresses, and

33

a gateway address automatically via DHCP. 128 bit WEP encryption is used on this
network. The client device is able to access resources via the Internet or local area

network using this connection.

4.1.5 Server Device

The server device in this implementation is a desktop computer with an Intel 300 MHz
Pentium II processor, 192 MB of ram, and a 6.2 GB hard drive. The server is equipped
with a both Ethernet and 802.11b connections. The server can be reached from either

interface.

4.1.6 Server Software

The server used in this implementation runs the Linux operating system with kernel
version 2.4.19. The server runs Apache web server, mySQL database server, Heyu

software, and several scripts written in PERL 5.0.

4.1.6.1 Apache

In its simplest usage case, the Apache web server listens for client requests on the network
and responds by sending the requested file back to the client if it is available. The Apache
server can also respond to requests for CGI (Common Gateway Interface) scripts by
running the requested script and transmitting the output of the script back to the client.
Lastly, the Apache web server has the ability to store and subsequently access small text

files on the client device. These text files are called cookies and are useful for storing user

34

specific information between multiple visits to the same website. All of these facilities are

used in the applications in section 4.2.

4.1.6.2 MySQL

This implementation uses a mySQL database to maintain user information as well as
information about specific locations. A typical database is organized into several tables.
Each of which have many rows of data. The database can be queried using SQL
(Structures Query Language) to retrieve a single or multiple rows from one or several
tables within the database. The database can be readily accessed by web clients via the

Apache web server and the CGI scripts described in the next section.

4.1.6.3 CGI Scripts

The web server needs a way to make resources other than static files available to the users.
In particular, the content returned needs to vary depending on the user’s preferences and
location. The use of CGI scripts along with the Apache web server makes this possible.
The implementation works as follows. The client device requests a URL that includes a

CGI script along with some arguments. Such a URL might look like this:

bttp:/ [lazlo.itte.fen.edn/ cgi-bin/ loc_auth.plept=1234>c1=2345
In this example “loc_auth.pl” is the CGI script while “pt=1234" and “ct=2345" are the
arguments. When the web server receives the request, it runs loc_auth.pl and passes it the
argument string. At this point the script runs with access to as few or as many resources as
the administrator permits, including the ability to run other programs on the server. The

permission level of the CGI script is not at all related to the user making the request. The

35

output of the CGI script is then returned to the user in the form of a web page. In the
above example, loc_auth.pl simply performs a mathematical operation on the number
associated with “ct” and then compares it to the number associated with “pt.” If the two
match, an authenticated response is returned to the user. CGI scripts also have the ability
to query the mySQL database and return the results to the user. This capability is crucial

to providing more sophisticated web services that are customized to the individual user.

4.2 Applications

The following are applications that were developed using the technologies and architecture
described in this document. All of the applications use the same hardware and software
on the user end, while utilizing varying resources on the server end. An individual will be
able to use any of the following applications without doing any configuration beyond the

initial installation of the client software.

4.2.1 Location Information

Consider the following scenario. Jack is strolling aimlessly through the vastness of
Megacon Corporation’s world headquarters when he discovers the perfect conference
room for his weekly downsizing meeting. To his dismay, there is no administrative
assistant nearby to reserve the room for him. But then, in a moment of clarity, he pulls
out his PDA, makes contact with a beacon in the room, and is instantly presented with a
web-based sign out sheet for the conference room. He reserves the room for every
Tuesday at 3:00 pm and continues on his way.

36

This is the simplest implementation of this system. The user walks in the room carrying a
mobile device and makes contact with a beacon. IrObexClient receives a URL that points
to a web page, and then passes it to Internet Explorer. Internet Explorer connects over
the Internet to the specified server and requests the web page. The Apache web server
software running on the server receives the request, and responds by transferring the
requested HTML file back to the client. Internet Explorer displays the received web page

which contains information pertinent to the room in which the user is currently standing.

The system administrator must do two things in order to provide this application. First
he/she must create a web page that contains information that is related to the room in
question. In the above application, this is a web-based sign out sheet. Next the

administrator must program the web address into a beacon and place it in the room.

4.2.2 Environmental Automation

Sometimes the user does not need to know anything about their location in order to
benefit from location based services. Consider the following scenario. Bill, being the
fantastic host that he is, would like to set up the rooms in his house in such a way that they
automatically configure themselves to the environmental preferences of any visitor. A
visitor walks into a room while carrying a mobile device. After their device makes contact
with the beacon, the lighting in the room is adjusted to the visitor’s preference and the

music in the room changes to a genre that he or she prefers.

37

This application works in the following manner. The administrator places a beacon in the
room at an appropriate location. The beacon broadcasts a URL that points to a CGI

script and has a parameter that relates to the room. For example:

bttp:/ | mycompany.com/ cgi-bin/ enviro_anto.pleroom=148

When the user’s mobile device makes contact with the beacon, it loads the URL in
Internet Explorer. Internet Explorer requests the web resource from the Apache web
server over the network. Upon receiving the request, the web server software runs a script
and passes it the room number. The CGI script first retrieves a cookie from the client
device which identifies the user. Next, the script looks up the environmental preferences
of that user by querying a mySQL database. Then the script queries the mySQL database
again using the room number to retrieve the list of controllable devices. After gathering the
information from the database, the script sends the appropriate commands out over the
X10 network to the necessary X10 modules. When the X10 modules receive the

commands, they turn devices on or off as required.

This application is implemented in the following manner. The beacon is programmed
with a URL that is specific to the location where it will be placed. For example:

http:/ | www.billshouse.com/ cgi-bin/ env-anto pleroom=3
The code for env-auto.pl is given in appendix B. Upon making contact with the beacon,
IrObexClient passes the URL to Internet Explorer. Internet Explorer requests the web

page from the Internet. When Apache receives the request it runs the env-auto.pl script

38

with the given argument. The first thing the script does is check for a cookie with user
information on the client device. If no cookie is found, it responds with a web page asking
the user to log in. After the user logs in with a name and password, a cookie is stored on
the device so that this operation does not need to be repeated. At this point, the user has
been identified by one of the previous two methods and the system can continue. Next,
the script looks up the room in the mySQL database to see what devices can be controlled.
The script then looks up the user in the mySQL database to see what his preferences are.
If the user has preferences that correspond to X10 devices in the particular room, the

script makes calls to the Heyu software to control those devices.

4.2.3 Location Authentication

An organization may want to offer a service only if they can know with some level of
certainty that the user was at a specific location. Consider the following scenatio.
Megaplex theatres wants to entice people into visiting their theatres by offering a chance to
win one million dollars (or seven movie tickets, whichever is more) to patrons who visit
their theatres. They do not, however, want people who do not visit the theatre to be able
to enter. The solution is to place beacons that broadcast a location-authenticated address
of the sweepstakes entry form within the movie theatre complex. The valid address of the
entry form changes with every beacon broadcast. No address can be accessed twice, and

the next valid address cannot be easily guessed.

39

This application is essentially very similar to the system described in section 4.2.1. The
main difference is that the beacon and the web server share a common secret key. The
beacon generates a random number called a nonce, and then encrypts it using the secret
key. Next the beacon transmits the location URL along with the plaintext nonce and the
encrypted nonce as arguments. The broadcasted URL looks as follows:

bttp:/ [lazlo.itte.fen.edn/ cgi-bin/ loca_anth plept=1234¢1=5342

Where “pt” is the plaintext nonce, and “ct” is the encrypted nonce. When the web server
receives the URL request, it decrypts the encrypted nonce using its secret key and then
compares it to the plaintext nonce. If the two are equal, the web server has verified that
this requested originated at a beacon. To protect against replay attacks, the web server can
keep a running log of the last N nonces and deny any that are already in the list. A larger
N means a longer time before a replay attack will succeed but more overhead on the web
server. The chosen N must be significantly smaller than the nonce in order to ensure that

valid requests are not denied.

The system administrator needs to do a few things in advance to set this application up.
First the beacon needs to be programmed with the correct URL and the secret key. Next
the CGI script loc_auth.pl needs to be stored on the web server in a place where Apache
can access and run it. Finally loc_auth.pl must be configured with the secret key and the

proper authenticated and denied responses.

40

4.2.4 Zero-Click Purchase

This is the most complicated but perhaps the most intriguing application in this paper.
Consider the following scenario. John realizes that, at least for the foreseeable future, he
will order the same drink every time he visits a Starbucks retailer. So he logs on to
Starbucks’ website, creates an account, and selects his favorite beverage, a grandé, non-fat,
toffee-nut latte. The next time John visits a Starbucks, he pulls out his smart phone and
makes contact with a beacon. His drink is automatically ordered, paid for, and placed onto
the barista’s orders list. After a minute, the barista calls John’s name and he picks up his

drink. John never waits in line and his beverage is always correct.

This application is implemented in the following manner. The beacon is programmed
with a URL that is specific to the establishment where it will be placed. For example:

bttp:/ [www.starbucks.com/ cgi-bin/ zeroclick.plstoreid=148

The code for zeroclick.pl is given in appendix C. Upon making contact with the beacon,
IrObexClient passes the URL to Internet Explorer. Internet Explorer requests the web
page from the Internet. When Apache receives the request it runs the zeroclick.pl script
with the given argument. The first thing the script does is check for a cookie with user
information on the client device. If no cookie is found, it responds with a web page asking
the user to log in. After the user logs in with a name and password, a cookie is stored on
the device so that this operation does not need to be repeated. At this point, the user has
been identified by one of the previous two methods and the system can continue. Next,

the script looks up the uset’s favorite beverage and associated cost in the mySQL database.

41

The script then charges the user’s account for the drink and places a new entry into the
orders table in the mySQL database. The new entry contains the user’s actual name, the
description of the order, the location information (store ID) retrieved from the beacon, the
time, and a status flag. The script then returns a web page to the user confirming their

purchase.

E;ﬂ Internet Explorer

https: etarbucks comfcgi-hindzeroclick pl

Thanlk ¥You

An order for Tim Dawbarn has
been placed at Starbucks #148 for
the following items:

Grande Cafe Mocha, no whip

Total Price: $3.71

¥iew Tools i

Figure 4.5: Purchase confirmation from zeroclick.pl

In order to fulfill the orders, a barista simply needs to navigate to the following address
using a desktop computer or a web enabled register.

bttp:/ [www.starbucks.com/ cgi-bin/ getorders.plestoreid=148

The code for getorders.pl is given in appendix D. The getorders.pl script queries the
orders table in the mySQL database for orders that both match the given store ID and

have an active status flag. Some HTML formatting is applied to the resultant list, and it is

42

returned to the barista’s browser. When an order has been filled, the barista can click the

done button next to the order and its status is changed to “completed”, which removes it

from the list.
FEX
File Edit View Favorites Tools Help ,','
" — n - — »
@Back T s \ﬂ @ ._l\J /.JSearch ‘i‘\? Favarites @Media {:‘E ' L= __!
Address | hittp: ffstarbucks comicgi-binigetorders pl?storeid=148 Vl Go Links **
ZeroClick Orders
ame Order Price Time Done?

Tim Dawbam Grande Cafe Mocha, no whip $3.71 Tue May 13 18:31:20 CDT 2003

@Done é 0 Internet

Figure 4.6: The results of the getorders.pl CGI script

4.2.5 Business Card

In some cases the user may not need any further information beyond what is broadcasted
by the beacon. Distributing business cards is such an application. Consider the following
scenario. Sally is representing her company’s hot new product at an ultra high-tech trade
show on the west coast. She anticipates talking to between seven and eight million

potential clients but she only has a thousand business cards. No problem, she sets up a

43

beacon in her booth that automatically broadcasts her business card once every second to
anyone with a mobile device that is in range. Everyone receives her card and no one has

to go to the trouble of programming it into a device.

In this application, a beacon is first programmed with the business card information and
then placed into the environment for users to access it. When a user’s device makes
contact with the beacon, IrObexClient receives the OBEX object being sent.

IrObexClient identifies the object type as a vCard and saves the payload to a temporary

file.

E.i] IrObexClient
IrObexClient v.2

You received a voard for
Timn Dawbarn, Do you
wish to save it to
contacts?

Yes No

Tools E|*

Figure 4.7: Receiving a business card

44

ItObexClient then calls StoreVCard with the temporary filename as an argument.
StoreVCard opens the temporary file and stores the business card information to the

contacts list.

45

Chapter 5

TESTING AND RESULTS

5.1 Hardware and Software Requirements

This is the specification of the system used for testing. Other systems may work but have
not been tested.
® (Client Device
o CompaqiPAQ 3150
= 200 MHz StrongARM processor
= 16 MB RAM
= 16 MB ROM
= Linksys WPC11 802.11 Card
o PocketPC OS Version 3.0
o Microsoft Pocket Internet Explorer
® Server Device

o Pentium IT 300 MHz

192 MB RAM

6.2 GB Hard drive

= Orinoco gold 802.11 card

3com Ethernet adapter
o Linux 2.4.19

o mySQL server version X
46

o Apache httpd version X

o Apache SSL version X

e Beacon

5.2 Test Plan

After building the system and installing the software, a variety of tests were run to
determine if the system is compliant with the specified architecture and if the applications

behave as expected.

5.2.1 System Tests

Beacon range
The client device was held at multiple distances from an active beacon and the distances
where successful receipts occurred were recorded. The client device is able to receive

broadcasts from distances of six inches to about twelve feet.

Multiple beacons broadcasting the same URL

Multiple unsynchronized beacons broadcasting the same URL were placed in various
locations within the same room. The behavior of the client device was recorded at several
locations for each of the configurations. If the client device is within range of only one
beacon, the device behaves normally. If the device is within the range of both beacons,
the device will receive the correct URL provided that the two broadcasts do not overlap.

If the broadcasts do overlap, the client device acts as though no URL was received.

47

Multiple beacons broadcasting different URLSs

Multiple unsynchronized beacons broadcasting different URLs were placed in various
locations within the same room. The behavior of the client device was recorded at several
locations for each of the configurations. If the client device is within range of only one
beacon, the device behaves normally. If the device is within the range of both beacons,
the device will alternate receiving the two different URLs provided that the two broadcasts
do not overlap. If the broadcasts do overlap, the client device acts as though no URL was

received.

No Internet connection

The network card was removed from a client device before making contact with a beacon.
The behavior of the client device was observed. Upon receiving the broadcast from the
beacon, the client software informs the user that a URL was received but the resource is
not available. The software then asks the user whether or not to save the URL for later

opening.

Stored addresses functionality
After replacing the network card and configuring the network connection, an attempt was
made to load a previously stored web address using the client software. The web site was

successfully loaded in Internet Explorer.

48

5.2.2 Location Information

A beacon was programmed with a URL that pointed to a web page with information
specific to room 213 at Nichols Hall. The beacon was then activated and placed on a shelf
in the room. When the user carrying a client device made contact with the beacon, the
device received the URL and was successful in loading the room 213 web page in Internet

Explorer.

5.2.3 Location Authentication

CGI script retreival

A beacon was programmed with a URL that pointed to a CGI script. The beacon was
then activated and placed on a shelf in a room. When the user carrying a client device
made contact with the beacon, the device received the URL and was successful in loading

the page. The CGI script executed and the results were displayed.

Nonce encryption
The plaintext nonce was manually encrypted using the secret key and the encryption
algorithm used by the system. The obtained cipher text was then compared to that which

was broadcasted by the beacon. The two were a match

49

Replay attacks

A client device was placed within range of a beacon broadcasting the location
authentication format. After successfully loading the URL, a second attempt was made
using the same address. While the first attempt was successfully authorized, the second

was denied.

5.2.4 Zero-Click Purchase

SSL communications
The client device was used to access a website using SSL.. The data packets sent to the
client device were viewed using tcpdump. There was no clear text observed in the

packets.

16:35:18.079804 xxx.xxx.XxX.XxxX.3528 > xxx.xxx.xxx.xxx.https: P 1:121(120) ack 1
win 17520 (DF)

0x0000 4500 0020 4dff 4000 6b06 3e19 81led 7b30 E.M.@.k>..{0
0x0010 411e 4504 0dc8 01bb cefl Oebb b045 3abl AE.. E..
0x0020 5018 4470 d4df 0000 1603 0100 7301 0000 P.Dp.......s...
0x0030 6£03 0100 008c 089b 76eb 7839 be08 9228 0.eeen VX9 (
0x0040 fdc3 30b6 fd6b 2ba8 2751 8da4 b67a 6¢9f 20.k+.'Q..zL
0x0050 a6fa 8220 1c71 18c2 3959 df0d 8b11 6411 ... q.9Y...d.
0x0060 11ae 41a8 4acl d957 4789 5992 alb4 a23e AJWGY.L>
0x0070 b577 4710 0028 0039 0038 0035 0033 0032 wG..(9.8.5.3.2
0x0080 0004 0005 002f 0016 0013 feff 000a 0015 ... [v

0x0090 0012 fefe 0009 0064 0062 0003 0006 0100 ... d.b......

Figure 5.1: Encrypted login data packet captured with tcpdump

50

Cookies

The zeroclick.pl script requires a cookie which identifies the user to be stored on the client
device. The script redirects first time users to a one-time login screen which stores this
cookie on the client device. After the completing a login successfully, the cookies
directory on the client device was examined. The cookie file was present and the

information it contained was consistent with the requirements of the application.

The system requires, for security reasons, that cookies only be retrieved from the client
devices over SSL. A CGI script was written to attempt to retrieve the user identification

cookie over a non-secure channel. The script was unsuccessful in retrieving the cookie.

5.2.5 Business Card

Business card receipt

A client device was placed within range of a beacon broadcasting business cards. The
behavior of the client device was observed. If the auto save option was enabled, the
IrObexClient software did not have any visible reaction, but upon examining the contacts
database, one could see a new entry. If the auto save option was not enabled, the user is

immediately prompted after making contact with the beacon.

51

Temporary file storage
After making contact with a beacon that is broadcasting business cards, the contents of the
temporary file were examined. All of the information in the file was consistent with the

requirements of the application and the information stored in the beacon.

Contacts database modification
The new entry in the contacts database was examined to verify that the contents matched

the information broadcasted by the beacon. All of the fields matched correctly.

5.2.6 Environmental Automation

Communication with Heyu program
The CGI script was modified to call the heyu program using the —v (verbose) option and
redirecting the output to a file. After running the script, the file was reviewed and the

appropriate log was found.

52

Version:1.33

Using the config file /etc/x10.conf
Trying to lock (/var/lock/LCK..heyu.wtite)
/vat/lock/LCK. . heyu.write is locked
Sending house code : 6

Sending unit code :5

Sending header 4 : 65

xwrite() called, count=2

xtead() called, count=1, timeout = 10
xread() returning 1 byte(s). The first is 69
xwrite() called, count=1

xread() called, count=1, timeout = 10
xread() returning 1 byte(s). The first is 55
Sending function 6 : 62

xwrite() called, count=2

xread() called, count=1, timeout = 10
xread() returning 1 byte(s). The first is 68
xwrite() called, count=1

xread() called, count=1, timeout = 10
xread() returning 1 byte(s). The first is 55
all ok with transmit

Figure 5.2: Heyu log file

Communication with X10 modules
The CGI script was requested and a light connected to an X10 module was observed. The

light turned on indicating that X10 communications are working correctly.

5.3 Reliability

There are several possible points of failure for this system. It is worth examining these

modes of failure and how the system will behave.

53

5.3.1 Network failure

There two ways in which network failure can affect the applications in this
implementation. The first is if the server loses its network connection. In this scenario,
one of two things will happen. If server connection goes down before making contact
with the beacon, IrObexClient will detect that the server is unavailable and prompt the
user to save the URL for later access. If the server connection is interrupted after the
client makes contact with the beacon, Internet Explorer will execute but will not be able to
load the requested resource. At this point, it will be up to the user to reload the web page

when the server comes back online.

The second case is if the client device loses its network connection. In this case the timing
of the interruption also changes the behavior. If client connection goes down before
making contact with the beacon, IrObexClient will detect that the network is unavailable
and prompt the user to save the URL for later access. If the client connection is
interrupted after the client makes contact with the beacon, Internet Explorer will execute
but will not be able to load the requested resource. At this point, it will be up to the user

to reload the web page when the server comes back online.

In both cases there is the possibility that a client request might make it to the server but
the response might no make back to the client. In purely informational applications this
behavior is benign, but in the case of the zeroclick purchasing application, the behavior
could be disastrous. Some care must be taken when programming the server-side

applications that this scenario is accounted for.

5.3.2 Server Failure

This scenario is essentially the same as if the server loses its network connection. The

behavior of the client device again depends on the timing of the server failure.

54

5.3.3 Client Device Failure

If the client fails in such a way that it is unable to access the network, the behavior is the
same as in the network failure section. If the infrared port is unavailable, an error message
is displayed and the client software exits. All other errors are handled by the client devices

operating system.

E. Error 3:37p
IrobexClient w2

Unable to open the port,
Please close any
applications that use

infrared, or reset your
device

Tools E|A

Figure 5.3: Infrared port error screen

5.3.4 Beacon Failure

There are several ways in which the beacon could fail. First, if the battery is disconnected
or the beacon is severely damaged, it may quit broadcasting completely. If this happens,
the client devices will obviously not be able to receive any location information. The
beacon is built with a red LED that flashes with every broadcast. If the LED is not
flashing at regular intervals, the beacon should be checked.

55

The beacon could fail due to corrupted memory. If this happens, it is unlikely that it
would continue to broadcast at all. If it was able to continue broadcasting, it is even more

unlikely that the data transmitted would be valid IRDA frames

5.4 Scalability

Scalability in a location-based information system is important. This system is essentially
as scalable as the Internet itself. For an individual organization, the number of unique
beacons that can be used is only limited by the number of web pages the company’s web
server can provide. If pages are generated dynamically using a script, this number is nearly
infinite. 'The only limitation of the beacons is that due to memory constraints, the
maximum URL length is 236 characters. Considering all of the valid characters, this

provides more than 367° possible URLs.

56

Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusions

The goals of this project were successfully met. The system is able to provide users with
location information with a level of resolution that is smaller than a single room. The
applications created using this system utilize the additional location resolution to provide
users with valuable services. In addition, the system was implemented at low cost and

requires very little adaptation by the user.

Some important lessons were learned in the development of this project. The first is that
the logical location broadcasting scheme works very well. It is a different approach but
provides significant benefits. Using logical location data provides a lot of location detail
without requiring a scientific setup procedure. This scheme is also very scalable since

almost an infinite number of unique URLs can be used.

Another lesson learned is that Beacons can be produced from relatively cheap off-the-shelf
components. The cost can also be reduced further by implementing functions that are

traditionally done by hardware in software.

Last but not least is that not all IRDA compatible devices implement the same parts of the

IRDA protocol specification. It became evident after some time that the iPAQ and its

57

PocketPC 3.0 operating system do not support the ULTRA (connectionless) portion of
the IRDA specification. Even if it did, it would not matter because there is no API
exposed for handling raw IRDA packets on the PPC; only socket communications.
Although this matter required a significant and unexpected effort, much was learned about

IRDA communications protocols in the process.

6.2 Future Work

It seems that some of the newer mobile devices may have a more mature IRDA stack that
might already include some of the functionality implemented in IrObexClient. It would be
beneficial to try to develop a beacon protocol that works without installing client software

on these newer devices.

The encryption algorithm used in the location authentication application is trivial. For a
more robust application, a real-world encryption scheme such as DES or RSA public key

should be used.

The system could be improved by developing solutions for other mobile platforms.
Specifically, system which works with mobile phones and PalmOS devices would be a nice

improvement.

The beacon URLs are currently set by directly programming the microcontroller. A user

friendly desktop application is needed for configuring beacons.

58

More applications that use this system could be developed. The applications described in

this document are only a small sampling of the possibilities with this architecture.

59

BIBLIOGRAPHY

(1] An Approach to Providing a Seamless End-User Experience for Location-Aware
Applications Sastry Duri, Alan Cole, Jonathan Munson, Jim Christensen IBM
Thomas] Watson Research Center 30 Saw Mill River Rd., Hawthorne, NY
10532 {sastty, colea, jpmunson, ibmjim} @us.ibm.com, In Proceedings of the
first international workshop on Mobile commerce July 2001

[2] Infrared Data Association. http://www.irda.org/about/index.asp

[3] ItOBEX specification, Infrared Data Association. http://www.irda.org

[4] The Apache HTTP Setrver Project, http://httpd.apache.org/

[5] MySQL Database Server, http://www.mysql.com/products/mysql/index.html

[6] MySQL & mSQL, Randy Jay Yarger, George Reese & Tim King, Orielly Press
1999, page 7

[7] X10 Knowlegebase, http://www.x10.com/support/tech index.htm

[8] The Cricket Location-Support System, Nissanka B. Priyantha, Anit Chakraborty,
and Hari Balakrishnan, MIT Laboratory for Computer Science, Cambridge, MA
02139{bodhi, achakra, hati} @lcs.mit.edu, In Proceedings of the sixth

annual international conference on Mobile computing and networking
August 2000

[9] Location Based Services in a Wireless WAN Using Cellular Digital Packet Data
(CDPD); Rittwik Jana, Theodore Johnson, S. Muthukrishnan, AT&T Research
Labs, 180 Park Avenue Florham Park, NJ (07932), USA.
{tjanajohnsont,muthu} @tesearch.att.com; Andrea Vitaletti Dipartimento di
Informatica Sistemistica Universita di Roma, 00198-Roma, Italia
vitale@dis.uniromal.it

[10] Composable ad hoc location-based services for heterogeneous mobile clients
Todd D. Hodes and Randy H. Katz Computer Science Division, University of
California, Berkeley, CA, 94720, USA

[11] Using Wireless Ethernet for Localization Andrew M. Ladd, Kostas E. Bekis,
Guillaume Marceau, Algis Rudys, Dan S. Wallach, and Lydia E. Kavraki,
Department of Computer Science, Rice University, Houston TX, 77005

[12] Heyu software, http://heyu.tanj.com/heyu/

60

BIBLIOGRAPHY

[13] vCardspecification, Internet Mail Consortium,
http://www.imc.org/pdi/vcardoverview.html

61

