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Abstract 
This research exploits the agility of game theory by synthesizing economic theories 

and Internet traffic engineering techniques to optimize the profit of Internet Service 
Providers (ISP), and to meet the customer desire of automatic subscription from any 
provider that offers the lowest price.  

We propose a new Automatic Price Transaction-based One-to-Many Peer Network 
architecture that facilitates customers’ options for subscribing to services from providers 
based on the negotiated price. This model is for enterprise-provider IP peer networks or 
customer-provider wireless networks.  In this model, customers and providers perform 
simultaneous price negotiations by a Sealed-Bid-Reverse auction protocol. We suggest 
Session Initiation Protocol (SIP) entities and call flow to implement the mechanism. Our 
model extends the one-to-one IP peering architecture (IP Network-Network-Interface) of the 
Alliance for Telecommunications and Industry Solutions (ATIS).  Our model also extends 
the one-to-one Online Charging architecture of the Third Generation Partnership Project 
(3GPP). 

Implementation of the architecture causes strategic interaction among the providers; 
thus, a game theory model is required to compute the service price and to optimize the 
providers’ profit. 

We propose a new game theory model—the Providers Optimized Game in Internet 
Traffic—to optimize providers’ profit in the proposed architecture subject to constraints of 
network architecture, traffic pattern, and game strategies. This model determines strategic 
price using a myopic Markovian-Bayesian game of incomplete information and an extension 
of previous work based on the Bertrand oligopoly model. Our model is sensitive to the 
dynamic Internet traffic demand, the congestion in networks, and the service class. Selecting 
a strategically appropriate price is one of our methods to optimize profit; the others are 
minimizing the network congestion sensitive cost and optimizing routes. The model 
associates a congestion indicator—the mean IP packet count in a network queue system—
with the service cost. An M/M/1 queuing analysis determines the mean packet count. The 
model applies two well-known non-linear programming techniques, the Gradient Projection 
algorithm and the Golden section line search, to minimize the mean packet count and to 
optimize routes in providers’ networks. 

This dissertation presents the novel models, validates the models by analyses and 
simulations, evaluates advantages of the models, determines providers’ the best strategies 
for optimizing their profit, and introduces traffic-engineering applications.  

The dissertation concludes that our approach achieves a relative advantage in profit 
over the classical Bertrand model for both the homogeneous and heterogeneous service-
based Internet markets. Our model yields positive profit for all providers and decreases the 
market price of services relative to customers’ budgets while guaranteeing their preferences. 
The novel model optimizes profit of providers in one or multiple Bayesian-Nash 
equilibriums and the Paretro-efficient outcomes subject to the network architecture, 
traffic pattern, service class mix, and strategies available. Providers achieve fair market 
shares with these equilibriums. In addition to the profit optimization, providers can 
implement our method to perform least price routing, traffic load balancing, capacity 
planning, and service provisioning. 
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1 Introduction 

 
 

Session Initiation Protocol (SIP) supported peer networks have recently 

ascended to prominence among Internet service providers according to Yankee 

Group reports [77]-[79]. Automating the price transaction for services and 

optimizing profit of providers in such peer networks are recent challenges for 

engineers. There is neither a well-established method, nor an automatic mechanism 

for computing the service price in peer networks today. 

Small providers are wholesale customers of large providers. These customers 

want options for subscribing to services from large providers in one-to-many peer 

networks with an automatic price transaction mechanism. They also desire to select 

a provider instantaneously that offers the lowest price. Today, one-to-many peer 

customers transport IP traffic through large providers based on the network load. 

However, in our knowledge, no mechanism exists today for such transport based on 

the service price.  

Analogous to the desire of small providers, individual wireless customers 

want to peer with multiple wireless providers and automatically subscribe to 

services from the provider of their choice based on the service price. 

We propose the new Automatic Price Transaction based One-to-Many Peer 

Network architecture to meet customers’ desire for automatic price negotiations that 

are concurrent with multiple providers. This architecture for one-to-many peer 

networks supports a price transaction protocol, SIP entities and a SIP call flow. The 

architecture allows customers to broadcast their budget and instantaneously 

subscribe to the provider of their choice based on the competitive service price 

analogous to the Sealed-Bid-Reverse auction [43][44]. Our model extends the one-to-

one IP peering architecture (IP Network-Network-Interface) of the Alliance for 

Telecommunications and Industry Solutions (ATIS). Our model also extends the 
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one-to-one Online Charging architecture of the Third Generation Partnership Project 

(3GPP).   

Customers’ options of subscribing to any provider create strategic interaction 

of price among the providers. This strategic interaction of the limited number of 

providers and their attempt to optimize profit are the microeconomic concepts of 

game theory in an oligopoly market [1][2]. Thus, we employ provider’s price 

computation method using a game of oligopoly. Our game theory model is a 

function of the peer traffic capacity and demand, the service cost, and a customer’s 

budget. 

Although the traffic capacity and a customer budget remain constant for a 

relatively short duration of time, the traffic demand and the service cost vary due to 

the dynamic nature of Internet traffic and the network congestion. 

Large providers want to optimize their profit by automatic price computation 

methods synchronized with the dynamic nature of Internet traffic demand in the 

competitive market. The existing price computation mechanisms of providers are 

not dynamic; i.e., the price is often asynchronous with the Internet traffic demand. 

Providers’ marketing departments manually compute prices based on the historical 

network load, market capacities, and traffic demand levels. By the time a marketing 

department computes and advertises a new price, the network traffic pattern and 

market demand may have already changed. Most importantly, the Internet traffic 

demand is still unpredictable. This causes long reactive delays of price computation 

that create an obstacle to selling services synchronized with the varying market 

demand in the competitive market. Thus, there is a need for mechanisms that 

automatically compute price synchronized with the Internet traffic demand and 

sensitive to the network congestion. 

We propose the new Providers Optimized Game in Internet Traffic model that 

synthesizes a game theory, a traffic-engineering technique, and a non-linear 

optimization method. The model allows providers to determine competitive price 

synchronized with the dynamic Internet traffic demand and sensitive to the network 
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congestion. In this model, providers optimize profit by selecting strategically 

sensitive price and by minimizing congestion sensitive network cost. A 

mathematical non-linear program associated traffic engineering technique 

minimizes the congestion sensitive network costs. 

This dissertation presents the architecture and the model, validates them by 

analyses and simulations, evaluates their advantages, determines providers best 

game strategies that optimize their profit, and introduces traffic-engineering 

applications. 

The dissertation concludes that our approach—the implementation of the 

architecture and the game model—achieves a relative advantage in profit over the 

classical Bertrand model for both the homogeneous and heterogeneous service-

based Internet markets. Our approach yields positive profit for all providers and 

decreases the market price of services relative to customers’ budget while 

guaranteeing their preferences. The novel approach optimizes profit of providers in 

one or multiple Bayesian-Nash equilibriums and the Paretro-efficient outcomes 

subject to the network architecture, traffic pattern, service class mix, and strategies 

available. Providers achieve fair market shares through these equilibriums. In 

addition to the profit optimization, providers can implement our approach to 

perform least price routing, traffic load distribution, capacity planning, and service 

provisioning. 

In the rest of this document, an enterprise is a small regional Internet Service 

Provider (ISP) that has distributed networks across a continent, but does not have 

national or international backbone networks. A provider is a large ISP that has 

national and international backbone networks. An enterprise supports access 

networks, sells services directly to consumers, and peers with providers to transport 

its long distance and international traffic. A customer is either an enterprise or a 

wireless customer. The price transaction protocol is for the customer-provider peer 

interface to negotiate price.  
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We organize the rest of this chapter as follows. Section 1.1 briefly presents 

microeconomic concepts such as optimizing providers’ profit and developing game 

theory models. We study the outline of the related research in Section 1.2 to 

comprehend the background of the problem.  Section 1.3 presents the problem 

statement, proposed solutions, and research methods. Section 1.4 discusses the 

distinguishing characteristics of our approach. Section 1.5 provides a summary of 

our contributions; and Section 1.6 outlines the document format. 

1.1 Background Microeconomic Concepts 

1.1.1 Profit 

Our research concerns providers’ profit. A profit function is typically 

assumed to be monotonic, bounded, and concave. We define unit profit ( (.)u ) as the 

steady state network throughput ( (.)Y ) multiplied by the difference between the 

unit price ( (.)p ) and cost ( (.)ω ). In other words, it is the difference between the net 

revenue and the net production cost. We define network throughput as the 

aggregate rate served by a network, where rate is data units per unit time. 

 [ ](.) (.) (.) (.)u p Yω= −  (1.1) 
A provider (n) computes profit from a session as a function of the price (p), 

the marginal cost (ω), the duration (d), and the bandwidth (y) of the session. The 

price and the marginal cost are values at the session start time. The total profit of the 

provider is the sum of the profits from all ( k∀ ) the sessions until the end of the 

game (e.g. a simulation). 

 , , , , , , , ,( )n s t k n s t k n k n s k
k

Cumulative profit p d yω
∀

= −∑  (1.2) 
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1.1.2 Game Theory 

The mathematical theory pertaining to the strategic interaction of decision 

makers is Game Theory. We assume that in the Internet game, providers play the 

role of rational decision makers and each provider knows that the opponents are 

also rational. A rational provider always attempts to select the best strategy. Table 

1.1 presents four fundamental classes of games and their corresponding 

equilibriums. 

Game Class Equilibrium 
Static Game of Complete Information Nash Equilibrium 
Dynamic Game of Complete Information Subgame-perfect Nash equilibrium 
Static Game of Incomplete Information Bayesian Nash equilibrium 
Dynamic Game of Incomplete Information Perfect Bayesian Equilibrium 

Table 1.1: Classes of Games 

A game of complete information is the strategic interaction when providers 

are aware of each other’s strategies or payoffs, i.e., all factors are common 

knowledge. In the game of incomplete information, at least one provider is unaware 

of the payoffs or strategies of other providers. In a static game, all providers 

simultaneously interact without the knowledge of past payoffs or strategies.  In a 

dynamic game, a provider performs strategic interactions repeatedly based on the 

knowledge of the payoffs or strategies of past interactions.  

In today’s competitive Internet market, providers do not divulge their payoffs 

or strategies. A provider may have partial knowledge about other providers with 

some uncertainty; however, it does not have the complete knowledge. In our 

research, all providers simultaneously compute bid prices without the knowledge of 

their opponents’ payoffs or strategies; thus, we are interested in studying a static 

game of incomplete information.  

An example of a static game of incomplete information is a sealed bid 

auction. For example, when a government conducts a sealed auction for a license of 

certain wireless wavebands, no provider knows bids (actions of strategies) of other 

providers for the license and expected profit (payoff) of others for winning the 
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license. All the providers submit simultaneous sealed bids. Mathematics refers to 

this strategic interaction as the Bayesian static game of incomplete information 

because it uses Bayes’ conditional probability rule. 

1.1.2.1 Bayesian Static Game of Incomplete Information 

This strategic form game consists of a set of providers (players), their action 

spaces, type spaces, probability (belief) functions, and their profit (payoffs). In an 

Internet market of two providers—A.com and B.com—, we denote the Bayesian 

static game of incomplete information as follows: 

B[{ . , . },{ , },{ , },{ (), ()},{ , }]Bayesian A B A B A A BG Acom B com Action Action Type Type Belief Belief u u= (1.3) 

When a provider bids for a service, the bid represents the Action space of the 

provider. A provider computes the bid based on certain private parameters such as 

the cost of a service as a function of congestion indicator of a network. Each provider 

may have its distinct cost function. Here, this cost function represents the Type of a 

provider. 

The Belief is a conditional probability function. The belief function of A.com 

implies its uncertainty about B.com’s selection of a pure strategy. In a pure strategy, 

a player selects a particular strategy from a given set of strategies with 100% 

probability. A.com has some Belief of the strategies of B.com based on its own 

strategy. A.com takes an Action from the belief function based on its perceived Type 

of B.com in comparison to its own Type. The following equation presents A.com’s 

belief function about B.com (i.e., A.com holds belief on B.com’s type): 

 (.) ( | )A A B ABelief Prob Type Type=  (1.4) 

The belief function is also referred to as the mixed strategy profile. A.com 

develops a set of feasible strategies from the belief function: 

 : (., (.))Aj A Aj Astrategy h Action h Belief←⎯⎯  (1.5) 



 19

For example, from a service cost function (TypeA), A.com develops a belief 

(BeliefA) function for the possible bids of B.com; then, A.com selects a bid (Action) by 

a strategy (h) such that A.com bid is higher than the perceived bids of B.com. 

The development of the providers’ belief functions and the selection of the 

best strategy set from the belief function to maximize providers’ profit (payoffs) in 

the dynamic Internet traffic demand are the principal tasks of our research.  

1.1.2.2 Bayesian Nash Equilibrium 

A Bayesian Nash equilibrium is a feasible strategy set that maximizes 

providers’ expected profit (u(.)) in a static game of incomplete information. This 

equilibrium occurs when A.com and B.com play their best strategies ( * *,A Bh h ) and 

results in a set of optimum expected profit ( * *[ ], [ ])A BE u E u . In the following definition, 

A.com plays the best strategy in response to the best strategy played by B.com. 

Definition: A strategy set 1 2( , ,..., )jStrategy h h h=  constitutes a Bayesian Nash 

Equilibrium of a game [{ . , . },{ , },{ , }]A B A BG A com B com Strategy Strategy u u=  for every 

feasible strategy (j) such that: 

 * * *[ ( , )] [ ( , )]j
A Aj Bj A Aj BjE u h h E u h h∀≥  (1.6) 

Here, when B.com plays the optimal strategy *
Bjh , A.com has nothing to 

improve its expected profit by changing strategy from *
Ajh . This also implies that 

when A.com plays the optimal strategy *
Ajh , B.com has nothing to improve its 

expected profit by changing strategy from *
Bjh .   

 * * *[ ( , )] [ ( , )]j
B Aj Bj B Aj BjE u h h E u h h∀≥  (1.7) 

Therefore, neither A.com nor B.com will benefit in expected profit by 

changing strategies from the Bayesian-Nash equilibrium strategies. 
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1.1.3 Oligopoly 

 An Internet oligopoly market consists of a small number of providers that 

strategically interact to optimize their profit. They collectively influence the network 

capacity of the market and the market price of services; however, no single provider 

can completely control the market. In this thesis, A.com and B.com constitute a two 

provider oligopoly; i.e., duopoly. 

There are two fundamental models of oligopoly: the Cournot game of 

capacity and the Bertrand game of price. In today’s competitive Internet market, 

providers first implement network infrastructure at the peering interface and then 

assign a price. The Bertrand game of price occurs in the short term; but in the long 

term, the providers reassign capacity engaging in Cournot’s game of capacity.  Our 

study focuses on the short-term market when market capacity remains constant and 

the providers engage in price bidding. Therefore, we develop a novel model based 

on the Bertrand game of oligopoly (see details in Chapter 3).  

1.1.4 Sealed Bid Reverse Auction 

The sealed bid reverse auction is the foundation of the price transaction 

protocol of the novel model. In this auction, a buyer has a maximum price it is 

willing to pay for a service. This price is the reservation price. The buyer informs 

providers the reservation price of the service and seeks bids. Privately, providers 

compute the prices of service and report their prices of service in sealed bids to the 

buyer. 
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1.2 Background Research on Network Pricing 

There is a wide range of methods used to find an optimum policy of pricing 

for Internet services. Summaries of the pricing research can be found in 

[9],[26],[27],[28],[29],[30],[31],[32]. The following examples are central to our 

research. 

1.2.1 Service per Customers’ Bids 

In a pioneering study of a pricing model where customers send bids to a 

provider for a service, Kelly [7] addresses the issues of charging, rate control, and 

routing for a network that carries elastic—variable rate--traffic. He proposes a 

market where each customer submits a bid to the provider. In Kelly’s research, the 

bid is the willingness to pay per unit of time. The provider accepts these submitted 

bids and determines the price of each network link. Then the provider assigns the 

user a data-rate in proportion to his bid. The rate is inversely proportional to the 

price of the links the customer wishes to use. The study does not employ game 

theory because customers do not anticipate the effect of their actions on the prices of 

the links. Nevertheless, the study shows that such a scheme maximizes the profit. 

1.2.2 Static Congestion Game 

Johari and Tsitsiklis [8] explore the properties of a static game where users of 

a congested resource anticipate the effect of their actions on the price of the resource. 

In their study, a single network allocates network capacity among a collection of 

users. Each user applies a profit function depending on their allocated rates. The 

profit function depends on the total rate obtained from the network. The 

optimization of max-flow problems yields the rate. The network supports 

homogeneous traffic, i.e. only one class of service. The market model is similar to 

Kelly [7] except that users anticipate the effects of their actions simultaneously. 

Thus, the model becomes a static game. Johari’s network game uses individual bids 
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at each link, as opposed to Kelly's game where each user submits a single bid to the 

network.  

Johari’s et al.’s study shows that for a single provider, the users receive a 

Nash equilibrium profit of at least ¾ of the maximum possible aggregate profit. The 

results also show that the self-interested behavior of the individual user does not 

create congestion or degrade performance if a pricing mechanism is carefully 

chosen. In our research, we use congestion as a parameter of network cost. 

1.2.3 Provider’s Monopolist Game 

DaSilva [9] espouses a game theory approach when studying static pricing 

policies for multi-service networks. He conducts the study in ATM1 networks of 

priority-based and allocation-based weighted round robin (WRR) scheduling. The 

study uses a non-cooperative game among a set of users where a provider 

determines a price in advance. The provider strategy is to optimize the operating 

point of the network by adjusting the price. A user strategy is to maximize its profit 

given all other users’ service choices. Here, the provider is a monopolist and the 

users are the players. A provider induces one or more Nash equilibriums according 

to the network architecture, the available resources, and the pricing policy adopted. 

The study demonstrates that the adoption of an appropriate pricing policy enables 

the service provider to offer the necessary incentives for each user to choose the 

service that best matches its needs, thereby discouraging over-allocation of resources 

and maximizing customer’s profit. Richard La et al. [10] study a similar monopoly 

market. In contrast, we study an oligopoly market. 

                                                 
1 Asynchronous Transfer Mode (ATM) network supports cells or fixed sized packets 
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1.2.4 Peer Providers in a Series 

Linhai and Walrand [11] present a generic model for pricing Internet services 

in a multiple provider network. Customers’ calls are routed through multiple 

providers; i.e., all provider networks are connected in series.  

 

 

 

The existence of Nash Equilibrium in game theory is used to show the 

outcome of games between service providers. The result shows that non-cooperative 

pricing is unfair and may discourage future upgrades of networks. On the other 

hand, a simple revenue sharing policy is fair, more efficient, and encourages 

providers to collaborate without cheating. In contrast to the Linhai et al.’s model, the 

providers in our research do not connect each other. The peering interface of our 

model is in between an enterprise and multiple providers. 

1.2.5 Game of Incomplete Information in Sealed Bid Reverse Auction 

Bandyopadhyay et al. [13][14] propose an on-line exchange oligopoly model 

combining the model of sales by Varian [1] and a sealed-bid-reverse-auction 

[1][43][44]. Varian’s model associates the Bertrand oligopoly game of incomplete 

information. Buyers submit their Requests For Purchase (RFP) that describe their 

requirements for a homogenous product in the online exchange and invite suppliers 

to view and respond to the RFP. Sellers engage in a static game of incomplete 

information and attempt to be the lowest bidder. Bandyopadhyay et al. [14] study 

sellers’ behavior by Reinforcement-Learning (RL) simulation. We extend the 

Bandyopadhyay model to an Internet providers’ game of oligopoly in our research. 
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1.2.6 Transaction-level Pricing Network Architecture 

Zhangxi Lin et al. [15] propose a transaction level pricing architecture based 

on a bandwidth broker for a Virtual Private Network (VPN) model. The bandwidth 

broker schedules data flows with a pricing mechanism for an affiliated VPN 

gateway. This architecture is a VPN Round Robin (RR) extension of Gupta et al’s 

[16] earlier general equilibrium economic model for priority pricing of network 

resource allocation. The architecture involves only one provider; therefore, no 

oligopoly market is involved. The model optimizes the price of service and the 

provider’s profit. The study does not implement any game theory. In our research, 

we extend this concept of price-based network architecture of one provider to 

include multiple providers offering similar value-added services and competing for 

the enterprise customers in an oligopoly market.  
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1.3 Problem Statement and Proposed Solution  

In this dissertation, we will solve the following problems: 

• Deliver customers’ requirement of automatic price-transaction 

mechanism in one-to-many customer-providers peer networks.  

• Develop providers’ strategic price computation methods in a 

competitive market. 

• Develop providers’ profit optimization method. 

Our solutions to the above problems are as follows: 

• We propose a new Automatic Price Transaction-based One-to-Many Peer 

Network architecture that includes price transaction mechanisms and 

protocols to automate price negotiations in one-to-many customer-

providers peer network.  

• We propose a new game theory model—the Providers Optimized Game 

in Internet Traffic—to optimize providers’ profit in our proposed 

architecture. This model determines strategic price using a myopic 

Markovian-Bayesian game of incomplete information and an extension 

of previous work based on the Bertrand oligopoly model. Selecting a 

strategically appropriate price synchronized with the dynamic Internet 

traffic demand is one of our methods to optimize profit; the others are 

minimizing the network congestion sensitive cost and optimizing 

routes. This model has two distinct parts: 

o The development of providers’ oligopoly game. 

o  The development of providers’ profit optimization method. 

• We propose an algorithm to implement the game model. The 

algorithm synthesizes game theory, internet traffic engineering, and 

non-linear optimization techniques.  

The following sections provide snapshots of these solutions. 
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1.3.1 The Proposed Price Transaction Architecture and Protocol 

We briefly describe the Automatic Price Transaction-based One-to-Many Peer 

Network architecture in this section. Chapter 2 presents its detailed description 

A Session Initiation Protocol (SIP) session is a voice call or a multi-media 

connection between two end User-Agents (UAs) in the Internet. In this new price 

transaction architecture, an enterprise and a provider communicate pricing 

information and agree on a price for each SIP session; i.e., we assume per call 

pricing. An enterprise consists of multiple UAs requiring separate SIP sessions. A 

session originates from one enterprise region and propagates to another region 

through a provider.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Enterprise-Provider one-to-many peer network topology 

Figure 1.1 shows two providers (A.com and B.com) in a market providing 

services to an enterprise that has four regional networks: Chicago, NewYork, Dallas, 
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and Atlanta. Each enterprise peers with A.com and B.com, both physically with 

optical transport, and logically with distinct Label Switched Paths (LSPs).  SIP based 

control and signaling protocols enable an enterprise to either establish all of its 

sessions through one provider or distribute its sessions through both the providers. 

For example, Dallas.Enterprise.com has two choices to initiate a session from 

Alice@Dallas.Enterprise.com to Bob@NewYork.Enterprise.com. Depending on the 

price of service bid by A.com and B.com, Dallas.Enterprise.com establishes the call 

through either the dashed path or dashed-dotted path. 

Enterprises have limited budgets and providers privately send bids to 

enterprises. These two important conditions require that the automatic price 

transaction protocol implement a pricing negotiation technique analogous to the 

sealed-bid-reverse-auction theory. In this protocol, an enterprise dynamically 

requests the price of a session by broadcasting their reservation price by 

simultaneously sending RFPs to all the providers. Privately, the providers compute 

and inform the enterprise of their bids. Then, the enterprise selects the lowest 

bidding provider to setup the session. We define this novel mechanism in the peer 

network to negotiate price as the automatic sealed-bid-reverse-auction protocol.   

We assume that enterprises are rational agents; their reservation prices 

represent the fair market price of the services and the reservation price of a service is 

agreed upon prior to implementing the protocol. We also assume that enterprises do 

not violate agreements by changing the reservation price during the game. 

In order to maintain the Quality of Service (QoS) of each session, the 

networks in this study are appropriately traffic engineered to meet anticipated 

queuing delays. This is accomplished by implementing capacity constraints through 

traffic engineering rules as specified in Section 5.3. Each provider supports 

alternative routes through its network and has a mechanism to perform optimum 

routing. 
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1.3.2  Proposed Providers’ Game of Oligopoly  

In this section, we briefly present the providers’ oligopoly game of our model. 

Chapter 3 describes the game in details. 

In this proposed model, each provider computes the price of services by a 

static game of incomplete information in an oligopoly market.  The model assumes 

that there are only a few providers in a market and the billing is asymmetric—

providers bill enterprises for establishing sessions and transporting traffic, but 

enterprises do not bill providers. Providers dominate the market by their strategies 

to compute price. One provider’s action will influence the market price, profit, and 

traffic flows of all providers. However, one provider alone cannot completely 

control these parameters. 

All the players (enterprises and providers) are assumed to implement 

technical mechanisms prior to the start of the game. This means providers do not 

provision or activate any new network component during the game. No network 

failure occurs during the game. All the players sign business agreements prior to the 

start of the game; i.e., no new player joins after the game begins and no player leaves 

until the game ends. A reservation price is agreed during the business agreements. 

Customers are rational agent: they do not violate their agreements by chaning the 

reservation price during the game. All providers’ access bandwidth is limited at the 

peering interface. It is assumed that no single provider’s capacity alone meets the 

sum of the bandwidth demand of all the enterprises in a region.  In this market, the 

aggregate peer bandwidth of all providers is assumed to exceed the total market 

bandwidth demand. The lowest priced provider may sell to maximum bandwidth 

capacity and the higher priced provider may sell to the residual bandwidth demand. 

The model takes into account the dynamic nature of Internet traffic demand. 

In the Internet terminology, a session is an IP call. The session initiation is 

performed by the signaling layer and IP packets flow through the media layer. A 

media session generally consists of many IP packets. We assume that the session 
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arrival distribution is Poisson [74] and the session duration distribution is 

exponential.   

We consider that each session initiation request is an instance of a game. 

When a session initiation request arrives, each provider develops a belief function 

based on a myopic Markovian-Bayesian game of incomplete information. Then, it 

determines a service price from this belief function by implementing the specific 

strategies discussed in Section 3.6.  

The parameters of the belief functions are the number of providers in the 

market, the market capacity, the perceived market demand, the reservation price of 

service, and the marginal cost of a provider.  

 Determining providers’ belief functions and strategies is the central task of 

our research. 

1.3.3 Proposed method of Optimizing Providers’ Profit  

In this section, we briefly present the providers’ profit optimization method 

of our model. Chapter 5 describes the method in details. 

Provider’s profit optimization is central to our research. We propose a new 

algorithm that synthesizes game theory, traffic engineering, and non-linear 

programming technique to optimize profit. We state the profit (equation (1.1)) 

optimization problem as follows: 

 

(.)

. .

Maximize u
Network Architecture Constraint

s t Internet Traffic Pattern and Queue System Constraint
Game Strategy Constraint

⎧
⎪
⎨
⎪
⎩

 (1.8) 

 Max u(.) = ( )Max p Yω−  (1.9) 
 ( ( )) ( )Max pY Max Y Max p Yω ω+ − ⇒ −  (1.10) 
 ( ) (.)Maximize pY Minimize Y Maximize uω+ ⇒  (1.11) 

 
Therefore, our intention is to perform the following two objectives to 

optimize profit (u(.)), although we may not be able to simultaneously achieve the 

both:  
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• Maximize revenue ( pY ).  
• Minimize service cost ( Yω ). 

 

Selecting a strategically appropriate price is our method to optimize revenue. 

We will provide a best strategy selection method that determines appropriate price 

from the belief function of the providers’ oligopoly game.  

Change in traffic pattern varies the degree of congestion in the network. A 

key indicator of network congestion is the mean packet count in the network’s 

queue systems. An increase in the packet count in the system increases the mean 

delay in packet transmission. Consequently, it degrades the service quality. The 

degradation of service is detrimental to revenue.  Thus, our model associates the 

network congestion with the service cost.   

The mean packet count in the queue system of each provider varies with the 

change in the traffic load of its network and the routing pattern of traffic inside the 

network. Enforcing optimal routing [85] to minimize network congestion—the mean 

packet count in the queue system—is our method of minimizing service cost. We 

apply two well-known non-linear programming techniques, the Gradient Projection 

and the Golden Section Line search methods [46][48][49] [50], to minimize the mean 

packet count in the system. 

Each network node of this research is equipped with an infinite memory 

single integrated output queue per link using the First-In-First-Out (FIFO) 

scheduling scheme. We assume that the IP packet arrival process and the packet size 

distributions, respectfully, are Poisson and Exponential. When traffic aggregates into 

a queue, the aggregate traffic arrival process and packet length distributions are 

Poisson and Hyper-Exponential. Thus, we assume the well-known classical 

Markovian (M) General model (M/G/1)[74][75] of queuing theory. Thus, we 

perform M/G/1 queuing analysis [74] to develop traffic-engineering rules. 

However, we approximate the mean packet count in the queue system using 
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M/M/1 theory so that we may use results from the theory of M/M/1 network 

queue systems. 

1.3.4 Proposed Algorithm 

Our algorithm for a session or a game instance to optimize provider profit 

consists of the following steps:  

i) Enforce traffic engineering rules based on M/G/1;  

ii) Perform optimum traffic routing;  

iii) Approximate the optimum congestion indicator (mean packet count2 

in the network based on M/M/1); 

iv) Develop instantaneous congestion-sensitive service cost;  

v) Develop the belief function by the proposed game of oligopoly;  

vi) Select the best strategy to determine strategically appropriate price;  

vii) Conduct game: simulation of session initiations-terminations and 

emulate customer price negotiation by sealed bid reverse auction 

protocol. 

1.3.5 Research Methods  

We conduct mathematical analyses and simulation to evaluate the 

performance of the Automatic Price Transaction-based One-to-Many Peer Network 

architecture that implements the Providers’ Optimized Game in Internet Traffic model. 

Our research methods consist of the followings: 

• Develop the Automatic Price Transaction-based One-to-Many Peer Network 

architecture and associated protocols for a two providers SIP based 

network. 

                                                 
2 The literature [85] develops optimum routing as a function of optimum mean delay. On the other 
hand, we develop optimum routing as a function of optimum mean packet count because majority of 
the vendor routers keep the record of mean packet count instead of mean delay. We want to stress 
that there is no difference in the mean delay method and our mean packet count method because 
they are directly related through Little’s Law [59],[60]. 
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• Develop the Providers’ Optimized Game in Internet Traffic model: 

o Develop a duopoly market, define parameters of the belief 

function, develop analytical model of the belief function, and 

identify a set of strategies. 

o Develop the non-linear program to perform optimal routing [85]. 

o Design a network, develop traffic engineer rules, and assign traffic 

paths. 

• Develop a simulation model in the MATLAB3 tool. 

We verify analytical models by simulation results. By maintaining the 

simulated market demand equal to the mathematical desired demand, we compare 

the simulated market price and the simulated provider profit with corresponding 

values from analysis. We determine the best strategy (the Bayesian-Nash 

equilibrium and Pareto-efficient outcome) to optimize provider market shares of 

profit in all market demand for the homogenous and heterogeneous classes of 

service. Chapter 7 and 8 describe details of these methods. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 MATLAB ) is an integrated technical and mathematical computing tool and is a product of MathWorks 
(www.mathworks.com). 
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1.4 Distinguishing Characteristic of our approach 

In our approach, customers have options for subscribing to services from a 

provider of choice based on the price using the new Automatic Price Transaction-based 

One-to-Many Peer Network architecture. In addition, we propose a method for 

providers to optimize profit using the new game model, the Providers Optimized 

Game in Internet Traffic. This game model is sensitive to the dynamic Internet traffic 

demand, the congestion in networks and the service class. 

The Third Generation Partnership Project (3GPP) develops wireless standards 

that refer to pricing as charging. The recent work [69]-[73] in 3GPP on charging uses 

a wireless consumer to provider (one-to-one) model. However, it does not provide 

options for customers to negotiate price with providers in one-to-many peer 

architecture similar to our architecture.   

SIP based peering among multiple providers is a new phenomenon. The 

ATIS-PTSC4 is developing SIP based IP peering standards between two providers 

for one-to-one peer network [68]. However, the ATIS initiative lacks automatic 

pricing mechanism and one-to-many peer features. 

The Internet Engineering Task Force (IETF) is an Internet professional 

community that develops Internet protocol specifications known as Request For 

Comment (RFC). The IETF RFC 3455 [67] specifies SIP header fields to transport 

price information; however, it does not provide any example of SIP flow to 

implement price transaction. We provide an example of SIP flow to illustrate the 

price transaction method. 

Lin et al.’ [15] research is an example of a transaction-based pricing, which 

can be viewed as the automatic pricing between an enterprise and a provider. 

However, they do not provide solutions for enterprise-provider one-to-many peer 

networks.  
                                                 
4 The Alliance for Telecommunications Industry Solutions (ATIS) is a North American standard organization. 
Packet Technologies and Systems Committee (PTSC) is an ATIS committee that develops standards related to 
Internet services, architectures, and signaling. 
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Significant Internet services pricing research [9][10][11][17][18][21][23][26] 

relates monopoly markets where consumers strategically interacts to get services 

from a single provider The study of an oligopoly market where providers are 

competing for enterprises is the main distinguishing characteristic of our research. 

The majority of the literature on pricing [9][26][27][28][29][30[[31][32] does 

not provide any price transaction protocol or algorithm to compute price. In this 

dissertation, we suggest an automatic price transaction protocol, a SIP flow, and an 

algorithm to compute price. 

Although academics conducted significant research on dynamic pricing in the 

1990s, critics pointed out that the computational complexity would make the 

dynamic pricing expensive and hard to implement [9]. The recent significant 

technological advance in microprocessors and memory enables networks to perform 

complex computations on per session and per packet basis.  Therefore, dynamic 

pricing schemes will not be hard to implement. In addition, the fall in the price of 

microprocessors will also make it inexpensive. Criticism against the dynamic pricing 

is no longer valid as the technology advances and becomes affordable. It is 

particularly true for the Voice over IP (VoIP). More importantly, our dynamic 

pricing scheme is not between a consumer and a provider; rather, it is at the peering 

interface between provider and enterprise to transport aggregate traffic.  

Another common criticism [9] of dynamic pricing is that the customers may 

have to pay more than their budget if the price fluctuates; as a result, a dynamic 

pricing scheme will encounter adverse reaction from them.  Our proposed dynamic 

pricing mechanism deploys a sealed bid reverse auction.  In this mechanism, 

enterprises send their fixed budget value as a reservation price to the providers and 

the providers always bid less than the customers’ budgeted amount.   

While we propose a dynamic pricing mechanism, we implement a static 

game.  As mentioned earlier, our model stems from the Bandyopadhyay et al. 

[13][14] and Varian’s [1] static game of incomplete information.  In our model, the 

commodity is the internet bandwidth rate per class of service whereas in 
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Bandyopadhyay et al.’s model the commodities are goods (e.g. auto-parts) sold in an 

on-line exchange. The Bandyopadhyay et al. oligopoly model assumes a symmetric 

market—the market demand and marginal cost do not change during the game. 

Internet traffic demand and network congestion dynamically change depending 

upon the time of the day, day of the week, and special days of the year. Thus, static 

market demand and static marginal cost do not map well with the provider game of 

oligopoly. We take into account the dynamic nature of Internet traffic demand and 

congestion in the network; thus, we study an asymmetric market.     

The Bandyopadhyay et al. model is a two-step static game. A firm sells its 

total capacity at once, and then another firm sells the total residual demand. In our 

model, each SIP-based session setup is an event of a game and the bandwidth for 

each session is much less than the market capacity. The sessions are established as 

well as deactivated according to the arrival load. One of the parameters of the game 

uses a one-step near-sighted history for each session arrival game. Thus, our model 

is a “myopic” Markovian game. In addition, a market consists of regional markets 

that have capacity restrictions. We study both the homogeneous and the 

heterogeneous service-based networks. 

In [14], the Reinforcement Learning (RL) procedure by simulation is proposed 

for determining the best strategy from the mixed strategy equilibrium. The RL is 

suitable when marginal cost is constant. Due to the dynamic nature of the Internet, 

converging to a best strategy with RL will be difficult to achieve. The 

implementation of the RL mechanism in the network device may also add extra cost. 

Therefore, we simplify the implementation by defining a set of feasible strategies 

from the mixed strategy equilibrium. Then, we identify the best strategy from this 

set by analytical and simulation methods.  
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1.5 Summary of Contribution 

The major contributions of our research are as follows: 

• We proposed the Automatic Price Transaction-based One-to-Many Peer Network 

architecture allows providers and customers to automatically negotiate price. 

It facilitates customers’ options for subscribing services from a provider that 

offers the lowest price. This proposed architecture introduces a new service in 

the Internet and the wireless market.  

• The proposed architecture extends the ATIS one-to-one peer and the 3GPP 

charging architectures to support one-to-many peer model. 

• We propose a price transaction protocol and a SIP flow for the proposed 

architecture.  

• Proposed Providers Optimized Game in Internet Traffic model allows providers to 

offer competitive service price within the budget of the customers.  The model 

eliminates the reactive time of price computation. The model is sensitive to 

the dynamic internet traffic demand, the network congestion cost, and the 

service class.  

• We propose an algorithm to implement the game model synthesizing game 

theory, traffic engineering technique and non-linear programming.  

• We develop a simulation tool implementing the proposed algorithm. 

• Our method determines the dominant, the Bayesian-Nash equilibrium, and 

the Pareto-efficient outcome strategies from a set of feasible strategies. These 

strategies maximize providers’ expected profit. 

• Our method achieves relative advantage over the classical Bertrand model of 

price, which is commonly used in the short-term market. 

• Our method decreases the market price of services relative to the customers’ 

budgets while guaranteeing customers’ preferences. 

• Our method optimizes profit in fair market share and in fair market 

throughput. 



 37

• In addition to the profit optimization, providers can implement our method 

to perform least price routing, traffic load distribution, capacity planning, and 

service provisioning. 

1.6 Structure of the Dissertation 

In Chapter 2, we present the Automatic Price Transaction-based One-to-Many 

Peer Network architecture and associated price-transaction protocol, and the SIP call 

flow. Chapter 3 develops providers’ game of oligopoly by defining parameters and 

stating assumptions. A method of defining a feasible strategy set is presented. We 

develop a non-linear program in Chapter 4 to optimize traffic flow in the network to 

minimize the mean packet count in the network queue system. This traffic flow 

optimization minimizes the marginal cost of service and maximizes provider profit. 

In Chapter 5, we present the research design of a duopoly network architecture, 

assigning the capacity of links and describing traffic flow through the network.  

Chapter 6 presents the algorithm of the Providers Optimized Game in Internet Traffic 

model and the simulation algorithm.  In Chapter 7, we perform mathematical 

analyses and validation. In Chapter 8, we present simulation results and model 

applications for homogeneous and heterogeneous service-based networks. We 

conclude with lessons learned and possible future directions of this research in 

Chapter 9. We provide two appendices: In Appendix A, we outline mathematical 

optimization techniques; in Appendix B, we present acronyms. 
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2 Network Architecture and Protocol  

This chapter describes the new Automatic Price Transaction-based One-to-Many 

Peer Network architecture where customers peer with providers by Session Initiation 

Protocol (SIP) based intelligent entities at the interconnect interfaces. These SIP 

entities automatically perform price negotiations, session management, policy and 

security enforcements, and service delivery assurance. This chapter focuses on the 

price-based network architectures, price negotiation techniques, and the SIP 

protocol. 

2.1 Network Architecture  

In this section, we first present outlines of SIP entities. Second, we briefly 

describe the general Internet Protocol (IP) peering network architecture of Alliance 

for Telecommunications Industry Standards (ATIS)5 and 3GPP charging 

architecture.  Then, we propose our price-based network architecture and protocol. 

Finally, we present a SIP flow. 

2.1.1 SIP Entities 

SIP is a signaling protocol to create, modify, and terminate multimedia 

sessions in the Internet. IETF Request For Comment (RFC) 3261 [66] describes the 

foundation of SIP. Other RFCs define SIP extensions to deliver signals for IP based 

multimedia applications. SIP is a nascent protocol and continued development of 

SIP standards and applications are underway. A detailed description of SIP can 

found in SIP related IETF RFCs6 and literatures [61]-[65]. The main entities of SIP are 

User Agents (UA), registrars, proxy servers, location server, redirect servers, and 

presence servers. 

                                                 
5 ATIS standards can be viewed  at http://www.atis.org 
6 SIP RFCs can be viewed at SIP, SIPPING, SIMPLE, and MMUSIC working groups of IETF (www.ietf.org).  



 39

UAs reside in users’ applications such as phones, computers, video 

equipment, Personal Digital Assistants (PDAs). This equipment can be either mobile 

or fixed. A UA initiates and establishes voice or multi-media sessions with another 

UA. When a UA is connected to the network, it first registers its location with the 

SIP network entity called a registrar.   

Proxy servers are SIP routers. Generally, a proxy and a registrar are located in 

the same physical box. The function of a registrar is to keep the location addresses of 

the users. A proxy learns the location address of the destination from the nearest 

registrar and routes a SIP message towards the destination addresses. In case a 

registrar does not reside in the same box as a proxy, the proxy seeks the destination 

address from a location server, which contains a database of current locations of 

each user. 

A proxy server can forward a SIP message to either a single destination or 

multiple destinations. A proxy server capable of forwarding SIP messages to 

multiple destinations is called a forking proxy. A redirect server does not route a SIP 

message but provides the potential address of the destination to the UA that sends 

the SIP message. Note that we do not show many other SIP messages in this 

example. 

A Back-to-Back User Agent (B2BUA) is the combination of two user agents or 

proxies into the same entity. It breaks an end-to-end session to multiple call legs. It 

terminates a session then reformulates and re-originates the session. This enforces 

security and policy to a SIP session.  

A presence server provides information about reachability, availability, 

consent, and user profiles. The ongoing projects at IETF and in the research 

community are adding innovative features in the presence server. 

We illustrate a hypothetical scenario in Figure 2-1.  A high school buddy from 

Crawford, Texas wishes to speak to President Bush.  When he dials Bush’s phone 

number, a SIP INVITE message is sent from the UA of his phone to the proxy and 

the registrar in Texas.com, which cannot locate Bush. Therefore, it forwards the 
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INVITE to the redirect server in Crawford.com, which advises the UA to try in 

Bush@WashingtonDC.com. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Session Initiation Protocol Entities 
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Bush@SecretLocation.gov and forwards the INVITE to the forking proxy server of 

SecretLocation.gov. This proxy forks the message to the multiple UAs of Bush.  A 

presence server, which monitors the availability of Bush, tells the forking proxy that 

Bush is very busy; therefore, should not be disturbed. On the other hand, Bush’s 

computer sends a 200-OK signal saying it is ready to accept the call. The 200-OK 

message returns to the phone of the buddy in Texas after going through 

reformulation and translation in the B2BUA at Whitehoue.gov. Then a media session 

is established between the buddy and the PC of Bush. 
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2.1.2 ATIS-PTSC Reference Model 

At present, the Packet Technologies and Systems Committee (PTSC) of ATIS 

is developing a standard for one-to-one IP peering between two providers7. Figure 

2-2 depicts the reference diagram of the standard.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2: ATIS/PTSC IP Peering Reference Diagram 

The ATIS viewes a peer interface in three planes: signal, route, and media 

(bearer). Call Control Functional Entities (CCFEs) interconnect the signaling planes 
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routing, media transcoding, security and policy, address and topology security, and 

other media functions. For example, a Media Relay (MR) or an Edge-Label Switched 
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7 The name of the standard is IP-IP NNI Interconnect 
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2.1.3 Our Extension to ATIS Model 

In the ATIS-PTSC one-to-one peer architecture, an enterprise interconnects 

with only one provider. We propose a one-to-many peer architecture that allows an 

enterprise to peer with multiple providers.  Each enterprise can maintain physical 

connections to all providers in the market. The enterprise configures separate and 

parallel Label Switch Paths (LSPs) to all the providers. The LSPs are elastic, i.e. the 

bandwidth of the data path through the providers may vary.  This enables each 

enterprise to either transmit all of its traffic through one provider or distribute its 

traffic to all providers.  LSPs are configured through the BFEs of the enterprise and 

providers. Note that the providers are not connected with each other.  

We propose two new modules—a price broker and a price analyst—as a part of 

the peering mechanism between an enterprise and providers. An enterprise price 

broker computes the reservation price of a service and develops a Request For 

Purchase (RFP) data element. An analyst of a provider computes the price of service 

based on the provider’s game strategies as proposed in Chapter 3. 

We also propose a forking proxy server at the CCFE of the enterprise and a 

combined module of a presence server and B2BUA at the CCFE of each provider. 

The automatic transaction protocol of Section 2.1.6 illustrates price 

negotiation between an enterprise broker and a provider analyst.  An enterprise 

provides services to the consumers—SIP user agents—requiring separate multi-

media sessions through the provider’s network.  In the enterprise network, when a 

UA requests a connection, the price broker sends the RFP to the forking proxy. This 

proxy transmits the RFP to all the peer providers. In a provider network, the 

presence server receives the RFP from the enterprise and passes it to the price 

analyst. Then, the analyst informs the presence server of the price of service.  The 

provider’s presence server passes the price as a bid to the enterprise proxy, which in 

turn forwards it to the broker of the enterprise. After receiving all the bids from all 

the providers, the broker selects the lowest priced provider and instructs the 
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enterprise proxy server to initiate the session to the destination through this 

provider. Note that the enterprise assumes that all providers deliver identical QoS 

for each service class. The proxy instructs the BFE to create a media path between 

the enterprise and the provider to transport media over IP packets. 

In a provider network, an analyst is either a central entity or distributed 

entities located with the CCFEs. We assume that an analyst is a central entity in each 

provider’s network. The analyst can either compute the price of a service 

periodically or upon a session request. The granularity of the period will be 

implementation specific and will be determined by the network designers. We 

assume that the analyst computes the price of a session for each session request. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Network Architecture of Duopoly Market 

Figure 2-3 depicts the proposed network architecture in a duopoly market. 

There are two providers (Blue.com and Red.com) and four regions in this market. 

There are multiple enterprises in each region. Each enterprise peers with both 

Blue.com and Red.com. Each provider implements a centralized analyst. The price 

broker resides with the CCFE of each enterprise network. E-LSRs perform the 
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2.1.4 3GPP IMS Charging Architecture 

The 3GPP standards8 and [61][62] describe the IMS architecture in details. Six 

category groups represent the 3GPP IMS entities: session management and routing, 

databases, interworking, services, support, and charging. Table 2.1 summarizes 

these categories and their associated functional components. 

Table 2.1: 3GPP IMS Functional Components 

Categories Functional components 
Session Management and 
Routing 

Proxy-Call Session Control Function (P-CSCF) 
Interrogating-Call Session Control Function (I-CSCF) 
Serving-Call Session Control Function (S-CSCF)  

Databases Home Subscriber Server (HSS) 
Subscription Location Function (SLF) 

Interworking Breakout Gateway Control Function (BGCF) 
Media Gateway Control Function (MGCF) 
Media Gateway Function (MGWF) 
Signaling Gateway (SGW) 
Border Control Function (BCF) 
Border Gateway Function (BGF) 

Services Application Server (AS) 
Multimedia Resource Function Controller (MRFC) 
Multimedia Resource Function Processor (MRFP) 

Support Policy Distribution Function (PDF) 
Security Gateway (SEG) 
Topology Hiding Inter-network Gateway (THIG) 

Charging Online  and Offline Charging 
 

There are two types of IMS charging functions: online and offline. The online 

charging function pertains to our research. This allows a provider to automate 

charging of wireless customers in a one-to-one relationship with customers. 

However, customers do not have price negotiation options with multiple wireless 

providers. Figure 2.4 depicts the charging functions related to all other IMS 

functions in the 3GPP model. 

 

 

                                                 
8 3GPP IMS standards can be downloaded for free from http://www.3gpp.org/specs/specs.htm 
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Figure 2.4: 3GPP IMS Architecture 

Figure 2.5 depicts a network model of the current 3GPP IMS online charging 

architecture. It shows that the wireless customers can automatically subscribe from 

only one provider (one-to-one peer).  

 

 

 

 

  

 

 

 

 

 

 

  Figure 2.5: The current 3GPP IMS Online Charging Architecture 
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The current 3GPP IMS online charging system consists of the Event Charging 

Function (ECF), the Session Charging Function (SCF), the Bearer Charging Function 

(BCF), the Rating Function, and the Correlation Function as illustrated in Figure 2.6. 

 

 

 

 

 

 

 

 

 

Figure 2.6: 3GPP Online Charging System 
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2.1.5 Our Extension to 3GPP IMS Charging Architecture  

We propose an extension to the 3GPP IMS online charging system to allow 

customers to negotiate price with multiple providers and select the wireless 

provider that offers the lowest price.  

Figure 2.7 depicts our proposed extensions to the 3GPP online charging 

architecture in a duopoly market. For simplicity, we illustrate identical networks of 

two wireless providers: Blue.com and Red.com. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Extended 3GPP Charging Architecture in Duopoly Market 
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charging module of a provider via P-CSCF and other IMS modules. The analyst 

connects with the online charging module. An analyst of a wireless provider 

computes the unit bearer usage price of service based on the provider’s game 

strategies as proposed in Chapter 3.  

Price negotiation between a UE’s broker and a provider’s analyst is analogous 

to the automatic transaction protocol of Section 2.1.6.  The UE transmits the RFP to 

all the wireless providers. In each network, the P-CSCF receives the RFP and passes 

it to the price analyst. Then, the analyst feeds the unit bearer usage price of service 

to the Rating function. The online charging system computes the appropriate price. 

Using the provider’s wireless equipment and SIP, the provider’s P-CSCF passes the 

price as a bid to the customer’s broker. After receiving all the bids from the 

providers, the broker selects the lowest priced provider and instructs the SIP user 

agent of the wireless UE to initiate the session with this provider.  

Our pricing model for both ATIS and 3GPP are analogous.  Therefore, in the 

rest of this thesis, we will concentrate on only one: the proposed one-to-many 

enterprise-provider peer architecture (extension of the ATIS model) as described in 

Section 2.1.3. 
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2.1.6 Other Protocol-based Networks 

This research illustrates the SIP based IP network; however, our price 

transaction mechanism is protocol agnostic. In Table 2.2, we illustrate examples of 

peer modules for different protocols. 

To safeguard networks from outside attack and to enforce policies, the 

network providers are recently deploying Session Border Controllers (SBCs) at the 

entrance points of their voice and multi-media networks. In this type of network, a 

price border element may reside in the SBC.  Note that our model also extends 3GPP 

IMS architecture to allow wireless customers options to shop from multiple 

providers. 

Table 2.2: Components of different types of networks 

Type of 
connection 

Network Type Standard  Protocol CCFE BFE 

VoIP or 
multi-media 
session 

Distributed IP 
network 

IETF SIP Presence and 
proxy servers 

Media Relay or 
E-LSR 

VoIP or 
multi-media 
session 

Distributed IP 
network 

ITU-T H.323 Gatekeepers Media Relay or 
E-LSR 

VoIP or 
multi-media 
session 

IP or 
Asynchronous 
Transfer Mode 
(ATM)  

ITU-T Bearer 
Independent 
Call Control 
(BICC) 

Media Gateway 
Controller 

Media Gateway, 
Media Relay, or 
Edge-Switch 

VoIP session Soft-Switch  NA SIP/H.323 Media Gateway 
Controller 
(MGC) 

Media Gateway 
or Media Relay 

Multi-media 
wireless over 
IP session 

IMS 
 

3GPP2 SIP P/I-CSCF  and 
SIP presence 
servers 

Border Gateway 
Function (BGF)  

Cable 
providers’ 
multi-media 
sessions. 

Cable Multi-
media  

CableLabs 
 

Cable 
Management 
Server 
Signaling 
(CMSS) 

Cable 
Management 
server (CMS) 

Media Relay or 
E-LSR 

ATM 
VP/VPC 

ATM  ATM 
Forum 

PNNI Edge Switch Edge Switch 

Data layer 
LSP setup 

IP/MPLS  IETF RSVP-TE or 
CR-LDP, 
BGP 

E-LSR or multi 
service edge 
router 

E-LSR 

Optical 
connection 

Multi-protocol 
Lambda Switch 
(MPλS)  

IETF/ITU GMPLS Optical controller Photonic switch  
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2.2 Proposed Automatic Price Transaction Protocol 

This section summarizes the proposed protocol. The automatic price 

transaction protocol is analogous to sealed bid reverse auction in microeconomics. 

As shown in Figure 2.8, the protocol performs price negotiation, price computation, 

and price election automatically; i.e., no human intervention is required.    
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Figure 2.8: Price Transaction Protocol 

This price transaction occurs prior to the initiation of each session. The 

following are the steps of price transaction protocol:  

1. When a SIP user agent of an enterprise requests to establish a session, the 

enterprise broker—aided by the forking proxy—simultaneously sends RFPs 

to all the participating providers’ presence servers in the vicinity. The RFP 

contains the description of the destination, the service class ( Ss∈ ), the 
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enterprise index (i), the session bandwidth (B), and the service reservation 

price ( siΩ ).    

2. The providers’ presence servers query their respective analysts to learn the 

price of the requested service.  Analysts of all the providers compute the price 

of the service based on their own game strategies.  

3. Presence servers of providers notify the enterprise broker of their bids for the 

session. 

4.  After receiving all the bids ( Pp∈ ), the broker of the enterprise selects the 

lowest priced provider and instructs its peer element to initiate the session. 

5. The enterprise peer element sends a SIP INVITE message to the proxy of the 

winning provider. 
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2.3 Proposed SIP Call Flow 

We propose the Figure 2.9 example of SIP call flow to perform price 

negotiations and session initiations between two SIP User Agents (UAs) in two 

enterprise regions: Jayhawk and Wildcat.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 2.9: Session Initiation Protocol (SIP) Control Flow 

Bob from enterprise Jayhawk.com wants to initiate a media session with Alice 

of the enterprise Wildcat.com. Bob’s UA sends a SIP INVITE to the Jayhawk.com 

CCFE that contains a price broker, a proxy server, a B2BUA, and a forking proxy 

server. The broker prepares an RFP. The B2BUA writes RFP elements (class, 

bandwidth, reservation price) in the SIP message. In Figure 2.9, the class, 

bandwidth, and reservation price of the service are Blue, 10 Mbps, and $100, 

respectively. The forking proxy sends a SIP SUBSCRIBE message to the CCFEs of 

participating providers: Blue.com and Red.com. 
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  The CCFE of each provider contains presence, proxy, and B2BUA servers. 

Upon receiving the INVITE, both the providers’ proxies return 200-OK signals to 

Jayhawk.com’s CCFE. The presence servers of the providers query their respective 

analysts about the price of the session.  The analyst informs the computed price of 

service to the presence servers by using SIP presence extensions.  

The providers’ presence servers notify the enterprise broker of the price. In 

Figure 2.9, Blue.com sends a NOTIFY signal indicating that the price of the session is 

$85 to Jayhawk.com. Similarly, Red.com’s NOTIFY signal contains the price of $75. 

In Jayhawk.com, the broker selects Red.com and the B2BUA transmits INVITE sip: 

Alice@Wildcat.com to Red.com. The proxy servers of Red.com then transmit the 

signals to the Wildcat.com proxy server. The session is established using the basic 

SIP call flows.  Note that when a provider cannot meet the session request it denies 

the session by sending a SIP 4xx error message, e.g., SIP 406 NOT ACCEPTABLE. 

2.4 Chapter Summary  

In this chapter, we described two Automatic Price Transaction-based One-to-

Many Peer Network architectures: enterprise-provider IP interconnect and wireless 

customer-provider interconnect. We depicted the protocol to negotiate the price of 

service in between an enterprise and providers. We illustrated an example of a SIP 

flow that implemented the protocol.  

In this peer network architecture, to establish a session, an enterprise selects a 

provider that charges the lowest price of service. As a result, providers strategically 

compete. In the next chapter, we propose a game of oligopoly that suits providers’ 

strategic competition for this network architecture.  
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3 Providers’ Game of Oligopoly 

The Automatic Price Transaction-based One-to-Many Peer Network architecture 

creates a market of strategic interaction among providers. The providers compete to 

maximize their profit. In this chapter, we develop the providers’ oligopoly game of 

our model for our Automatic Price Transaction-based One-to-Many Peer Network 

architecture.  

In Section 3.1, we select the oligopoly model. In Section 3.2, we define the 

classes of service and describe the preference of an enterprise. In Section 3.3, we 

discuss the parameters and assumptions of this research. In Section 3.4, we develop 

the proposed oligopoly model. In Section 3.5, we present the provider strategies. 

3.1 Model Selection 

In microeconomics, there are two well-established models of oligopoly: the 

Bertrand model of price competition and the Cournot model of capacity 

competition. These two models are the foundation of all oligopoly models. We first 

ascertain which of these models suits the proposed price-based peer architecture. 

In an Internet market, when the number of providers increases, or the 

existing providers’ deploy additional network capacities, the market capacity 

increases. As a result, the Cournot strategic interaction occurs and the market power 

decreases. Recent advances in Wavelength Division Multiplexing (WDM) optical 

and Third-Generation (3-G) wireless technologies have enabled providers to add 

enhanced features and greater capacities in the competitive market. Therefore, the 

Cournot model is a natural fit to analyze the Internet market for long-term 

competition. Conversely, within the scope of short-term competition, providers first 

implement a capacity, then assign prices of services for that capacity and engage in 

“price wars” in fixed capacity rather than through “bandwidth wars.” Ultimately, 

the Cournot model is not a good fit for short-term strategic interaction where price is 

the strategic variable.  
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Assumption: Total market capacity or the individual market capacity of a 

provider does not change during the lifetime of the game. 

 

We consider the Bertrand strategic interaction of price competition applicable 

to the novel model. The fundamental assumption of our model pertains to short run 

strategic market interaction. During the time span of the game, no new providers 

join the market, and no new network device is activated. A further assumption is 

that there is no breakdown in the network during the time span of the study. These 

assumptions imply that the market capacity remains fixed during the game. Each 

provider lowers the price of their services to win over enterprises from their 

opponent providers.  Enterprises subscribe to services from the lowest priced 

provider.  

We briefly describe the classical Bertrand Model [1]-[5] as a function of 

provider price of services. Assume that a competitive Internet market consists of two 

providers {A.com, B.com} who provide identical classes of service.  Assume also that 

the cost to produce the service is zero. Denote Δ(pn) as the market demand function 

of bandwidth in Mbps for provider n, where pn is the price per Mbps of the service. 

Therefore, the profit of the A.com is as follows: 

 
( )

( , ) ( ) / 2
0

A A A B

A A B A A A B

A B

p p if p p
U p p p p if p p

if p p

Δ <⎧
⎪= Δ =⎨
⎪ >⎩

 (3.1) 

 
Equation  (3.1) shows that the lower priced provider sells to market demand 

Δ(p) when its price of service is less than its competitor. When the providers’ prices 

of services are the same, each provider wins half of the market share. If providers 

engage in a price war by reducing the price of service, they sacrifice profit.  If both 

providers have the same marginal cost  (ω > 0) to provide the service, the unique 
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Nash equilibrium ),( *
2

*
1 pp occurs when their price equates marginal cost [1]-[5]: 

* *
1 2p p ω= = . 

Providers’ payoffs and strategies are private. Therefore, the corresponding 

strategic interaction among providers is a game of incomplete information. In this 

game, providers develop a mixed strategy function to determine the price of a given 

service. Therefore, we need a game of incomplete information that performs the 

Bertrand strategic interaction of price and develops a mixed strategy function. 

Varian [1] depicts the development of a mixed-strategy function of a duopoly 

market in an example of a Bertand strategic interaction. This example is called “A 

Model of Sale”, where informed and uninformed customers purchase from two 

providers. The strategic variable in this market is price.  In relation to our research, 

the informed consumers purchase from the provider that offers the lowest price. 

There is a fixed cost and zero marginal cost to produce each unit. Consumers have 

the same reservation price to pay for each unit. By applying the game of incomplete 

information and considering symmetric equilibrium, providers develop a belief 

function (F(p)) based on probability of either success or fail in offering the lowest bid 

price. Each provider determines bid prices from this profile.  This belief function 

relates the customers’ reservation price, the fixed market demand, and the service 

price.  

The Varian example above does not take into account the limitations of 

market capacity, variable market demand, or marginal cost associated with each 

product. Therefore, we need another model that considers these parameters.   

Bandyopadhyay et al.’s On-Line-Exchange research [13, 14] proposed an 

extension to Varian’s “A Model of Sale” example, which considers the limitation of 

market capacity, demand, and marginal cost to produce the product. The model 

concerns a market of a homogeneous product with symmetric equilibrium. 

Providers’ combined capacity exceeds the total capacity demanded by buyers. 

Sellers individually cannot supply the entire market. The seller with lowest price 
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sells to capacity and the others only sell to residual demand.  In this game, the 

competition between sellers is not as extreme as the Bertrand model. The 

competition corresponds to a two-stage static game. Bandyopadhyay et al. develop a 

mixed strategy profile as a function of the market capacity, the market demand, the 

marginal cost to produce a product, and the reservation price of services. These 

parameters are constant values. 

There are some differences between Bandyopadhyay’s et al. model and the 

proposed model of this research. Their model is symmetric due to fixed parameters. 

Our model accounts for the dynamic nature of Internet traffic demand.  The change 

in traffic patterns in the Internet changes the level of congestion in the network. The 

congestion in the network adds to the cost of providing Internet services. As a result, 

the marginal cost of service varies over time. Thus, the fixed demand and the fixed 

marginal cost assumptions of the Bandyopadhyay et al.’s model is not an exact fit to 

our proposed price-based peer network architecture.  

We extend Varian’s and Bandyopadhyay et al.’s models to allow for the 

varying nature of marginal cost and perceived market demand of the Internet. The 

mixed strategy profile of our model is a function of fixed market capacity, the 

perceived time varying market demand function, the time varying marginal cost 

function, and the customers’ fixed reservation price of services. This makes our 

model asymmetric. 
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3.2 Service Class and Enterprise Preference 

The commodity of this market is bandwidth. All the sessions in this research 

have equal bandwidth. The type of value that a provider adds to a session identifies 

a class of service. To meet the diverse application needs of an enterprise, providers 

have to furnish different types of services based on the technology and network 

intelligence used.  For example, different applications offered by enterprises may 

require different levels of security guarantees, types of addressing schemes (e.g. 

IPv4 vs. IPv6), and types of digital signal processing.  

We develop service class based on customers’ preference, i.e., how customers 

value each service. However, the distinguishing value does not relate QoS 

parameters such as delay performance.  All class of service must adhere to a 

required delay performance. Customers value services based on their preferences 

such as security treatement, encryption, protection from packet dropping, etc. 

Exactly what the value is not important—all that matters is that customers are 

willing to pay different amounts for the different services. 

 

Assumption: Enterprises request three groups of services based upon their 

required security levels: High, Medium, and Low. 

Assumption: Each provider in a heterogeneous service-based market offers 

three classes of service called Blue, Green, and Red. These three classes guarantee 

customers’ required security levels of High, Medium, and Low, respectively. 

Assumption: Each provider in a homogeneous service-based market offers a 

single class of service (Green) that guarantees Medium level security. 

Assumption: Enterprises prefer that providers guarantee security levels.  

We assume that the commodity space (S) is represented by the Internet 

service bandwidth with the desired security levels {High, Medium, Low} and every 

enterprise prefers that providers guarantee these security levels. The consumption 
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bundles b, g, and r in the commodity space (S) are mapped, respectively, to Blue, 

Green, and Red.   

 , ,b g r S∈  (3.2) 

We expand the preference definitions of [1] for our proposed class of services.  

By denoting the enterprise strict preference as “ ”, the term  , ,b g S b g∈  implies 

that an enterprise strictly prefers the security level guaranteed by the Blue service to 

that of the Green service.  Enterprises in this market satisfy the following important 

properties: 

Complete: For b, g ∈  S, either b g  or g b . In our model, the security level 

of the Blue service is strictly preferred over that of Green service; however, the 

reverse is not true. 

Reflexive: For g ∈  S, g g . For the homogeneous based-service (i.e. when 

only the Green service is available in the market), the security level of all sessions 

should be Green (i.e. medium). 

Transitive: For b, g, r ∈  S, if  b g  and g r , then b r . Blue security level 

is strictly preferred over Green, and Green security level is strictly preferred over 

Red. It is also true that the security level of the Blue service is strictly preferred to 

that of the Red service. This property is important because the market price for Blue 

service (pb) will be higher than the market price for Green service (pg) and the 

market price of Green service (pg) will be higher than that of Red(pr). 

 b g rp p p> >  (3.3) 

Enterprises will also be willing to a pay higher price for Blue over Green and 

Green over Red. Due to the transitive property, the relation among their reservation 

prices will be as follows: 

 b g rΩ > Ω > Ω  (3.4) 
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Continuity: For b, g ∈  S, the sets { :s b g= } and { :s g b= } are closed sets 

and { :s b g } and { :s g b } are open sets. In our model, since higher security levels 

are strictly preferred to the lower security levels, they constitute an open set. In this 

research, this open set or strict preference property is important because the cost of 

providing two different levels of security is not the same. In Section 3.3.2, we 

develop a cost function of providers based on the service cost coefficient for 

different classes.  

Assumption: Different levels of security require a different cost to provide a 

service. Thus, the costs of producing different classes of service are different. 

In this research, service class does not depend on the performance parameter 

because all classes of traffic share integrated queues in each link and FIFO non-

preemptive priority scheduling serves the link. Note also that provider networks in 

this study implement Call Admission Control (CAC) and enforce traffic-engineering 

rules to guarantee Quality of Service (See Section 5.3). 

As per [1], the profit function (U: X → R) quantifies the preference 

comparison of an enterprise.  The fact that the profit enjoyed by the highly secured 

Blue service is greater than the profit enjoyed by the moderately secured Green 

services implies that enterprises strictly desire the Blue service over the Green 

service. The following represents this relation between enterprise’s profit and 

preference:  

 ( ) ( )U b U g b g⇔  (3.5) 

We do not study the profit of the enterprise. Nevertheless, we reflect 

customer profit by three levels of reservation price as presented in Section 3.3.3. 
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3.3 Model Parameters 

3.3.1 Market Capacity and Market Demand Functions  

In this section, we present definitions and assumptions concerning the market 

capacity and market demand of our proposed model.  

Definition: Market capacity (Γ) is the aggregate traffic engineered access 

bandwidth capacities of all providers in a market. Market capacity is a fixed 

quantity measured in bandwidth rate per unit time (e.g. Mbps). It is the sum of the 

capacity of all the access ports of Edge-Label Switched Routers (E-LSRs) or media-

relays of all the providers in a market multiplied by the Maximum Traffic 

Engineered Link Load9 ( TEρ ). By denoting nK  as the total capacity of all the access 

ports of a provider (n), the following equation represents the market capacity. 

 
1 1

N N

n TE TE n
n n

K Kρ ρ
= =

Γ = =∑ ∑  (3.6) 

Assumption: A provider market capacity is finite. 

Definition: Market demand (Δ) is the aggregate bandwidth requested by all 

the enterprises in a market. Market demand is a variable quantity measured in 

bandwidth rate per unit (e.g. Mbps). The maximum market demand is denoted by 

Δmax.                                

 MaxΔ ≤ Δ  (3.7) 

Assumption: Maximum Market Demand (ΔMax) is less than the market 

capacity (Γ). 

 MaxΔ < Γ  (3.8) 

Assumption: Every provider’s market capacity is less than the market 

demand. 

 TE nK nρ < Δ ∀  (3.9) 

                                                 
9 Providers limit load of a network below a maximum limit during capacity planning and traffic engineering to 
maintain delay jitter level in the node. We define this limit as Traffic Engineered bandwidth capacity and the 
load as Maximum Traffic Engineered Load.  
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Assumption: Market demand is greater than (N-1) times a provider’s market 

capacity if there are N numbers of providers in the market. The relation between 

market demand and capacity can be written as follows: 

 ( 1)TE nN K nρ − < Δ ∀  (3.10) 

To understand equation (3.10), let us assume that there are four providers in a 

market. Here, market demand is such that if three providers sell to their market 

capacity, then the remaining provider sells to a fraction of its market capacity when 

it sells to the residual demand. Note, equation (3.10) subsumes equation (3.9). 

The equations (3.7)-(3.10) can be written as follows: 

 ( 1)TE n MaxN K nρ − < Δ ≤ Δ < Γ ∀  (3.11) 

Definition: The throughput ( nY ) of a provider is the total outgoing traffic 

from the provider in all regions.  

In our study, market demand is a variable quantity. Each provider has 

knowledge of its throughput level ( ,n tY ) at time t.  From this knowledge, each 

provider develops its perceived market demand function. 

Assumption: The provider networks are lossless (no packet drop or session 

drop occurs). 

Assumption: Each provider perceives that the market maintains fair shares of 

bandwidth among the providers.  

Definition: The perceived market demand (Δ ) of a provider is the 

multiplication of its production level with the number of providers in the market. 

We express the perceived market demand function by the following equation.  

 , ,( )n t n tY NYΔ =  (3.12) 

Based on the above assumptions and definitions, we define the market 

demand as a function of ,n tY . 

Definition: If perceived market demand is less than the market capacity of a 

provider, the market demand is the lower bound of equation (3.11); otherwise, the 
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market demand is equivalent to the perceived demand. The market demand 

function is depicted by Figure 3-1 and represented by the following equation: 

 ,
,

, ,

( 1) , 0
( ) TE n t TE

n t
n t TE n t Max

N K NY K
Y

NY K NY
ρ ε ρ ε

ρ
− + ≤ >⎧

Δ = ⎨ < ≤ Δ⎩
 (3.13) 

The top portion of equation (3.13) is to satisfy equation (3.10). The bottom 

portion of equation (3.13) implies the provider’s perception that a fair market share 

is achieved at the steady state operating load. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Demand Function 

3.3.2 Marginal Cost Function 

In this section, we define cost and marginal cost functions. Cost to provide a 

service depends on many parameters and network situations. 

Assumption: There is no cost associated with the distance.  
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of fiber-optic cables around the globe reduced the distance specific cost for Internet 

services. At present, ISPs do not charge based on distance. 

We assume the following four influences on the service cost: 

1. Congestion in the network 

2. Protocol used to provide a service (service class discriminator) 

3. Amount of service (commodity) 

4. Providers’ fixed cost to produce the service 

Assumption: The service cost is a function of the congestion indicator in the 

network, i.e. the optimum mean packet count in the queue system in the network. 

Rationale: Congestion in the network increases the delay in packet 

transmission. The delay degrades the service quality.  The degradation of service is 

detrimental to the revenue because it will be reasonable for providers to pay the 

enterprise a penalty for delay violation.  The mean packet count in the queue system 

is a congestion indicator of the network.  Congestion in the network varies with 

time. By performing optimum routing, the congestion in a network can be well 

distributed across the network; as a result, the network can support more traffic 

compared to a non-optimized network. The efficient routing yields the optimum 

mean packet count in the network queue system.   

Assumption: The service cost is a function of the service cost coefficient. 

Rationale: The class is differentiated by the service cost coefficient parameter. 

The service cost coefficient parameter depends on the protocol and intelligence 

applied to provide the service. For example, to guarantee levels of security requires 

different network costs.  As mentioned earlier, the service cost coefficient of service 

class is not differentiated by the performance parameter because all classes of traffic 

share integrated queues in each link and is serviced by FIFO non-preemptive 

priority scheduling. 

Assumption: Each provider maintains the identical QoS for all class. 

Assumption: The service cost coefficient of a class is the same for all the 

providers.  
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Rationale: The service cost coefficient of a class will either be the same for all 

the providers or be different for different providers.  In reality, providers purchase 

equipment and software from the same set of vendors.  Therefore, the service cost 

coefficient of an identical class for different provider is generally the same. 

Assumption: The cost of a service is a function of a provider’s fixed cost. 

Rationale: Different providers assign different costs to deploy and maintain 

the service. 

From the above assumptions, we can assert the following: 

Assertion: The service cost is a function of the service cost-coefficient ( sδ ), the 

mean packet count in the queue system ( ˆ
nM ), throughput (Yn), and the provider 

fixed cost coefficient (θ n). 

 , , , , , , ,
ˆ( ) ( )n s t n t n t s n t n t n n tCost Y g Y M Y Yδ θ= = +  (3.14) 

Note that the service cost is computed for bandwidth per unit of time.  

Therefore, call duration is not considered in equation (3.14). The mean packet count 

in a network varies with the change in the throughput of the network, i.e. Mn,t is a 

function of Yn,t. 

 , ,( )n t n tf Y M→  (3.15) 

            In microeconomics, the marginal cost is defined as the change in cost 

( (.)Cost∂ ) due to the change in production or output ( Y∂ ).  

 The marginal cost = (.)Cost
Y

∂
∂

 (3.16)   

              Definition: Marginal service cost is the increase in cost for adding another 

unit amount of bandwidth in the network.  

              Based on the above definition and equations (3.14)-(3.16), the marginal cost 

function of a service class for a provider is represented as follows. (Note, cost is a 

continuous function of Y). 

 , ,
, , , , ,

, ,

ˆ( )ˆ ˆ( ) ( )n t n t
n s t n t s n t n t n

n t n t

g Y M
M Y M

Y Y
ω δ θ

∂ ∂
= = + +

∂ ∂
 (3.17) 
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The above equation denotes the marginal cost of a service as a function of the 

service cost coefficient,  provider fixed cost coefficient, and change in the mean 

packet count of each provider with respect to the change in throughput.  The service 

cost coefficient and the provider fixed cost jointly enforce a differentiated price per 

class and per provider.  

Since at each instant of time, each provider has a distinct mean packet count, 

the marginal cost of two providers may not be identical at any instant of time. 

Besides, fixed cost coefficient (θ n) of each provider is unique. Therefore, marginal 

cost will be different for different providers even if the mean packet count is the 

same. 

Table 3.1 illustrates a sample representation of marginal cost equations for 

different providers in heterogeneous service networks supporting Blue, Green, and 

Red classes of service.  Section 7.2 presents the rationale for selecting the following 

service cost coefficient values. 

Table 3.1: Marginal cost equation 

 Blue Green  Red 
Provider 
      1 

*
1, *

1, 1,
1,

ˆ
ˆ1.00( ) 10t

t t
t

M
Y M

Y
∂

+ +
∂
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1,

ˆ
ˆ0.10( ) 10t

t t
t

M
Y M

Y
∂

+ +
∂
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ˆ
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t t
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Y
∂
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3.3.3 Reservation Price of an Enterprise  

Not only is the reservation price of a service (i.e., the maximum price) that an 

enterprise is willing to pay for a unit of each service, it is also the upper bound of the 

enterprise budget. Reservation prices are determined during the business agreement 

and remain constant throughout the lifetime of the game. Enterprises are rational 

agents and they do not violate the agreement by changing the reservation price. For 

homogeneous services, the reservation price is a fixed value for all enterprises. For 
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the heterogeneous services (Blue, Green, and Red), there are three fixed reservation 

prices. 

We explained the following relation between the enterprise profit and 

preference in Section 3.2: 

 ( ) ( )U b U g b g⇔  (3.18) 

Due to the relation of equation (3.18), an enterprise will be willing to pay a 

higher price for Blue service over Green service and Green service over Red service. 

Because of this relation and the transitive property of preference, the relation among 

their reservation prices will be as follows: 

 b g rΩ > Ω > Ω  (3.19) 

How does an enterprise broker compute its maximum bid price or the 

reservation price (Ωs) for a service?  Enterprises may adopt many different methods 

to compute the maximum reservation price for their services. Providers may not 

dictate the method of computing reservation prices to enterprises. However, we 

suggest that enterprises assume monopoly market while determining the price of 

service. Here, we do not study the method of determining the reservation price. 

 

Assumption: The bandwidth required for each session is the same.   

Assumption: The reservation prices do not change during the game. 

Assumption: The reservation prices are always greater than all providers’ 

marginal costs, i.e. s sωΩ >  
Computation of a reservation price can be a future research topic. For 

example, a study on the influence of varied reservation price on providers’ profit 

would be useful to observe whether enterprises can control the market power of the 

providers.   
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3.3.4 Profit Function 

Profit obtained from time T0 to Tend, while maintaining upper bound of 

throughput (Y), can be described as follows. 

 
0 0

( (.)) ( ( , ) ( , ))endT Y

T
U p p t y t y dydtω= −∫ ∫  (3.20) 

In the proposed network architecture, a session occurs at each instance of a 

game. A session initiation event can be either a Set-Up Request or Tear-Down 

Request. For each session set-up request, if the CAC of a provider can admit the call, 

the provider computes the bid price and the enterprise activates the session through 

the winning provider network. Since the bandwidth of each session is much smaller 

than a providers’ market capacity, and since calls activate and de-activate, the 

winning provider continues to take part in the game for subsequent session 

initiation requests. The steady state operating point (network throughput) of a 

provider is achieved when the provider’s price stabilizes with the competitive 

market price. If two providers are competing in a market and they adopt different 

cost functions, their steady state operating point (network throughput) can be 

different although both of them will operate at the same competitive market price. 

We will examine this by session level Monte-Carlo simulation in Chapter 8. 

 

 

 

 

 

 

 

 

 

Figure 3.2: The Sketch of Steady State Price, Cost, Throughput, and Profit  
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Figure 3.2 provides a sketch of the market price, network throughput, 

marginal cost, and providers’ profit to explain our unit profit function. The figure 

illustrates that in a steady state, marginal cost and network throughput do not 

significantly vary for a unit duration of time (dt). As a result, the price of service also 

remains stable. The provider’s profit per unit time will be the product of the steady 

state throughput and the difference between steady state unit price and marginal 

cost. For example, in a steady state, if a bid price is $90 per Mbps, a marginal cost is 

$50 per Mbps, and a steady state operating point throughput is 300 Mbps, then the 

unit profit obtained is $12,000.  

Definition: The unit profit of a provider is the profit per unit duration (e.g. 

one second) measured at an instant of the steady state throughput ( Ŷ ) when the bid 

price and the marginal cost of the provider converge to p̂ and ω̂ .  

 ˆˆˆ( ) ( )u p p Yω= −  (3.21) 

A provider (n) computes profit from a session as a function of the price (p), 

the marginal cost (ω), the duration (d), and the bandwidth (y) of the session. The 

price and the marginal cost are values at the session start time. The total profit of the 

provider is the sum of the profits from all ( k∀ ) the sessions until the end of the 

game (e.g. a session-level Monte-Carlo simulation). 

 , , , , , , , ,( )n s t k n s t k n k n s k
k

Cumulative profit p d yω
∀

= −∑  (3.22) 
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3.4 Proposed Oligopoly Model 

This section derives our game of oligopoly model based on Varian’s and 

Bandyopadhyay et al.’s models described in section 3.1. These two models extend 

the Bertrand oligopoly model to the static game of incomplete information.  The 

static Bayesian game [1]-[5] represents the static game of incomplete information. 

As described in Chapter 1, a static Bayesian game consists of Action space, 

Type space, Strategy space (mixed strategy profile or belief function), and Payoff 

space. In this research, we propose that the static Bayesian game consists of the 

following elements: 

• Strategic players: providers (N). 

• Action space: the bids of the providers (pbid). 

• Type space: the marginal cost function of the providers (ω(.)). 

• Strategy space: the set of functions over mixed strategy profile or belief 

function F(.). This is a price randomizing cumulative probability 

distribution function. 

• Payoff space: the expected unit profit (u(.)) of the providers at the steady 

state. 

The commodity of the market is bandwidth (y) and the strategic variable is 

the price (p) of Internet services (s). In this game, the strategy of a provider is to 

maximize expected profit. 

By applying Varian’s and Bandyopadhyay et al.’s methods of developing F(p) 

and our assumptions in this chapter, we develop F(p) for an Internet duopoly 

market. 

Assumption: The price randomizing cumulative probability distributive 

function F(p) is a continuous function and the associated probability distribution 

function is f(p). Each provider implements the same method to develop F(p). 
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Assumption: The providers compete in an asymmetric equilibrium market, 

i.e. each provider determines a price from the different F(p).  

Definition: The minimum price (pMin) is a price that allows a provider to win 

a bid with 100% probability.  

Definition: The mixed strategy profile of a provider, b( ) (p )F p Prob p= ≤ , 

represents the opponents’ probability of selecting bid (pb) less than or equal to a 

price p, where [ , ]b Minp p p∈ .   This definition also implies that if a provider bids a 

price p, then its opponents will win the bid with a probability of b(p )Prob p≤ .  

Assumption: If both providers bid the same price (a tie), enterprises select a 

provider at random (uniform distribution); i.e. enterprises select with 50% 

probability. However, the probability of a tie is negligible. 

We define a bid as the price per rate per class of service. Consider in a market 

with two providers: A.com and B.com. Denote F(p) as the mixed strategy profile of 

A.com. If A.com bids with a price p  from F(p) and B.com bids with any other price 

pb, then two possible scenarios occur. 

• Scenario 1: A’s price is lower than B’s price: bp p> . 

• Scenario 2: A’s price is higher than or equal to B’s price: bp p≤ . 
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Scenario 1: A.com’s price (p) is lower than B.com’s price ( B bidp ): B bidp p>  

 

 

 

 

 

 

 

 

 

o This event (Scenario 1) occurs with a probability equal to 

1 ( ) ( )bF p Prob p p− = >  which is 0.2 in the above figure.  

o  Since p  is the lower bid, A.com wins. Consequently, p  becomes the 

market price at that instant.   

o Denote the unit profit obtained at this price by A.com as ( )Lu p  and the 

profit obtained in a long duration of time is (from time T1 to T2) as UL(p) 

o At the steady state operating point, if the bid price of A.com is lower, it 

will sell to its market capacity. Thus, it will operate on maximum market 

capacity throughput.  

o At the steady state, price and marginal cost do not significantly vary.  

Since this price is lower than that of B.com, A.com sells to the market 

capacity at this steady state ( ˆ
TEY Kρ= ). If the game occurs for a unit 

duration of time, the unit profit obtained at this price by A.com can be 

represented by the following equation: 

ˆ( ) ( (.)) ( (.))L TEu p p Y p Kω ω ρ= − = −    (3.23) 

o By selecting the lowest price pMin, A.com can sell to its market capacity 

with 100% probability; thus, it can obtain unit profit as follows: 

   ( ) ( (.))L Min Min TEu p p Kω ρ= −     (3.24) 
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Scenario 2:  A.com’s price is higher (p) than B.com’s price ( Bp ): Bp p≤  

 

 

 

 

 

 

 

 

 

 

 

o This event  (Scenario 2) occurs with a probability of ( ) ( )bF p Prob p p= ≤  

which is 0.8 in the above figure. 

o Since pb is the lower price, B.com wins. 

o At the steady state operating point, if the bid price of A.com is higher, it 

will sell to the residual market demand. Thus, at a steady state, it will 

operate on a throughput of the residual market demand ( (.) TE KρΔ − ).  

o  Denote the profit obtained at this price by A.com as ( )Hu p . 

o The unit profit obtained at this price by A.com in the steady state is 

represented by the following equation: 

   ( ) ( (.))( (.) )H TEu p p Kω ρ= − Δ −      (3.25) 

o  If a provider’s strategy were to maximize its expected unit profit by 

having a high price strategy, it would rather select a reservation price. In 

this case, the unit profit function of A.com appears as follows: 

    ( ) ( (.))( (.) )H TEu Kω ρΩ = Ω− Δ −    (3.26) 

From the above two scenarios, the expected unit profit ( ( )u p ) of A.com at the 

steady state can be expressed as follows: 
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( ) ( )(1 ( )) ( ) ( )L Hu p u p F p u p F p= − +    (3.27) 

From equation (3.27), we can derive the mixed strategy profile: 

 ( ) ( )( )
( ) ( )
L

L H

u p u pF p
u p u p

−
=

−
 (3.28) 

 

Assumption: The probability that a provider bids a price less than or equal to 

the reservation price is 1; i.e. F(Ω) = 1. 

Since F(p) = 1 at price p = Ω, equation (3.27) yields the following: 

( ) ( )Hu p u= Ω       (3.29) 

By substituting equations (3.24)-(3.29) in (3.27), the mixed strategy profile of 

A.com can be developed as follows: 

( (.)) ( (.))( (.) )( )
( (.))(2 (.))

TE TE

TE

p K KF p
p K

ω ρ ω ρ
ω ρ

− − Ω− Δ −
=

− −Δ
  (3.30)  

Following the above approach, we can derive the mixed strategy profile for N 

providers when a provider plans to bid either highest or lowest. Now A.com is 

competing with N-1 providers. The probability of A.com’s winning the bid is 
1( ( ))NF p −  if its bid is the highest and the probability of winning the bid is 

( 11 ( ( ))NF p −−  if its bid is the lowest.  The steady state expected unit profit is as 

follows: 

 

1 1

1

( ) ( )(1 ( ( )) ) ( )( ( ))

( ) ( )( )
( ) ( )

N N
L H

N

L

L H

u p u p F p u p F p

u p u pF p
u p u p

− −

−

= − +

⎡ ⎤−
=> = ⎢ ⎥−⎣ ⎦

 (3.31) 

By having the lowest bid among the providers, A.com can sell to its market 

capacity obtaining the following steady state unit profit: 

 ( ) ( (.))L TEu p p Kω ρ= −  (3.32) 

If A.com’s bid is the highest, it obtains the following steady unit profit by 

selling the residual bandwidth ( (.) ( 1)TE N KρΔ − − ). 

 ( ) ( (.))( (.) ( 1) ))H TEu p p N Kω ρ= − Δ − −  (3.33) 
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In this case, to maximize profit, A.com’s strategy will be to select the highest 

price (i.e.,Ω ). 

 ( ) ( (.))( (.) ( 1) ))H TEu N Kω ρΩ = Ω− Δ − −  (3.34) 

From equations (3.29), (3.31)-(3.34), the following belief function of A.com is 

derived: 
1

1( (.)) ( (.))( (.) ( 1) )( )
( (.))( (.))

N
TE TE

TE

p K N KF p
p N K

ω ρ ω ρ
ω ρ

−⎡ ⎤− − Ω− Δ − −
= ⎢ ⎥− − Δ⎣ ⎦

 (3.35)  

In Section 3.3, we defined the marginal cost as a function of optimized mean 

packet count in the network queue system and the market demand as a function of 

network throughput. Based on these definitions, we postulate the following 

equation from equation (3.35)  for the game time (t):  
1

* * * 1
, , , , , , , , ,

, , , , * *
, , , , , ,

( ( )) ( ( )( ( ) ( 1) ))
( )

( ( ))( ( ))

N
n s t n s t n t TE s n s t n t n t TE

n s t n s t
n s t n s t n t TE n t

p M K M Y N K
F p

p M N K Y
ω ρ ω ρ

ω ρ

−⎡ ⎤− − Ω − Δ − −
= ⎢ ⎥

− −Δ⎢ ⎥⎣ ⎦
(3.36) 

If A.com plans to bid such that its bid price is higher than 1N  providers and 

less than 2N  providers in an N providers’ market, A.com can approximately develop 

the belief function from the following equation using our above method: 

 1 12 1( ) (1 ( ( )) ( ( ))
1 1

N N
L H

N Nu p u F p u F p
N N

− −= − +
− −

 (3.37) 

 Since our research focuses on a duopoly market, where a provider will bid 

either highest or lowest.  Thus, we will not develop the belief function using 

equation (3.37). 

Equation (3.36) is a cumulative distribution function of a provider’s 

probability of losing a bid because its opponents’ bids are lower. In other words, the 

function , , , ,( )n s t n s tF p  represents the probability that the other providers will win the 

bid if A.com selects a price (p) at a game time (t) for the service class (s). This also 

implies that the bid prices ( , ,other s tp ) selected by the other providers are lower than 

A.com price , ,A s tp   with a probability of , , , , , ,( ) ( )A s t other s t A s tF p Prob p p= ≤ .  
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The function , , ( )n s tF p  is the belief function of this game of incomplete 

information because it addresses the conditional probability that the other providers 

will not bid a price lower than (p) with a probability (1 – , , ( )n s tF p ) if  a provider (n) is 

to win the bid.  

Our game is a static game—it does not keep or rely on the total history. In 

each game instance, the game computes the change in cost from one game instance 

to the next game instance. Since the game looks into a one-step history and forgets all 

other history, the strategic interaction corresponds to a “myopic” Markovian-

Bayesian [4] static game of incomplete information. The dynamic game—that relies 

on the total history is outside the scope of this research and is a future research 

topic. 

 

3.5 The Movement of the Belief Function 

For each session initiation request, providers compute a new belief 

function, , , ( )n s tF p , to determine a bid. As discussed earlier, the belief function’s 

parameters are market capacity and demand, marginal cost, and reservation price. 

The marginal cost of service is a function of the optimized mean packet count in the 

network, and the cost coefficients of a provider. The service cost coefficient values 

are unique for each class and for different providers. The demand function varies 

with an increase in throughput. The belief function , , ( )n s tF p  of a service varies with 

the marginal cost of a provider and the market demand. For all these reasons, 

the , , ( )n s tF p  per service is not identical for all the providers at a certain instant of 

time. For three services, each provider supports three belief functions. Moreover, for 

two provider networks, there are total of six belief functions. 
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Figure 3.3: Change in Belief Function due to the change in Marginal cost 

Figure 3.3 illustrates how a change in marginal cost shifts the belief function 

in a homogeneous service duopoly market.  Both the providers have identical 

networks and use identical cost functions. The belief functions, , , ( )n s tF p , are drawn  

for different marginal costs. The increase in marginal cost shifts a belief function to 

the right; thus, increases the price of a product. This figure is a hypothetical 

representation for illustration purpose and does not represent a result of the study. 
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3.6 Providers’ Strategies 

A provider’s strategy is to maximize its expected profit by selecting a price 

using the belief function. The strategy space is the set of functions over the belief 

function , , ( )n s tF p . This section specifies a strategy space over the belief function to 

select bids in the game. In our study, each provider adopts its own strategies to 

determine bid ( , ,n s tp ) using the belief function , , ( )n s tF p . 

In Section 1.1.2.1, we described the following equation to represent A.com’s a 

set of feasible strategies from the belief function in a Bayesian Game of Incomplete 

Information: 

 : (., ( ))Aj A Aj B Astrategy h Action h Belief Type←⎯⎯  (3.38) 

Since in our study, the action space is the bid ( , ,n s tp ) of a provider, we can 

rewrite the above equation as follows: 

 , , , ,: ( (.))bid
Aj A s t Aj A s tstrategy h p h F←⎯⎯  (3.39) 

A provider computes a bid from , , ( )n s tF p  using certain rejection probability of 

winning the bid. We map this rejection probability with provider’s strategy. 

Definition:  The Rejection Coefficient (γ ) of a provider is the probability of 

having its bid rejected. The rejection probability of selecting a price my bidp  is 

( ) ( )my bid othersbid my bidF p Prob p p γ= ≤ = . 

Definition: A Winning coefficient (ξ ) is the probability of winning a bid. 

Definition: A No Rejection Strategy of a provider is the strategy when the 

probability (γ ) of having the bid rejected is zero. In other words, in this strategy the 

probability of winning a bid is 100%. Here, the winning coefficient is 1.0ξ = . In this 

case, the following equation is true. 

 , , , ,( ) 0n s t Min s tF p γ= =  (3.40) 

By substituting Equation (3.40) in Equation (3.36) and performing algebra, the 

following No Rejection Strategy price is developed: 
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*

, , , , *
, , , , , ,

( ( ))( ( ) ( 1) )
( )s n s t n t n t

Min n s t n s t n t
TE

M Y N C
p M

K
ω

ω
ρ

Ω − Δ − −
= +  (3.41) 

Definition: An Absolute Rejection Strategy of a provider is the strategy when 

the probability (γ ) of losing the bid to the opponents is almost 100%. In other words, 

in this strategy having the bid rejected is almost 100%. Here, the winning coefficient is 

0.0ξ = . 

 , , _ , , ,( ) 1.0n s t absolute risk n s tF p γ= =  (3.42) 

By selecting a bid equal to the enterprise’s reservation price, a provider 

increases the probability of rejection to 100%. Therefore, the reservation price of 

enterprises is the Absolute Rejection Strategy price of a provider. 

 _ , , ,absoute risk n s t sp = Ω  (3.43) 

 , , _ , , , , ,( ) ( ) 1.0n s t absolute risk n s t n s t sF p F γ= Ω = =  (3.44) 

In between the No Rejection Strategy price and Absolute Rejection Strategy price, 

a provider can select a bid with a certain probability of having the bid (i.e. the 

session) rejected. For example, if A.com wishes to win a session at time (t) for a Blue 

(b) class of service with a probabilityξ , A.com needs to select a bid-price: 

 , ,
bid
A b tp p=  s.t. , , , , , , , ,1 ( ) 1 ( )bid

A b t B b t A b t A b tProb p p F p ξ− ≤ = − = , 

 where , , , , , , ,[ , ( )], 0B b t Min B b t A b tp p p ε ε∈ − > .  

 In other words, A.com needs to select a bid price ( , ,
bid
A b tp ) with a rejection 

probability , , , ,( )bid
A b t A b tF p γ= . In Figure 3.3, if A.com’s strategy is to select a bid price 

with 20% rejection probability ( , , , , , ,: ( ) 0.2bid bid
A b t A b t A b tp F p p≤ = ), then the bid prices of 

A.com were 89.5, 90.5, 92.0, 93.5, 94.7, and 96.0 for game instants of 1 through 6, 

respectively. 

We define the following strategies by partitioning the probability of winning 

into four ranges: Very High Rejection, High Rejection, Low Rejection, and Very Low 

Rejection. 
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Definition: A Very High Rejection Strategy is the strategy when the probability 

of rejection is more than 80% but less than 100%.  Here, the winning coefficient is 

0.0 0.2ξ< <  and the rejection coefficient is 0.8 1.0γ< < . 

Definition: A High Rejection Strategy is the strategy when the probability of 

rejection is more than 50% but at most 80%. Here, the winning coefficient is 

0.2 0.5ξ≤ < and the rejection coefficient is 0.5 0.8γ< ≤ . 

Definition: A Low Rejection Strategy is the strategy when the probability of 

rejection is more than 20% but less than 50%. Here, the winning coefficient is 

0.5 0.8ξ< <  and the rejection coefficient is 0.2 0.5γ< < . 

Definition: A Very Low Rejection Strategy is the strategy when the probability 

of rejection is more than 0% but at most 20%. Here, the winning coefficient is 

0.8 1.0ξ≤ <  and the rejection coefficient is 0.0 0.2γ< ≤ . 

The mixed strategy profile Fn,s,t(p)  is a price randomization cumulative 

distribution function within an interval of [pMin,n,s,t, Ωs].  According to [14] and the 

definition of the Nash equilibrium, providers often attempt to  maximize their 

expected profit by a well known strategy of selecting bids at random within the 

interval [pMin,n,s,t, Ωs] with a probability of Fn,s,t(p). We define this price 

randomization as a Random Rejection strategy.  

 Since Fn,s,t(p) is a continuous function, price randomization requires an 

infinite number of points in the price interval. A continuous function can be 

quantized into a discrete function for implementation. We have illustrated an 

example algorithm to implement a discrete Random Rejection strategy in Section 

8.1.3. 

Stochastically, a mean price should yield the same expected outcome of the 

random price.  The mean price corresponds to the Rejection Neutral strategy in our 

model. 
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Definition: A Rejection Neutral Strategy is the strategy that yields the mean 

price of service from a strategy profile Fn,s,t(p) at each game instant (t) since it 

provides equal reject probability of wining (accepted) or losing (rejected) the session. 

 Figure 3-4 and Table 3.2 illustrate these strategies. Note, rejection implies that 

an enterprise rejects the bid of a provider because some other provider’s bid is 

lower. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Proposed Strategy Diagram 

 
Table 3.2: Proposed Strategies 

Strategy Winning 
coefficient 

Rejection 
Probability 

Example 

No Rejection ξ  =1.0 0.0γ =  
, , , , , , , ,: ( ) ( ) 0.00bid bid bid

n s t n s t n s t n s tp F p Prob p p γ= ≤ = =  
Very Low 
Rejection 

0.8 1.0ξ≤ <  0 0.2γ< ≤  
, , , , , , , ,: ( ) ( ) 0.05bid bid bid

n s t n s t n s t n s tp F p Prob p p γ= ≤ = =  

Low 
Rejection 

0.5 0.8ξ< <  0.2 0.5γ< <  
, , , , , , , ,: ( ) ( ) 0.30bid bid bid

n s t n s t n s t n s tp F p Prob p p γ= ≤ = =  

Rejection 
Neutral  

ξ  =0.5 0.5γ =  
, , , ,( ( ))bid

n s t n s tp Mean F p=  

High 
Rejection 

0.2 0.5ξ≤ <  0.5 0.8γ< ≤  
, , , , , , , ,: ( ) ( ) 0.62bid bid bid

n s t n s t n s t n s tp F p Prob p p γ= ≤ = =  

Very High 
Rejection 

0 0.2ξ< <  0.8 1.0γ< <  
, , , , , , , ,: ( ) ( ) 0.97bid bid bid

n s t n s t n s t n s tp F p Prob p p γ= ≤ = =  

Absolute 
Rejection 

ξ  =0.0 1.0γ =  
, , , , , , , ,: ( ) ( ) 1.0bid bid bid

n s t n s t n s t n s tp F p Prob p p γ= ≤ = =  
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To reduce implementation cost of equipment and software, providers’ may 

not implement all strategies of Table 3.2 in a network.  We define the strategy set of 

Table 3.3 as the feasible strategy and conduct session level Monte-Carlo simulations 

to find the best strategy of the game. 

Table 3.3: Proposed feasible Strategies of the providers 

Strategy Feasible strategies 
Very Low Rejection 

, , , , , , , ,: ( ) ( ) 0.05bid bid bid
n s t n s t n s t n s tp F p Prob p p γ= ≤ = =  

Low Rejection 
, , , , , , , ,: ( ) ( ) 0.35bid bid bid

n s t n s t n s t n s tp F p Prob p p γ= ≤ = =  
Rejection Neutral  

, , , ,( ( ))bid
n s t n s tp Mean F p=  

High Rejection 
, , , , , , , ,: ( ) ( ) 0.65bid bid bid

n s t n s t n s t n s tp F p Prob p p γ= ≤ = =  
Very High Rejection 

, , , , , , , ,: ( ) ( ) 0.95bid bid bid
n s t n s t n s t n s tp F p Prob p p γ= ≤ = =  

 

Providers need to adopt strategies such that the market price for Blue service 

(pb) is higher than the market price of Green service (pg) and the market price of 

Green service (pg) is higher than that of Red service (pr). 

 b g rp p p> >  (3.45) 

In Chapter 8, we will present a method to adopt strategies to satisfy equation (3.45). 
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3.7 Chapter Summary 

In this chapter, we proposed an oligopoly model to determine the price of 

services in our peer network architecture. Our oligopoly model is based upon the 

Bertrand oligopoly model of price, Varian’s oligopoly example A Model of Sale, and 

Bandyopadhyay et al.’s online exchange research.  

In Bertand’s model, the strategy of each seller is to determine a price of a 

product that it wishes to sell. Sellers display their prices simultaneously. The 

customers purchase from the seller with the lowest price. The Varian example 

provides insight into the development of the foundation of a Bertrand mixed 

strategy equilibrium for a duopoly market. Bandyopadhyay et al. extend Varian’s 

mixed strategy equilibrium to develop a sealed bid reverse auction-based online 

exchange oligopoly model. In this model, the market demand and the marginal cost 

of production are fixed values in addition to market capacity and reservation price. 

We extended the above static mixed strategy equilibrium to meet the 

requirements of the dynamic nature of Internet traffic. In our model, the market 

demand and the marginal cost of providing services are variable parameters. 

The mixed strategy equilibrium function provides an infinite set of strategies 

to select a price with a certain Rejection probability of winning or losing an 

enterprise. Due to the limitation of technology, we need to assign only a few 

strategies from the mixed strategy profile. Therefore, we reduce the mixed 

equilibrium strategies to a feasible set. 

The best strategy should allow a provider to maximize its expected profit by 

selecting an optimum price of service. This is possible by minimizing the marginal 

costs of services. In the next chapter, we will describe a mathematical non-linear 

technique for minimizing the service cost by optimizing the traffic flow of the 

network. 
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4 Providers’ Profit Maximization by Optimum 
Routing 

This chapter develops a mathematical optimization method to implement 

optimal routing [85] in the network. The objective of this optimization is to 

maximize the profit of a provider.  As defined in Section 3.3.4, unit profit (u(p)) is a 

function of price (p), marginal cost (ω), and network throughput (Y) as follows: 

 ( ) ( )u p p Yω= −  (3.46) 

The following states our optimization problem: 

 

( )

. .

Maximize u p
Network Architecture Constraint

s t Internet Traffic Pattern and Queue System Constraint
Game Strategy Constraint

⎧
⎪
⎨
⎪
⎩

 (3.47) 

 
Let us first look into maximizing u(p): 

 
( )

( )
Maximize u p

Max p Yω= −
 (3.48) 

 ( ) ( )Max pY Max Y Max p Yω ω+ − ⇒ −  (3.49) 
 ( ) ( )Maximize pY Minimize Y Maximize u pω+ ⇒  (3.50) 

To optimize profit, we need to optimize price and minimize a provider’s 

marginal cost of services. Game theory techniques of Chapter 3 and 7 perform 

surplus ( pY ) optimization subjected to the game strategy constraints. 

According to microeconomics, there is a strong correlation between the profit 

maximization and the cost minimization [1][2]. If a provider reduces the cost of 

producing services, it can increase profit. 

Theorem: Cost minimization is a necessary condition for the profit maximization.  

The proof of the above theorem is presented in [1]. 

In Section 3.3.2, we presented marginal cost as function of the mean packet 

count in the network. In addition, we described the rationale for the relationship 

between a provider’s service cost and the mean packet count ( M̂ ) of the provider’s 
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network queue system. This marginal cost equation (3.17) is a function of the service 

cost-coefficient ( sδ ), the mean IP packet counts in the network queue system ( ˆ
nM ), 

throughput (Yn), and provider fixed cost coefficient (θ n): 

 ,
, , , , ,

,

ˆ
ˆ ˆ( ) ( )n t

n s t n t s n t n t n
n t

M
M Y M

Y
ω δ θ

∂
= + +

∂
 (3.51) 

This chapter’s focus is the minimization of marginal cost; therefore, the 

optimization problem can be stated by: 

 ,
, ,

,

ˆ
ˆ{ ( ) }n t

s n t n t n
n t

M
Minimize Y M

Y
δ θ

∂
+ +

∂
 (3.52) 

The cost-coefficient ( sδ ) and the provider fixed cost coefficient (θ n) are fixed 

values. Since in equation (3.51) the marginal cost is a linear function of the mean 

packet count, minimization of the mean packet count will minimize the marginal 

cost; consequently, the providers’ profit will be maximized. Thus, if we ignore for 

now the ,
,

,

ˆ
n t

n t
n t

M
Y

Y
∂
∂

 term, the following equation approximates the optimizing profit 

problem:  

 Minimize M  (3.53) 

The minimization of the mean packet count can be accomplished by 

implementing optimal routing to equally distribute traffic flows across the network. 

The literature [85] develops optimum routing as a function of optimum mean delay. 

On the other hand, we develop optimum routing as a function of optimum mean 

packet count because majority of the vendor routers keep the record of mean packet 

count instead of mean delay. We want to stress that there is no difference in the 

mean delay method and our mean packet count method because they are directly 

related through Little’s Law [59],[60]. This method is often referred to as “load 

balancing” in terms of Internet traffic engineering.  

The optimal routing should distribute traffic across the network to minimize 

the change in the mean packet count in the network for the addition of each new 
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session. This optimized load balancing is expected to perform the following 

minimization in low load as shown in Figure 4.1: 

 ,
,

,

ˆ
n t

n t
n t

M
Minimize Y

Y
⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

 (3.54) 
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Figure 4.1: Change in Mean Packet count in the network. 

Figure 4.1 shows session level Monte-Carlo simulation results of the change 

in the mean packet count (mean number of packets) in a network when a new 

session is added for a network load of 38%. The simulation uses the parameters for 

the homogenous service-based network presented in Table 7.3 and {Rejection Neutral, 

Rejection Neutral} strategy set. The optimum load balancing caused the reduced 

change in mean packet count (left plot) compared to that (right plot) of the non-

optimized load balancing method. Note that the figure demonstrates the 
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improvement but not the optimization; therefore, it is a weak evidence of 

minimization at best 

We implement a mathematical non-linear programming technique (Gradient 

Projection method) to perform optimal routing of [85] to minimize delay. 

4.1 Network Architecture Constraints 

We will now discuss the network architecture constraints. Each provider 

network supports elastic LSPs. Traffic flows from the origin E-LSR or Media-Relay 

to the Destination E-LSR or Media-Relay through uni-directional LSPs.  Each 

network link is bi-directional, i.e. each link supports two uni-directional LSPs paired 

in opposite directions for each Origin-Destination (O-D) path. Each O-D pair is 

connected with alternate LSPs. Traffic between an O-D pair is allowed to take 

different routes; consequently, total traffic flow for each O-D pair may be split 

among several paths. A path is an ordered set of links.  As per the assumption of 

Chapter 3, the physical capacity of a network does not change during the lifetime of 

the game. A similar assumption can be made for network architecture. 

 

Assumption: Network architecture does not change during the lifetime of the game. 

 

This assumption specifies that the network is already built; i.e., the network 

architecture cannot be changed and the physical links are already provisioned. 

Nevertheless, the peak rates of the LSPs vary with the optimized flow rates.  

Chapter 5 describes the network architecture constraints in details: the topology of 

the network, traffic flow for each O-D pair, and capacity constraint for each link. 
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4.2 Traffic Pattern and Queue System Constraints 

The queue system of each link consists of a queue and a server. The mean 

packet count in a queue depends on the type of the queue and the scheduling 

system employed by the server. We assume the following concerning the queue 

system of this study. 

 

Assumption: Each outbound link of a provider supports a single integrated 

queue with FIFO scheduling. 

 

The following properties describe the method of service differentiation 

through the FIFO scheduling of this research. 

• The class of service is differentiated by the cost of guaranteeing three security 

levels {Blue, Green, and Red} (see Sections 3.2 and 3.3). 

• The class of service is not differentiated by the performance (e.g. QoS) 

parameters. 

•  Traffic of all classes of service must adhere to the same upper bounds of the 

QoS matrix (see Section 5.3). 

In addition to the type of queue system and scheduling algorithm, traffic 

patterns such as packet arrival distribution and packet length distribution influence 

the packet count in the network queue system. Therefore, it is critical to understand 

the traffic pattern of the network. 

Floyd and Paxon [52] explain that it is often difficult to develop a simulation 

model for an IP network since network and IP traffic patterns are continuously 

changing. According to [54][55], internet traffic is self-similar, which is modeled 

often by Fractional Brownian motion [56]. The self-similar nature of Internet traffic 

was observed prior to the introduction of Voice-over IP (VoIP) and Internet 

Multimedia Sub-system (IMS) applications. To our knowledge, no established model 

for emerging internet traffic exists to date. However, a few recent studies, e.g. 
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[57],[58], show that the Internet traffic tends to mimic independent Poisson 

distribution as the load in the network increases.  

Recently, VoIP, IMS, and video applications are coming into vogue for 

internet applications. As such, traffic arrival distribution and packet length 

distribution of traffic types are continuously changing. Since it is difficult to 

ascertain empirical values, we perform our study based upon the following assumed 

IP packet arrival and length distributions. 

  

Assumption: IP packet arrival distribution is Poisson 

Assumption: IP packet lengths are exponentially distributed 

 

Our objective is to synthesize the game theory with the well-established 

queuing theory to optimize provider’s profit and profit. The M/M/1 system [59] is a 

well-established traffic analysis method for a FIFO based queuing and scheduling 

system in academic fields that allows for Poisson distributed packet arrival and 

exponentially distributed packet length. When traffic with Poisson distributed 

arrival rate aggregates into an integrated FIFO queue, the aggregate arrival 

distribution continues to be Poisson. When traffic with Exponential distributed 

packet lengths merges into an integrated queue, the aggregate packet distribution is 

hyper-exponential. We should thus adopt the M/G/1 model for computing the 

mean packet count in the queue system. However, in order to use results from the 

theory of networks of queues, we approximate with M/M/1 model. This is one of 

our limitations of this research. 
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4.3   Mean Packet count in the M/M/1 Model 

An M/M/1 system consists of a single server queue. It assumes a Poisson 

arrival process and a negative exponential distributed service time. If the mean 

arrival rate is λ packets per second and the mean service rate is μ packets per 

second, the mean packet count in the M/M/1 system (queue + server) can be 

attributed as per classical queuing theory [59]: 

 [ ]
1

M E packets

λ
λμ

λ μ λ
μ

= = =
−−

   (3.55) 

Assuming the mean length of IP packets is L bits, l is the link index, and Cl is 

the capacity of the link in bits per second, the mean service rate lμ  packets per 

second can be represented by: 

 l
l

C
L

μ =  (3.56) 

Equation (3.55) can be expressed as follows, where xj bits per second is the 

traffic flow of each LSP and j is the LSP index. 

 :

:

[ ]
j

j l j
l

l l j
j l j

x
LM E packets

C L C x
λ
λ

∈

∈

= = =
− −

∑
∑

  (3.57) 

 The above equation represents the mean packet count in one queue, i.e. for 

one unidirectional link (l) of a node. The sum of the mean packet count at each 

queue system for the whole network is the sum of all the uni-directional links in the 

network as follows: 

:

:

ˆ [ ] ( )
j

j l j

l l j
j l j

x
M E packets f

C x
∈

∈

= = =
−

∑
∑ ∑ ∑

x    (3.58) 



 92

4.4 Session Arrival Distribution 

In the simulation study, we increase or decrease the market demand load by 

changing the arrival rate of sessions.  Thus, we need to determine the session arrival 

distribution. The PSTN established model for the connection arrival probability 

distribution is Poisson and the connection duration distribution is Exponential.  No 

well established models for the session arrival and session length distributions for 

IP, video, and wireless centric applications are yet developed. Often in simulation 

studies (e.g. in [81]-[84]) it is assumed that the call arrival distribution is Poisson and 

call length distribution is Exponential based on PSTN assumption. Similarly, we 

conduct this research based on PSTN assumption. 

 

Assumption: Session arrival distribution is Poisson. 

Assumption: Session length distribution is Exponential. 

 

4.5 The Development of a Non-linear Optimization Program 

In constrained non-linear programming, an optimal point must satisfy the 

First Order Necessary Condition (FONC), which is also known as Kuhn-Karush-

Tucker condition. In addition, finding an optimum point requires satisfying the 

Second-Order Necessary and Second-order Sufficiency conditions (SONC/SOSC). 

Simpler non-linear programming problems can be solved by the analytical FONC 

and SONC/SOSC approach. The complicated non-linear programming problems 

need to be solved by well-established non-linear programming approach such as the 

Gradient Project algorithm. We apply the Gradient Projection algorithm to find 

optimum mean packet count in the network.   

The Gradient Projection algorithm requires a line search function.  Various 

line search algorithms can be implemented to locate the minimum of an objective 

function. We apply the Golden Section line search algorithm.  The Gradient 



 93

Projection algorithm and the Golden Section Line Search are briefly described in the 

Appendix A and in [46]. 

In this section, we develop the non-linear optimization program based on [50] 

by using the Gradient Projection algorithm and the Golden Section line search 

method. 

We denote traffic between an origin and destination at an instant of time as 

Rw where w is the O-D pair index and the set of LSPs associated with O-D pair w is 

J(w).  Since we assume that no packet drop occurs in the network of this study, the 

traffic between an O-D pair must be equal to its associated set of LSPs. Therefore, in 

the non-linear programming model, the following equality constraint must be 

satisfied: 

 
( )

j w
j J w

x R
∈

=∑  (3.59) 

A physical link should not support more than its traffic-engineered capacity; 

i.e. the sum of LSP traffic flow in a link must be less than or equal to the traffic-

engineered capacity of the link. Therefore, the following non-linear constraints must 

be satisfied: 

 
:

j TE l
j l J

x Cρ
∈

≤∑  (3.60) 

Section 5.3 describes the Maximum Traffic Engineered Link Load ( TEρ ). 

The following is the non-negativity constraint of the traffic flow through each LSP. 

 0jx ≥  (3.61) 

Our optimization problem is to minimize equation (3.58), which describes the 

sum of the mean packet count at each queue system for the whole network, while 

satisfying the constraints from (3.59)-(3.61).  We represent this optimization model 

by the following non-linear programming problem.         
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    (3.62) 

The non-linear programming problem of equation  (3.62) can be represented 

as the following standard general form:  

: (
: 0

0.

Minimize f
subject to =

≤

x)
h(x)
g(x)  

                            (3.63) 

 Where f(x), h(x), and g(x) functions are as follows: 

 :

:
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l l j
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x  (3.64) 

 
( )

( ) 0x j w
j J w

h x R
∈

= − =∑  (3.65) 

 1( ) 0j TE lg x Cρ= − ≤∑x  (3.66) 

 2 j( ) = x 0g j J− ≤ ∈x  (3.67) 

In each step, the Gradient Projection algorithm performs line search using the 

Golden Section Line Search Algorithm starting in initial feasible region (x0) in a 

feasible direction d with a non-negative scalar α . 

The FONC or Kuhn-Karush-Tucker condition for the non-linear 

programming problem of equations (3.63)-(3.67) is follows: 
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The Gradient Projection method satisfies the Kuhn-Karush-Tucker condition 

by steepest descent starting at a feasible point. In each step, non-equality constrains 

(g(x)) are first separated as active (gactive(x)) and inactive sets (ginactive(x)). The active 

set of inequality constraints equates to zero at the feasible point (x). On the other 

hand, the inactive set is strictly negative at x. 

 
( ) : ( ) 0
( ) : ( ) 0

active i

inactive i

g g
g g

=
<

x X
x X

 (3.69) 

These active (gactive(x)) constraints at a feasible point create the boundary of 

the feasible region. The equality constraints and the active set of non-equality 

constraints form a working set (w(x)). 
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x
 (3.70) 

 This working set is the foundation of the working surface (Aw). Inactive sets 

are ignored because in Gradient Projection method the inactive sets lie outside of the 

working surface. The direction (d) of movement is found by projecting the negative 

gradient ( ( )f−∇ x ) of the objecting function on the working surface.  

 1( ) ( )T T T
k q q q q kd f−⎡ ⎤= − − ∇⎣ ⎦I A A A A x  (3.71) 

The length of the feasible segment is determined. Maximum distance ( Maxα ) 

can be found by solving the following equation: 

 ( ) ( ) zinactive Max inactiveg x g x dα+ =  (3.72) 
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The one dimensional matrix z is a zero matrix. In the following line search 

step (interspersed with the direction-finding steps), the algorithm travels from one 

feasible point (xk) to a better feasible point (xk+1) using a step size ( kα ) such that 

0 k Maxα α≤ ≤ . 

 1 dk k k kx x α+ = +  (3.73) 

By line searching through the feasible region, as in equation(3.73), the 

optimum point in each feasible segment can be achieved by minimizing the 

objective function f(x) as follows in each step:     

[ ] [ ]
( d )

. . A z
k k kMinimize f x

s t
α+

≤
    (3.74) 

In equation(3.74), the multi-dimensional matrix A contains the g and h 

matrices of equations (3.65)-(3.67).   

A line search performs the movement or descent in each segment until a 

minimum endpoint is achieved when a new constraint becomes active. In each 

segment, this minimum is achieved at dk = 0 such that the following FONC condition 

is satisfied. 

 ( ) T
kf λ∇ + =k qx A 0  (3.75) 

For all active inequality constraints, if dk = 0 and the Largrange Multiplier (λ) 

is non-negative, the Kuhn-Karush-Tucker condition is satisfied and the optimum 

point is achieved. We implemented the Golden Section Line search and the Gradient 

Projection algorithm of [50], which we reproduce in Appendix A for reference. 
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4.6 Chapter Summary 

This chapter presented a mathematical non-linear programming technique to 

optimize—and therefore minimize—the marginal cost of providing services. Cost 

minimization is a necessary condition to optimize profit. Congestion of the network 

adds cost to providing customer-preferred services. Therefore, the minimization of 

network congestion is a condition to the maximization of profit. A key indicator of 

network congestion is the mean IP packet count in the network queue system.  

An optimized routing technique minimizes the mean packet count in the 

network queue system. This minimization of the mean packet count reduces 

network congestion and equally distributes traffic around the network. The chapter 

described Gradient Project algorithm to optimize the mean packet count in the 

network that supported the well-established M/M/1 queue system. 
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5 Network and Traffic Flow Design 

To perform a comparative analysis of provider strategies, which optimize 

their profit, we need to develop identical network topology of the providers. We 

need to ensure that the topology fits our proposed model. We need to guarantee 

QoS requirements of customers as specified in Chapter 4 by developing traffic-

engineering rules. To minimize marginal cost of the network, we need to avoid 

congestion hot spot in the network. This can be achieved by providing multiple 

routing options and minimizing congestion by optimized routing through these 

diverse options. Considering these requirements, this chapter designs a network 

topology, specifies traffic engineering rules, assigns network capacity, and designs 

Label-Switch-Path (LSP) routes, and corresponding non-linear programming 

matrices to conduct the analytical and session level Monte-Carlo simulation studies 

of Chapters 7 and 8. 

5.1  Network Topology 

Our duopoly market network topology consists of A.com and B.com 

providing services in four regions:  Chicago, New York, Dallas, and Atlanta. A 

region surrounds large network hubs of providers and consists of multiple 

enterprise networks.  Enterprises peer with both providers’ hubs. 

We assume that the sessions arrive in a network from a regional market 

(origin), propagate through the winning provider, and depart through a different 

regional market (destination). This implies that local or intra domain sessions of a 

regional market do not traverse through any provider. Each origin-destination (O-D) 

pair is unidirectional. Traffic flows from the originating E-LSR to the destination E-

LSR through uni-directional Label Switch Paths (LSPs). 

All links are bi-directional; for example, traffic can propagate from Chicago to 

Atlanta as well as from Atlanta to Chicago. Each session has two legs: origin-
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destination and destination-origin. These legs are symmetric, i.e. the bandwidths of 

the call in both directions are the same.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Simulation topology 

Figure 5.1 depicts the topology of a provider and its connectivity with 

enterprise regions. There is at least one E-LSR of each provider in each region. This 

implies that in this duopoly market there are at least two E-LSRs in each region—

one from each provider. All providers have identical networks.  Either a centralized 

or distributed analyst along with the Call-Control-Functional-Entity (CCFE) perform 

the pricing negotiation, connection admission control (CAC), policy enforcement, 

and other control functions. We do not show control plane entities in the figures of 

this chapter. Assuming that the control-signaling specific traffic volume is 

negligible, we concentrate only on the media plane capacity. 

Prior to determining market capacity, we need to develop traffic-engineering 

rules. Traffic engineering rules depend on packet length distribution.   
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5.2  Packet Length Distribution 

Cooperative Association for Internet Data Analysis (CAIDA) observed the 

mean lengths of IP packets directly from the Internet in early 2000. These mean 

lengths were widely used to develop realistic models of Internet simulation 

scenarios. According to a CAIDA finding [53], the mean IP packet length observed 

in the internet in early 2000 was: 56% of the packets were 40 Bytes; 23% of the 

packets were 1500 bytes; and the rest was around 576 Bytes.  In a separate study, the 

National Laboratory of Applied Network Research observed the following mean 

lengths of IP packets in the Internet: 59% of packets were 40 Bytes; 23% of the 

packets were 1500 Bytes, and 18% of the packets were 576 Bytes.  

The CAIDA and the National Laboratory of Applied Network Research 

Internet packet length observations were conducted prior to the rapid growth in 

VoIP and IMS traffic in the Internet. We are not aware of any recent study that 

observed the mean packet lengths of IP packets in the Internet after the rapid 

growth of VoIP and IMS. 

To transport voice over IP packets, Real Time Transport Protocol (RTP), and 

User Datagram Protocol (UDP) are used. The mean packet length of the commonly 

used G.71110 coded VoIP is 200 bytes [80]: the VoIP mean payload is 160 bytes and 

protocol headers are 12 bytes, 8 bytes, and 20 bytes, respectively, for RTP, UDP, and 

IP. 

 

 

Figure 5.2: VoIP Packet Length 

We assume that the mean packet length of non-VoIP packets are 576 bytes 

and 1500 bytes based on the CAIDA and the National Laboratory of Applied 

                                                 
10 G.711 is an ITU-T standard that specifies 64-kbps Pulse Code Modulation (PCM) voice encoding technique. 
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Network Research packet length observations. We assume that providers deploy 

G.711 coded VoIP payload. 

Assumption 5.1: Mean packet lengths of Blue, Green, and Red are 200 bytes, 

576 bytes, and 1500 bytes, respectively. 

We expect that the mean message lengths of state-of-the art IP networks will 

be smaller than our assumed values of Blue, Green, and Red services. Thus, our 

assumption reflects a worst-case scenario. Note that the packet length distribution is 

assumed exponential.  Section 4.2 presents the rationale for assuming this 

distribution. 

5.3 Traffic Engineering Rule  

We need to ensure that participating providers guarantee two major 

performance requirements: no packet loss and mean packet delay in the queue 

system within tolerable limits. We accomplish this by enforcing traffic-engineering 

rules in the network. The objective of this section is to develop traffic-engineering 

rules that guarantee the following requirements: 

 

Requirement 5.1: No packet loss in the network. 

 

Note that for Voice and Interactive Video the packet loss should be less than 

1%, and for streaming video it should be less than 5% [80]; therefore, our no packet 

loss requirement is a stringent requirement. 

 

Requirement 5.2: The mean delay in the queue system of each link shall not 

exceed 1.0 millisecond. 

 

The ITU standard G.114 specifies that the one-way (mouth-to-ear) delay 

should not exceed 150 milliseconds for voice [80]. The leading telecommunication 
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vendor Cisco recommends that the one-way latency for Interactive-video and 

Streaming-video should be less than 150 milliseconds and 4 seconds, respectively. 

Significant portion of this delay should be attributed to the long-distance 

propagation. Therefore, the delay budget for a network node is much less. In the 

emerging Internet core networks, the node interfaces are OC48 (2.5 Giga-bits-per-

second) or above. For such a high speed, the queuing delay is in microseconds. In 

our study, we assume that the interface speed is 100 Mega-bits-per-second. Thus, we 

assume a higher valued delay budget of 1.0 millisecond. 

By bounding the link load of each link to an upper limit, both the packet loss 

and the delay budget (requirements 5.1 and 5.2) can be guaranteed. 

 

Definition: Traffic Engineering Load is the maximum allowed load of a link. 

 

As mentioned earlier, each network link of this study supports an integrated 

single queue served by a FIFO non-preemptive priority-scheduling scheme. We will 

develop the traffic-engineering rule based on M/M/1 queuing analysis for both the 

homogenous-service based and the heterogeneous-service based networks. The 

rationale for selecting the M/M/1 model is described in Section 4.2. When traffic 

with Poisson distributed arrival rate aggregates into an integrated FIFO queue, the 

aggregate arrival distribution continues to be Poisson. When traffic with Exponential 

distributed packet lengths merges into an integrated queue, the aggregate packet 

distribution is hyper-exponential. Thus, we need to depart from M/M/1 model and 

adopt M/G/1 model for the delay analysis of the queue system. This M/G/1 model 

will assume Poisson arrival and Generalized service time distributions. 
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Figure 5.3: Single Integrated FIFO Queue system 

Figure 5.3 illustrates that Blue, Green, and Red classes of service arrive in a 

single integrated queue system with mean arrival rates of λb, λg, and λr, respectively. 

A FIFO scheduling system serves the queue at a link rate of C Mbps. Since Blue, 

Green, and Red classes of service share the same FIFO queue of a link, the presence 

the Red and Green services influence the delay variance of the Blue service. Delay 

variance depends on the traffic load of the link. Maintaining the link traffic load 

below a certain threshold can guarantee the required latency of each service. 

 

Assumption 5.2: The link loads of Blue and the Green class of service do not 

exceed 20% and 30%, respectively. 

   

Based on this assumption, we determine the maximum load of the Red 

service in a link to guarantee the mean packet delay of all services while maintaining 

a fixed Blue and Green load of ρb = 20% and ρg =  30%. 

Aggregate arrival rate in the queue system is as follows: 

 b g rλ λ λ λ= + +  (5.1) 

  

λm

λv

λg

C

λm

λv

λg

C
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We denote [ ], [ ], and, [ ]b g rE L E L E L  as the mean packet lengths of the Blue, 

Green, and Red traffic. First and second moments of service time for each service 

class are denoted by assuming exponentially distributed packet lengths for each 

service class: 

 
[ ][ ] [ ][ ] , [ ] , [ ]gb r

b g r

E LE L E LE E E
C C C

τ τ τ= = =  (5.2) 

 
22 2

2 2 2[ ][ ] [ ][ ] 2. , [ ] 2. , [ ] 2.gb r
b g r

E LE L E LE E E
C C C

τ τ τ
⎛ ⎞⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 (5.3) 

We denote the first moment of integrated mean service time as ˆ[ ]E τ , the 

second moment of integrated mean service time as 2ˆ[ ]E τ , and variance of integrated 

mean service time as ˆ[ ]Var τ , where τ̂ is the delay random variable of the integrated 

queue. 

The first moment of the integrated mean service time for the M/G/1 system 

is represented by the following equation where mean service time of each flow is 

exponential but the aggregated mean service time is hyper-exponential: 

 
ˆ[ ] [ ] [ ] [ ]

[ ][ ] [ ]

gb r
b g r

g gb b r r

E E E E

E LE L E L
C C C

λλ λτ τ τ τ
λ λ λ

λλ λ
λ λ λ

= + +

= + +
 (5.4) 

 The second moment of the integrated mean service time for the M/G/1 

system is represented by the following equation where mean service time of each 

flow is exponential but the aggregated mean service time is hyper-exponential: 

 

2 2 2 2

22 2

ˆ[ ] [ ] [ ] [ ]

[ ][ ] [ ]2. 2. 2.

gb r
b g r

g gb b r r

E E E E

E LE L E L
C C C

λλ λτ τ τ τ
λ λ λ

λλ λ
λ λ λ

= + +

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 (5.5) 

 In an M/G/1 system, mean delays experienced by Blue, Green, and Red 

packets are as follows: 

 
2ˆ[ ] [ ][ ]

ˆ2(1 [ ])
b

b
E L EE T

C E
λ τ
λ τ

= +
−

 (5.6) 
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2[ ] ˆ[ ][ ]

ˆ2(1 [ ])
g

g

E L EE T
C E

λ τ
λ τ

= +
−

 (5.7) 

 
2ˆ[ ] [ ][ ]

ˆ2(1 [ ])
r

r
E L EE T

C E
λ τ
λ τ

= +
−

 (5.8) 

As per Assumption 5.1, the mean packet lengths of Blue, Green, and Red 

services are
 

[ ] 200 Bytes, [ ] 576 Bytes, and [ ] 1500 Bytes.b g rE L E L E L= = =  The following 

figure depicts the mean packet latency in the M/G/1 queue system of link rate of 

100 Mbps as per equation (5.1)-(5.5). 
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Figure 5.4: M/G/1 System Delay for Heterogeneous services 

System delays in milliseconds for Blue, Green, and Red classes of service are 

shown with respect to the total link load from 0.55 to 0.95. Blue and Red loads are 

kept constant at 0.20 and 0.30. The Red load is increased from 0.05 to 0.45. The figure 

shows that at link utilization of 90% (ρb = 20%, ρg = 30%, and ρr = 40%), the mean 
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delays of Blue, Green, and Red classes of service are less than 1.0 millisecond, which 

guarantees the delay bound of requirement 5.2. At 90% link utilization, the arrival 

rate is less than the departure rate; thus, no packet loss occurs, which guarantees 

requirement 5.1 assuming infinite queue length. Network routers do not have 

infinite length queues in real implementation; however, queue sizes are significantly 

large compared to the maximum packet count in the queue. Therefore, we assume 

that queues have infinite length. 

Based on the above discussion, we employ the following traffic engineering 

rules on each link. 

Heterogeneous Service Network: 

Maximum Traffic Engineering link load ( TEρ ) must adhere to the following 

boundaries. 

 

20%
30%

40%

TEb

TEg

TEr

ρ
ρ

ρ

≤
≤

≤

 (5.9) 

 

Homogeneous (Single) Service Network: 

Maximum Traffic Engineering link load ( TEρ ) must adhere to the following 

boundary. 

 0.90TEρ ≤  (5.10) 
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5.4 Capacity Assignment 

Assumption 5.3: All providers deploy identical physical capacity. 

 1 2 ... NK K K= = =  (5.11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Internal Network Topology of Two providers 

Figure 5.5 illustrates the internal connections of both the providers and their 

connections with the regions. Each provider has identical four node (Edge-LSR) 

network topology, where each E-LSR is connected with a region of the market. For 

example, all the customers in Atlanta are connected to the E-LSR #4 of both the 

providers. Although we have shown only one link is connecting an E-LSR of a 

provider to a customer region, this one link is a pictorial representation of many 

access links. Inside each provider, E-LSRs are interconnected in a mesh topology of 

100 Mbps bi-directional links. Each E-LSR is connected with three other E-LSRs with 

three links; therefore, the maximum input traffic of each E-LSR towards the network 

core is 300 Mbps. In other words, in each region, the ingress physical capacity (K) of 
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each provider is 300 Mbps. Similarly, in each region the egress physical capacity of 

each provider is 300 Mbps. Note that the maximum aggregate ingress physical 

traffic of all four regions to a provider core network is 300*4 = 1200 Mbps.  Since we 

assume that the network is lossless, maximum aggregate egress traffic from a 

provider to all four regions is also 1200 Mbps. 

As per the definition of Section 3.3, the Market Capacity (Γ) is represented by 

the following equation, where K is the ingress physical capacity of each provider 

and TEρ  is the Maximum Traffic Engineered link load. 

 
1 1

N N

n TE TE n
n n

K Kρ ρ
= =

Γ = =∑ ∑  (5.12) 

The following table summarizes the physical capacity assignment and the 

market capacity of this study. 

Table 5.1: Capacity Assignment 

Number of providers 2 
Link Capacity of Each provider (C) 100 Mbps 
Physical Capacity of Each provider/Region 300 Mbps 
Number of Regions in the Market 4 
Physical Capacity (K) of Each provider in the Market 300*4 = 1200 Mbps 
Max Traffic Engineered Link Load ( TEρ ) = 0.90 0.20

0.30

0.40

TEb

TEg

TEr

ρ
ρ

ρ

≤
≤

≤

 

Market Capacity of Each provider ( TE Kρ ) 0.90*1200 = 1080 Mbps 
Total Market Capacity (Γ) 1080*2 = 2160 Mbps 

 

The session level Monte-Carlo simulation algorithm in Section 6 states the 

procedure of enforcing maximum market demand. 
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5.5 Session Arrival Pattern 

Often in QoS simulation studies (e.g., [80]-[84]), call arrival rate distribution is 

assumed Poisson and call duration distribution is assumed exponential with a mean 

of 180 seconds. Similarly, we assume that the session arrival rate distribution is 

Poisson and session length distribution is exponential with a mean of 180 seconds. 

By changing the session arrival rate, market demand load is adjusted. 

5.6 Traffic Flow Design 

Traffic flow of each O-D pair can traverse through five different routes inside 

the network of each provider. For example, in Figure 5.6 traffic of the Chicago-

NewYork O-D pair can flow from Edge-LSR#1 to Edge-LSR#2 through the 

following routes: 1 2, 1 3 2, 1 4 2, 1 3 4 2, and 1 4 3 2.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Each O-D pair has five different routes 
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Table 5.2 identifies the O-D pairs and their corresponding paths. 

Table 5.2: O-D pairs and paths 

OD Pair Path OD Pair Path OD Pair Path
1 --> 2 1-->2 1-->3 1-->3 1-->4 1-->4

1-->3-->2 1-->2-->3 1-->2-->4
1-->4-->2 1-->4-->3 1-->3-->4
1-->3-->4-->2 1--2-->4-->3 1-->2-->3-->4
1-->4-->3-->2 1-->4-->2-->3 1-->3-->2-->4

2-->1 2-->1 2-->3 2-->3 2-->4 2-->4
2-->4-->1 2-->1-->3 2-->3-->4
2-->3-->1 2-->4-->3 2-->1-->4
2-->4-->3-->1 2-->1-->4-->3 2-->1-->3-->4
2-->3-->4-->1 2-->4-->1-->3 2-->3-->1-->4

3-->1 3-->1 3-->2 3-->2 3-->4 3-->4
3-->2-->1 3-->1-->2 3-->1-->4
3-->4-->1 3-->4-->2 3-->2-->4
3-->2-->4-->1 3-->1-->4-->2 3-->1-->2-->4
3-->4-->2-->1 3-->4-->1-->2 3-->2-->1-->4

4-->1 4-->1 4-->2 4-->2 4-->3 4-->3
4-->2-->1 4-->1-->2 4-->1-->3
4-->3-->1 4-->3-->2 4-->2-->3
4-->2-->3-->1 4-->1-->3-->2 4-->1-->2-->3
4-->3-->2-->1 4-->3-->1-->2 4-->2-->1-->3  

Table 5.2 depicts the traffic matrix between origin-destination (O-D) 

pairs where rij is the traffic from an origin (i) to a destination (j).  

Table 5.3: O-D Traffic Matrix 

Destination  1 2 3 4 

 1 0 R12 R13 R14 

Origin 2 R21 0 R23 R24 

 3 R31 R32 0 R34 

 4 R41 R42 R43 0 

 

We denote capacity between node i and j as Cij. Following table shows the Capacity 

matrix of the network.  
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Table 5.4: Capacity Matrix of Each Network 

 [ ]

12

21

13

31

14

41
12 1

42

24

23

32

34

43

100
100
100
100
100
100
100
100
100
100
100
100

C
C
C
C
C
C
C
C
C
C
C
C

×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

C   

The sum of traffic flows in a link should not be greater than the capacity of 

the link. Based on Table 5.2, we develop the equations for the inequality constraints 

as follows: 

Table 5.5: Inequality Constraint 

12 123 124 1243 1234 312 3124 3412 4123 412 4312 12

21 321 421 3421 4321 213 4213 2143 3214 214 2134 21

13 134 213 413 132 1342 1324 4132 2134 2413 4213

0
0

TE

TE

TE

x x x x x x x x x x x C
x x x x x x x x x x x C
x x x x x x x x x x x C

ρ
ρ
ρ

+ + + + + + + + + + − ≤
+ + + + + + + + + + − ≤

+ + + + + + + + + + − 13

31 431 312 314 231 2431 4231 2314 4312 3142 3124 31

14 142 214 314 143 1432 1423 2314 3214 3142 2143 14

41 241 412 413 341 2341 3241 4132 4123 2413 3412

0
0
0

TE

TE

x x x x x x x x x x x C
x x x x x x x x x x x C
x x x x x x x x x x x

ρ
ρ

≤
+ + + + + + + + + + − ≤
+ + + + + + + + + + − ≤
+ + + + + + + + + + − 41

42 142 342 421 423 1342 1423 3142 3421 4213 4231 42

24 241 243 124 324 2431 3241 2413 1243 3124 1324 24

23 231 234 123 423 1234 1423 2314 2341 4123 4

0
0
0

TE

TE

TE

C
x x x x x x x x x x x C
x x x x x x x x x x x C
x x x x x x x x x x x

ρ
ρ
ρ

≤

+ + + + + + + + + + − ≤
+ + + + + + + + + + − ≤
+ + + + + + + + + + 231 23

32 132 432 321 324 4321 3241 4132 1432 3214 1324 32

34 134 234 341 342 1342 1234 2341 2134 3421 3412 34

43 431 432 143 243 2431 4321 1432 4312 124

0
0
0

TE

TE

TE

C
x x x x x x x x x x x C
x x x x x x x x x x x C
x x x x x x x x x x

ρ
ρ
ρ

− ≤

+ + + + + + + + + + − ≤
+ + + + + + + + + + − ≤
+ + + + + + + + + 3 2143 43 0TEx Cρ+ − ≤

 

 

 

 

 



 112

The individual flows are assigned y index in the next table: 

 

X12 Y1  x1234 y13  x3421 Y25  X1324 y37  x1432 Y49 
X21 Y2  x3124 y14  x4321 Y26  X4132 y38  x142 Y50 
X13 Y3  x3412 y15  x213 Y27  X2413 y39  x241 Y51 
X31 Y4  x4123 y16  x4213 Y28  X431 y40  x341 Y52 
X14 Y5  x4312 y17  x2143 Y29  X314 y41  x2341 Y53 
X41 Y6  x1243 y18  x3214 Y30  X231 y42  x3241 Y54 
X42 Y7  x412 y19  x214 Y31  X2431 y43  x342 Y55 
X24 Y8  x312 y20  x2134 Y32  X4231 y44  x423 Y56 
X23 Y9  x124 y21  x134 Y33  X2314 y45  x243 Y57 
X32 Y10  x123 y22  x1342 Y34  X3142 y46  x324 Y58 
X34 Y11  x321 y23  x413 Y35  X143 y47  x234 Y59 
X43 Y12  x421 y24  x132 Y36  X1423 y48  x432 Y60 

 

Then, the capacity inequality conditions appear below: 

1 13 14 15 16 17 18 19 20 21 22 12

2 23 24 25 26 27 28 29 30 31 32 21

3 27 28 32 33 34 35 36 37 38 39 13

4 14 17 20 40 41 42 43 44 45 46

0
0
0

TE

TE

TE

TE

y y y y y y y y y y y C
y y y y y y y y y y y C
y y y y y y y y y y y C
y y y y y y y y y y y C

ρ
ρ
ρ
ρ

+ + + + + + + + + + − ≤
+ + + + + + + + + + − ≤

+ + + + + + + + + + − ≤
+ + + + + + + + + + − 31

5 29 30 31 41 45 46 47 48 49 50 14

6 15 16 19 35 38 39 51 52 53 54 41

7 24 25 28 34 44 46 48 50 55 56 42

8 14 18 21 37 39 43 51 54 57 58

0
0
0
0

TE

TE

TE

y y y y y y y y y y y C
y y y y y y y y y y y C
y y y y y y y y y y y C
y y y y y y y y y y y

ρ
ρ
ρ

≤
+ + + + + + + + + + − ≤
+ + + + + + + + + + − ≤

+ + + + + + + + + + − ≤
+ + + + + + + + + + − 24

9 13 16 22 42 44 45 48 53 56 59 23

10 23 26 30 36 37 38 49 54 58 60 32

11 13 15 25 32 33 34 52 53 55 59 34

12 17 18 26 29 40 43 47 49

0
0
0
0

TE

TE

TE

TE

C
y y y y y y y y y y y C
y y y y y y y y y y y C
y y y y y y y y y y y C
y y y y y y y y y y

ρ
ρ
ρ
ρ

≤
+ + + + + + + + + + − ≤

+ + + + + + + + + + − ≤
+ + + + + + + + + + − ≤
+ + + + + + + + + 57 60 43 0TEy Cρ+ − ≤

(5.13) 

In addition, we add 60 rows of non-negative constraints for each flow. 

Therefore, the inequality constraint matrix has 72 rows and 60 columns. This 

constraint is denoted as g(x) in the Gradient Projection non-linear program of 

Section 4.4. We denote this inequality matrix as G. 

The inequality and non-negative conditions are described as a matrix 

notation by equation(5.14).  G is a 72x60 matrix containing the indices of the 

inequality and non-negative constraints. 



 113

 

[ ](12 60) (12 1)
(60 1) 72 1

(60 60) (60 1)

Inequaltiy TE

Non negative

ρ× ×
× ×

× − ×

⎡ ⎤ ⎡ ⎤
⎡ ⎤ − ≤⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦

G C
Y 0

G 0
 (5.14) 

The first twelve rows of G matrix are the indices of the inequality constraints. 

The last sixty rows of G matrix are the indices of the non-negativity constraints. 

Each column of G matrix represents a flow. For example, g11 = 1 represents the flow 

x12 = LSP y1 that passes through link 1. The following is the first 12 rows of column 

44 to 60 of G matrix.  

Table 5.6: A portion of G Matrix 

     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0

(1:12,44 : 60)G =

     0     0     0
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     1     1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0
     0     1     1     1     1     1     1     0     0     0     0     0     0     0     0     0     0
     0     0     0     0     0     0     0     1     1     1     1     0     0     0     0     0     0
     1     0     1     0     1     0     1     0     0     0     0     1     1     0     0     0     0
     0     0     0     0     0     0     0     1     0     0     1     0     0     1     1     0     0
     1     1     0     0     1     0     0     0     0     1     0     0     1     0     0     1     0
     0     0     0     0     0     1     0     0     0     0     1    0     0     0     1     0     1
     0     0     0     0     0     0     0     0     1     1     0     1     0     0     0     1     0
     0     0     0     1     0     1     0     0     0     0    0     0     0     1     0     0     1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

In Table 5.6, column 44 represents the LSP indicator y44, which maintains a 

route x4->2->3->1. In this column, g44,4=g44,7 = g44,9 = 1. In Table 5.4, the rows 4, 7, and 9 

respectively, represent links 31, 42, and 23. This implies that flow y44 = x4->2->3->1 

passes through links C31, C42, and C23. 

The sum of the individual flows between the origin-destination pair is equal 

to the O-D flow, which is represented by the equality constraint equations of Table 

5.7.  
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Table 5.7: Equality Constraints 

12 132 142 1342 1432 12

21 231 241 2431 2341 21

13 123 143 1243 1423 13

31 321 341 3421 3241 31

14 124 134 1324 1234 14

41 421 431 4231 4321 41

42 412 432

0
0
0
0
0
0

x x x x x R
x x x x x R
x x x x x R
x x x x x R
x x x x x R
x x x x x R
x x x

+ + + + − =
+ + + + − =

+ + + + − =
+ + + + − =

+ + + + − =
+ + + + − =
+ + + 4132 4312 42

24 214 234 2314 2134 24

23 213 243 2143 2413 23

32 312 342 3412 3142 32

34 314 324 3124 3214 34

43 413 423 4213 4123 43

0
0
0
0
0
0

x x R
x x x x x R
x x x x x R
x x x x x R
x x x x x R
x x x x x R

+ − =

+ + + + − =
+ + + + − =
+ + + + − =

+ + + + − =
+ + + + − =

 

After mapping with y, the equality constraints appear as follows. 

 

1 36 50 34 49 12

2 42 51 43 53 21

3 22 47 18 48 13

4 23 52 25 54 31

5 21 33 37 13 14

6 24 40 44 26 41

7 19 60 38 17 42

8 31 59 45 32 24

9 27

0
0
0
0
0
0
0
0

y y y y y R
y y y y y R
y y y y y R
y y y y y R
y y y y y R
y y y y y R
y y y y x R
y y y y y R
y y y

+ + + + − =
+ + + + − =

+ + + + − =
+ + + + − =
+ + + + − =
+ + + + − =

+ + + + − =
+ + + + − =
+ + 57 29 39 23

10 20 55 15 46 32

11 41 58 14 30 34

12 35 56 28 16 43

0
0
0
0

y y R
y y y y y R
y y y y y R
y y y y y R

+ + − =

+ + + + − =
+ + + + − =
+ + + + − =

 (5.15) 

 

The equality constraint matrix is the h(x) of the gradient projection non-linear 

program of Section 4.4. By denoting the equality matrix as H, it is derived as 

equation (5.16). 

[ ][ ] [ ] [ ]
[ ] [ ]

12 60 60 1 12 1 12 1

12 1 12 1

H Y R 0

H 0
LSP× × × ×

× ×

− =

=
   (5.16) 
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Y is a 60x1 matrix representing the sixty LSPs. H is a 12x60 matrix with 

twelve rows representing twelve equality constraints of O-D pairs. Since there are 

sixty LSPs, this equality matrix defines the sum of rates of LSPs between origin and 

destination, which is equal to the O-D traffic.This H matrix and the active 

constraints of G matrix form the Working matrix (W).  

 [ ] ActiveG
W

H
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (5.17) 

 
In our session level Monte-Carlo simulation, the Gradient Project algorithm 

uses this W matrix to optimize the traffic flow by minimizing the mean packet count 

in the network.  
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6 A Snapshot of the Algorithm 

This chapter outlines a layered view of the Providers Optimized Game in Internet 

Traffic algorithm. It combines the proposed oligopoly model to determine price of 

services, the non-linear programming technique to minimize cost (which optimizes 

the profit of the providers) and the traffic engineering rules. The chapter also 

presents performance measurement matrices, and session level Monte-Carlo 

simulation algorithm. 

6.1 The Layered View of the Algorithm 

The algorithm consists of two major mechanisms: i) price negotiation between 

an enterprise and providers, and ii) the provider’s method of computing a price. The 

signaling and control layer performs the price negotiation. The media layer routes 

traffic. A provider enforces Call Admission Control (CAC), performs optimized 

routing, deploys traffic-engineering rules, and computes cost of producing a service 

based on the media layer traffic load.  

Each provider computes traffic engineered load based on M/G/1 queuing 

analysis (See rationale in Chapter 5). This load is a CAC parameter. By this load, a 

provider also computes market capacity as per equation (3.6). Each session initiation 

request is an instance of the game. The session arrival distribution is assumed 

Poisson and the session duration distribution is assumed exponential.  When a 

session initiation request arrives, a provider first performs CAC to see whether the 

session can be supported based on the traffic engineered load of the network. If the 

session cannot be supported, a rejection is sent by appropriate SIP messages. In 

session level Monte-Carlo simulation, we model it as sending an infinite bid for the 

service. 

Figure 6.1 depicts the layered view of this algorithm: 
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Figure 6.1: Layered View of the Proposed Algorithm 

If the session can be supported, a provider first finds initial Origin-

Destination (O-D) and Destination-Origin (D-O) routes of the bi-directional flow 

based on the minimum-hop routing scheme. These initial routes are used as the 

initial value of non-linear optimization program.  By using non-linear program 

methods (Gradient Projection and Golden Section line search), providers 

approximate the optimum mean packet count in the queue system using M/M/1 

model (See rationale in Chapter 4 and 5). From this optimum mean packet count 

information, each provider develops its optimum marginal cost function. The 

provider also computes perceived market demand for adding this session and the 

market demand of the network as per equation (3.13).  
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Based on the reservation price of the enterprise, market capacity, market 

demand, and service marginal cost, the provider develops a belief function as per 

equation (3.36).  Then, the provider determines the price of service from the belief 

function based on the strategy from Table 3.3. (See Chapter 3). 

6.2 Performance Measurement Metrics 

The performance metrics are market prices of services, unit profit, expected 

unit profit, market shares of profit, market shares of throughput, and optimum 

strategies of providers. 

The following are the measurement metrics of this research in both 

homogeneous and heterogeneous service-based markets. 

The unit profit of a provider is the profit per unit duration (e.g. one second) 

measured at an instant of the steady state throughput ( Ŷ ) when the bid price and 

the marginal cost of the provider converge to p̂ and ω̂ .  

 ˆˆˆ( ) ( )u p p Yω= −  (6.1) 

The steady state mean profit or steady state mean profit is the average of the profit 

curve during the steady state. 

A provider (n) computes profit or total profit from a session as a function of the 

price (p), the marginal cost (ω), the duration (d), and the bandwidth (y) of the 

session.  Although the price and the marginal cost vary with time, profit is 

computed based on their values at each session start time. The total profit of the 

provider is the sum of profits from all ( k∀ ) sessions until the end of simulation (i.e. 

end of short-term game).  

 , , , , , , , ,( )n s t k n s t k n k n s k
k

profit p d yω
∀

= −∑  (6.2) 

Our equations to compute the profit share acquired by A.com and B.com are 

as follows: 
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%

%

A
A

A B

B
B

A B

profitMarket Share of profit
profit profit

profitMarket Share of profit
profit profit

=
+

=
+

 (6.3) 

The Network load of a provider at a time (t) is computed as the ratio between 

the provider throughput (Yn,t) and the provider physical capacity (Kn): 

 , , ,
, 12 1200

n t n t n t
n t

n

Y Y Y
Network Load

K C
ρ= = = =  (6.4) 

The Market load at a time (t) is computed as the ratio between the providers’ 

aggregate throuput and the market physcial capacity: 

   , , , , , ,

24 2400
A t B t A t B t A t B t

A B

Y Y Y Y Y Y
Market Load

K K C
+ + +

= = =
+

 (6.5) 

6.3 Session Level Monte-Carlo Simulation Algorithm  

The following steps describe the simulation algorithm.  In  

Figure 6.2, circled numbers identify the steps. 

1. The simulation starts with Market Capacity (Γ), individual Network 

physical capacity (K), Time of next session (Tnext_call), Maximum Regional 

Demand (MRD), and Current Regional Demand (CRD) values. 

2. The simulator performs the desired duration in second as specified in step 

2.  Each iteration corresponds to one time slot, which is one-tenth of a 

second. The algorithm of Figure 5-7 shows that the duration of simulation 

is one million seconds. Note that this simulation is a continuous time 

process quantized to a one-tenth of a second. A provider is identified as a 

Network Service Provider (NSP) in the figure. 

3.  In each time slot, the algorithm performs four loops for four regions. If 

current time (Tnow) is the time of next session (Tnext_call), proceed to the step 

4. If current time is the time of ending a session (Ttear_down), proceed to the 

step 5.  
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Figure 6.2: Session Level Monte-Carlo Simulation Flow Algorithm for Duopoly Market  

4. Setup: In each region, the session arrives in exponential distribution with 

a mean inter-arrival rate of 1/λ second. (Note, each iteration is one-tenth of 

a second). A session remains active in exponential distribution with a 

mean session duration of L second. The traffic demand load level in the 

network is the function of the mean arrival rate and the mean session 

duration. The simulator performs steps 4a to 4k.  
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a. Select an O-D pair with uniform distribution.  

b. Check to see whether the market demand of a class of service is 

within the maximum market demand for this class. If the market 

demand for this class is fulfilled, then the loop ends for this 

iteration in this region. Go to the step 2. 

c. If the market demand for this class of service is less than the 

maximum market demand for this class, then send Request for 

Purchase (RFP) to both providers, specifying service class, 

reservation price, and requested bandwidth. 

d. For each provider, perform call admission control (CAC) to see 

whether this session can be supported in both the O-D leg and the 

D-O leg of the route. If the session cannot be supported, send an 

infinite bid and proceed to the step 4k.  If the session can be 

supported, proceed to step 5. 

e. Select an initial origin-destination route and an initial destination-

origin route using the lowest cost routing scheme; e.g. minimum 

number of hops. 

f. Compute the anticipated market demand and initial flow matrix. 

g. Perform constrained minimization of the mean packet count for the 

M/M/1 queuing system by non-linear programming. We use 

Gradient Projection algorithm with Golden Section Line search. 

This computes the anticipated optimized routes and optimum 

mean packet count in the network. Compute anticipated change (ε) 

in the mean packet count for adding this session. 

h. Compute the marginal cost of supporting the session. 

i. Perform game theory to develop belief function or the mixed 

strategy profile. 

j. Determine a bid price from the belief function based on the 

preferred strategy and send bid to the enterprise. 



 122

k. An enterprise selects the lowest bidding provider. Setup a session 

leg in the O-D route and a session leg in the D-O route. Adjust 

provider’s current traffic flow matrix equal the anticipated traffic 

flow matrix. Determine the time of the end of this session from an 

exponential distribution with the mean duration of call (L). 

5. Tear Down 

a. Retrieve the session from the session database. Read the provider, 

O-D Pair, Class, O-D route, and D-O route of the session.  

b. Delete both the O-D and D-O legs of the session. 

Adjust the traffic flow matrix to reflect the removal of the session and go to 

step 2. 
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7 Mathematical Analyses and Validation 

This chapter presents mathematical analyses of the providers’ game 

strategies. It also validates the mathematical model by means of simulation.  The 

objective of the mathematical analyses is to determine the best strategies that 

optimize providers’ profit. 

In Chapter 3, we developed a provider’s mixed strategy profile (belief 

function) and associated parameters: service class, market capacity and demand 

functions, marginal cost functions, reservation price of an enterprise, profit 

functions, and a set of game strategies. We also explained the properties of the belief 

function. 

In Chapter 4, we developed a mathematical optimization method to 

maximize a provider’s profit by minimizing marginal cost.  This is performed by 

minimizing the mean packet count in the M/M/1 queue system of the network.  

In Chapter 5, we designed a network topology, specified traffic-engineering 

rules, assigned network capacity, designed traffic routes, and developed associated 

non-linear programming matrices. 

In this chapter, we will synthesize the belief functions and game strategies of 

Chapter 3 with the M/M/1 optimum mean packet count of Chapter 4 using the 

network topology and traffic flows of Chapter 5.  We will assign reservation price 

and service cost coefficient values in Sections 7.1 and 7.2. In Sections 7.3 and 7.4, 

respectively, we will analyze homogeneous and heterogeneous service-based 

markets.  
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7.1 The Reservation Price 

We assume that the homogenous service-based market only supports Green 

service. Since it is easier to analyze results from a perspective of 100 percent, we 

assign a reservation price of $100 for Green service in the homogenous service-based 

market. 

According to the network design of Chapter 5, the demand for Blue, Green, 

and Red services is 20%, 30%, and 40% of total physical capacity, respectively.  

These demands are 22.22%, 33.33%, and 44.44% of total market capacity. For 

heterogeneous service-based market, we assign reservation prices for Blue, Green, 

and Red services based on the percentage of market demand by the following 

equation: 

(22.22%)*160 (33.33%)*100 (44.44%)*70 100+ + =  (7.1) 

This equation ensures that the reservation prices of Blue and Red services are 

appropriately scaled with the market demand share of each service. The following 

table presents the reservation price for all these services as per equation (7.1). 

Table 7.1: The Reservation price of different types of services 

Blue = $160 Green=$100 Red = $70 
 

7.2 Service Cost Coefficient Values in Marginal Cost 

In Chapter 3, we developed marginal cost function in relation to service cost 

coefficients, providers’ fixed costs, and the optimized mean packet count in 

networks. We also presented rationales for these cost parameters. In this section, we 

develop marginal cost as a function of network throughput and assign appropriate 

service cost coefficient values to Blue, Green, and Red services. 
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7.2.1 Analytical Marginal Cost Function 

In Figure 7.1, the provider network connects to four regions.  Network 

throughput is the total traffic entering or leaving a provider’s network because of 

the assumed lossless nature. The following equation represents the throughput of 

this network:  

, , , , ,
Chicago Dallas Atlanta Newyork

n t n t n t n t n tY y y y y= + + +    (7.2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 7.1:  Uniform traffic flow across the network in optimized load 

A large set of session level Monte-Carlo simulations verifies our assumption 

in this analysis that the traffic is equally load-balanced among network links by 

optimum routing during the steady state operating point. In Figure 7.1, the provider 

has 12 bidirectional links. When the traffic is equally load-balanced, each 

unidirectional link (l) will transport 1/12 of the total throughput of the network: 
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, 12

n t
l t

Y
y =  (7.3) 

In Section 4.3, we developed an equation for the mean packet count in the 

network queue system. From equations (3.58) and (7.3), we derive the mean packet 

count in this network for the optimized link throughput. 
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The change in the optimum mean packet count in the network due to the 

change in network throughput can be derived from equation (7.4) by considering 

the optimum mean packet count in the queue system as a continuous function of 

throughput (Y): 
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Below, we rewrite the marginal cost equation (3.17) for reference: 
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Equations  (7.5) and (3.17) yield the following analytical marginal cost 

equation: 
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7.2.2 Simulated Marginal Cost Function 

In our research, the throughput (Y) is the total amount of traffic served by the 

network per unit of time. It is the sum of the egress traffic (Yn,t) towards the 

enterprises. Change in optimum packet count is measured for future—if the 

requested bid is successful, traffic will be added when the session is activated. Thus, 

change in optimum packet is approximated as follows: 
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Each session consists of bi-directional connections (O-D and D-O). When a 

session is activated or deactivated, the change in production is the sum of the 

sessions’ bandwidths in both directions. In the simulation, for each session request, 

we compute * *
, 1 ,

ˆ ˆ( )n t n tM M+ − . We then compute 
*
,

,

ˆ
n t

n t

M
Y

∂
∂

 as * *
, 1 ,

ˆ ˆ( )n t n tM M+ − divided by the 

sum of the session’s bandwidth (b) in both directions.   
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 (7.8) 

This use of this near sighted one-step history makes our game a myopic 

Markovian-Bayesian game. 

The following is the simulation marginal cost equation: 
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 (7.9) 
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7.2.3 Service Cost Coefficient Values 

In Section 3.3.2, we described the rationale of having a unique service cost 

coefficient for each service class. We also noted that the service cost coefficient 

reflects the cost of security technology used to provide a service.  The higher the 

security level required, the higher the processing cost for enforcing deep packet 

inspection. The higher the traffic load, the greater the time required for the deep 

packet inspection.  

We have no service cost coefficient values at this time.  In this section, we 

assign service cost coefficient values to Blue, Green, and Red services based on the 

following discussion: 
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Figure 7.2: Marginal Cost as a Function of Service Cost Coefficient and Network Load 

Figure 7.2 depicts the marginal cost as a function of network throughput for 

service cost coefficient values.  The marginal cost is plotted against network load. 
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The Blue service provides the highest level of security. Thus, the cost of 

technology used for Blue is likely to be very high. We assume that the Blue service 

will exact a high penalty for operating in a high network load. This is because the 

higher the network load, the more the delay is added to application (e.g. VoIP) 

packets during deep packet inspection to enforce a high level of security.  In other 

words, this is a result of the greater delay accompanying the greater share of Blue 

network load. We will emulate this penalty by having a high Blue cost coefficient 

value such that the marginal cost exceeds the reservation price at a certain network 

load.  In Figure 7.2, the left plot shows that for a service cost coefficient (δm) of 1.0, 

the marginal cost exceeds Blue reservation Price (Ωb = 160) at around 73% of 

network load.  We select Blue service cost coefficient (δb) of 1.0 because it is a unit 

number and it emulates providers’ penalty at a reasonable load around 70%11. 

Green service provides the medium level of security. We want to select a 

Green cost coefficient suitably scaled down from the Blue cost coefficient. We 

assume that the Green service will cause minimal penalty for operating in a high 

network load.  At one-tenth of a Blue cost coefficient, a marginal cost causes minimal 

impact to the Green service because as shown in Figure 7.2  right-hand plot, the 

Green marginal cost exceeds the Green reservation price (Ωg = 100) only above 

88.5% of network load for δ g = 0.10. Therefore, we select a Green cost coefficient (δg) 

of 0.10.  

We assume that the lowest security requiring Red service will not cause any 

penalty for operating in a high network load.  As Green cost coefficient is 1/10th of 

the Blue cost coefficient, we scale Red cost coefficient to 1/10th of the Green cost 

coefficient. Figure 7.2, right-hand plot, illustrates that at δ r = 0.01, the marginal cost 

always remains well below the Red reservation price (Ωr = 70); thus, a provider does 

not pay any penalty for operating in high load. 

 

                                                 
11 The magic number 70% is often used as a safe operating load for the Internet because of its wide acceptance 
in PSTN network based on M/M/1 queuing theory. 



 130

Table 7.2: The Service Cost Coefficient values 

Class of Service Service Cost Coefficient 
Blue (b) δ b = 1.00 
Green (g) δ g = 0.10 
Red (r) δ r = 0.01 

 

Note that the major part of this research is a comparative study of two 

different providers’ strategies. Since both providers use same service cost coefficient 

set, a service cost coefficient value does not influence the comparative results of 

providers’ strategies.  
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7.3 Homogeneous Service-based Market 

In this section, we develop analytical models of market price, providers’ bid 

price, and providers’ profit for homogeneous service-based market and validate 

analytical results with by means of session level Monte-Carlo simulation. 

Section 7.3.1 concentrates on a market where both providers adopt the 

Rejection Neutral strategy. In Section 7.3.2, we develop an analytical model of general 

market price function for all strategies. We present analyses of providers’ profit and 

throughputs when both adopt identical strategies in Section 7.3.3 and non-identical 

strategies in Section 7.3.4.   

A strategy set that optimizes all providers’ profit is the best strategy. As 

stated in Chapter 1, the Bayesian-Nash equilibrium strategy set represents such a 

strategy set. According to [2], a strategy set is Pareto efficient if it is impossible to 

improve a providers’ profit without harming another provider.  In section 7.3.5, we 

will explore an analytical method to find the Bayesian Nash equilibrium and the 

Pareto efficient outcome strategy set. 

In Chapter 5, we discussed the parameters of this research in detail. We 

summarize the main parameters of both the simulation and the analytical study of 

Section 7.3 in Table 7.3 for reference. 

Table 7.3: Parameters for homogeneous service-based network  

The Class of Service Homogeneous: Green 
Market Duopoly 
Strategy Strategy set of  

Figure 7.3 
Network Topology and TE Rules The topology and Rules of Chapter 5 
Reservation Price (Ω) $100.00 
The service cost coefficient (δs)   0.10 
Provider fixed cost coefficient (θ)  10.0 
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Figure 7.3: Strategy set of experiments 

7.3.1 Study of the Rejection Neutral Strategy Set 

The objective of this section is to develop a mathematical model of the market 

price—when both providers adopt the Rejection Neutral (RN) strategy—and, to 

measure providers’ profit and throughput.  Another objective is to determine a 

desired load that optimizes a provider’s profit using the Rejection Neutral strategy. 

Let us assume that the strategy set adopted by A.com and B.com is as follows 

such that 0.5j k
A Aγ γ= = : 

Provider Strategy Rejection 
Probability (γ) 

A.com 
, , , , , , ,: ( ( ) )bid bid j

Aj A g t A g t A g t A gstrategy h p F p p γ←⎯⎯ ≤ =  0.5j
Aγ =  

B.com 
, , , , , , ,: ( ( ) )bid bid k

Bk B g t B g t B g t B gstrategy h p F p p γ←⎯⎯ ≤ =  0.5k
Bγ =  

 

Assume at a steady state market demand ( *Δ ), throughput of A and B are AY  

and BY . Since they adopt the same strategy, we expect that both will enjoy a fair 

share of profit and throughput: 

Price (p)

F(p)

1.0

0.8

0.5

0.2

Very High RejectionHigh Rejection

Low Rejection

Very Low Rejection
No Rejection Absolute Rejection

Mixed Strategy Profile: Rejection Probability

Price (p)

F(p)

1.0

0.8

0.5

0.2

Very High RejectionHigh Rejection

Low Rejection

Very Low Rejection
No Rejection Absolute Rejection

Mixed Strategy Profile: Rejection Probability



 133

 
*

* * *

*

* *

2
(.) (.)

A B

A B

Y Y Y

Y
u u

= =

Δ =

=

 (7.10) 

The belief function of equation (3.36)  for a duopoly (n = 2) market is as 

follows: 
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Here, p is a price of a service,  ω(.) is the marginal cost function of a provider, 

Δ(.) is the provider’s market demand function, Mn* is the optimum mean packet 

count in the network, Y is the provider throughput or production, and TEρ  is the 

traffic-engineered load. 

As described in Chapter 3, F(p) is a continuous function of price. Thus, the 

probability density function of the mixed strategy profile is obtained by 

differentiating (7.11) with respect to p and performing algebra as follows: 
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The No Rejection strategy price ( Minp ) of a provider is the lower bound price. 

The Absolute Rejection strategy price, or the reservation price (Ω), is the upper bound 
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price. This implies that the price of a service (s) at an instant of time (t) is bounded 

by Minp  and Ω:  

 , , , , ,[ , ]n s t Min n s t sp p∈ Ω  (7.13) 

From equations (7.12)-(7.13), the mean price of a service ( , ,n s tp ) is the Rejection 

Neutral strategy price and it is derived by the following equations: 
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 (7.18) 

For the network topology described in Chapter 5 and presented in Figure 7.1, 

the market physical capacity (K) is represented as a function of the link capacity in 

equation (7.19). Here, all the network links are bi-directional and have equal 

physical capacity (C). 

 12K C=  (7.19) 

In Chapter 4, we described the optimum mean packet count in the network as 

a function of a provider’s network throughput (Y) at each instant of time. 

 *
, ,( )n t n tM f Y←  (7.20) 
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Equations (7.18) - (7.20) yield the following: 
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     (7.21) 

For Green service, by denoting the service cost coefficient (δs) of Green as 1
10

 

and a provider’s fixed cost coefficient as 10, the marginal cost function of the 

network as per equation (7.6) can be represented as follows:  
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This equation (7.22) represents the marginal cost function of the mean price 

equation  (7.18). 

A provider needs to estimate the market demand function Δ(Y) to compute 

the Nash equilibrium price of service. The rationale for the following market 

demand function was presented in Chapter 3. Applying the Traffic Engineering Rule 

of Chapter 5 to equation (3.13) for a duopoly market yields the following network 

demand function: 
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(7.23) 

In this analysis, we consider MaxΔ  as follows: 

 1.90Max TE KρΔ =  (7.24) 

Here 1.90 represents the market demand when the lowest price provider sells 

100% of its market capacity and the other provider sells 90% of its market capacity. 

This is equivalent to 90% of the physical capacity of the lowest priced provider and 

81% of the physical capacity of the higher priced provider. 
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We increase demand from (0.90)(1200)TE Kρ =  Mbps to MaxΔ  = (1.90)(0.90)(1200) 

Mbps to compute the market price of Green service and the providers’ marginal 

cost, unit profit, and network loads. The network load of a provider at an instant of 

time is the ratio of the throughput and the physical capacity (Kn) of the provider. 

 , , ,
, , 12 1200

n t n t n t
Network n t

n

Y Y Y
K C

ρ = = =  (7.25) 

Note that a provider cannot change the market demand; however, it can 

change its network load by changing its strategy. In this section, we do not change 

the strategy; thus, network load is a linear function of market demand. When both 

providers adopt the same strategy, both of them will enjoy fair profit shares and fair 

throughput shares. Thus, analysis of one provider is sufficient.  By using the above 

equations, we sketch the analytical results for a provider that adopts the Rejection 

Neutral strategy for a homogeneous market (Green: Ωg = 100) in Figure 7.4. 
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Figure 7.4: Analytical Result for Rejection Neutral Strategy (Homogeneous Service) 
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In Figure 7.4, Plot 1 illustrates the increase in the network load due to the 

increase in market demand as per equations (7.23)-(7.25).  Market demand increases 

as the multiplicative (1.00 to 1.90) of a provider’s market capacity as shown on the x-

axis. (Note, here we use a very high market demand load to observe clearly the 

concavity of the profit function). Plot 2 depicts the analytical Rejection Neutral price. 

The mean price logarithmically increases to the customer’s reservation price as load 

increases.  The analytical marginal cost function depicted in Plot 3 increases 

exponentially. At a high load, the marginal cost increases rapidly, and so does the 

price of a service. 

 

Proposition: As network utilization converges to 100%, the price approaches 

infinity.   
*1.0 Meanpρ ⎯⎯→ ⇒ ⎯⎯→∞  

Proof:  

As network utilization converges to 100%, 
*

1.0 * * *( ) 0 ( )
12 mean
YC M Y pρ ω=− ⎯⎯⎯→ ⇒ ⎯⎯→∞⇒ ⎯⎯→∞⇒ ⎯⎯→∞    

Because price approaches infinity when network load converges to 1.0, we 

prevent network load from converging to 100% of network capacity by 

implementing Call Admission Control (CAC) and capacity constraint in optimized 

routing that enforced Traffic Engineering Rules of Chapter 5. 

 Chapter 3 defines the unit profit as follows: The unit profit of a provider is the 

profit per unit duration (e.g. one second) measured at an instant of the steady state 

throughput ( Ŷ ) when the bid price and the marginal cost of the provider converge 

to p̂ and ω̂ .  

 ˆˆˆ( ) ( )u p p Yω= −  (7.26) 

From the above, we compute the unit profit as follows, where tp represents 

equation (7.18). 
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In Figure 7.4, the Plot 4 illustrates the unit profit of a provider with respect to 

the increase in traffic demand. This plot exhibits all three main properties of a profit 

function: 

i) it monotonically increases with the throughput to a maximum point. 

ii)  it is bound because the profit cannot be increased beyond the 

providers’ load of 0.7704. 

iii)  it is concave because the cost of producing a service increases in high 

throughput causing diminishing return. The following is true for 

network load ( nρ ): 

 ,1 ,2 ,1 ,2( (1 ) ) ( ) (1 ) ( ), [0,1]n n n nu u uψρ ψ ρ ψ ρ ψ ρ ψ+ − ≥ + − ∈  (7.28) 

The increase in the load increases the market demand and the marginal cost 

to provide the service; thus, the provider’s price of service increases. The price 

increases faster than the marginal cost up to a load of 0.7704. Beyond this load, the 

rate of marginal cost increase is faster than that of price. Therefore, profit diminishes 

beyond 0.7704.  In this load, the provider perceives that the market demand is equal 

to1.712 Kρ . 

  From these results, we observe that for the network scenario of Chapter 5 and 

parameters of this chapter, a provider should maintain a load of 0.7704 to optimize 

profit. Table 7.4 summarizes the analytical optimum values. 

Table 7.4: Analytical Result (Homogeneous Service Market) 

Market Demand 1.712ρK 
Network Load 0.7704 
Price 89.0357 
Marginal Cost 31.6 
Unit Profit 5.31e4 
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Figure 7.5 compares the analytical and session level Monte-Carlo simulation 

results of A.com. The asterisks represent the simulation results. The curved lines 

represent the analytical results.  Note that these analytical results also represent 

B.com.  The differences in the simulation results are not significant enough to plot 

for both A.com and B.com.  
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Figure 7.5: A.com: Analytical vs. Simulated Results ( {A.com RN, B.com RN}) 

The figure shows that the simulated mean price and the analytical mean price 

were similar. The simulated marginal cost was slightly higher than the analytical 

marginal cost and the simulated profit was slightly lower than the analytical unity 

profit. Although we applied the same parameters and assumptions for both 

analytical and simulation models, the simulation model was subjected to the 

oscillatory traffic load due to the SIP call arrivals and departures.  As described in 

Chapter 3, the marginal cost is a function of the optimum mean packet count and the 

change in mean packet count in the network queue system. Due to the high 

oscillation in the traffic load in simulation, the marginal cost was higher in 
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simulation than the analytical model. Thus, the profit curve of the simulation model 

was slightly lower.  Note that in the above simulation plots, we illustrate the mean 

of the oscillatory profit and marginal cost; we do not indicate their variances. 

Nevertheless, the simulation and analytical results are close to each other. Since 

these simulation results were approximations of the analytical results, the proposed 

model and the implementation in MATLAB were verified. 

7.3.2  General Equation of Bid Price for All Strategies 

In this section, we develop a bid price function that can be used to determine 

market price for any strategy for a homogenous service-based network. Assume in a 

game instant (t), if a provider (n) selects a bid ( , ,
bid
n s tp ) for a class of service (s), the 

rejection probability isγ .  In the context of a belief function, this rejection probability 

can be stated by the following equation: 

 , ,

, , ,
, , , , , ,( )

bid
n s t

Min n s t

p

n s t n s t n s tp
f p dpγ = ∫  (7.29) 

 The rejection probability can be found as a function of the parameters of the 

proposed model though the following equations: 
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By algebraic manipulation, we find the bid price equation as follows: 
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Min n s t n s t n t n t TE s n s t n t

TE n t

p M
p M Y K M

K Y

γ
ω

ω ρ ω
ρ

−
⎡ ⎤
⎢ ⎥
⎢ ⎥= + −⎢ ⎥⎛ ⎞− Δ − Ω −⎢ ⎥⎜ ⎟⎜ ⎟− Δ⎢ ⎥⎝ ⎠⎣ ⎦

(7.34) 

 The intersection of two bid price functions of two providers for a market 

demand is the steady state market price. Thus, this bid price function allows a 

provider to determine the market price function and expected profit for a set of 

strategies. 

7.3.3 Study of Identical Strategies 

In this section, we analytically determine the market price, the marginal cost 

of a provider, profit curve of providers in different network load, and the optimum 

throughput of network when providers adopt identical strategies.  Let us assume 

that the strategy set adopted by A.com and B.com is as follows such that j k
A Aγ γ= : 

Provider Strategy Rejection 
Probability (γ) 

A.com 
, , , , , , ,: ( ( ) )bid bid j

Aj A g t A g t A g t A gstrategy h p F p p γ←⎯⎯ ≤ =  j
Aγ  

B.com 
, , , , , , ,: ( ( ) )bid bid k

Bk B g t B g t B g t B gstrategy h p F p p γ←⎯⎯ ≤ =  k
Bγ  

 

Assume at a steady state market demand ( *Δ ), throughput of A and B are AY  

and BY . At the steady state, the bid prices of A.com and B.com converge at the 

steady state market price ( *
, ,Market s tp ). This price can be found by solving bid price 

functions of A.com and B.com. 

 *
, , , , , , , ,( ) ( )bid bid

Market s t A s t A t B s t B tp p Y p Y= =  (7.35) 

Since they adopt the same strategy, we expect that both will enjoy a fair share 

of profit and throughput: 
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A B

A B

Y Y Y

Y
u u

= =

Δ =

=

 (7.36) 

Figure 7.6 and Figure 7.7 compare analytical and simulated market price, 

marginal cost and profit of A.com when both A.com and B.com adopt the Very High 

Rejection (VHR) strategy (Figure 7.6) or the Very Low Rejection (VLR) strategy (Figure 

7.7). The results for B.com are nearly identical to those of A.com; thus, these 

analytical results also represent B.com.  The differences in the simulation results are 

not significant enough to plot for both A.com and B.com 
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Figure 7.6: Analytical vs. Simulated Results ({A.com VHR, B.com VHR}) 

In both figures, the upper plot compares the analytical market price 

(equations (7.34) and (7.35)) with the simulated market price. The center plot 

compares a provider’s analytical marginal cost (equation (7.22)) with A.com’s 
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simulated mean steady state marginal cost. The lower plot compares analytical unit 

profit (equation (7.27)) with the simulated mean steady state unit profit of A.com. 

The analytical and simulation price, marginal cost, and profit are close to each other. 

Thus, simulation results verify analytical results.  
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Figure 7.7: Analytical vs. Simulated Results (Strategy: {A.com VLR, B.com VLR})  

Comparison of Figure 7.6 and Figure 7.7 shows that both providers achieved 

higher profit for adopting the Very High Rejection (VHR) strategy set than that of the 

Very Low Rejection (VLR) strategy set. This is because the Very High Rejection strategy 

set drove the market price higher than that of the Very Low Rejection strategy set; 

however, marginal costs in both cases remain close to each other in identical loads. 

Like the Rejection Neutral strategies, the optimum network loads were around 0.74 

~0.77 in the Very High Rejection and the Very Low Rejection strategy sets. 
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7.3.4 Study of Non-Identical Strategy Set 

In this section, we analytically determine the market price, the marginal cost 

of a provider, profit curve of providers in different network load, and the optimum 

throughput of network when providers adopt non-identical strategies.  Let us 

assume that the strategy set adopted by A.com and B.com is as follows such that 
j k

A Aγ γ≠ : 

Provider Strategy Rejection 
Probability (γ) 

A.com 
, , , , , , ,: ( ( ) )bid bid j

Aj A g t A g t A g t A gstrategy h p F p p γ←⎯⎯ ≤ =  j
Aγ  

B.com 
, , , , , , ,: ( ( ) )bid bid k

Bk B g t B g t B g t B gstrategy h p F p p γ←⎯⎯ ≤ =  k
Bγ  

 

When providers adopt non-identical strategies, their bid prices will converge 

to the market price in steady state; however, their profit and throughputs will be 

different. In this section, we develop profit functions for both A.com and B.com.  

 Assume at a steady state market demand ( *Δ ), throughput of A.com and 

B.com are *
AY  and *

BY .  Since they adopt different strategies, we expect that their 

steady state throughput and profit will not be the same.  

 

* *

* * *

* *(.) (.)

A B

A B

A B

Y Y

Y Y

u u

≠

Δ = +

≠

 (7.37)  

The bid price of A.com and B.com can be represented by the following equations: 
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(2 ( ))

j
A sbid

A s t A s t A t
Min A s t A g t A t A t TE s A s t A t

TE A t

p Y
p Y Y K Y

K Y
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ω

ω ρ ω
ρ

−
⎡ ⎤
⎢ ⎥
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(7.38) 
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 (7.39) 

At the steady state, the bid prices of A.com and B.com converge at the steady 

state market price ( *
, ,Market s tp ).  

 * * *
, , , , , , , ,( ) ( )bid bid

Market s t A s t A t B s t B tp p Y p Y= =  (7.40) 

Here, by solving two equations representing bid functions of A.com and 

B.com, we can find market price at *
,A tY  and * * *

, ,B t A tY Y= Δ − . 

For the strategy set ( ,Aj Bkh h ) of A.com and B.com (i.e. rejection probability set 

{ , ,,j k
A s B sγ γ }, equations (7.38)-(7.40) can be solved to find unique *

,A tY . By using A.com’s  

steady state throughput ( *
,A tY ) and B.com’s steady state throughput ( * * *

, ,B t A tY Y= Δ − ) 

we can determine the steady state market price (equations (7.39) and (7.40)) , the 

marginal cost (equation (7.6)), and unity profit (equation (6.1)) of both the providers.  

 Providers’ bid price equations (7.38) and (7.39) are hyperbolic functions. In 

addition, the marginal cost equations ( *
,( )n tYω ) are also hyperbolic function. Solving 

equations (7.38)-(7.40) to find *
,A tY  by algebraic manipulation is seemingly intractable. 

In addition, we need to find a point where  * *
, , , , , ,( ) ( )bid bid

A s t A t B s t B tp Y and p Y  intersects each 

other. Therefore, we solve them by numerical analysis method using MATLAB.  

 We develop an array of A.com’s bid prices (equation (7.38) ) for a range of 

throughput ( *
,A tY ). Then, we develop an array of B.com bid prices (equation (7.39)) 

for a range of throughput ( * * *
, ,B t A tY Y= Δ − ). By using MATLAB search algorithm we 

find *
,A tY  when , , , , , ,( ) ( )bid bid

A s t A t B s t B tp Y p Y=  within the window of continuous hyperbolic 

function in the market demand range.   



 146

Figure 7.8 shows that bid prices of A.com and B.com converge at the Green 

market price of $90.7 at an A.com throughput of 984 Mbps when A.com adopts the 

Very High Rejection strategy and B.com adopts the Very Low Rejection strategy in a 

70% market load. In this case, the throughput of B.com is 696 Mbps. Note that the 

B.com’s throughput is less than the throughput of A.com because of B.com’s higher 

rejection probability.  
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Figure 7.8: Solving Non-Identical Strategies Bid Price Equations by Numerical Analysis 
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Figure 7.9 presents analytical values for the strategy set { ,Aj Bjh VLR h VHR= = } 

and validates with simulation results. 
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Figure 7.9: Comparison of Dissimilar strategies 

A.com’s lower rejection strategy caused it to operate in a smaller optimum 

profit than that of B.com. In the lower plot of Figure 7.9, A.com’s optimum 

throughput (around 67%) is lower than B.com throughput (around 80%).  Here, 

higher rejection strategy yields higher optimum profit; thus, it is the dominant 

strategy. Note that when both providers played the VHR strategies, their unit profit 

were higher (more than 6e4 in Figure 7.6) in comparison to their unit profit (less 

than 5e4 in Figure 7.7) for both playing the VLR strategies. These results further 

strengthen our argument of the VHR being a dominant strategy. 
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7.3.5 Bayesian-Nash and Pareto-Efficient Strategy 

In the Bayesian-Nash equilibrium, a provider maximizes their expected profit 

[50].  A strategy space  1 2( , ,..., )jStrategy h h h=  constitutes a Bayesian-Nash 

equilibrium of a game [{ . , . },{ , },{ , }]A B A BG A com B com Strategy Strategy u u=  for every j = 

1, …, J such that: 
* * *[ ( , )] [ ( , )]j

A Aj Bj A Aj BjE u h h E u h h∀≥ .    (7.41) 

 To find a Bayesian-Nash equilibrium, we need to find the best strategy of 

A.com *{ }Ajh maximizing its expected profit when B.com adopts its best strategy 

*{ }Bjh . Note that, in this strategy set both providers optimize their expected profit. 

Since market demand varies and the market demand patterns are unknown, 

we show a framework to locate a Bayesian-Nash equilibrium based on a 

hypothetical market load distribution. We assume that the market demand varies 

from 50% to 80% of market capacity and the demand pattern represents the discrete 

pseudo Gaussian Normal distribution with prob(ρMarket) ~N[0.65,0.01]:  

 

2( 0.65)

2(0.01)1( ) exp
2 (0.01)

Market

Marketprob
ρ

ρ
π

−
−

=  (7.42) 

Figure 7.10 illustrates the market load probability density function (pdf) that 

indicates market demand probability. This distributions sums to 1.0 within 

ρMarket~[.5, .8]. 
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Figure 7.10: Probability Density Funciton (pdf) of Market Load 
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We compute the expected unit profit as follows: 
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A Market A
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ρ

ρ

ρ
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∑
 (7.43) 

The expected unit profit pair ( [ (.)] | , [ (.)] |A A B BE u E uγ γ ) of A.com and B.com for 

each strategy set ( ,A Bγ γ ) is presented in Table 7.5. 

Table 7.5:  Expected Unit Profit of Providers for different combination of strategies. 

 B.com 
hnj  VLR LR RN HR VHR 

VLR (.50,.50) (.54,.55) (.57,.58) (.60,.61) (.66,.73) 
LR (.55,.54) (.59,.59) (.62,.62) (.65,.66) (.74,.77) 
RN (.58,.57) (.62,.62) (.65,.65) (.69,.69) (.79,.80) 
HR (.61,.60) (.66,.65) (.69,.69) (.73,.73) (.84,.85) 

 
 
A.com 

VHR (.73,.66) (.77,.74) (.80,.79) (.85,.84) (1.00,1.00)√√ 
 

The table shows that higher rejection strategies (i.e. higher rejection 

probability) yield higher expected profit compared to lower rejection strategies. The 

Very High Rejection strategy yields highest profit of all other strategies. Thus, the 

Very High Rejection is the dominant strategy of this game. 

In addition, Table 7.5 shows that for strategies , { , , , , }j
n jh VLR LR RN HR VHR∀ =  

the following is true for A.com: 

 * * *
_ _ _ _ _ _ _ _ _[ ( , )] [ ( , )]j

A A Very high Rejection B Very High Rejection A Aj B Very High RejectionE u h h E u h h∀≥  (7.44) 

This implies that the Bayesian-Nash equilibrium strategy set for both 

providers is {Very High Rejection, Very High Rejection}, which is marked by √√ in 

Table 7.5. From the {VHR, VHR} strategy set, if a provider (e.g. A.com ) switches to  

another strategy in the last column by moving upward, it hurts its expected profit. 
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Figure 7.11: 2D-Plot: Analytical  Bayesian Nash Equilibrium in Homogeneous Market 

 

Figure 7.11 provides a pictorial representation of the dominant strategy 

plotting row five (left hand figure) and column five (right hand figure) of Table 7.5. 

The left-hand figure depicts the normalized expected unity profit of both providers 

when A.com adopts VHR strategy and B.com changes strategy from VLR to VHR. 

The plot shows that VHR strategy is the dominant strategy. The right hand figure 

plots the normalized expected profit when B.com adopts VHR strategy and A.com 

changes strategy from VLR to VHR. Again, the VHR is the dominant strategy. The 

figure also identifies the Nash Equilibrium strategy set {VHR, VHR} because if any 

provider changes its strategy from this strategy, it will hurt both of them. 
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The strategy set {VHR, VHR} is also the Unique Bayesian Nash Equilibrium 

among these strategies because there is no other Bayesian Nash Equilibrium in this 

game.  

 Similarly, if B.com switches to another strategy in the bottom row moving 

left from √√ combination, it hurts its expected profit.  

 * * *
_ _ _ _ _ _ _ _ _[ ( , )] [ ( , )]j

B A Very high Rejection B Very High Rejection B A Very High Rejection BjE u h h E u h h∀≥  (7.45) 

In this scenario, the A.com and B.com profit are equivalent when they adopt 

the same strategy. 
* * * *

_ _ _ _ _ _ _ _ _ _ _ _[ ( , )] [ ( , )]A A Very high Rejection B Very High Rejection B A Very high Rejection B Very High RejectionE u h h E u h h⇔  

 This equilibrium does not imply that two providers will always enjoy fair 

market share at a Nash Equilibrium strategy set. In our study, providers enjoy fair 

market share at the Nash Equilibrium strategy set because the network topology, 

traffic flow paths, network capacity, and traffic engineering rules are identical for 

both providers. 

 The strategy set {Very High Rejection, Very High Rejection} is a Pareto efficient 

outcome strategy set because there is no other strategy set (α ) to meet the following 

criterion with strict inequality for at least one strategy (j): 

 ( ) ( { _ _ , _ _ })j ju u a Very High Rejection Very High Rejection jα > = ∀  (7.46) 

This strategy set yields the Pareto-efficient outcome when averaged across the 

market demand profiles of Pseudo-Gaussian Normal (N[.85,0.01]) depicted in  

Figure 7.10. However, this set is not safe to adopt because a provider can change its 

strategy to Low Rejection strategy in low market demand to obtain higher profit as 

described in Section 8.1.4.1, where the safe strategy set is identified as {Rejection 

Neutral, Rejection Neutral}. 

We can graphically view the Nash Equilibrium in 3-D plot.   

Both upper and lower plots in Figure 7.12 represent the same picture viewed 

from different angles. There are two surfaces in each plot representing the 

normalized expected unit profit of A.com and B.com. The A.com’s rejection 
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probabilities are input values on the x-axis. B.com’s rejection probabilities are input 

values in y-axis. The z-axis represents the normalized unit profit. 
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Figure 7.12: 3D Plot: Analytical Bayesian Nash Equilibrium in Homogeneous Market 

We introduce this figure to illustrate Nash Equilibriums and to determine 

whether the unique Nash Equilibrium and Pareto-efficient outcome strategy set 

exists. The figures show that the unique Bayesian Nash equilibrium and Parteto-

efficient outcome strategies are at * *0.95, 0.95A Bγ γ= = . This can be understood by 

viewing only one peak on this surface at ( * *0.95, 0.95A Bγ γ= = )  and observing a 

decrease in normalized expected unit profit while moving from ( * *0.95, 0.95A Bγ γ= = ) 

to lower values of rejection probability either in x-axis or y-axis. 
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7.4 Heterogeneous Service-based Market 

In this section, we develop analytical models of market price, providers’ bid 

price, and providers’ profit for heterogeneous service-based market and validate 

analytical values by simulation results. Section 7.4.1 studies a market in which both 

providers adopt the Rejection Neutral strategy, and Section 7.4.1.2 presents results 

when two providers adopt other identical strategies.  

 Table 7.6 summarizes the main parameters of the analytical studies: 

Table 7.6: Summary of Parameter for Heterogeneous services 

The Class of Service Heterogeneous: Blue, Green, Red 
Market Duopoly 
Strategy Strategy set of Figure 7-3 
Network Topology and TE Rules The topology and Rules of Chapter 5 

Blue = $160.00 
Green = $100.00 

Reservation Price (Ω) 

Red = $70.00 
Blue = 1.0 
Green = 0.10 

Service cost coefficients (δs)   

Red = 0.01 
Product rule Service cannot be switched. For example, 

an application requiring Blue security 
cannot switch to Green security. 

Provider fixed cost coefficient (θ)  10.0 

7.4.1 Study of Identical Strategy Set 

In this section, we analytically determine the market price, the marginal cost 

to a provider, profit curve of providers in different network load, and the optimum 

throughput of network when providers adopt identical strategy sets.  We also 

compare the analytical results with those from simulations. 

Let us assume that at a steady state market demand ( *Δ ), throughputs of A 

and B are AY  and BY . Since they adopt the same strategy set, we expect that both will 

enjoy fair share of profit and throughput. Each service class throughput will be 

exactly scaled to the percentage of traffic type in the market. 
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 (7.47) 

In a steady state market, bid prices of both providers for each service class 

will converge at the market price of the service. 

 * * *
, , , , , , , ,( ) ( )Market s t A s t A t B s t B tp p Y p Y= =  (7.48) 

As stated in Chapter 3, the service cost coefficient differentiates the service 

class. We use the general bid price equation ((7.34)) of the homogeneous service-

based market for the heterogeneous service-based market by assigning appropriate 

service cost coefficients of Blue, Green, and Red services. Similarly, we assign 

appropriate service cost coefficient values in the marginal cost function (7.6) for the 

Blue, Green, and Red classes. 

We expand the profit function of (7.27) to take into the account the presence 

of Blue, Green, and Red services in the network as follows: 

 

* * * * * * * * * *
, , , , , , , , , , , , , , , , , ,

* * * * * * * * *
, , , , , , , , , , , , , , ,

(.) ( ) ( ) ( )

20 30 40( )( ) ( )( ) ( )( )
90 90 90

n n b t n b t n b t n g t n g t n g t n r t n r t n r t

n b t n b t n t n g t n g t n t n r t n r t n t

u p Y p Y p Y

p Y p Y p Y

ω ω ω

ω ω ω

= − + − + −

= − + − + −
 (7.49) 

7.4.1.1 The Rejection Neutral Strategy Set 

Let us assume that the strategy set adopted by A.com and B.com is as follows: 

Provider Strategy Rejection Probability (γ) 
A.com { , , }Ajh RN RN RN=  , , ,0.5, 0.5, 0.5j j j

A b A g A rγ γ γ= = =  
B.com { , , }Bjh RN RN RN=  , , ,0.5, 0.5, 0.5j j j

B b B g B rγ γ γ= = =  
 

The Rejection Neutral bid price for each service class can be obtained by 

appropriately assigning service cost coefficient values from Table 7.6 to the equation 

(7.50).  
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 Figure 7.13 plots the analytical values of market price, provider’s marginal 

cost, and their profit with respect to market load and validates the analytical values 

by the simulation results. 
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Figure 7.13: Heterogeneous based-Market: Analytical and Simulation Results (RN strategy sets) 

The asterisks in the figure represent simulation results and the continuous 

curved lines represent analytical results. All plots show that the simulated results 

approximated the analytical results.  The curve of Plot 3 in Figure 7.13 exhibits all 

three properties (monotonous, bound, and concave) of the profit function.  This 
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function shows that at an approximate network load of 0.7, a provider optimizes 

profit.  

Note that, depending on the traffic mix, cost function parameters, and 

reservation prices, this optimum load may be slightly different. Nevertheless, we 

emphasize that if a provider knows the traffic mix, cost function parameters, and 

reservation prices, it can determine the optimum load when applying our analytical 

model. 

7.4.1.2 Study of Other Strategy Sets 

Let us assume that the strategy set adopted by A.com and B.com is as follows: 

Provider Strategy Rejection Probability (γ) 
A.com { , , }Ajh VHR RN VLR=  , , ,0.95, 0.50, 0.05j j j

A b A g A rγ γ γ= = =  
B.com { , , }Bjh VHR RN VLR=  , , ,0.95, 0.50, 0.05j j j

B b B g B rγ γ γ= = =  
 

By appropriately assigning service cost coefficient values and the rejection 

probability values ( ,
j

n sγ ) to the equation (7.51), we find the bid price of each service 

class. 
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 (7.51) 

 

Figure 7.14 plots the analytical values of market price, provider’s marginal 

cost, and their profit with respect to market Load and validates the analytical values 

by the simulation results. 
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Figure 7.14:  Heterogeneous based-Market: Analytical and Simulation Results (Other strategy sets) 

Providers’ profit functions show that an approximate market demand load of 

0.68, each provider optimizes profit. The optimum profit and optimum network 

load of this strategy set are different from those of the last section. This difference 

implies that the optimum network load and profit depend upon the strategy choice 

of providers. 
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7.4.2 Non-Identical Strategy Set 

Determining the profit of a provider requires a knowledge of each service  

throughput ( , ,n s tY ) as shown in the following equation.  

 * * * * * * * * * *
, , , , , , , , , , , , , , , , , ,(.) ( ) ( ) ( )n n b t n b t n b t n g t n g t n g t n r t n r t n r tu p Y p Y p Yω ω ω= − + − + −  (7.52) 

The bid prices are a function of a network throughput and the network 

throughput is the sum of the individual service throughput as shown in the 

following equations: 

 , , ,( ,...)bid
n s t n tp f Y=  (7.53) 

 , , , , , , ,n t n b t n g t n r tY Y Y Y= + +  (7.54) 

When two providers adopt dissimilar strategies in a heterogeneous service 

based market, we cannot determine unique individual service throughput ( , ,n s tY ) 

because the bid price is not a function of , ,n s tY  and each service throughput is not 

equally distributed among providers. 

By applying the analytical method of determining price as described in 

previous sections, we can determine the steady state market price of each service 

and the corresponding steady state network throughput ( *
,n tY ) for non-identical sets 

of strategies. However, since equation (7.54) is one equation with three unknowns, 

we cannot analytically determine the unique individual throughputs of Blue, Green, 

and Red services. As such, we cannot compute the profit of each provider through 

analytical method.  Consequently, we cannot also analytically determine the 

Bayesian Nash Equilibrium and the Pareto-efficient strategy sets in the 

heterogeneous market. 

In our session level Monte-Carlo simulation method, each provider keeps 

records of each service throughput; thus, we can determine the profit of each 

provider, the Bayesian Nash Equilibrium and the Pareto-efficient strategy sets in the 

heterogeneous market. In Chapter 8, we will illustrate a method of determining 

Bayesian Nash Equilibrium and Pareto-efficient outcome strategy sets. 
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7.5 Chapter Summary 

This chapter analytically synthesized belief functions and game strategies 

with the M/M/1 optimum mean packet count functions in a predetermined 

network topology and traffic flow matrices. The chapter assigned service reservation 

price and service cost coefficient values.   

The chapter developed analytical models of market price, providers’ bid 

price, and providers’ profit for a homogeneous service-based market and validated 

analytical values with those of session level Monte-Carlo simulations. The chapter 

also analytically determined the best strategy set (Unique Bayesian Nash 

Equilibrium and Pareto-Efficient outcome) for the homogeneous service-based 

market.  For the heterogeneous service-based market, the chapter developed 

analytical models of market price, providers’ bid price, and providers’ profit when 

providers adopt identical strategy sets. When strategy sets are not identical, it is a 

seemingly intractable task to analytically determine the network throughput of each 

service. Thus, profit of providers and the best strategy set cannot be determined by 

analytical method for all strategy sets in a heterogeneous service-based market. We 

will determine these by session level Monte-Carlo simulation in the next chapter. 

A key lesson learned from this chapter is that each provider can determine 

the operating load of a network that optimizes its profit by mathematical analysis 

for a set of strategies in homogenous service-based market. Providers can also 

predict the market price of services. Another lesson learned is that the network loads 

that optimize providers’ profit are different for different sets of strategies.  

In the next chapter, we will present our session level Monte-Carlo simulation 

methods to determine the best strategy set, the preferred strategy set, and the safe 

strategy set.  
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8 Session Level Monte-Carlo Simulation, Applications, 
and Advantages 

This chapter contains session level Monte-Carlo simulation results and their 

analyses. In addition, it contains traffic engineering applications and advantages of 

the model.  Sections 8.1 and 8.2 present results of homogeneous and heterogeneous 

service-based markets. Each section outlines the research objective, the common 

parameters, and the results of each experiment. Section 8.3 summarizes the lessons 

learned.  

8.1 Homogeneous Service-based Market   

The main objectives of the experiments discussed in this section are to find 

preferred strategies, and examine the applications and advantages of the model in 

homogeneous service-based market. 

8.1.1 Experiment Objectives 

• Validation of the model 

o Functional validation: One method of functional validation is to compare 

the outcome of two similar strategies. Stochastically, a mean price should 

yield the same expected outcome as a random price from the same 

probability distribution. Therefore, the Rejection Neutral strategy and the 

Random Rejection strategy should yield the same performance.   In Section 

8.1.3.1, we will investigate whether they yield equal profit.   

• Application 

o Safe Strategy:  A safe strategy set should be indifferent to the dynamic 

nature of Internet traffic. Here, by the safe strategy set we imply a strategy 

set that ensures fair market share of profit in all market demands. We will 

conduct simulations at various market demand levels to find the safe 

strategy set in Section 8.1.4.1.  These simulation methods include 



 161

assigning the Rejection Neutral strategy to one provider while varying the 

strategies of the opponent in each simulation. We will observe the 

influence of the different strategies on the Rejection Neutral strategy by 

comparing profit shares obtained by both providers.  

o Best Strategy Set (Bayesian-Nash and Pareto-Efficient Strategy): 

Providers want to determine the best strategy that will optimize their 

profit. According to the game theory, the Bayesian-Nash Equilibrium and 

the Pareto-Efficient outcome strategy set represents the best strategy set. 

In Section 8.1.4.2, we will show an application of determining the best 

strategy set. 

o Routing Scheme:  Providers generally support multiple routing schemes 

(e.g. min-hop or max-hop) in their networks. We will address the question 

as to whether the min-hop and the max-hop routing schemes influence the 

providers’ profits in section 8.1.4.3.  

• Advantages of the Model:  We will illustrate the advantages of our model in 

Section 8.1.4.4. Since our model is an extension to the classical Bertrand model 

of price, we will inquire whether the proposed model has advantages over 

the Bertrand model. We will also examine whether both enterprise and 

providers benefit by implementing this model. The comparison parameters of 

these experiments are market price and profit. 
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8.1.2 Parameters 

In Chapter 5, we discussed the parameters of this research in detail. Unless 

otherwise explicitly stated, Table 8.1  summarizes the main parameters of the 

simulation: 

Table 8.1: Parameters for simulation and analytical studies 

The Class of Service Homogeneous: Green 
Market Duopoly 
Strategy Strategy set of Figure 8.1 
Network Topology and TE Rules The topology and Rules of Chapter 5 
Reservation Price (Ω) $100.00 
The service cost coefficient (δs) 0.10 
Provider fixed cost coefficient (θ)  10.0 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.1: Strategy set of experiments 

We will evaluate the market price, the profit share, the steady state mean 

profit, the marginal cost, and the network load of providers.  
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8.1.3 Validation 

8.1.3.1 Functional Validation 

  

In this experiment, we compared the Random Rejection and the Rejection 

Neutral strategies by studying the steady state marginal cost and profit of the 

providers in the proposed model.  We also observed the profit share and market 

price. The strategies assigned to the providers are shown below: 

Strategy Provider 

Random Rejection A.com 

Rejection Neutral B.com 

 

For the RFP of each session initiation request at a time (t),  A.com first 

developed a mixed-strategy profile (Fn,s,t(p)) using  equation (7.8) and then selected a 

bid price ( , ,
random
n s tp ) within the interval [pMin,n,s,t, Ωs] with a probability of Fn,s,t(p).  This 

interval was the region between the No Rejection strategy price and the Absolute 

Rejection strategy price. We briefly describe the procedure of developing Fn,s,t(p) and 

selecting a price. For each session request, an analyst of a provider drew a discrete 

graph of the belief function Fn,s,t(p) using equation (3.36). The graph was drawn for 

the interval [pMin,n,s,t, Ωs] of 1000 bins. A price was then uniform randomly selected 

from this distribution.  

The following algorithm describes the process. 

Algorithm Random: 
BEGIN 
 

1
, , ,Min n s tprice p←  

 
FOR j =  1 TO 1000 DO  
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Ω −
← +  

END 
 

[0,1]rand Uniform←  

, , , , , , , ,{ : ( ) }.random bid bid
n s t n s t n s t n s tp p F price p rand← ≤ ≈   

   
END      # 

 For the  RFP of each session initiation request, B.com first developed fn,s,t(p) 

and then selected a mean price within the interval [pMin,n,s,t, Ωs] with a probability of 

fn,s,t(p).  For each session request, an analyst of a provider drew a discrete graph of 

fn,s,t(p) for 1000 bins and determined the rejection neutral  price ( , ,
neutral
n s tp )  as the mean 

price of the distribution fn,s,t(p  according to the following algorithm: 

 

Algorithm Neutral: 
BEGIN 

 
1

, , ,Min n s tprice p←  

0 1
, , ( ) 0;n s tF price =  

 
FOR j =  1 TO 1000 DO 
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END       # 
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Note that the discrete version of price computation was conducted to mimic 

the method of the hardware or software computation of price in a network device.  

Figure 6-2 compares simulation results of the steady state mean marginal 

costs and the mean profit of A.com and B.com for a range of market demand. 
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Figure 8.2: Comparison of Random Rejection and Rejection Neutral Strategies. 

The figure shows that the marginal cost and the steady state mean profit of 

the providers for the Rejection Neutral and the Random Rejection strategies were 

approximately equal. We also observed that both providers’ profit share or total 

profit share was almost the same ( 50%≈ ) in all ranges of market demand.  

( (.) : ) ( (.) : ) 0.50B AU H Rejection Neutral U H Random Rejection≈ ≈  (8.1) 

For the Random Rejection strategy, for the RFP of each session, an Analyst of a 

provider will need to perform about 1003 iterations to determine a bid price as 

shown in Algorithm Random. However, in the following implementation of the 
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Rejection Neutral, the Analysist will have to perform only about 2 iteratons to 

deterime a bid price:           

                                   Algorithm Algebraic Neutral: 
BEGIN Algebraic Neutral  
 

1
, , ,Min n s tprice p←  

 
1

, , (7.18)( ,...)Neutral
n s tp Equation price←  

     
END                             

 In Section 7.3.1, we have shown that the analytical method using equation 

(7.18) yields the closely approximated results of the simulation method (using the 

Algorithm Neutral) .  In this section, we have shown that the Random Rejection using 

the Algorithm Random provide closely approximated results of the Rejection Neutral 

using the Algorithm Neutral.  Therefore, we claim the followings: while our algebraic 

method of the Rejection Neutral strategy yields approximately same uitlity of the 

Random Rejection. A simplified version of the Random Rejection strategy can also be 

implmented which requires only three iterations to determine a price.  

Algorithm Algebraic Random: 
BEGIN Algebraic Random 
 

1
, , ,Min n s tprice p←  

 
[0,1]rand Uniform←  

1
, , (3.1)( , ,...)Random

n s tp Equation price rand=  

     
END      # 
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8.1.4 Application 

8.1.4.1 Finding a Safe Strategy 

In this section, we will find a safe strategy for all market demand by 

simulation. Assume that B.com adopts the Rejection Neutral strategy.  What is the 

safe strategy of A.com? We will answer this question by observing the profit share of 

A.com in a range of market demand for all the strategy pairs of the following table:  

 

Figure 8.3 depicts the simulated profit share of A.com in a range of market 

demand.  

Experiment A.com B.com 

6..1.3.1 Very High Rejection strategy Rejection Neutral strategy 

6.1.3.2 High Rejection strategy Rejection Neutral strategy 

6.1.3.3 Rejection Neutral strategy Rejection Neutral strategy 

6.1.3.4 Low Rejection strategy Rejection Neutral strategy 

6.1.3.5 Very Low Rejection strategy Rejection Neutral strategy 

6.1.3.6 No Rejection strategy Rejection Neutral strategy 
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Figure 8.3: Comparison of all strategies with the Rejection Neutral strategy 

By adopting the Rejection Neutral strategy, A.com gained almost equal profit 

as B.com at all market demand levels ( ( )yΔ ): 

 ( (.) : ) ( (.) : ) 0.50 ( )A BU h Rejection Neutral U h Rejection Neutral y≈ ≈ ∀Δ  (8.2) 

We also observed that both providers’ experienced almost the same level of 

load in their networks when they adopted the Rejection Neutral strategy. 

The High Rejection strategy yielded similar results as the Rejection Neutral 

strategy. It is because their rejection probabilities are close to each other. 

 ( (.) : ) ( (.) : ) ( )A AU h Rejection Neutral U h High Rejection y≈ ∀Δ  (8.3) 

Comparison of A.com’s profit share for the Very High Rejection or the Rejection 

Neutral strategy can be summarized as follows: 

 
( (.) : ) ( (.) : ) ( ) 0.65
( (.) : ) ( (.) : ) ( ) 0.70

A A

A A

U h Very High Rejection U h Rejection Neutral y
U h Very High Rejection U h Rejection Neutral y

< Δ <
> Δ >

 (8.4) 
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 In the following discussion, we will explain the cause of the results of 

equation (8.4). Let us denote ( ) 0.65yΔ < as low market demand and ( ) 0.70yΔ > as 

high market demand. 
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Figure 8.4: Very High and Neutral strategy providers’ load and marginal cost 

Figure 8.4 depicts the network load and the marginal cost of the providers 

when one provider adopted the Rejection Neutral and the other provider adopted the 

Very High Rejection strategy. In high market demand, the Very High Rejection strategy 

of A.com yielded a higher price of service compared to the Rejection Neutral strategy 

of B.com. Therefore, B.com won the majority of the bids and its operating load was 

higher than A.com; consequently, B.com’s marginal cost of production was also 

comparatively higher. As a result, B.com’s profit share was lower. On the other 

hand, A.com sold the residual bandwidth with a higher price and lower marginal 

cost. Therefore, A.com’s profit share was higher than that of B.com. This result 
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indicates that the in high market demand, the Very High Rejection strategy yields 

higher profit than the Rejection Neutral strategy. In low market demand, B.com 

captured almost all the market with a lower price; thus, the A.com’s profit share was 

lower. This result indicates that in low market demand, the Very High Rejection 

strategy needs to be avoided. 

The following equation compares profit achieved (as shown in Figure 6-9) for 

the No Rejection, the Very Low Rejection, the Low Rejection strategies compared to the 

Rejection Neutral strategy: 

( (.) : , , ) ( (.) : ) ( ) 0.65
( (.) : , , ) ( (.) : ) ( ) 0.70

A A

A A

U h No Rejection Very Low Rejection Low Rejection U h Rejection Neutral y
U h No Rejection Very Low Rejection Low Rejection U h Rejection Neutral y

> Δ <
< Δ >

     (8.5) 

For clarity, we do not illustrate the plot of the No Rejection strategy in Figure 

8.3. The result of the No Rejection strategy was almost the same as the Very Low 

Rejection strategy.   It is because their rejection probabilities are close to each other. 

In low to moderate market demand levels, for the Very Low Rejection, and the 

Low Rejection strategies, A.com acquired a slightly better profit share than the 

Rejection Neutral strategy.  At high market demand levels, A.com acquired the better 

profit share with the Rejection Neutral strategy than the No Rejection, the Very Low 

Rejection, and the Low Rejection strategies. The cause of these results can be explained 

as the opposite to the discussion of Figure 8.4 and equation (8.4). 

Due to the dynamic nature of the Internet, traffic demand changes with the 

time of the day, the day of the week, and the holidays of the year. When a provider 

adopts the Rejection Neutral strategy, the other providers might be relatively 

disadvantaged if their strategies are not appropriately suited to network demand as 

shown in Figure 8.3. However, the Rejection Neutral strategy set, if implemented by 

both providers, ensures both providers to receive a fair share of profit at all levels of 

market demand.  

Also, note that if both providers adopt Very High Rejection strategies they will 

also maximize their profits. However, at a market load less than approximately 0.7, a 
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provider can reduce the rejection probability to obtain a higher profit share. Then, 

the other provider may retaliate by further lowering the rejection probability. This 

will result in a price war. Therefore, it is safe for both providers to adopt the 

Rejection Neutral strategy all the time to obtain equal profit shares at all market 

demand levels for a homogeneous service-based market. This is one of the major 

findings of this research.  This major finding is important for providers because by 

implementing this strategy they can optimize their profit even though the dynamic 

nature of Internet traffic is unpredictable. 

8.1.4.2 Finding Pareto-Efficient Outcome Strategy Set  

In Section 7.3.5, we have shown an analytical method to locate the best 

strategy set for a homogeneous service-based market. In this section, we will 

determine the best strategy set by session level Monte-Carlo simulation. Note that 

the simulation emulates a real time network. In the simulation, the performance 

measurement metric is normalized expected profit as opposed to the normalized 

expected steady state profit of the analytical method. 

In Figure 8.3, the plots of the profit share show an area surrounded by a 

diagonal. The plots of the Very Low Rejection and the Very High Rejection strategies 

show opposite and maximum influence on the profit share. As expected, the 

Rejection Neutral strategy always maintained equal profit shares. Therefore, we use 

the Very High Rejection, the Rejection Neutral, and the Very High Rejection strategies to 

postulate the Bayesian-Nash equilibrium of a game.  

 Table 8.2 illustrates these strategies: 

 Table 8.2: Reduced set of providers’ feasible strategies 

J Strategy Feasible strategies 
1 Very Low Rejection , ,

,: ( ) 0.05s n t s s
b n t bp F p p≤ =  

2 Rejection Neutral  , ,
,( ( )) 0.50s n t s

b n tp Mean F p= =  
3 Very High Rejection , ,

,: ( ) 0.950s n t s s
b n t bp F p p≤ =  

Since market demand varies and the market demand patterns are unknown, 

we show a framework to locate a Bayesian-Nash equilibrium based on a 
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hypothetical market load distribution that relates market demand. The market 

demand varies from 40% to 80% of market capacity and the demand pattern 

represents the two scenarios in Figure 8.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: Hypothetical Market Load Probability Density Function (pdf) 

In Scenario 1, the demand distribution is pseudo Gaussian Normal and in 

Scenario 2, the demand distribution is Uniform. 

The following equations compute the expected profit share: 

 
A A

B B

E[Proft ] Load_Probability*Profit {0.4,0.5,0.6,0.7,0.8}
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Market
ρ

ρ

ρ
∀

∀

= =

=

∑

∑
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Table 8.3 and Table 8.4 present the normalized expected profit achieved by 

A.com and B.com for the traffic load of scenarios 1 and 2, respectively. Figure 8.7 

and Figure 8-8 depict the surface 3D plots of the normalized expected profits.  

In the followings, we first present tables and figures of both scenarios, and 

then discuss them together. 
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Scenario 1:      

Table 8.3:  Scenario 1—The Normalized Expected Profit in Homogeneous market                                    

 B.com 
 hnj Very Low 

Rejection 
Rejection 
Neutral 

Very High 
Rejection 

Very Low Rejection   (0.51,0.51) (0.51,0.50) (0.65,0.59) 
Rejection Neutral  (0.50,0.51) (0.65,0.65) (0.82,0.76) 

A.com 

Very High Rejection (0.59,0.65) (0.76,0.82) (1.00,1.00) √√ 
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Figure 8.6: 2D Plot: Simulated Bayesian Nash Equilibrium in Homogeneous Market (Scenario 1) 
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Figure 8.7: 3D Plot: Simulated Bayesian Nash Equilibrium in Homogeneous Market (Scenario 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 175

Scenario 2: 

Table 8.4: Scenario 2—The Normalized Expected Profit in homogeneous market 

 B.com 
 hnj Very Low 

Rejection 
Rejection 
Neutral 

Very High 
Rejection 

Very Low Rejection (0.56,0.56) (0.57,0.59) (0.65,0.73) 
Rejection Neutral (0.59,0.57) (0.73,0.73) (0.80,0.80) 

A.com 

Very High Rejection (0.73,0.65) (0.80,0.80) (1.00,1.00) √√ 
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Figure 8.8: 2D Plot- Simulated Bayesian Nash Equilibrium in Homogeneous Market 

(Scenario 2) 
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Figure 8.9: 3D Plot-Simulated Bayesian Nash Equilibrium in Homogeneous Market 

(Scenario 2) 

Like the explanation of Chapter 7, Table 8.3 and Table 8.4 show that the Very 

High Rejection strategy is the dominant strategy for both scenarios and:  
* * *

_ _ _ _ _ _ _ _ _[ ( , )] [ ( , )]A A Very high Rejection B Very High Rejection A Aj B Very High RejectionE u h h E u h h≥ . 

This implies that the Bayesian-Nash equilibrium strategy set for both 

providers is {Very High Rejection, Very High Rejection}, which is marked by √√ in the 

above tables. This strategy set is also the Unique Bayesian Nash Equilibrium among 

these three strategies. 

 In Table 8.3 and Table 8.4,  the strategy set {Very High Rejection, Very High 

Rejection} is a Pareto efficient outcome strategy set because there is no other strategy 

set (α ) to meet the following criterion with strict inequality for at least one strategy 

(j): 

 ( ) ( { _ _ , _ _ })j ju u a Very High Rejection Very High Rejection jα > = ∀  (8.7) 
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 In 2D plots of Figure 8.6 and Figure 8.8, the x-axis identifies providers 

strategy set {VLR, RN, VHR} as {1, 2, 3} and the y-axis identifies providers’ profit. 

Each plot is drawn keeping strategy of one provider fixed and varying strategy of 

other provider. The both sets of plots show that the strategy set {VHR, VHR} is the 

Bayesian Nash equilibrium strategy set of this game. 

The 3D surface plots of Figure 8.7 and Figure 8.9 also show that for each 

scenario, there is only one peak representing the unique Bayesian Nash equilibrium 

and the Pareto-efficient outcome strategy set. 

Like the analytical method, this strategy set yields the best strategy (the 

Pareto-efficient outcome) when averaged across the market demand profiles of 

Figure 8.5. However, this set is not safe to adopt because a provider can change its 

strategy to Low Rejection strategy in low market demand to obtain higher profit as 

described in Section 8.1.4.1, where the safe strategy set is identified as {Rejection 

Neutral, Rejection Neutral}.  

8.1.4.3 The Routing Scheme 

The optimization problem requires specifying an initial feasible point. When 

a session initiation request arrives, the simulator specifies the route preference of the 

session as the initial feasible point of the nonlinear programming. We performed 

session level Monte-Carlo simulations in two types of routing schemes. 

  Minimum-Hop Routing Scheme:  The providers first preferred to route a 

session in the one-hop route, then the two-hop route, and finally the three-hop 

route.  

 Maximum-Hop Routing Scheme:  The providers first preferred to route a 

session in the three-hop route, then the two-hop route, and finally the one-hop 

route. 

The price, marginal cost, and profit of a Maximum-Hop routing scheme in 

steady state are oscillatory compared to those of the Minimum-Hop Routing 

scheme; therefore, their standard deviations from the means were larger. 
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Nevertheless, the mean price obtained by both routing schemes at the same load in a 

steady state is close to each other.  In Maximum-Hop routing scheme, a session 

propagates though larger number of queues; thus, change in the mean packet count 

in the queuing scheme for each session arrival was higher.  This attributes to the 

higher mean marginal cost and higher standard deviation (std) from the mean for 

the Maximum-Hop routing scheme. Consequently, Maximum-Hop routing scheme 

yielded lower Unity profit. Table 8.5 illustrates a set of results. 

Table 8.5: Comparison of Results: Minimum-Hop vs. Maximum-Hop 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Routing 
Scenario 

  
Min-Hop 

 
 Max-Hop 

Strategy  Risk Neutral Risk Neutral 

Mean 89.96 90.1  
Market 
Price ($) 

Std 2.66 3.18 

  A.com B.com A.com  B.com 
Mean 39.5 37.1 46.8 46.3 Marginal 

Cost ($)   
 Std 14 14 16 17 

Mean 4.83e4 5.14e4 4.43e4 4.64e4 Unit 
Profit ($) Std 1.11e4 1.12e4 1.20e4 1.28e4 

Mean 0.771 0.771 0.771 0.774 Network 
Load Std 0.014 0.012 0.01 0.01 
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8.1.4.4 Traffic Load Adjustment 

Traffic load adjustment is commonly known as “load balancing” in the 

telecommunication industry. We will interchangeably use the term “load balancing” 

and “traffic load adjustment”. Let us assume that a provider has two large disjoint 

IP networks (Core A.com and Core B.com) ; i.e. A.com and B.com are not directly 

connected to each other. Traffic from different enterprises propagates through these 

networks. Enterprises are dual homed to both the core networks. Providers’ want to 

maintain desired load levels in each core network. The traditional method to 

accomplish this is by having routing link weight on the access links from each 

enterprise to the provider to load balance traffic between the dual home links.  Many 

enterprises connect to each core network. If the provider wants to change network 

load level in the core network, it has to adjust all the link weights in all the access 

links. This requires changing link weights of all the access links, which is 

cumbersome and may cause customer outage. 

By implementing our mechanism, providers can adjust core network loads by 

changing strategies in the analysts of each core. For example, if a provider wants to 

maintain equal network loads in both the core networks, it can accomplish this by 

assigning same strategy to both the core networks: e.g. the {Rejection Neutral, 

Rejection Neutral}. 

Providers can adjust their network load by selecting an appropriate strategy. 

When a provider wishes to maintain high load in a network, it should assign lower 

rejection strategy. When a provider wishes to maintain low load in a network it 

should assign higher rejection strategies. In Figure 8.10, B.com maintains a high 

network utilization by adopting the Very Low Rejection strategy, and A.com 

maintains a low network utilization by adopting the Very High Rejection strategy.  
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Figure 8.10: Load balancing by strategy assignment  

This traffic engineering technique by assigning game strategy can also be 

used when a large provider has two or more disjoint core networks that transport 

long distance traffic for its many access networks. Here, access networks of this 

provider can be viewed as enterprises and core networks can be viewed as providers 

in our model. In this scenario, our model behaves similar to a flow controller. 

Figure 8.11 shows analytical results of network load for different market load, 

when a provider assigns the VHR strategy to core A.com and the VLR strategy to 

B.com.  This assignment ensures that core B.com will have higher load than A.com 

in all market demand. 

 

 

 

 



 181

 

 

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Market Load (ρMarket)

N
et

w
or

k 
Lo

ad
 ( ρ

Ne
tw

or
k)

Analytical Load Balancing By Strategy Assignment

B.com: Very Low Rejection Strategy
γB=  0.05

A.com: Very High Rejection Strategy
γA=  0.95

 

Figure 8.11:  Analytical Load adjustment by Strategy Assignment 
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Figure 8.12:  Analytical Network load for adjusting B.com strategy 

 

In Figure 8.12, a provider knows the market load. It wants to adjust network 

load. It assigns the strategy VLR to core A.com. Then it changes strategy of B.com 

from VLR to VHR to find the appropriate network load of both A.com and B.com. 
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8.1.5 Advantage of the Model  

This section describes one of our major findings of this research. This finding 

is that our model provides relative advantage over classical Bertrand Model of price 

in the Internet market.  

In Table 7.4, the providers’ mean prices of service were about $89-91, which 

was less than the enterprise reservation price of $100. Therefore, the benefit to an 

enterprise was about (100-90)/100 = 10%. 

In the classical Bertrand model without consumer loyalty, the Nash 

equilibrium price settles to the common marginal cost of two providers. The Nash 

equilibrium price (p*) equates to marginal cost (ω) as follows: 

 * *
1 2p p ω= =  (8.8) 

In our model, both the providers’ mean marginal cost were around $31.6 as 

shown in Table 7.4 and the mean market price turned out to be $89.0. This shows that 

our model had a ($89-$31.6)/$31.6 = 176% relative markup in market power as 

compared to the classical Bertrand model of price in infinite capacity. Comparison of 

the market price and the marginal cost (in both analytical and simulation studies) 

shows that the market price was always above the marginal cost. We also found the 

same trend in all combinations of strategies adopted by the two providers.  We also 

observed that the Bayesian-Nash equilibrium market price was above the marginal 

cost: 

 *p ω>  (8.9) 

This implies that in our model providers obtain positive profit. In contrast, in 

classical Bertrand model Bayesian-Nash equilibrium market price is equal to the 

marginal cost ( *p ω= ). As a result, in classical Bertrand model, providers will obtain 

zero profit. 

This proves that our model has relative advantage over the Bertrand model. 

This advantage is one of our major findings of this research. This advantage 

spawned from our implementations that synthesize game theory and traffic 
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engineering techniques. The following aspects of our model notably influence this 

advantage: 

• Enforcing capacity constraint: We promote the idea that providers refrain 

from the “throw bandwidth” traffic engineering practice because it adds 

capacity in the market. Adding capacity, similar to the Internet bubble period 

of late 1990s, is detrimental to the profit of all the providers. In our 

implementation, providers do not add capacity until the market demand of 

the optimized operating point (throughput) is achieved. In addition, each 

provider should maintain market capacity somewhat below the market 

demand; i.e. capacity is not underutilized. Providers should add capacity 

only after the optimum operating point is exceeded. Our capacity restriction 

according to the market demand ensures that marginal cost stays below price. 

On the other hand, in the classical Bertrand model capacity is underutilized. 

• Competitive bidding:  Classical Bertrand game is a one shot-game: the game 

ends when the player selects a price; thus, it is not an established market 

practice [1]. In our implementation, the game is a bidding process for each 

session arrival.  

• Enforcing Traffic Engineering Rule: If we do not apply traffic-engineering 

rules, the mean packet count in the queue system will increase without 

bound.  Since our marginal cost is a function of the mean packet count in a 

network, the marginal cost will also increase without bound. This will force 

the price to be close to the marginal cost.   Our traffic engineering rules 

ensure that marginal cost remains lower. 

• Optimum Routing:  Our optimum routing techniques ensure that the traffic 

is well balanced across the network so that there are no congestion hot spots. 

A network free from congestion hot spots ensures that marginal cost remains 

low. 
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8.2  Heterogeneous Service-based Market 

This section presents the results obtained from the experiments for the 

heterogeneous service-based market. This section has the same format of the last 

section.  

8.2.1 Experiment Objectives 

• Validation of the model 

o Functional validation: One method of functional validation is to 

perform qualitative evaluation of simulated results with the functional 

assumptions of the model. In section 8.2.3.1, we validate the model 

functions with the simulated results in a heterogeneous market. 

• Applications 

o Finding the Best Strategy set:  In section 8.2.4.1, we will find the best 

strategy set that optimizes providers’ profit for the heterogeneous 

service-based market. We accomplish this by exploring the Bayesian-

Nash equilibrium strategy sets and the Pareto-efficient outcome 

strategy set.   

o Finding a Preferred Strategy: Not all the Bayesian-Nash equilibrium 

strategies are desirable. We will select a preferred Bayesian-Nash 

equilibrium strategy in section 8.2.4.2. 

• Advantages of the model:  In section 8.2.5, we will discuss whether our 

model performs better than the classical Bertrand model. 
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8.2.2 Parameters 

In the homogeneous service-based network study of Section 8.1, we explained 

that the Very High Rejection, the Rejection Neutral, and the Very Low Rejection 

strategies were our research interest.  We concentrate on the same in a 

heterogeneous service-based market. These strategies are shown in Figure 8.13. 

 

 

 

 

 

 

 

Figure 8.13: A Strategy set of heterogeneous service market 

The following table summarizes main parameters of the analytical studies: 

Table 8.6: Summary of Parameter for Heterogeneous services 

The Class of Service Heterogeneous: Blue, Green, Red 
Market Duopoly 
Strategy Strategy set of Figure 8.13 
Network Topology and TE Rules The topology and Rules of Chapter 5 
Reservation Price (Ω) Blue = $160.00 Green = 

$100.00 
Red = $70.00 

Service cost coefficients (δs)   Blue = 1.0 Green = 0.10 Red = 0.01 
Product Rule Service cannot be switched. For example, an 

application requiring Blue security cannot switch 
to Green security. 

Provider fixed cost coefficient (θ)  10.0 
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8.2.3 Validation of the model 

8.2.3.1 Functional Validation 

8.2.3.1.1 Experiment 1   

In this experiment, we examine the validity of the model when both the 

providers adopt the Rejection Neutral strategy for all three services as shown in the 

following table. 

Table 8.7: Heterogeneous strategies for functional validation experiment 1 

Provider Service Class Pricing strategy Pricing Equation 
A.com Blue, Green, Red Rejection Neutral 

, , , ,(.) ( ( ))A s t A s tp h Mean F p= =  
B.com Blue, Green, Red  Rejection Neutral 

, , , ,(.) ( ( ))B s t B s tp h Mean F p= =  
 

Figure 8.14 illustrates the simulation results. Plots a and b depict the market 

price and the marginal cost of A.com for the market load, Marketρ =0.71. Plots c and d 

illustrate the mean market price and the mean marginal cost of A.com for market 

loads  Marketρ  from 0.40 to 0.71. 
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Figure 8.14: Heterogeneous Results: Price and Cost for Rejection Neutral Strategies 

The Plot a of Figure 8.14 illustrates that Blue market price was higher than 

Green price, and Green Price was higher than Red Price at a market load of 0.71. 

Comparison of Plot a and Plot b shows that market price of each service class was 

higher than the marginal cost of each respective service class. Comparison of Plot c 

and Plot d shows that our oligopoly model assumptions were satisfied because each 

price of service was lower than the respective reservation price and was higher than 

the respective marginal cost in all Market Load. In addition, the price of Blue service 

was higher than that of Green, and Green was greater than Red. For example, Plot c 

shows that at the market load of 0.711, mean market prices ( sp ) of Blue, Green, and 

Red service classes are $151.0, $81.9, and $55.7, which are less than their respective 

reservation prices ( sΩ ) of $160.0, $100.0, and $70.0.  Plot d illustrates that at a market 

load of 0.771, A.com’s mean marginal costs ( sω ) of Blue, Green, and Red service 

class, respectively, are $122.0, $26.5, $11.7. These marginal costs are less than the 
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corresponding mean maker prices of $151.0, $81.9, and $55.7. Thus, in all market 

demand levels, the following results are true: 

 s s s

r g b

p
p p p
ω < < Ω

< <
 (8.10) 

These results satisfied the oligopoly assumptions stated in Chapter 3. 
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Figure 8.15: Comparison of Profit and Throughput 

As shown in Figure 8.15, both providers also achieved a fair share of  

bandwidth and profit: 

UA(h(.): Rejection Neutral) = UB(h(.): Rejection Neutral) 

The above results validated the anticipated behavior of the Rejection Neutral 

strategies of our model in the heterogeneous market network. 
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8.2.3.1.2 Experiment 2  

The objective of this study was to observe the effect of increasing the rejection 

probability of the most expensive service while decreasing the rejection probability 

of the least expensive service. The following table summarizes the strategy set. 

Table 8.8: Heterogeneous strategies for functional validation Experiment 2 

Provider Service Class Pricing strategy 
Blue Very High Rejection (VHR) 
Green Rejection Neutral (RN) 

A.com Blue, Green, Red 

Red Very Low Rejection (VLR) 
B.com Blue, Green, Red  Rejection Neutral (RN) 

 

According to the model assumptions, we expect that A.com will win almost 

all the Red sessions because its bid price obtained by the Very Low Rejection strategy 

is lower than the bid price of B.com obtained by the Rejection Neutral strategy. As a 

result, A.com’s network load will be higher. This will cause the marginal cost of Blue 

service in A.com to be higher than that of B.com.  As a result, A.com’s profit margin 

(difference of price and marginal cost) from the Blue service will be lower than that 

of B.com. In addition, the A.com’s belief function will shift to the right more than 

B.com in each instant of the game.  A.com’s bids for Blue service will be 

comparatively higher than those of B.com for the majority of the sessions.  A.com 

will lose the majority of the Blue sessions; therefore, B.com’s profit from Blue service 

will be higher than that of A.com.  

Similarly, A.com’s bids for Green service will be comparatively higher than 

those of A.com for the majority of the sessions. B.com will win the majority of the 

Green sessions; thus, B.com’s profit from Green service will be higher than A.com. 

Figure 8.16 compares the simulation results of this experiment.  Plots in the 

left column represent A.com, and plots in the right column represent B.com. Plots in 

the top row illustrate the difference between the price and the marginal cost per 

Mbps, which we define as surplus ( ˆp̂ ω− ). Plots in the center row depict the traffic 

load of each service class. The plots on the bottom row show the unit profit 
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( ˆˆˆ( )p Yω− ) of the providers. All these plots are drawn for the market load (x-axis) 

from 0.4 to 0.75. 
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Figure 8.16: Heterogeneous Results of strategies: VHR-RN-VLR vs. RN-RN-RN  

In Figure 8.16, the dotted lines in Plot 3 and Plot 4 depict the network loads of 

Red service class in A.com and B.com, respectively.   A.com’s Red bid prices were 

lower because A.com’s Very Low Rejection strategy and B.com’s Rejection Neutral 

strategy; thus, A.com’s Red load was higher.  B.com lost almost all Red bids and its 

Red load was very low.  This also caused A.com to operate in a higher network load 
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than B.com.  Plot 5 shows that the major source of the A.com unit profit was from 

Red service class. On the other hand, B.com obtained a tiny portion of the profit 

from the Red service. 

Because A.com operated in a higher network load than B.com, the Green 

service bid prices of A.com was higher than B.com, although both assigned the 

Rejection Neutral strategy to Green service class. Consequently, B.com won the 

majority of Green service class. The dashed-dotted lines in Plot 3 and Plot 4 of Figure 

8.16 depict the resulting higher Green service load for B.com.   The dashed-dotted 

lines in Plot 1 and Plot 2 show that the surplus ( ˆp̂ ω− ) from the Green service was 

the highest in the higher load market compared to Blue and Red services.  The unit 

profit curves in Plot 5 and Plot 6 show that the significant source of B.com’s profit 

was attributed to Green service. On the other hand, A.com obtained a tiny portion of 

the profit from the Green service. 

Similarly, higher network load and higher rejection strategy (A.com: Very 

High Rejection. B.com: Rejection Neutral) of A.com caused B.com to win majority of 

Blue services. Hence, a source of significant profit of B.com was Blue service as 

shown as dashed lines. For a closer validation of the above arguments, Table 8.9 

presents simulation results at a market load of 57%. 

Table 8.9: Results at a Market Load of 57% 
Provider A.com B.com 
Service Class Blue Green Red Blue Green Red 
Strategy VHR RN VLR RN RN RN 
Mean Market Price ( p̂ ) $114.4 $53.6 $30.0 $114.0 $53.6 $30.0 

Mean Marginal Cost (ω̂ ) $88.7 $18.0 $11.0 $76.4 $17.5 $10.7 

ˆp̂ ω−    (per Mbps) $25.7 $35.6 $18.9 $38.0 $36.1 $19.3 

Mean Network Load 0.01 0.08 0.49 0.24 0.31 0.01 

Mean Throughput ( Ŷ ) Mbps 14.4 97.2 588 288 372 12 

Unit Profit ( ˆˆˆ( )p Yω− ) $0.04e4 $0.35e4 $1.11e4 $1.09e4 $1.34e4 $0.02e4 

Provider Unit Profit $1.50e4 $2.45e4 
Provider Network Load 58.3% 56.0% 

Simulation results presented in this section validated the anticipated 

functional behavior of the model. 
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8.2.3.1.3 Experiment 3 

The objective of this study was to observe the effect of decreasing the 

rejection probability of the most expensive service while increasing the rejection 

probability of the least expensive service.   We conduct this experiment to observe 

the opposite effect of experiment 2.  The following table summarizes the strategy set. 

Table 8.10: Heterogeneous strategies for functional validation experiment 3 

Provider Service Class Pricing strategy 

Blue Very Low Rejection (VLR) 

Green Rejection Neutral (RN) 

A.com Blue, Green, Red 

Red Very  High Rejection (VHR) 

B.com Blue, Green, Red  Rejection Neutral (RN) 

 

In this experiment, we assigned A.com the Very High Rejection strategy for 

Red and the Very Low Rejection strategy for Blue. We conduct this experiment to 

observe the opposite effect of experiment 2. Our intention was to observe the effect 

of decreasing the rejection probability of the most expensive service while sacrificing 

the probability of winning the least expensive service. In this experiment, we expect 

that A.com’ VHR strategy for Red will cause it to bid very high for Red service; thus, 

B.com will win the majority of the Red bids.  Consequently, its traffic load will be 

higher.  This high traffic load will cause B.com to bid comparatively higher over 

A.com for Blue and Green.  As a result, it will lose Blue and Green services.  Taking 

advantage of this situation, A.com will attain majority of the Blue and Green 

services loads.  

Figure 8.17 depicts simulation results of this experiment. 
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Figure 8.17: Heterogeneous Results of strategies: VLR-RN-VHR vs. RN-RN-RN 

 
The comparison of Plot 3 and Plot 4 of Figure 8.17 shows that by having VHR 

strategy for Red service, A.com managed to operate in a very low Red service load. 

One the other hand, by having RN strategy B.com operated in high Red load. For 

example, at a 60% market load, A.com operated at around 0% of Red load, however 

B.com’s Red load was at around 58% of the network load. Consequently, B.com’s 

Blue and Green loads were less than 5% of market load. High network load of B.com 
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also caused its Bid prices of Green service higher than those of A.com although both 

adopted RN strategy for Green service.  Thus, A.com obtained majority of the Green 

service as shown in the Green load curve of Plot 3. By having a VLR strategy, A.com 

managed to obtain majority of the Blue traffic. 

As shown in the Plot 6 of Figure 8.17, the almost all the source of B.com profit 

was Red service. On the other hand, Plot 5 illustrates that A.com’s profit source was 

Blue and Green service.  

Plot 1 and Plot 2 show that surplus (price – marginal cost) obtained from 

Green and Red services were almost the same for both providers.  Surplus obtained 

from Blue service was less than those for Green and Red services. Thus, A.com did 

not achieve any advantage of profit although it tried to maximize load of the Blue 

service. 

The lesson learned from this experiment is that although the price of the 

highest security providing service is the highest, its surplus was lower than the 

other services (a consequence of high service cost coefficient ( 1.0bδ = ) of Blue 

service). Thus, if a provider increases the winning probability of the most expensive 

service while its production cost is high, it will not achieve favorable outcome. A 

provider should decrease the rejection probability (increase the winning probability) 

of a service that yields higher surplus to optimize profit. 

Notice that in both the experiment 2 and 3, the {RN, RN, RN} strategy set 

performed either equal or better than the strategy sets {VHR, RN, VLR} and {VLR, 

RN, VHR} in this mix of traffic and service surplus.   
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8.2.4 Application 

8.2.4.1 Finding the Pareto-Efficient Outcome Strategy Set 

As explained in Section 7.4.2, we cannot analytically determine providers’ 

profit for dissimilar strategy sets in a heterogeneous market because each service 

throughput of each provider is unknown. In simulation, providers’ keep records of 

each service throughput. Thus, we will determine Nash equilibrium by simulation.  

In this section, we locate the Bayesian-Nash equilibrium and the Pareto-efficient 

strategy set of the heterogeneous service-based network by applying the same 

procedure of Section 8.1.4.2.  

 Mapping three strategies {Very High Rejection, Rejection Neutral, and Very Low 

Rejection} and three services {Blue, Green, and Red} creates a set of 27 combinations. 

Strategic interaction between two providers requires conducting simulation for 

27x27 combinations. This is not feasible due to the logistical limitation of this 

research. In addition, due to the limitations of the computing resources, providers 

may only select a limited set of strategies. Thus, we reduce strategies and the classes 

of service combinations into 3 tuples as in the following table to determine the 

Bayesian-Nash equilibrium. We anticipate that the providers will likely implement 

these strategies.  

Table 8.11: Heterogeneous strategies to determine Bayesian-Nash Equilibrium 

 Blue Green Red 
VHR-RN-VLR Very High Rejection Rejection Neutral Very Low Rejection 
VLR-RN-VHR Very Low Rejection Rejection Neutral Very High Rejection 
RN-RN-RN Rejection-Neutral Rejection-Neutral Rejection-Neutral 
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Scenario 1: 

The simulation yields the following normalized expected profits for scenarios 

1 and 2 of Section 8.1.4.2. 

Table 8.12: Scenario 1--The normalized Expected profit in Heterogeneous market 

 B.com 
 hnj VHR-RN-VLR RN-RN-RN VLR-RN-VHR 
A.com VHR-RN-VLR (0.84,0.84)  √ (0.61,0.84) (0.63, 0.75) 
 RN-RN-RN (0.84,0.61) (0.87,0.87)  √ (0.82, 0.75) 
 VLR-RN-VHR (0.75,0.63) (0.75,0.82) (1.00, 1.00)  √√ 

 

For Scenario 1 Table 8.12 shows that there were three Bayesian-Nash 

equilibriums for these strategy sets. The Bayesian-Nash equilibriums were {VHR-

RN-VLR, VHR-RN-VLR}, {RN-RN-RN, RN-RN-RN}, and {VLR-RN-VHR, VLR-RN-

VHR} and are marked with symbol √.  The results also show that the strategy set 

{VLR-RN-VHR, VLR-RN-VHR} provided the Pareto-efficient outcome and is 

marked by the symbol √√. 
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Figure 8.18: 3D Plot Simulated Bayesian Nash Equilibrium in Heterogeneous Market (Scenario 1) 

The 3D surface plot of Figure 8.18 shows that there are three peaks 

representing three Bayesian Nash equilibrium strategy sets. The highest peak 

represents the Pareto-efficient outcome strategy set. Note that the x-axis and the y-

axis represent the three strategy sets of A.com and B.com as {1, 2, 3}. 

In 2D plots of this section, the x-axis identifies providers strategy set {VHR-

RN-VLR, RN-RN-RN, VLR-RN-VLR} as {1, 2, 3} and the y-axis identifies providers’ 

profit. Each plot is drawn by keeping the strategy of one provider fixed and by 

varying strategies of the other provider. The both sets of plots show that the strategy 

set {VLR-RN-VLR, VLR-RN-VLR} is the Bayesian Nash equilibrium strategy set of 

this game. 
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Figure 8.19: 2D Plot--Simulated #1 Bayesian Nash Equilibrium in Heterogeneous Market (Scenario 1) 

Figure 8.19 shows the Nash equilibrium #1 in 2D view. This Nash 

equilibrium corresponds to the Row 3 and Column 3 of Table 8.12 
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Figure 8.20: 2D Plot—Simulated #2 Bayesian-Nash Equilibrium in Heterogeneous Market (Scenario 1) 

Figure 8.20 shows the Nash equilibrium #2 in 2D view. This Nash 

equilibrium corresponds to the Row 2 and Column 2 of Table 8.12. 
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Figure 8.21: 2D Plot--Simulated #3 Bayesian-Nash Equilibrium in Heterogeneous Market (Scenario 1) 

Figure 8.21 shows the Nash equilibrium #3 in 2D view. This Nash 

equilibrium corresponds to the Row 1 and Column 1 of Table 8.12. 
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Scenario 2: 

Table 8.13:  Scenario 2--The normalized Expected profit in Heterogeneous market 

 B.com 
 hnj VHR-RN-VLR RN-RN-RN VLR-RN-VHR 
A.com VHR-RN-VLR (0.84,0.84)  (0.65,0.86) (0.66,0.77) 
 RN-RN-RN (0.86,0.65) (0.87,0.87) √ (0.86,0.78) 
 VLR-RN-VHR (0.77,0.66) (0.78,0.86) (1.00,1.00) √√ 

 

For Scenario 2 Table 8.13 shows that there were two Bayesian-Nash 

equilibriums for these strategy sets. The Bayesian-Nash equilibriums were {RN-RN-

RN, RN-RN-RN} and {VLR-RN-VHR, VLR-RN-VHR} and are marked with symbol 

√.  The results also show that the strategy set {VLR-RN-VHR, VLR-RN-VHR} 

provided the Pareto-efficient outcome and is marked by symbol √√. 
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Figure 8.22: 2D Plot—Simulated #1 Bayesian-Nash Equilibrium in Heterogeneous Market (Scenario 2) 
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Figure 8.22 shows the Nash equilibrium #1 in 2D view. This Nash 

equilibrium corresponds to the Row 3 and Column 3 of Table 8.13. 
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Figure 8.23: 2D Plot--Simulated #2 Bayesian Nash Equilibrium in Heterogeneous Market (Scenario 2) 

Figure 8.23 shows the Nash equilibrium #2 in 2D view. This Nash 

equilibrium corresponds to the Row 2 and Column 2 of Table 8.13. 
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Figure 8.24: Example of No Bayesian Nash Equilibrium 

Figure 8.24 shows the Nash equilibrium #2 in 2D view. This Nash 

equilibrium corresponds to the Row 1 and Column 1 of Table 8.13. We can see that if 

one provider can improve profit by changing strategy in expense of other provider’s 

profit; thus, there is no Nash equilibrium in Row 1 and Column in scenario 2. 

8.2.4.2 Preferred Strategy 

According to the transitive preference properties of the enterprises as stated 

in section 3.2, the market price of services should satisfy the following equation: 

 b g rp p p> >  (8.11) 

This equation implies that the price of Blue service should be strictly higher 

than that of Green service. Similarly, the price of Green service should be higher 

than that of Red service. 
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Figure 8.25: Price of Services: VLR-RN-VHR vs. VLR-RN-VHR 

Figure 8.25 depicts simulated mean price of services at different market load 

levels for the Bayesian-Nash strategy set {VLR-RN-VHR, VLR-RN-VHR}, where 

A.com and B.com, respectively, adopt VLR-RN-VHR and VLR-RN-VHR strategies. 

In some market demand, the price of Red was higher than Green.  

Figure 8.26 illustrates a cause of this situation.   The Belief function (F(p)) of 

Red service is shown as a solid line. The Belief function (F(p)) of Green service is 

shown as a dash-dotted line. In high load, the Belief function of Red service moves 

to the right and comes close to that of Green service. The Very High Rejection strategy 

of Red class yields higher price from Red Belief function than that of the Rejection 

Neutral strategy of Green class from the Green Belief function.  
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Figure 8.26: Cause of Red Price higher than Green 

Applications’ security requirements do not change; thus, the consumers’ do 

not switch their product preferences.  The price of Red higher than Green violates 

the preference properties of equation (8.11).  Most importantly, customers will not 

make agreement to subscribe Red services; instead, they will select higher security 

providing and cheaper Green service if they know that providers’ will deploy VLR-

RN-VHR, VLR-RN-VHR} strategy set. Hence, the strategy set {VLR-RN-VHR, VLR-

RN-VHR} is not desirable. 

As shown in Table 8.12 and Table 8.13, the next Bayesian-Nash equilibrium 

strategy set is {RN-RN-RN, RN-RN-RN}.  As depicted in the Plot 3 of Figure 8.14, the 

prices of service satisfy equation (8.11) for the strategy set {RN-RN-RN, RN-RN-RN}. 

Therefore, we recommend the {RN-RN-RN, RN-RN-RN} strategy set as the best 

preferred set for a heterogeneous service-based market. Note that this is similar to 

the recommended strategy set for a homogeneous market. 
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8.2.5 Advantage of the Model 

This section describes one of our major findings of this research. This is 

finding is that our model provides relative advantage over classical Bertrand model 

of price in the heterogeneous service-based Internet market.  

The heterogeneous market analytical and session level Monte-Carlo 

simulation results in sections 7.4 and 8.2.3 show that price is above marginal cost 

and providers received positive profit.  The Bayesian-Nash equilibrium price was 

higher than the marginal cost of each class of service as follows:  

 

*

*

*

b b

g g

r r

p

p

p

ω

ω

ω

>

>

>

 (8.12) 

This implies that our model ensures positive profit for the providers. In 

contrast, in classical Bertrand model Bayesian-Nash equilibrium market price is 

equal to the marginal cost ( *p ω= ) when the consumers do not switch services. As a 

result, in classical Bertrand model, providers will obtain zero profit.  

Thus, the novel model for the heterogeneous market yields relative 

advantage over the classical Bertrand model without service switch. The 

implementation aspects of our model that combined to yield this advantage were 

presented in Section 8.1.5. 

Note that in Bertrand model by using microeconomic service differentiation, 

providers can achieve a mark-up advantage (i.e. positive profit) over the classical 

Bertrand model when consumers have option to switch services. However, in our 

model consumers do not switch service class because it is based on the preference of 

application security requirements.  Chapter 3 describes this preference. 
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8.3 Chapter Summary 

We conducted analytical and session level Monte-Carlo simulation studies in 

homogeneous and heterogeneous service-based networks. Simulation results 

adequately validated analytical results. Simulation results also verified the 

functional behavior of the model. The unit profit curves obtained by our model 

satisfied the properties of the profit function. Thus, the model allowed providers to 

determine the optimum network load that maximized their profit. 

Our optimized routing method shows that the Minimum-Hops routing 

scheme yields slightly higher profit compared to the Maximum-Hops routing 

scheme. 

Our framework determined the dominant strategy, the Bayesian-Nash 

equilibrium strategies, the Pareto-efficient strategy, and the preferred strategies. In 

the homogeneous service-based market, a unique Bayesian-Nash equilibrium 

existed for the {Very High Risk, Very High Risk} strategy set. This strategy set also 

provided the Pareto-efficient outcome. In contrast, Bayesian-Nash equilibriums 

existed in the heterogeneous service-based market for strategy sets:  {VHR-RN-VLR, 

VHR-RN-VLR}, {RN-RN-RN, RN-RN-RN}, and {VLR-RN-VHR, VLR-RN-VHR}. The 

Pareto-efficient outcome was {VLR-RN-VHR, VLR-RN-VHR}.  We observed, 

however, that not all Bayesian-Nash equilibriums were preferable in maintaining 

service price order. The best-preferred strategy was the Rejection Neutral strategy for 

all classes of service. 

Our model provided relative advantage over the classical Bertrand model, 

which is one method to determine prices of services in the Internet today. Our 

model illustrated the relative mark up in providers’ market power compared to the 

Bertrand model in both heterogeneous and homogeneous service-based markets 

when consumers do not switch services. In the Bertrand model, the Nash 

equilibrium price converged to the marginal cost; thus, providers earned zero profit. 
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On the other hand, the Bayesian-Nash equilibrium market prices in our model were 

much higher than the marginal cost; therefore, providers gained positive profit.  

Our model also benefited enterprises and wireless customers because the 

market price was always less than the enterprise/customers budget even though 

providers optimized their profits. 

In some strategic markets, competitors randomly select price bids [13][14].  

The Rejection Neutral strategy provides the same mean results as the Random 

Rejection strategy and both strategies result in a fair profit share and bandwidth. 

Therefore, the Rejection Neutral strategy can be used to complement the Random 

Rejection strategy. 

Another key lesson is that the change in market demand changes the winning 

provider and affects their relative revenues when two providers adopt dissimilar 

pricing strategies in a homogeneous service-based market. At higher market 

demand levels providers earn a higher profit share by playing high rejection 

strategies. At lower market demand levels, providers earn a higher profit share for 

low rejection strategies. For example, a provider acquires a larger profit share at 

market load levels above 0.70 for the Very High Rejection strategy if the other 

provider adopts the Risk Neutral strategy.  At low market load levels (ρ <0.70), the 

Very High Rejection strategy results in smaller profit shares relative to a Risk Neutral 

competitor.  Thus, providers may not always enjoy a higher profit share due to the 

dynamic nature of Internet traffic if they cannot accurately forecast market demand 

levels and interactively adjust strategies. As mentioned earlier, the Rejection Neutral 

strategy profit share is indifferent to the change in market demand and is the 

preferred safe strategy. 

Our model allows a provider to increase or decrease profit shares by 

appropriately assigning strategies in a heterogeneous service-based market.  A 

provider’s strategy should be to bid high for Red service, and consequently allow 

opponents to win the majority of Red bids exhausting their network capacity. The 

provider’s strategy should be neutral or low rejection for high valued services. 
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However, assigning very low rejection strategy to high valued services and very 

high rejection strategy to valued services may break customers’ price preferences. 

We also learned that if all providers adopt the same strategy, they gain fair 

shares of profit. For example, the Rejection Neutral strategy ensures that the 

providers enjoy a fair share of profit and load at all market demand levels. When all 

providers adopt the High Rejection strategy, their profit and market price increase. 

Note, however, that the high market price has a detrimental effect on market 

demand according to microeconomics [1][2]; this effect was not studied (or 

modeled) here. 
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9 Conclusion 

9.1 Summary of Contributions 

9.1.1 A Novel Automatic Price Transaction Architecture 

We introduced the novel Automatic Price Transaction-based One-to-Many Peer 

Network architecture that automates price negotiation between customers and 

multiple providers prior to the session establishment request. A customer can 

simultaneously request a service price from multiple providers and subscribe with 

the provider that offers the lowest price.  

The architecture includes an Analyst module in each provider network and 

Price Broker modules in both the customer and the provider peer interfaces. The Price 

Broker module of each customer performs price negotiations with the Price Broker 

modules of all the providers in a one-to-many peer network. The protocol to 

perform this price negotiation is analogous to the sealed-bid-reverse-auction. The 

Analyst of each provider computes a competitive service price and feeds the price to 

the providers’ Price Booker. The Analyst computes the price based on the Providers 

Optimized Game in Internet Traffic model. 

The architecture will help small Internet Service Providers (ISPs) to broadcast 

their budget and instantaneously subscribe from the large ISP of their choice based 

on the lowest service price. Similarly, this architecture will  allow wireless customers 

to negotiate price interactively with multiple wireless providers to subscribe to 

services from the provider that offer the lowest price. This architecture will also help 

provider’s to select a price instantaneously in synchrony with the network 

congestion and the dynamic Internet traffic demand.  

9.1.2 An Extension of the Current ATIS and 3GPP Architecture 

The current Alliance for Telecommunication Industry Solutions (ATIS) 

standard [68] supports one-to-one peer network architecture. This standard neither 
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includes any price negotiation nor charging components. Our architecture extends 

the ATIS peer network architecture to support the automatic price transaction based 

on one-to-many peer architecture.  

The current 3rd Generation Partnership Project (3GPP) standard specifies an 

on-line charging method for wireless consumers.  However, this standard does not 

specify automatic price negotiation components, enable a wireless user to shop from 

multiple wireless operators at the same time, nor provide any function to compute 

price based on game theory. Our architecture extends the 3GPP charging 

architecture to support all these options that 3GPP standard does not support. 

9.1.3 Session Initiation Protocol based Price Transaction Protocol 

Currently, the Internet Engineering Task Force (IETF) recommended SIP 

extensions and SIP components allow the introduction of a diverse range of 

applications and services. In addition, the RFC 3455 [67] specifies two header fields 

(P-Charging-Vector, P-Charging-Function-Addresses) to transport pricing information 

for the 3GPP charging mechanism. However, the IETF SIP standard does not specify 

a price transaction mechanism or price-based SIP call flow. 

Although our architecture is protocol agnostic, we present an architecture 

that supports SIP entities as the Price Broker and the Analyst for the automatic price 

transactions. Our proposal also includes a SIP call flow to implement the price 

transaction protocol. 

9.1.4 The Providers Optimized Game in Internet Traffic 

We developed the new Providers Optimized Game in Internet Traffic model that 

is a viable approach in optimizing providers’ profit in peer or wireless networks 

synchronized with dynamic Internet traffic demand. The model allows providers to 

offer competitive service price within customers’ budget. Providers can exploit the 

agility of game theory to synthesize economic theories and Internet traffic 

engineering techniques, maximize their profit, and engineer networks’ optimum 
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performance. The model optimizes profit in two methods: Selecting a strategically 

appropriate price and minimizing congestion sensitive costs.  

A provider can predict how other providers will strategically interact in a 

competitive market. This prediction is a belief function or a mixed strategy profile 

extended from the previous work based on the Bertrand oligopoly model of price. 

Our proposed belief function is sensitive to the dynamic Internet traffic demand, the 

network congestion, the service class, and the providers’ strategies.  Providers can 

optimize profit by adopting our recommended strategies to determine service prices 

from the belief functions. 

Unlike dynamic game, our game does not keep or rely on the total history. 

However, in each game time, the game computes the change in cost from one game 

time to the next game time and uses this change in cost as a game parameter. Since 

the game looks into a one-step history and forgets all other history, the strategic 

interaction corresponds to a myopic12 Markovian-Bayesian [4] static game of 

incomplete information. 

We perform cost optimization by minimizing network congestion. The model 

associates the congestion indicator—the mean IP-packet count in the network queue 

system—with the service cost. M/M/1 queuing analysis determines the mean 

packet count. Our model applies two well-known non-linear programming 

techniques, the Gradient Projection algorithm and the Golden section line search, to 

minimize the mean packet count by performing optimal routing of [85]. 

9.1.5 An Analytical Model, a Network Model, and a Session Level 
Monte-Carlo Simulator  

We designed a network, formulated an algorithm, and developed both the 

session level Monte-Carlo simulation and analytical models in a duopoly market. 

We created a session level Monte-Carlo simulation model in MATLAB that performs 

automatic price transactions, call set up, optimum routing, and providers’ games. 

                                                 
12 The meaning of the word “myopic” is nearsighted, unable to see future moves clearly. 
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Simulation results in various scenarios validated the Mathematical model. The 

simulation results showed that this network architecture optimized the profit of 

providers close to the analytical optimized profit. 

9.1.6 A Framework to Determine the Best Preferred Strategy  

In our model, providers can use our strategy framework to determine price 

from the belief function. These strategies reflect the probability of a customer 

rejecting a certain price of service. This new approach determines the dominant 

strategy, the Bayesian-Nash equilibrium strategy, the Pareto efficient outcome 

strategy, and the best-preferred strategy optimizing providers’ profit in both the 

homogenous and heterogeneous service-based networks. The session level Monte-

Carlo simulation results show that not all Bayesian Nash equilibrium and Pareto 

optimum outcome strategies are preferred strategies. 

Adopting the same strategy set allows providers to obtain a fair profit share 

and network load.  In a homogeneous service-based network, both simulation and 

analytical experiments illustrate that: if providers adopt the Very High Rejection 

strategy, then the Bayesian Nash equilibrium and the Pareto efficient outcome occur. 

However, espousing the Very High Rejection strategy is not a safe strategy since a 

provider can switch to a lower rejection strategy in low traffic demand and can 

obtain a higher profit share than a competitor that adopts the Very High Rejection 

strategy. A lower rejection strategy is not safe to assign because a competitor can 

switch to a higher rejection strategy in high market demand to maximize profit 

shares. At higher market demand levels, providers earn a higher profit share by 

playing high rejection strategies. Providers can earn a higher profit share for low 

rejection strategies at lower market demand levels. Thus, providers may not always 

enjoy a higher profit share due to the dynamic nature of Internet traffic if they 

cannot accurately forecast market demand levels and interactively adjust strategies. 

The Internet traffic demand level is unpredictable.  Selecting a higher or lower 

rejection strategy suitable to the Internet traffic demand level is complex and 



 214

impractical. The Rejection Neutral strategy profit share is indifferent to the change in 

market demand and is our recommended safe strategy. 

In heterogeneous service-based network experiments, the following strategy 

sets yielded Bayesian Nash equilibriums: {VLR-RN-VHR, VLR-RN-VHR}, {RN-RN-

RN, RN-RN-RN}, and {VHR-RN-VLR, VHR-RN-VLR}. The strategy set {VLR-RN-

VHR, VLR-RN-VHR} resulted in the Pareto efficient outcome. However, the {VLR-

RN-VHR, VLR-RN-VHR} set  demonstrated a potential of  breaking transitive 

preference properties by endorsing a higher price for the lower service class 

compared to higher service class in certain market demand levels. Thus, the {VLR-

RN-VHR, VLR-RN-VHR} set was not considered as a preferred strategy. The next 

Bayesian Nash equilibrium set {RN-RN-RN, RN-RN-RN} maintained a price of 

service according to customers’ transitive preference property; thus, this was 

weighed as the best strategy set.  

9.2 Limitations 

9.2.1 Traffic Distribution Pattern 

The traffic distribution pattern used in this study was based on an empirical 

model developed prior to the incorporation of VoIP and IMS services in the internet.  

9.2.2 The Cost Function 

The cost functions of providers are proprietary information; thus, we did not 

have access to the cost function of any provider. We developed a cost function based 

on network congestion and hypothetical parameters: the service cost coefficient and 

the provider fixed cost coefficient. Note that these parameters are commonly 

assigned to both providers in our analyses for fair comparison; thus, they do not 

influence the comparative results of providers’ strategies. 
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9.2.3  Network Queue Model 

Our objective is to synthesize the game theory with the well-established 

queuing theory to optimize provider’s profit and profit. The M/M/1 system [59] is a 

well-established traffic analysis method for a FIFO based queuing and scheduling 

system in academic fields that allows for Poisson distributed packet arrival and 

exponentially distributed packet length. When traffic with Poisson distributed 

arrival rate aggregates into an integrated FIFO queue, the aggregate arrival 

distribution continues to be Poisson. When traffic with Exponential distributed 

packet lengths merges into an integrated queue, the aggregate packet distribution is 

hyper-exponential. We should thus adopt the M/G/1 model for computing the 

mean packet count in the queue system. However, in order to use results from the 

theory of networks of queues, we approximate with M/M/1 model. This is one of 

our limitations of this research. 

 

9.3 Advantage 

9.3.1 Improvement on Classical Models 

Our approach has a relative advantage over the classical Bertrand oligopoly 

model of price when consumers do not switch services. The classical Bertrand model 

of price causes the Nash-equilibrium market price of service to converge to the 

marginal cost of production. Our proposed model allows the market price of service 

to converge above marginal cost; thus, providers gain positive profit as opposed to 

the zero profit in the Bertrand Nash equilibrium [1]-[5].  In our model, the market 

price of service is always less than the customer’s budget. As a result, the customers 

also gain positive profit by deploying the proposed price transaction architecture. 

Further, by implementing suitable strategies, providers can obtain a fair share of 

profit and desired load. 
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9.3.2 Automation of Pricing and Billing 

Our proposal will eliminate the reactive time of price computation. It will 

take into account the dynamic nature of internet traffic while keeping the price of 

services within the budget of the customers.  Since the price transaction mechanism 

is based on sealed bid reverse auction, customers are ensured to be charged less than 

their budget contrary to the criticism of dynamic pricing that customers may run out 

of budget. 

9.3.3 Synthesis of Game Theory and Traffic Engineering Techniques 

The current network architectures only meet the technological and service 

needs. The economic aspects are not often taken into account in network design. For 

example, one of the existing traffic engineering methods is the addition of 

bandwidth.  The addition of extra capacities in an oligopoly market may cause 

significant unutilized capacity if the demand is lower.  

The classical Bertrand model the market price settles to the marginal cost in 

underutilized capacity [1]; thus, providers earn zero profit.  As the number of 

providers increases and they bring capacity in the market, a gradual reduction of 

market power occurs according to the Cournot model [2] and may cause providers 

to earn zero profit.  

One the other hand, our model allows providers to obtain positive profit. We 

recommend that providers refrain from the “throw bandwidth” traffic engineering 

practice because it adds capacity in the market. Adding capacity, similar to the 

Internet bubble period of late 1990s, is detrimental to the profit of all the providers. 

In our implementation, providers do not add capacity until the market demand of 

the optimized operating point (throughput) is achieved. In addition, each provider 

should maintain market capacity somewhat below the market demand; i.e. capacity 

is not underutilized. Providers should add capacity only after the optimum 

operating point (throughput) is exceeded. Our capacity restriction according to the 
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market demand ensures that marginal cost stays below price. Thus, providers’ earn 

positive profit. 

Another common current traffic engineering practice is to perform load 

adjustment by parameters such as link weights. For example, in the Border Gateway 

Protocol (BGP) or in the Private Network Network Interface (PNNI) 

implementations, the link weights are often computed inversely proportional to 

propagation delay without considering the economically competitive advantage of 

other similar routes in the Internet market. Prior to the explosive growth of the 

Internet, the expensive Public Switched Telephone Network’s (PSTN) price of 

service was a function of the distance traveled (e.g. long-distance or international) 

by a call. Massive deployment of fiber-optic cables around the globe reduced the 

distance specific cost for Internet services.  In addition, these methods are static, do 

not account the dynamic nature of internet traffic, and do not optimize provider 

profit. Thus, we do not implement these traditional methods.  

Our proposed network architecture and algorithms performs automatic 

traffic engineering while maintaining the required QoS in dynamic Internet 

environment.  In addition, we optimize the profit of participants in terms of the 

technology and microeconomics such as providers’ strategic competition, 

application specific service differentiation, and network congestion sensitive cost.   

9.3.4 Implementation of Strategies 

 Our method provides an advantage of strategy implementations over the 

current method.  Currently, in some oligopoly markets, price randomization is 

providers’ common practice [13][14]]. Since belief function is continuous, the price 

randomization requires an infinite number of points in the price interval.  

For example, if we implement the Random Rejection strategy in a network, for 

each call, an Analyst of each provider will have to develop a discrete belief function for 

a selected number of prices, pick a random number that will indicate the rejection 

probability, and find a price from the belief function that corresponds to this 
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number. This mechanism will be hard to implement because it will require extra 

processing and memory to develop and store the belief function. 

On the other hand, in our model, an Analyst of each provider is not required 

to develop a belief function during each call because proposed strategies are algebraic 

functions of network and market parameters (See Chapter 7).  For example, The 

Rejection Neutral strategy or the Random Rejection strategy algorithms  (See Section 

8.1.3) can be implemented using algebraic functions.  

9.4 Practical Applications 

9.4.1 Automatic Price-based Services 

The main application of this proposed method is to enable an automatic 

system to instantaneously compute strategic congestion-sensitive prices of Internet 

services in a competitive market and to optimize providers’ market share of profit. 

9.4.2 Profit Optimization and Determining Optimum Throughput 

We have shown by mathematical analyses and session level Monte-Carlo 

simulation that our method is a new approach to perform profit optimization and to 

determine optimum operating load in the network subject to the network 

architecture, traffic pattern, service class mix, and strategies available. 

9.4.3 Traffic Load Distribution 

Assume that a provider has two disjoint core networks and requires 

distributing access networks’ traffic load between these core networks.  By 

implementing appropriate strategies, a provider can distribute the access traffic 

according to the desired load levels of the core networks. For example, assume the 

provider has two disjoint core networks:  Core X and Core Y.  The provider also has 

many access networks. The access networks’ traffic propagates through the core 

networks. The provider intends to maintain an operating load close to the maximum 
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traffic engineered load in Core X and a lower load in Core Y. The provider can 

accomplish this by assigning the Very Low Rejection strategy to Core X and the Very 

High Rejection strategy to Core Y. If the provider plans balancing traffic load equally 

between Core X and Core, it should assign same strategy to both core networks. 

9.4.4 Least Price Routing 

Similar to the method of traffic load distribution, our approach can also 

perform the least price routing. Assume that the enterprise networks are Edge-Label 

Switch Routers (E-LSRs) and the providers are either disjoint networks or the 

autonomous systems of Border Gateway Protocol (BGP). The E-LSR wishes to select 

an autonomous system with least price routing where the routing parameters are the 

price in addition to QoS attributes. By implementing our method, the E-LSR can 

select the route through the lowest priced autonomous systems. 

9.4.5  Forecasting and Capacity Planning 

Due to the rapid growth in the Internet savvy population and emerging 

multi-media applications that consume high bandwidth, Internet market demand is 

rapidly increasing.  To maximize profit at all market demand levels, providers need 

to accurately maintain optimum network load.  Our analytical approach allows 

providers to predict this load. 

Traffic load in the network depends on the market demand and network 

capacity. If the network load increases beyond the optimum load due to increased 

market demand, a provider can maintain a desired load by proactively planning 

capacity to add capacity and enforcing traffic-engineering rules. For example, by 

implementing our approach, a provider could optimize profit at an operating load 

of 0.7704 under certain traffic engineering rules for homogeneous service-based 

market. Thus, implementation of our model allows a provider to forecast when a 

new capacity needs to be added. 
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9.4.6 Service Provisioning 

By using the proposed model, a provider can compute which class of service 

earns better profit. Based on this information, a provider can assign higher 

bandwidth for the higher profiting service.  

9.4.7 Innovation Disclosure 

We submitted an invention disclosure of the model: Sprint Docket #2857, 2004. 

9.5 Future work 

9.5.1 Variable Reservation Price 

Not all customers may value Internet services in the same way. In addition, 

customers’ wealth may be different. Therefore, one customer’s budget for a given 

Internet service may be different from another customer’s budget for the same 

service. Our research was based on a fixed reservation price. A future research could 

vary the reservation price to observe the profit of both customer and provider.   

9.5.2 Experiment on 3GPP Network 

We conducted analytical and session level Monte-Carlo simulation studies in 

the proposed one-to-many enterprise-provider peer network. We proposed an 

extension of the 3GPP wireless network; however, we did not conduct analytical and 

simulation studies due to time limitations. Although in our model, both the ATIS 

extension and the 3GPP extension employ the same price transaction protocol and 

architecture, the cost computation model will be different depending on the 3GPP 

charging function used: session, event, and bearer. A provider will most likely 

implement the charging functions, which yield most profit.  Thus, a future 

simulation and laboratory analysis to compare the performance of these three 

functions in our model could show advantages over the current pricing methods in 

the wireless network. 
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9.5.3 Priority based Queue system 

We conducted research in a network that supported M/M/1 queue systems 

because integrated queue and FIFO scheduling is currently most prevalent. 

However, in the future, providers will most likely implement segregated queues and 

priority scheduling in their networks. Therefore, evaluating performance of the 

proposed model using priority based queue systems should indicate better results 

because in a priority scheduling system congestion sensitive costs of higher valued 

services will be lower. 
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Appendix A: Mathematical Optimization Technique  

The  Necessary and Sufficient Conditions 

The Kuhn-Tucker condition for the constrained non-linear programming 

is defined in [50] as follows. 

The First Order Necessary Condition: Let x* be a relative minimum point for 

the problem 

: ( )
: ( ) 0

( ) 0

Minimize f
subject to =

≤

x
h x
g x

 

and suppose x* is a regular point for the constraints. Then there is a vector mEλ∈ and a 

vector pEμ ∈ with 0μ ≥ such that 

( *) ( *) ( *)T Tf λ μ∇ + ∇ + ∇ =x h x g x 0  

( *) 0T gμ =x  

The Second Order Necessary and Sufficiency conditions for the 

constrained non-linear programming is defined in [50] as follows: 

 

Second-Order Necessary Condtions. Suppose the functions f, 2,g h C∈ and x* is a 

regular point. If x* is a relative minimum point for problem, there there is a 

, , 0E Eλ μ μ∈ ∈ ≥ such that  
* * * *( ) ( ) ( ) ( )T TL x F x H x G xλ μ= + +  is positive semidefinite on the tangent subspace of 

the active constraints at x*. 

 

Second-Order Sufficiency Condtions: Suppose there is a point x* satisfying h(x*)=0, 

and a mEλ∈ such that * *( ) ( ) 0Tf x h xλΔ + Δ = . 

Suppose also that the matrix * * *( ) ( ) ( ) 0TL x F x h xλ= + Δ =  is positive definite on 
*{ : ( ) 0}M y h x= Δ = , that is, for , 0y M y∈ ≠ there holds *( ) 0Ty L x y > . Then x* is a 

strict local minimum of f subject to h(x)=0. 



 234

The Gradient Projection Algorithm 

 

The following Gradient Projection Algorithm is reproduced from [50]. To 

optimize (minimize)  function f(x) for a given feasible point x, one step of the 

Gradient Projection Algorithm is as follows: 

 

1. Find the subspace of active constraints M, and form Aq, W(x). 

2. Calculate 1( )−= − T T
q q q qP I A A A A  and ( )Tf= − ∇d P x . 

3. If ≠d 0 , find α1 and α2 achieving, respectively, 

Max {α1: x + α1 d is feasible} 

Min  {f(x + α2 d): 2 10 α α≤ ≤ } 

1 2k k α+ = +x x d   and return to 1. 

4. If d = 0, find 1( ) ( )T T
q q fλ −= − ∇qA A A X  

a) If 0jλ ≥ , for all j corresponding to active inequalities, stop; 

X satisfies the Karush-Khun-Tucker condition. 

b) Otherwise, delete the row from Aq corresponding to the inequality 

with  most negative component of λ (and drop the corresponding 

constraint from W(x)) and return to 2. 
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The Golden Section Line Search 

The algorithm of the Golden Section line search method is described in 

[50]. We implement the Golden Section Line search method in MATLAB to find 

minimum of unimodal (single minimum) function ( )f α+X D over a closed 

interval ( 0 Maxα α< < ). Here, X is an initial point vector, D is a directon vector, 

and Maxα is a maximum distance to move during optimization, and α is a scaling 

factor.  

This line search method uses the Golden section ratio that is derived from 

the Fibonacci ratio by allowing Fibonacci search N measurement point to 

approach infinity.  

1 1lim 0.618N

N
N

F
F τ

−

→∞
= =  

The following is our Golden Section Line Search Algorithm: 
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Appendix B:List of Acronyms 

 
3GPP  Third Generation Partnership Project 
ATIS  Alliance for Telecommunications and Industry Solutions 
ATM  Asynchronous Transfer Mode 
B2BUA Back-to-back User Agent 
BCF  Bearer Charging Function 
BFE  Bearer Functional Entity 
BGF  Border Gateway Function 
BGP  Border Gateway Protocol 
BICC  Bearer Independent Call Control 
CCFE  Call Control Functional Entity 
CMS  Cable Management Server 
CRFE  Call Routing Functional Entity 
CR-LDP Constrained-based Label Distribution Protocol 
CMSS  Cable Management Server Signaling 
ECF  Event Charging Function 
E-LSR  Edge-Label Switch Router 
FIFO  First-In-First-Out 
FONC  First Order Necessary Condition 
GMPLS Generalized Multi Protocol Label Switching 
HR  High Rejection 
IETF  Internet Engineering Task Force 
I-CSCF Interrogating-Call Session Control Function 
IP  Internet Protocol 
ISP  Internet Service Provider 
IMS  Internet Multimedia Subsystem 
ITU  International Telecommunication Union 
LSP  Label Switch Paths 
LR  Low Rejection 
PNNI  Private Network-to-Network Interface 
MG  Media Gateway 
MGC  Media Gateway Controller 
MPLS  Multi Protocol Label Switching 
MPλS  Multi Protocol Lambda Switching 
MR  Media Relay 
P-CSCF Proxy-Call Session Control Function 
PDA  Personal Digital Assistants 
PTSC  Packet-Technology and System Committee 
QoS  Quality of Service 
S-CSCF Serving-Call Session Control Function 
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SBC  Session Border Controller 
SCF  Session Charging Function 
SONC  Second Order Necessary Condition 
SOSC  Second Order Sufficient Condition 
RFC  Request For Comment 
RFP  Request For Purchase 
RL  Reinforcement Learning 
RN  Rejection Neutral 
RR  Round Robin 
RSVP-TE Resource Reservation Protocol Trafic Extension 
SIP  Session Initiation Protocol 
UA  User Agent 
VHR  Very High Rejection 
VLR  Very Low Rejection 
VoIP  Voice over Internet Protocol 
VP  Virtual Path 
VPC  Virtual Path Connection 
VPN  Virtual Private Network 
WRR  Weighted Round Robin 
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