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Introduction
) What is an Adaptive Algorithm?

) What is System Identification?
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) Benefits of Channel Estimation

) Training Sequence Versus Blind Estimation
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Presentation Overview
) Theoretical Development

* Problem Formulation

* Multiple Phase Shift Keying

* Characterizing Wireless Communication Channels

* Bandpass to Low-Pass Conversion of Signals and Systems

* Adaptive Algorithms

� Linear and LMS Estimation Algorithms

� Properties of Decision Weighted Algorithms

) Simulation Methodology

) Simulation Results

) Conclusions
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Problem Formulation
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Multiple Phase Shift Keying (MPSK)
) Modulation
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) Demodulation
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Characterizing Wireless Communication Channels
) Multipath
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) Channel Models

* Radio Relay Three-Path (Rummler) Model

* Mobile Radio Channel Model
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Bandpass to Low-Pass Conversion

) The Complex Envelope of the MPSK Signalling Waveform

esi(t) =
r

2E
T

cos
�

2�i
M

�
+ j

r
2E

T

sin
�

2�i
M

�

) Main Idea: Convolution of real bandpass signals is the same as the
convolution of their complex envelope low-pass equivalents
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Adaptive Algorithms
) System Identification Problems

b

β

+

+

u(n)

w(n)

e(n)

y(n)

Unknown System

Model

-y(n)^

b β+

+

u(n)

w(n)

e(n)

Unknown System ModelDecision

y(n) x(n)

y(n)^

-



10

) Linear Estimators

Define for the training sequence estimation problem:

y(n) = b1u1(n) + � � �+ bMuM (n) + w(n)

by(n) = �1u1(n) + � � �+ �MuM (n)

e(n) = y(n)� by(n) = y(n)� (�1u1(n) + � � �+ �MuM (n))

Define for the decision directed estimation problem:

y(n) = b1u1(n) + � � �+ bMuM (n) + w(n)

by(n) = �1x1(n) + � � �+ �MxM (n)

e(n) = y(n)� by(n) = y(n)� (�1x1(n) + � � �+ �MxM (n))
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Observe the system for N sample periods and write

y =
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The channel output is

y = Ub+w

The error for the training sequence estimation problem is

e = y �U�

While that for the decision directed estimation is
e = y �X�

The error or loss function is

J(�) = eTRe

where R is a N x N matrix of weighting coefficients.
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) Linear Estimator b� =
�

UTRU
�
�1

UTRy

) Recursive Weighted Least Squares Estimator
u(n) =
h

u1(n) u2(n) � � � uM (n)
iT

R = diag(�n�1a1; : : : ; �an�1; aN ) 0 < � � 1

b�n = b�n�1 + anH
�1

n

u(n)e(n)

Hn = �Hn�1 + anu(n)u
T (n)

e(n) = y(n)� u(n)T b�n�1
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) Least Mean Squares (LMS) Estimator

b�n = b�n�1 + ��nu(n)e(n)

e(n) = y(n)� u(n)T b�n�1

) Decision weighted estimators are decision directed estimators whose
weights depend on the quality of the decisions.

* Ideal decision weighted estimators use knowledge of decision errors
to calculate their weights. Specifically,

XTRX = XTRU
* Soft decision weighted estimators use receiver soft decisions to

calculate their weights.
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) More on Ideal Decision Weighted Linear Estimators

* Q: How does one choose R such that XTRX = XTRU?

* A: If X and U differ in the jth row, choose the jth column of R

orthogonal to each column in X.

* Q: Are XTRX = XTRU and XTRX non-singular conflicting
conditions?

* A: No, let R be an identity matrix with its jth column set to zero if X

and U differ in the jth row. Under slightly more restrictive
assumptions placed on X than in ordinary training sequence
estimators, XTRX is non-singular.

) More on Soft Decision Weighted Estimators
For MPSK modulation define a soft decision as

pi = 1� j�i � �ij

�=S

A possible choice for the soft decision weight is

an = pnpn�1 � � � pn�M+1
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) Biasness of Decision Directed Linear Estimators

If E fwjX;Ug = 0 then

E
nb�o = E
n�

XTRX
�
�1

XTRU
o

b

For ideal decision weighted estimators XTRX = XTRU, and therefore
the estimator is unbiased.

) Covariance of Decision Directed Linear Estimators
If E fwjX;Ug = 0 then

cov
nb�o = cov fSUbg+ E
�

SVST
	

where S =
�

XTRX
�
�1

XTR and V = E
�

wwT j X;U
	

. Notice for ideal
decision weighted estimators SU = I.
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Simulation Methodology
) Algorithm Summary

* Training Sequence LMS (TLMS): Uses training sequence LMS with

�n = 1

* Blind LMS (BLMS): Uses decision directed LMS with �n = 1

* Soft Decision Weighted LMS (SDWLMS): Uses decision directed
LMS with soft decision weights

* Ideal Decision Weighted LMS (IDWLMS): Uses decision directed
LMS with �n = 1 if x(n) = u(n) and zero otherwise

* Training Sequence RLS (TRLS): Uses training sequence WRLS with

an = 1

* Blind RLS (BRLS): Uses decision directed WRLS with an = 1

* Soft Decision Weighted RLS (SDWRLS): Uses decision directed
WRLS with soft decision weights



18

* Ideal Decision Weighted RLS (IDWRLS): Uses decision directed
WRLS with an = 1 if x(n) = u(n) and zero otherwise

* Modified Soft Decision Weighted RLS (MSDWRLS): Uses decision
directed WRLS with soft decision weights; however, we modify the
matrix update Hn by removing the weight an, resulting in

Hn = �Hn�1 + x(n)xT (n).

* Modified Ideal Decision Weighted RLS (MSDWRLS): Uses decision
directed WRLS with an = 1 if x(n) = u(n) and zero otherwise;
however, we modify the matrix update Hn by removing the weight

an, resulting in Hn = �Hn�1 + x(n)xT (n).
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) General Methods for Delay Spread, SNR, and Doppler Frequency Tests

* LMS Gain: � = 0:3

* RLS Forgetting Factor: � = 0:99

* Sampling Rate: 1 sample per second

* Symbol Interval: 4 samples per symbol

* Modulation: QPSK

* Number of Symbols per Individual Simulation: 300 symbols

* Number of Individual Simulations to Perform per Test Point
Iteration: 20 simulations

* Maximum Symbol Error Rate (SER): 0.2

* Number of Symbols to Skip Before Calculating Estimation Error
(N0): 100 symbols

* Initial Estimate: the true response

* Performance Criteria: median average estimation error
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Simulation Results
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Figure 1: Median of the average squared error of LMS algorithms as a function
of delay spread (SNR = 10 dB)
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Figure 2: Median of the average squared error of RLS algorithms as a function
of delay spread (SNR = 10 dB)
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Figure 3: Median of the average squared error of LMS algorithms as a function
of SNR (Delay Spread = 1 symbol interval)
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Figure 4: Median of the average squared error of RLS algorithms as a function
of SNR (Delay Spread = 1 symbol interval)
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Figure 5: Median of the average squared error of LMS algorithms as a function
of Doppler frequency (SNR = 10 dB)
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Figure 6: Median of the average squared error of RLS algorithms as a function
of Doppler frequency (SNR = 10 dB)
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Conclusions
) Summary of Performance Test Results

* Soft decision weighted LMS (SDWLMS) performed better than the
other LMS algorithms in delay spread (by a factor of 2 to 100, Figure
1) and SNR (by a factor of 2, Figure 3) tests

* Soft decision weighted RLS (SDWRLS) performed worse than the
other RLS algorithms in delay spread (by a factor of 2, Figure 2) and
SNR (by a factor of 3, Figure 4) tests

* Modified soft decision weighted RLS (MSDWRLS) performed better
than the other RLS algorithms in delay spread (by a factor of 2 to 20,
Figure 2) and SNR (by a factor of 2, Figure 2) tests

* SDWLMS performed better at normalized Doppler frequencies less
than 10�5 and worse at higher Doppler frequencies than the other
LMS algorithms (Figure 5)

* SDWRLS and MSDWRLS performed worse over all Doppler
frequencies than the other RLS algorithms (Figure 6)
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* Ideal decision weighted LMS and RLS (IDWLMS and IDWRLS)
performed similar to their training sequence versions in all tests, and
generally better than their ordinary decision-directed counterparts
(Figures 1 through 6).

) General Conclusions

* Decision weighted estimators defined, analyzed, and simulated

* SDWLMS shows most promise for implementation

* SDWRLS performed poorly, but MSDWRLS performed well

* Ideal decision weighted algorithms performed similar to training
sequence algorithms


