Advanced Optical Modulation Formats in Highspeed Lightwave System

Sen Zhang

Committee: Dr. Ron Hui (Chair) Dr. Chris Allen Dr. John Gauch

Outline

- o Introduction
- Signal Propagation in Optical Fibers
- Overview of Optical Modulation Formats
- Impact of Optical Modulation Formats on Different Fibers
- A simplified model about SPM in dispersion-managed optical system
- o Conclusion
- o Future Work

Introduction

- Lightwave communication started in 1970s.
- Four generations of developing phases so far.
- Next-generation of lightwave system:
 - High-speed datarate per wavelength, e.g. 40Gbps
 - Operating wavelength-range extending from C-band to L-band and S-band
 - Closer channel spacing
- Modulation is becoming a key issue

Signal Propagation in Optical Fibers

• Nonlinear Schrödinger Equation:

$$\frac{\partial A}{\partial z} + \frac{\alpha}{2}A + \frac{i}{2}\beta_2 \frac{\partial^2 A}{\partial T^2} - \frac{1}{6}\beta_3 \frac{\partial^3 A}{\partial T^3} = i\gamma \left[\left| A \right|^2 A + \frac{i}{\omega_0} \frac{\partial}{\partial T} \left(\left| A \right|^2 A \right) - T_R A \frac{\partial \left| A \right|^2}{\partial T} \right] \right]$$

$$T = t - z / v_g = t - \beta_1 z$$

$$\frac{\partial A}{\partial z} + \frac{\alpha}{2}A + \frac{i}{2}\beta_2 \frac{\partial^2 A}{\partial T^2} = i\gamma |A|^2 A$$

Signal Propagation in Optical Fibers (contd.)

• Linear Effects:

Optical Loss

 $P_T = P_0 \exp(-\alpha L)$

Signal Propagation in Optical Fibers (contd.)

Nonlinear Effects:

SPM & XPM

$$\phi_{NL} = n_2 k_0 L(|E_1|^2 + 2|E_2|^2) \qquad \gamma = \frac{n_2 \omega_0}{c A_{eff}}$$

Four-wave Mixing (FWM)
Phase matching condition

Signal Propagation in Optical Fibers (contd.)

 Split-step Fourier Transformation (SSFT)

$$\frac{\partial A(z,T)}{\partial z} = \left(\widehat{D} + \widehat{N}\right)A$$

$$\widehat{D} = -\frac{i\beta_2}{2}\frac{\partial^2}{\partial T^2} - \frac{\alpha}{2} \qquad \qquad \widehat{N} = i\gamma |A|^2$$

 $A(z+h_n,T) = \exp(h_n \hat{N}) F^{-1} \left\{ \exp[h_n \hat{D}(i\omega)] F[A(z,T)] \right\}$

ONRZ-OOK

- Most compact spectrum
- Poor tolerance to dispersion and nonlinearities
- Simplest configuration of transceivers

o RZ-OOK

- Shorter signal width than its bit period
- Improved tolerance to nonlinearities because of its regular RZ signal pattern

• NRZ-DPSK

- Constant optical power
- No carrier component in optical spectrum
- 3dB better receiver sensitivity by using a balanced receiver

RZ-DPSK transmitter power o RZ-DPSK NRZ-DPSK E/O Phase (optical) E/O intensity LD Modulator modulator RZ shape of optical phase DPSK signal encoder Pulse train 0 (electrical) No carrier component NRZ data (electric) Power [dBm] RZ-DPSK 3dB better receiver -23 sensitivity -40 -60 Better nonlinearity tolerance than its NR7

-109

-21

-15

-10

-5

0

Optical Frequency relative to 193.9 THz [GHz]

5

10

15

counterpart

21

o CS-RZ

- π phase shift between adjacent bits
- No carrier component, two clock signals half datarate away of the carrier
- Configuration of transmitter is easier than RZ-OOK

Motivation

- Linear and nonlinear degrading effects are becoming severe in high-speed optical systems
- System performance are influenced by both modulation formats and fiber types
- The choice of transmission fiber could be dependent on the modulation format and datarate of system

- o System Setup
 - 1.6 Tb/s of capacity, 40Gbps/ch×40ch or 10Gbps/ch×160ch
 - Spectral efficiency is 0.4b/s/Hz
 - Ideal dispersion slope compensation
 - Optical loss totally compensated by in-line EDFAs
 - using tunable DC after Demux in non-central channels

- Dispersion Map
 - Pre-compensation optimized in single-channel case ranging from -1000ps/nm to 0ps/nm
 - Total residual dispersion is Ops/nm in central channel
 - Residual dispersion compensation distributes evenly in each span

- Four modulation formats: NRZ, CS-RZ, NRZ-DPSK and RZ-DPSK
- Four kinds of transmission fibers: standard SMF, TW, TW-RS and LEAF ($\gamma = \frac{n_2 \omega_0}{c A_{eff}}$)

	Dispersion D @ 1550nm [ps/nm/km]	Dispersion slope S @1550nm [ps/nm ² /km]	Nonlinear refractive index n ₂ [10 ⁻²⁰ m ² /W]	Effective core area A _{eff} [µm ²]	Fiber attenuation ¤ [dB/km]
SSMF	17	0.058	2.8	80	0.25
DCF for SSMF	-90	$0.058 \times \frac{-90}{17}$	4.3	14.3	0
TW	3.5	0.08	3.45	45	0.25
DCF for TW	-90	$0.08 \times \frac{-90}{3.5}$	4.3	14.3	0
TW-RS	4.4	0.045	3.2	55	0.25
DCF for TW- RS	-90	$0.045 \times \frac{-90}{4.4}$	4.3	14.3	0
LEAF	3.7706	0.11	3.0	72	0.25
DCF for LEAF	-90	$0.11 \times \frac{-90}{3.7706}$	4.3	14.3	0

16

o 40Gbps Optical System, NRZ-OOK

- LEAF outperforms SSMF in single-channel system
- SSMF is beneficial in WDM system because of its large local dispersion D

40Gbps Optical System, CS-RZ

- More tolerant to nonlinear degrading effects than NRZ
- Performance of SSMF and LEAF is similar to that of NRZ case

- o 40Gbps Optical System, NRZ-DPSK
 - SPM is not significant because of constant optical power of NRZ-DPSK
 - SSMF outperforms LEAF because of its larger D

o 40Gbps Optical System, RZ-DPSK

- Best tolerance of nonlinearity among investigated formats
- All fibers except TW have similar performance in WDM System

o 10Gbps Optical System, Single-channel

10Gbps Optical System, Single-channel

 All kinds of fibers shows nearly identical performance for all investigated modulation formats

• SPM is not a big concern in 10Gb/s system

o 10Gbps Optical System, 160ch, 25GHz channel spacing

- 10Gbps Optical System, 160ch, 25GHz channel spacing
 - XPM & FWM are the dominant degrading effect in the system because of the narrow channel spacing
 - SSMF outperforms other fibers for all formats because of its larger D

Motivation

- SPM is one of the dominant degrading factors in high-speed (e.g. 40Gbps) optical system
- A simplified model is helpful in the design of system concerning the limit induced by SPM
- SPM-limited system performance maybe dependent on datarate and modulation formats

	SSMF	DCF
Dispersion parameter D [s/m ²]	17e-6	-80e-6
Nonlinear index n ₂ [m ² /W]	2.43e-20	4.3e-20
Core area A _{eff} [m2]	72e-12	14.3e-12
Attenuation a [dB/km]	0.2	0.5

• Dispersion Management

- 100% per-span dispersion compensation in-line
- Optimum dispersion compensation for the system by optimizing the length of DCF in the last span

• Definition of SPM-Limit on Transmission Distance L_{spm}

Transmission Distance (SMF+DCF) [km]

• SPM-limited maximum transmission distance at 10Gb/s $Log(L_{SPM}) = -P(dBm) + C$

 SPM-limited maximum transmission distance at 40Gb/s Log(L_{SPM}) = -P(dBm) + C

Impact of Modulation Formats

- $L_{SPM} \cdot P = C$ holds For all modulation formats, where C is a constant depending on modulation formats.
- No obvious difference in *C*-value (< 20%) for different formats in 10Gb/s system.
- In 40Gb/s system, RZ-DPSK shows the best SPM-induced nonlinearity tolerance, about 400% increase of transmission distance compared to NRZ format.

Power- L _{SPM} product C for a	different modulation	formats in	$[mW \cdot$	km]
---	----------------------	------------	-------------	-----

Data-rate	NRZ	RZ	CS-RZ	RZ-DPSK
10 Gb/s	11222	10294	12926	9254
40 Gb/s	855	1683	2864	3636

• Limit Induced by ASE-noise

- ASE noise generated by inline EDFAs is another major limitation.
- SNR-limited receiver *Q*-value is directly proportional to the square-root of optical signal power:

$$Q = \sqrt{\frac{\lambda P_{in}^{(1)}}{2NhcF_{eff}(G_{eff} - 1)B_e}}$$

 RZ-DPSK is vulnerable to Gordon-Mollenauer effect where ASE optical intensity noise can be converted into phase noise through fiber nonlinearity.

$$Q = \frac{\pi}{2\sqrt{2(\sigma_L^2 + \sigma_{NL}^2)}}$$

Limit Induced by ASE-noise at 10Gb/s

Limit Induced by ASE-noise at 40Gb/s

Conclusion

- Impact of modulation formats on different fibers are compared
 - In 10Gbps WDM system, XPM & FWM are the major source of degrading effects; SSMF outperforms other fibers
 - In 40Gbps WDM system, SPM is the major source of degrading effect if NRZ is used; Using advanced modulation format like DPSK, SSMF is still a competitive transmission fiber
- A first-order rule about SPM is found: $L_{SPM} \cdot P = C$
 - RZ-DPSK shows the best tolerance to SPM-induced distortion w/o consideration of nonlinear phase noise at 40Gb/s datarate.
 - At 10Gb/s, all the modulation formats exhibit similar SPMtolerance. At this datarate, RZ-DPSK is most susceptive to nonlinear phase noise.

Future Work

• In the future, there are several things could be done:

- Multiple-level signaling like DQPSK compared to the binary signaling concerning both performance and commercial realization
- Compensation of nonlinearity in electrical domain

Thanks!