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Abstract

Network traffic analysis in modern, heterogeneous, high-speed networks poses
new challenges to traffic engineers: recent measurements of cell streams in these
networks reveal a number of characteristics that traditional network traffic models
cannot emulate. Network traffic is intrinsically bursty, meaning that the rate
of transmitted cells or packets is subject to severe fluctuations. This burstiness
shows up even when averaging over large intervals of time, a phenomenon referred
to as self-similarity. Self-similar burstiness is a ubiquitous phenomenon present in
various packet network concepts. There has been focus on mathematical models
for its description, and performance analysis based on queuing in the network.
This thesis mainly focuses on characterizing traffic at various time scales which
includes measures of self-similarity (Index of Variability, IDV) and burstiness
(Peak Rate Variability, PRV). We also discuss traffic models based on moment
matching and performance analysis done on the traffic data. The variability of
the network traffic over a wide range of time scales is shown through analysis
of PRV and IDV along with performance evaluation using G/M/1 analysis. We
investigate the variability in traffic analytically as well as by simulation and
conclude that a lower order hyperexponential interarrival model could be used to
model network traffic. Parameter optimization for the model should not involve
curve-fitting alone, but should include an attempt to capture statistics that affect
queuing behavior. Therefore, we propose a simple optimization technique to

match the IDV curve, traffic peak rate behavior and queuing properties.
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Chapter 1

Introduction

Network traffic measurements [2] have shown that network traffic is bursty on a
wide range of time scales, which cannot be captured by traditional traffic models.
This scale invariant burstiness has led to the description of new concepts like peak
rate variability and the index of variability, both of which are discussed in this
thesis. Our goal is to develop new methods for network traffic modeling and
analysis mainly for the purpose of evaluating the performance of the network,
where analysis encompasses a wide variety for problems. Self similarity [1] is
the property where the aggregate network traffic variability remains the same
over an extremely wide range of time scales or over all time scales. This is in
contrast to classical models which smooth off at large time-scales (e.g., Poisson
arrival processes, Markovian models of packet traffic, etc.). If a time series is
bursty at all time-scales, it exhibits long-range dependence (LRD) [3, 2|. The
concepts of self-similarity and LRD complicate various simple assumptions and
makes solutions sometimes analytically intractable. But, the simplicity of self-
similarity lends itself well to practical applications in network dimensioning and

traffic analysis [19]. The goal of this thesis is to develop a network traffic model



that can capture essential characteristics of traffic such as self-similarity, LRD

and queuing behavior.

1.1 Network Analysis

In constructing a model, various simplifying assumptions are made for analytical
tractability, but some of these assumptions may be fundamentally inaccurate.
It is the role of the modeler to ensure that these unrealistic assumptions do
not affect the outcome of analysis. In this thesis we concentrate on one class
of such assumptions. We assume that the packet arrival process is Markovian.
In particular, packet inter-arrival times are assumed to be hyperexponentially
distributed [4]. We will show that this assumption is realistic. Self-similarity has
been observed in packet networks, yet Markovian assumptions approximately
hold true for them [24] and this strengthens the assumption. The inter-arrival
times cannot be simply modeled as exponential as it over-estimates the results
in terms of performance of networks [6]. Based on the assumptions suggested
by the models, one can develop mathematical tools for estimation of network
performance related to Quality of Service (QoS) parameters. Accurate models of
traffic streams help in understanding the maximization of the network utilization.
This thesis provides a new framework to characterize the variability in the
traffic through peak rate variability analysis and index of variability analysis.

There are two main difficulties in self-similar network traffic analysis:

1. Wide uncertainty in choosing a mathematical model.

2. Queuing theory tools for treating both LRD traffic and finite buffer queues.

Depending on the type of traffic and desired mathematical tractability, a network



model can be chosen. For example, file sizes in the Web were shown to have
heavy-tail distributions [35]. Validity of the mathematical model can be checked
by comparing various statistical properties of synthetic traffic (generated directly
from the model) and the real network traffic. Queuing tools imply queuing models
for analysis of network traffic. Queuing analysis again depends on the traffic type.
We cannot describe the traffic arrival distribution prior to its flow into the queue.
This poses difficulty in fixing the buffer size. Also, LRD traffic is bursty and there
would be more packet loss with a fixed buffer size compared to smooth arrival
traffic (eg. Poisson) flow into the same buffer with same mean arrival rate. So,
it is difficult to estimate the size of buffer given an arbitrary LRD trace. In
this thesis, we assumed general arrivals and infinite buffer size because analytical
expressions exist for infinite buffer size. G/M/1 is used for arbitrary arrivals and
exponential service rates. But, it is analytically difficult to derive expressions
for the queuing analysis if the arrival and service time distributions are general
(G/G/1). Verification of analysis using tools like Extend needs simulation of long
LRD traces, posing memory problems in storing the data. The work done on
choosing mathematical models for self-similar traffic and related queuing models

is explained in Chapters 4 and 5.

1.2 Theoretical Background

This research work is organized around the landscape of recent developments
and previous accomplishments. The initial effort for this thesis focussed on be-
coming familiar with the traffic in current ATM networks. This led to a new
measure of burstiness, peak rate variability (PRV). Another main idea behind

the thesis was the concept of Index of Variability or IDV [4]. Information about



the self-similarity and LRD is the main foundation for understanding the Hurst
parameter, the measure of self-similarity. Considering the ATM traffic measure-
ments determined by simple models of uncorrelated arrivals of cells, some basic
estimation problems related to renewal processes are studied, using the results
of [8, 9]. Our analytical work has been directed towards modeling packet traffic
motivated by the idea of IDV and hence required the study of the power-tailed
distributions and their queuing performances [10, 11]. In brief, a literature search
was conducted which included traffic analysis, self-similar network modeling, per-

formance modeling, simulation and optimization techniques.

1.3 Traffic Measurement

Asynchronous Transfer Mode (ATM) [38] is a high-speed connection-oriented
network technology that sends data through switched and permanent virtual
circuits in fixed length packets called cells. Both optical carriers (OC), OC-3 rate
(155 Mbps) and OC-12 rate (622.08 Mbps) links that are included in this study
are bi-directional and the data is analyzed at each uni-directional port on the link.
Sprint personnel collected cell-count data on a per-virtual channel circuit (VCC)
basis for several switch ports. The data consists of ATM cell counts tracked every
5 milliseconds for over a 24-hour period on a single switch connected to an OC
link. Therefore, there are more than 17 million cell counts in each data set. Also,
the basic definitions used in this thesis are as follows:

Fundamental Time Interval: A particular non-overlapping time slot in sec-
onds. Each VC or link data set is divided into fundamental time intervals that
are 5 milliseconds in length (10 ms for some links).

Aggregation Interval: An interval that is an integer multiple of 5 ms. For ex-



ample, a 1-second aggregation interval consists of 200 consecutive 5 ms intervals.
Aggregation intervals are non-overlapping.

Cell Count: Number of cells in a particular aggregation interval.

1.4 Organization of Thesis
The main objectives of the thesis are to:

1. Verify the self-similarity of empirical network traffic traces.
2. Develop a model for the self-similar traffic.

3. Investigate the effects of self-similarity and LRD on the performance (delay

and loss probability) of the network traffic.

4. Compare the simulated traffic generated from the proposed model to the

real network traces.

Chapter 2 discusses the basic definitions of self-similarity and the derivations of
IDV. This chapter defines self-similarity and LRD in terms of autocorrelation
and variance of the counting process. Traffic similarity at various aggregation
levels and burstiness has been observed leading to the study of self-similarity
and LRD. The real network traffic traces were tested for self-similarity and LRD
using the variance-time plots. A new method to derive the IDV from counts is
also presented. This was investigated on different traffic traces to confirm the
self-similarity and LRD in ATM network traffic.

Chapter 3 of this thesis introduces Peak Rate Variability (PRV) and exam-
ines the problem of estimating the peak rate at the lowest time scale given the

largest time scale of measurement of data. Analysis is done on ATM networks
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to understand the variability of peak rates at various time scales. ATM traffic
data is analyzed to determine its peak rate behavior as a function of aggrega-
tion time ranging from 5 milliseconds to an hour. A linear relation is developed
to find the peak rate at the lowest aggregation level given the peak rate at the
highest aggregation. We also illustrate the self-similar tendencies of this traffic
data by comparing it with synthetic data that is independent and exponentially
distributed.

Chapter 4 deals with the modeling of the traffic using different models like
MMPP and hyperexponential models. Preliminary analysis is done to match the
IDV using a two state Markov modulated Poisson process (MMPP) source model.
Higher orders of hyperexponential distributions are found to be more appropriate
in network analysis. We attempt to represent the inter-arrival times of measured
traffic stream using hyperexponential distribution of order 3 (Hj). As is com-
monly the case, the mean is matched along with specific constraints related to
hyperexponential. The analysis was used in generating synthetic traces approxi-
mately matching the real traffic traces in terms of performance. We found that,
with properly chosen parameters, the Hj distribution was sufficient to uniquely
characterize the IDV and queuing behavior. The rest of the chapter describes
the heuristic and optimization techniques used for estimating the H3 parameters.
The efficiency of the optimization technique in finding the suitable H; parameters
is also discussed.

Chapter 5 describes the queuing behavior of the network traffic and attempts
to match the queuing results with G/M/1 analysis [12|. Various simulation tech-
niques are used for generation of hyperexponential data and queuing of the net-
work traffic. Synthetic data is generated using parameters of matched Hj (hy-

perexponential distribution, n'* order represented as H,). We investigate the
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performance of a simple queuing system (G/M/1) subject to hyperexponential
arrival traffic, where the real traffic, synthetic traffic and theoretical analysis are
compared. The results strengthen the assumption of modeling the inter-arrival
distribution as hyperexponential distribution. We also show that IDV, along with
PRV, is an effective measure for synthetic data generation with similar statistical
properties as the real network trace. We conclude in chapter 6 with the discussion

of results, contributions and future work.

1.5 Framework of Results

There are two areas of focus of network analysis in this thesis.

1. Source modeling and performance evaluation based on IDV [4]. In partic-
ular, characterization of IDV for Hj over various time scales as a function

of H; parameters.

2. Peak rate variability of network traffic over various time scales. Relation-
ship between peak rates at different aggregation intervals on OC-link was

obtained.

Issue (1) is studied in this thesis, although more work in this area is clearly
necessary. Issue (2) has been explored as a part of analysis on the Sprint data

network.

1.6 Lessons Learned

This thesis contributes two characterization techniques for self-similar network

traffic. The first characterization (PRV) is based on finding peak rate at various
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time scales and the second being a measure of self-similarity as a function of time
scale (IDV). From a practical point of view the important issues are the estimation
of peak rate at different time scales, LRD phenomena, and parameters, especially
the estimation of IDV.

For practical applications, PRV can be used for various cell /packet counts in
the network to calculate the maximum peak rate possible in the link. There are
various disadvantages in measuring the network traffic at a very small granularity
(milliseconds). One of them is the inefficiency of storing large amounts of data
in the disks. If detailed data is not stored, processing speed would be required to
find peak rate for the data collected on each link. Therefore, we introduced this
PRV curve, which can be used to estimate the maximum peak rate at a smaller
time scale given the peak rate at larger time scale. Since the coarse measurements
(one-hour aggregation) of data underestimate the short-term peaks, the peak rate
should be calculated at various time scales.

The main use of this calculation is in the area of capacity planning in the
networks. In this case, a peak rate pattern on various VCCs can be observed. For
example, the PRVs can be plotted for a month with the daily traffic measurements
and these patterns can help us explain the behavior ofchanging peak rates on the
link. Further, the traffic causing the peak rate on a particular VCC can be
identified and can explain the policing violations. Also, the pattern can be used
in load balancing the traffic in the network. Loads on the links can be distributed
to avoid any congestion in the network and help prevent cell loses.

Another major consequence of the maximum peak rate, congestion, can be
identified. Based on the peak rate, buffer sizing, cell loss identification and traffic
shaping can be done by checking the policing parameters on a particular link.

This study also helps in the cases of link failure. The ideas is to pre-determine

13



(based on peak rate patterns observed for a long period of time on the links) a
route that has less loaded links and splice the traffic on the occurrence of a link
failure. If a link failure occurs, the traffic could be diverted based on the load
balancing factors and the available pre-determined link to the destination.

Another practical application is in customer education. Coarse measurements
result in lower peak rates leading to misconceptions of peak rates advertised to
the customer. PRV would be helpful to educate the customer about the peak rate
variations and dependence of PRV on time scales. Large time scale measurements
average out the short-terms peaks with the idle periods (no cells/packet for a
period of time).

This understanding of traffic characteristics is very important in network per-
formance prediction, and the identification of these phenomena is a focus of this
thesis.

Another focus of our investigation is the estimation and interpretation of the
Index of Variability (IDV) in case of real traffic. It is shown that if we use the
Hurst parameter in practice we are faced with various misleading affects that
can deceive our self- similarity tests and Hurst parameter estimation methods.
Finally, we conclude that the estimated value of the Hurst parameter may be
distorted in many practical cases and it may have no information for practical
usage. Index of variability is a varying parameter that could be used to generate
a synthetic traffic, matching the peak rate characteristics of a real network trace.
This would help in predicting the future rate of the traffic based on the IDV
curve. Moreover it is quite a challenge to predict the nature of the traffic in future
services. There was an attempt to match the IDV of the traffic and then generate
data that could match the PRV characteristics of the real traffic trace. Hyper-

exponential model of order 3 was used to match the IDV curve and the parameters
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of the hyper-exponential model generated the simulated traffic trace. Simulated
traffic traces help in various performance studies like queuing performance. It
saves the disk space to store the real traffic traces. Queuing analysis can be used
to check the cell loss in the link and traffic behavior.

Together the PRV curve and IDV analysis can provide insight into the traffic

characteristics as a function of time scale.
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Chapter 2

Estimating Measures of

Self-Similarity

In recent years, large amounts of high-quality measurement data in communica-
tion networks have been used to examine the validity of the traditional statistical
assumptions made when analyzing such networks. These traditional assumptions
contain the premise that network traffic can be described by Markovian models.
This implies that autocorrelations in network traffic decay exponentially fast and
traffic behaves smoothly over long time scales. Recent studies have found that
these traditional (Markovian) assumptions are not always satisfied. But, network
arrivals continued to be modeled as Poisson process for analytical simplicity. The
Poisson assumption model was first refuted by Paxson et al. [5], who investigated
the error introduced by modeling TCP arrival processes as Poisson arrivals. Later,
Ethernet LAN traffic at Bellcore was analyzed [1| to prove that network traffic
exhibits properties like self-similarity and long-range dependence (LRD) and can
be modeled by heavy-tailed distributions like Pareto. An extensive bibliograph-

ical guide with 420 references to publications on self-similar traffic and analysis
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[14] provides ample evidence that network traffic possess self-similarity and LRD.
Such traffic behaves extremely bursty on a wide range of time scales. Subsequent
sections give the basic definitions of self-similarity, LRD and Index of Variability

[4], a relatively new measure of self-similarity.

2.1 Definitions

2.1.1 Self-Similar Process

A self-similar stochastic process is one whose statistical distributions are essen-
tially invariant to scaling of the time axis. More precisely, scaling by a factor
m > 0 has the same effect as multiplying the process by a factor of m*.
Y (mt) = m2Y (1)

where Y(t) is a cumulative discrete-time process (arrivals up to time ’t’).
The notation = indicates that the two processes have the same probability law,
and H is the Hurst parameter, referred to as the self-similarity parameter of the
process. The best known example of such a process is the Poisson process, which

has parameter H = 0.5.

2.1.2 Classifications in Self-Similarity

Let X (t) be a stationary incremental process of Y (t), where X; = Y (t+1) =Y (¢).
Define the aggregated process of X; as
X = L[ Xim-mt1 + Xem-msz + - - - + X
where m is the size of the aggregating block. The above equation implies
that X is partitioned into non overlapping blocks of size m, and their values are

averaged, and ¢ is used to index these blocks.
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The first two moments are assumed to exist and be finite. We define mean:
u = E(X;), variance: 0? = E[(X; — p)?] and auto-covariance function:
v(k) = E[(X; — p)(Xp4r — )]
Let 4™ (k) denote the auto-covariance function of X(™. A process is called
second-order self-similar if X ™ and m!~# X (t) have the same second-order statis-
tics for any m > 0. Second-order self-similarity can be classified into two cate-

gories:

Exactly Self-Similar

A process X is exactly second-order self-similar with self-similarity parameter H

(m) . .
w)fl_ = has the same variance and autocorrelation as X.

1 (k) = 9(h)

if

Asymptotically Self-Similar

X is an asymptotically second-order self-similar process if the second-order char-

acteristics of X and Tfl(fz,), are the same for m tending to infinity.

limy;, 00 /Y(m)(k) = V(k)

Another feature of asymptotically second-order self-similar process is that the

variance converges to zero slower than the rate m=".

Var(X™) = g?m = (2.1)

where the Hurst parameter, H = 1 — 3/2. For m > 0, equation 2.1 holds true
for exactly second-order self-similar process too.
Self-similarity also implies that traffic is not memoryless. Thus for example,

the probability that a current burst will continue for N packets depends on the
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number of packets that burst delivered so far i.e, it depends on burst history.

2.1.3 Long-range Dependence (LRD)

Long range dependence (LRD), i.e., correlation over wide range of time scales, is
an important factor in performance evaluation and traffic modeling of networks.
Long-range dependence is a characteristic associated with an infinite time series.
Long range dependence is not synonymous with self similarity but for 0.5 < H <
1, a process is both LRD and self-similar. A process is LRD if the autocorrelation
decays slowly i.e., hyperbolically.
Y= (k) = o0
If 0 < H < 0.5, then X is short range dependent i.e., autocorrelation is

summable (exponentially decaying autocorrelation).

Zk—foo 7( ) <0

2.1.4 Estimating Techniques for the Hurst parameter

The measure of self-similarity, the Hurst parameter, can be estimated using tech-
niques such as variance-time, wavelet method, Pox diagram of R/S analysis and
periodogram-based analysis (in frequency domain). Detailed descriptions can be
found from references [16] [1]. Second order properties can be used in finding
mathematically tractable models. Also, the derivation of IDV involves variance
of the traffic and so variance-time would be more appropriate to compare the
Hurst parameter and IDV and their effectiveness for finding the network traffic

variability.
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2.1.5 Variance-Time Method

The variance-time method is one of the statistical tests for self-similarity. This
method is based on the property that a self-similar process has slowly decaying
variances i.e., variance of aggregated process X (™ decreases more slowly than the
reciprocal of m (Equation 2.1). Method to calculate Hurst from variance-time'

plot:

1. Divide the trace data X, Xs......... Xy into N/m blocks of size m. m > 0.
2. Average the series over each block.

3. Calculate sample variance given by:

Var[X(™] = 5377 (X — X)2/(N/m)

n

where

X :(Erjyzl Xn)/N
The variance-time plot is obtained by plotting log(V ar[X ™)]) against log(m)
and by fitting a simple least squares line discarding some values of 'm’ (aggrega-
tion interval).
Taking log of Equation 2.1 and differentiating w.r.t log(m), we get the Hurst

parameter.
log(Var(X™) = —Blog(m) + constant
slope, = dlog(Va'r(X(m))/dlog(m) =3
H =1+ slope,/2 =1— (/2.

Figure 2.1 shows the estimation of the Hurst parameter using the least squares

line fit. The linear fit can either be done by fitting straight line to the intermediate

Iplotted on log-log scale. Variance-Time in this thesis refers to curve plotted in log-log scale.
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3.6
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Figure 2.1: Variance-Time Plot, Hurst parameter Estimation

aggregation intervals (dashed line) or by fitting line to the higher aggregation
levels (dotted-dashed line) (according to the variance-Hurst relation, equation
2.1). The slope (negative) of the linear line (dashed) is 0.09, therefore H = 0.955.
Whereas H = 0.895 for the another linear fit (dotted-dash line).

Hurst indicates the speed of decay of the autocorrelation function. H=0.5
implies that there is no variability (non-bursty i.e., smooth traffic as aggregation
increases) as in the case of the Poisson process. As we know, H < 0.5 implies
short range dependence (SRD) and H > 0.5 is long-range dependent (LRD),
so it is confirmed that the traffic trace exhibits LRD from the values of the
Hurst parameter (0.955 and 0.895). The Hurst parameter is claimed to be a
good measure of variability [16] and is directly indicative of burstiness. But, the
Hurst parameter does not consider the variability across all scales as the linear
fit (dashed) is done discarding a few lower and higher values of 'm’. Another

Hurst parameter (=0.895) for the same variance-time plot also does not capture
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the variability. This implies that the Hurst parameter captures the burstiness
correctly when there is linear decrease in variance for most or all of the time
scales. The Hurst parameter has been used in performance evaluation (resource
allocation) in recent studies [15, 17, 18, 19, 20| where the analysis just depends
on the value of the Hurst parameter [21]. Since it is a single value derived from
one of the methods of estimation of self-similarity, an estimation error may give
incorrect results in performance analysis, leading to over/under estimation of
utilization of network resources. There is every possibility that the linear fit
may be imperfect or there may be numerous linear fits if the variance curve is
extremely non-linear (Figure 2.1). Linear curve fitting in such cases results in
error, and the Hurst parameter is influenced by the sample size and the technique
to compute it [23]. Before discussing the other measure of self-similarity (IDV),

we describe the analysis that led to the study of self-similarity and LRD.

2.2 Validation of Self-Similarity

Traffic patterns in a network are predictable only in a statistical sense. The ATM
data collected for this research project indicate that network traffic has similar
statistical properties at a range of time scales: milliseconds, seconds, minutes,
hours. This characteristic is referred to as self-similarity. Ethernet traffic was
proved [16] to be self-similar and in this report, we show that ATM traffic also
exhibits self-similarity using traffic rate properties.

To illustrate the dynamic behavior and correlation of the structure of the
process, a real network traffic trace is observed at different aggregation levels.
Starting with the largest aggregation level (an hour), we successively examine

smaller aggregation levels by zooming in on the part of the process where the
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Figure 2.2: Rate Period Expansion for Traffic Trace.
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5 ms peak rate occurs. Graphs with averaging time interval of one hour, one
minute, one second and 5 ms (collected data) are plotted in Figure 2.2. Figure
2.2 shows a traffic trace, where average rate (Mbps) at the given aggregation level
is plotted against time. In part (a), the time granularity is one hour. A single
data point in this plot is the aggregated traffic volume over a 3600 sec period.
The data point containing the maximum 5 millisecond peak rate is expanded
to Figure 2.2 (b). As noted in Figure 2.2 (a), the 5 ms peak occurs between 6
p.m. and 7 p.m. but this is not the interval in which the peak of the hourly
aggregated data occurs (4 p.m. - 5 p.m.). The aggregation level in Figure 2.2 (b)
is one minute (60 s). Similarly, the other two Figures (fig. 2.2 (¢) and fig. 2.2 (d))
are plotted with one-second and 5 ms granularity. By expanding the 6 p.m. to 7
p.m. interval window into a minute window (Figure 2.2 (b)) and then to seconds
window (Figure 2.2 (c)), and finally to 5 ms window (Figure 2.2 (d)), the peak
in each window occurs at a different point of time. This clearly indicates that
the measuring interval is important factor for considering peak of a trace. Also,
there is visual similarity among the plots, especially 2.2 (b) and 2.2 (c). Figure
2.2 clearly shows that the observed traffic trace is bursty on all time scales. This
property is closely related to the notion of long-range dependence.

As observed in the previous paragraph, the ATM traffic was bursty on many
or all time scales and looked similar at various aggregation levels. This is in stark
contrast with traffic simulated from conventional traffic models. Figure 2.3 shows
a trace obtained by generating independent counts, each of which is exponentially
distributed, with the same average rate as the real ATM traffic trace used in
plotting Figure 2.2. Starting with a time unit of one minute, each subsequent
plot is obtained from the previous one by increasing the time resolution by a factor

of 60 and by zooming in on a chosen subinterval. This traffic behaves smoothly

24



Rate(Mbps)

Rate(Mbps)
o
=

Rate(Mbps)

0

Figure 2.3: Rate Expansion for Exponential Data

10

20 30 40 50
Averaging Interval(min)

(a) Rate for Aggregation of a minute

60

20 30 40 50
Averaging Interval(sec)

(b) Rate for aggregation of a second

60

"n

A

Ini
o]y o

"n

..
:'A

n"ll
l

n

II|||!,

..
il
60

T\me Imerval(msec)

(c) Rates at 5 millisecond interval

25

150




[N

o
©
a
T
|

o
©
T
|

o
©
a
T
|

o
©

Autocorrelation Coefficient
o o
o) I ~
(3] ~ w

I
)

o
3]
a

Lag x 10"

Figure 2.4: Autocorrelation of LRD data

on large time scales. Further statistical analysis of the correlation structure of
measured network traffic shows that its autocorrelation function decays extremely

slowly (Figure 2.4).

Burstiness

The critical feature in the plots of actual traffic is that the traffic is highly bursty
over a wide range of time scales. Cell arrival rates over each hour for a period of
24 hours of ATM traffic can be noted from Figures 2.2 (a)-(d). The approximate
similarity of widely varying peak rates is striking. There is high variation in burst
lengths where highly busy (bursty) periods are separated by less busy periods.
Another observation from Figure 2.2 is the resemblance of the plots with the
magnitude suitably normalized, which indicates self-similarity.

A self-similar traffic stream will not "smooth out" over an extended aggrega-

tion of time as observed in the “rate expansion” plots (Figure 2.2). The effect of
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self-similarity is to introduce long range correlation into the traffic stream which
is a phenomenon that is observed in practice. This property is quite different
from the data that is modeled by tradition Markovian model (Poisson process,

Markovian arrival process (MAP), etc.).

2.3 Time Scale Dynamic Behavior : Index of Vari-
ability

The time scale dynamic behavior in traffic rates has already been examined in
the previous section, where each aggregation window is expanded to view the
variability in the process at each aggregation level. There are processes like
Markovian modulated Poisson process (MMPP) that have H = 0.5 but still
exhibit variability [4]. As mentioned in previous section, LRD is related to long
time series. A time series can exhibit SRD or LRD tendencies depending on the
aggregation levels that are considered. The Hurst parameter fails to give the
complete variability at all time scales. A new measure of self-similarity has been
proposed in [4]. This new measure is called Index of Variability (IDV or H,)
and is a better measure than the Hurst parameter since it captures variability
at all time scales. Higher values of IDV imply high variability in traffic. IDV
is calculated from Index of Dispersion of Counts (IDC) [24], which is the ratio
of variance to mean of the process. Similar to variance-time plot (Figure 2.1),
number of packets (counts) arriving in a given time slot have been examined at
different aggregation levels (size of time slot) to find the IDC. IDV is a function
of time scale describing the complete variability of traffic at all time scales as
opposed to a single constant value of the Hurst parameter focusing on a few time

scales. We must begin our discussion of IDV by reviewing the basics of point
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processes.

2.3.1 Point Process

Any stochastic process in continuous time in which the sample paths are step
functions, and therefore any process with a discrete state space, is associated
with a point process, where a point is a time of transition, or a time of entry into
pre-assigned state or set of states. Also, arrival processes can be described using
point process [9].

A simple point process ¢ = {t, : n > 1} is sequence of points 0 < t; <ty < ...
with t, — 0o as n — oco. With N(0) = 0, let N(t) denote the number of points
that fall in the interval (0,t], and {N(t) : t > 0} is called the counting process for
¢. N(t) = maz{n : t, < t}.

¢ becomes a random point process if the ¢, are random variables. Y, =

tn — tn_1, n > 11is called the n'* inter-arrival time and,

t,=Y1+Yo+...... + Y, with ty = 0.

An important class of point process is the renewal process. A random point
process ¢ = {t,} for which the inter-arrival times {Y¥,,} form an i.i.d. sequence is
called a renewal process. In such a case, the subscript n may be dropped from
the inter-arrival times Y,. t, is the n'* renewal epoch and F(Y) = P(Y < y)
denotes the inter-arrival distribution. The rate of the renewal process is defined
as A = ﬁ, where E[Y] is the mean inter-arrival time. When the inter-arrival

times are exponentially distributed, the renewal process is called Poisson process.

Also, expected number of events that occurred during interval (0,t] is given by

EIN ()] = g

A counting process is said to possess weakly stationary increments if the mean
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and the variance of the number of the events that occur in any interval of time
depends on the length of the time. We assume N (%) to be weakly stationary. We
refer 7 as fundamental time interval and 7 as the time scale of the traffic trace,
and 7 (=m7y, m = 1,2..... ) represents the measurement interval (i.e. 10ms, 1s,
Llhr etc.). For each time interval 7 > 0, an event (packet) count sequence

X ={X,(7r),7 > 0,n =1,2....} can be constructed from each point process,

where the increment process
Xn(7) = N[nt] = N[(n — 1)7]
denotes number of events that occurred during the n'* interval of duration
7. X is weakly stationary since the underlying point process N(t) is weakly

stationary. In this thesis, X represents a traffic trace and the underlying point

processes have finite variances.

2.3.2 Derivation of IDV

The derivation of IDV according to [4] is presented first. Let N(7) denote the
number of events (packet counts, counting process) in the time interval (0,7].
Using the notations of the previous section, the mean of the counting process can

be described as

E[N(r)] = Ar (2.2)

Variability of traffic was characterized [24| through the Index of Dispersion of
Counts (IDC) defined as,

_ Var[N(r)] _ Var[N(r)]
TP =)~

(2.3)

Here 7 is the time scale corresponding to one sample X,. Network traffic
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is constructed by one or more point processes. Since the arrivals are assumed
independent, in a given traffic trace, we can consider the increments X, (7) to
be sample functions of the counting process N(7) for a given 7. The variance of
N(7) can thus be estimated as the variance of X, (7).

Var[N(mr Var[Xy(r)+Xa(19)+-... X (T
IDC(mp) = E[J[V(’IS’LT()S)])]: [X1(m0)+ ;(T(;)))\-F +Xm(70)]

_ mVarmX(™)]
- ng)\

mVar[X™]
== 24
)\7'0 ( )

X (M) ig the aggregated packet count process as defined in Section 2.1.2 and
Section 2.3.1. Taking logarithm of equation 2.4 and replacing variance by its

definition mentioned in equation 2.1, we get

_ mo*m P __ o?m Pt
IDC(mTO) o ATo o ATy

log(IDC(mmy)) = log(a?) + (1 — B)log(m) — log(A7o)

Taking derivative (slopey) of log(IDC(1)) w.r.t log(m), we get

slope;=1—-p
For a self-similar process, plotting log(IDC(7)) against log(m) (IDC curve)
results in an asymptotic straight line with slope; (slope of IDV curve) 2H — 1,

and thus

H = (sloper +1)/2
When X is a long-range dependent process, the slowly decaying variance
property (equation 2.1) with parameter 0 < § < 1 is equivalent to IDC curve
with an asymptotic straight line with slope; 1 — 3, implying 0 < slope; < 1.

When slope; is zero, then X is a short-range dependent process.
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Relation Between Slope of IDC curve (slope;) and Slope of Variance-

Time Plot (slope,)

We derive the relation between the slopes of IDV curve? and variance-time curve
which is used to explain our method of deriving IDV from variance-time plot.
Refering to section 2.1.5, we derived that slope, = —f

Therefore,
slope; = 1+ slope, and H = (1 -+ 1)/2 =1- (5/2) =

1+ (slope, /2).

Different expressions of IDV
Index of variabilty is the Hurst parameter as a function of time. As defined in
[4], index of variability (H,(7)) of X for time scale 7 is given by:

1

o) = | d(log(IDC(1)))

d(log(T))
d(log(IDC(r)))

where llog@) is the derivative (slope;) of the IDC curve. Also, 7 = my,

( +1) (2.5)

log(T) = log(m) + constant. Therefore, dlog(T) = dlog(m).
A simple expression is now derived relating IDV to the variance of the counting
process.

Taking log of equation 2.4 and dividing through out by log(7),

log(IDC(T)) _ log(Var[N(r)] _ log(A) 1
log(T) log(T) log(T)

Taking derivative,

d(log(IDC(r)) __ d(log(Var[N(r)]) _ 1
d(log(r)) d(log(r))
2plotted on log-log scale. IDC curve in this thesis refers to curve plotted on log-log scale
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Expanding just the variance term in the above equation and taking derivative

of it, we get
d(log(Var[N(1)]) __ log(e)dVar[N(1)]/Var[N(r)] __ 7dVar[N(r)]
d(log(1)) o log(e)% ~ Var[N(7r)ldr
Similarly,
d(log(IDC(1)) __ log(e)dIDC(7)/IDC(r) __ 7dIDC(r)
d(log(1)) log(e)dT—T ~ IDC(1)dr
Therefore,

d(log(IDC(r)) __ 7dIDC(r) 7dVar[N(r)] 1
d(log(T)) IDC(r)dr  Var[N(r)]dr

We can now use the above equations in expressing IDV in another form.

dIDC(1)/d(T)

dVar|[N(r)]/dr
o) Y

Var[N(7)] )

H,(1) = 0.57( = 0.57( (2.6)

Given the variance of the process analytically, equation 2.6 is used in com-

puting IDV theoretically (see Section 4.3.2).

IDV Calculation using Variance of Counts

Our approach in calculating IDV involved only variance of the counting process.
Note that the factor of mean in IDC would not change the slope of the variance-
time curve. So, our approach utilizes the second order properties of the packet
traffic to derive IDV. We have already shown the relationship between slope; and
slope, (—B(7)).

From equation 2.5,

H,(1) = 0.5(sloper + 1) = 0.5(2 + slope,)

Therefore, IDV can be expressed as
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Figure 2.5: Variance-time Plot with Polynomial fit (order 8)

The negative slope (1 — 8(7)) of the log-log plot of IDC curve is a function of
time scale. Since the slope is varying, 3(7) also varies with 7.

We calculate IDV from the real traffic traces by finding the variance of the
data for every aggregation and fitting a polynomial to the non-linear variance-
time plot (Figure 2.5). The derivative of the non-linear polynomial fit gives the
slope (dlogVar(N[r]/dlog(T)) of the curve at each time scale 7 (—5(7)). IDV is
computed using equation 2.7. A polynomial of order 8 is chosen as the 'norm
of residuals’ value is low (Figure 2.6). The norm of residuals is a measure of
the goodness of fit, where a smaller value indicates a better fit than a larger
value. Order 8 is chosen since the norm of residuals is approximately same for
orders greater than 8. After fitting the polynomial, Index of Variability, H,
is calculated by differentiating the polynomial w.r.t to log(aggregation interval)
(equation 2.7). Figure 2.7 gives the IDV for the trace data whose variance is

fitted by the polynomial (Figure 2.5).
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A purely second order self-similar process, H,(t) is a constant for all '¢'. For
an asymptotically second order self-similar process H,(t) approaches a constant

value as t— oo.
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Chapter 3

Peak Rate Variability

Network bandwidth is an important factor of data transfer over the virtual chan-
nels of the present day’s information highway. Despite the high speed fiber optic
links ranging to gigabits per second, there is congestion in the virtual channels
creating higher rates (peak rates) in the channels. This may be due to network
topology consisting of slow intermediate switches/routers, failures in the network
and sudden routing changes in the network. Peak rate is an important factor
to consider in the network to study the traffic variation on the links. Different

aspects of peak rates are studied in this chapter.

3.1 Data Analysis

The data collected in the ATM (for ATM terminology, refer [38]) network was
analyzed to study peak rate characteristics on the virtual circuits as well as on
the links. There are two basic terms that recur in this section. They are defined
as follows:

Peak Count: The maximum cell count among the cell counts in the similar
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aggregation intervals. For example, the maximum cell-count among all 1-second
intervals.

Peak Rate: The peak count for a particular interval converted into Mbps rate.

Each peak count is transformed into peak rate by the conversion factor 53 %8/
(length of aggregation interval), where 53 is the length of the cell (in bytes) and
8 is the number of bits per byte.

It was observed (Figure 2.2) that peak rate on the links varied as the time
scale varied. So, this chapter discusses various characteristics and aspects of peak

rate by doing the following studies:

1. Generating independent exponential data for a single VCC to compare with

the actual data of that VCC to study its characteristics.

2. Finding equations describing the peak rate of the optical carrier (OC) links
and individual VCC traffic.

3. Finding relationships between ratio of maximum to minimum peak rate
and hourly (minimum) peak rate for VCCs on all the links and for the links

themselves.

The variability of peak rate with the time was analyzed by studying the following

plots:

1. Peak rate versus log of averaging time interval for the real traffic trace data

on a single VC as compared to peak rate of exponentially distributed data.
2. Peak rate on an OC link consisting of multiple VCs.

3. Ratio of maximum peak rate to minimum peak rate in both OC-links and

V(Cs.
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3.2 Variability over Multiple Scales

Cell-counts aggregated over non-overlapping blocks of time are used for calculat-
ing peak rates at different aggregation time scales (fig 3.1). The 5 ms cell counts
are aggregated over different time intervals and the peak rate (in Mbps) for each
time interval is plotted versus the aggregating time interval (the latter being in
log scale facilitating better visualization of the features in smaller aggregation
intervals). We refer to such a curve as Peak Rate Variability (PRV) curve. It can
be observed that the peak rate tends to fall as the aggregation interval increases
and the minimum peak rate is obtained for the maximum aggregation of one
hour, indicating the variability of peak rate over multiple time scales.

Figure 3.1 shows a few PRV plots chosen from set of PRV plots (about 300
PRV plots for VCs on OC-3 and OC-12 links). [13] is a detailed report of PRV
plots on VCs and OC-links. From Figure 3.1(a), it can be seen that the peak rate
is maximum for no aggregation (5 ms), remains high throughout the aggregation
intervals up to about 25 seconds, then falls off when aggregated further. Note
that the peak rate remains more or less constant for some aggregation intervals
(0.1 sec-25 sec). The peak rate for 5 ms and 1-hour aggregation interval is ap-
proximately 11.5 Mbps and 3.95 Mbps respectively. Note also that the peak rate
falls abruptly for aggregation intervals beyond approximately 75 seconds. The
magnitude difference (T 8 Mbps) between maximum and minimum peak rates is
much greater than the average arrival rate of the traffic (T 2 Mbps). It is also sig-
nificant that the 1-hour peak rate (4 Mbps) is greater than the average rate (1.74
Mbps), which indicates that the traffic is still bursty at very large aggregation
time interval. Peak to mean ratio evaluation is common in characterizing traffic

but cannot provide much statistical information about the data. PRV plots were
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Figure 3.1: Peak Rate Variability of Network Traffic Traces.
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generated for various VCs on an ATM link and a similar type of behavior was
observed on all VCs. Some of the common similarities observed were as follows:

1. Abrupt fall at higher aggregation intervals (at approximately 10 seconds).

2. Constant peak rate for a range (100 milliseconds-5 seconds) of intervals.

It may seem to the reader that the peak rate should be monotonically de-
creasing as aggregation interval increases, but Figure 2.1 shows several jumps.
The occurrence of these jumps in Figure 3.1 can be explained by this example:

Consider a set of points (cell-counts) which is a subset of the actual data with
a measurement period of 5 ms between each cell count. A 50 ms duration implies
10 points in the set with a basic measurement period of 5 ms.

Set: {0, 0, 2, 20, 1, 16, 0, 6, 0, 0}.

It is important to note that cells are aggregated over non-overlapping blocks
of time for calculating peak rate. When the 5 ms interval is considered, the peak
rate would be 1.696 Mbps as the 4th element accounts for the highest cell count
in that interval.

(20*53*8) /5ms = 1.696 Mbps.

Summing pairs of cell counts for an aggregation of 10 ms, the peak occurs in

the second 10 ms slot (3rd & 4th element in the set), which would be:
(204-2)*53*8/10 ms = 0.933 Mbps.

This exhibits the expected decrease in the peak rate. However, by summing
the cells for an aggregation of 15 ms, the peak rate can be obtained by adding
the second 15 ms slot (4th, 5th & 6th element in the set) which would be:

(20+1+416)*53*8/15 ms = 1.14 Mbps.
Therefore, depending on the traffic, the peak rate might increase as aggrega-

tion increases, and this behavior is exhibited in Figure 2.1.
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Comparison with Poisson Arrivals

A sample function (synthetic trace) of a Poisson arrival process is generated with
the same length and mean arrival rate as that of the ATM trace. This data was
generated by transforming uniformly distributed data and the mean was equated
to that of the collected network data.

The dashed line in Figure 3.2 shows that the peak rate in the generated
Poisson data falls off with increasing aggregation time in an exponential-like
fashion and remains essentially constant after the 10 second aggregation interval,
whereas for the collected data (solid line in Figure 3.2) the peak rate remains
constant for aggregation intervals ranging from 0.25 seconds to 25 seconds and
falls off abruptly after that. The peak rate at all time scales of Poisson traffic is
much smaller than that of the real traffic and this adds to the set of reasons for

not choosing a traditional Poisson model for modeling real traffic.
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3.3 Peak Rate on a Link

We now turn our attention to traffic on an entire OC link. Each day’s cell-count
data on different links at different switches is analyzed to obtain the peak rate
over different aggregation time scales (PRV curve). Link data can be obtained
by summing VCC cell counts for all VC/VP pairs on a given OC-x link (where x
can be either 3 or 12).

Analysis is done on OC-3 links consisting of tens of VCs. The PRV curve
behavior remained approximately the same in all the OC links with a regular
pattern indicating similar traffic flow in them [Appendix-PRV of OC-links, Figure
6.1]. Here we consider a particular OC-3 link with 37 VCs. Figure 3.3 shows an
expected decay in the peak rate as the aggregation time interval increases on the
OC-3 link. The sharpest drop occurs in the region of 10ms-100ms aggregation.
Note the difference between peak rate at finer time scales versus peak rate at

one-hour time scale. As with VC data, one-hour averaged data does not give an
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accurate indication of possible link congestion, which can occur in much smaller
time scales.

The maximum peak rate of 60.8 Mbps (aggregated at a lower time scale of
5 ms) and a minimum of 13.7 Mbps for aggregation over 3600 seconds (1 hour)
indicating approximately 75% drop in the peak rate. The ratio of maximum to
minimum peak rate is 5 : 1, which indicates a rapid decay of peak rate in this
particular link. The maximum expected peak rate on any link would be equal
to capacity of that link. It is interesting to note that the peak rate is just three-
eights of OC -3 link capacity. None of the links (Figure 6.1) reach even half
the OC-3 link capacity at the 5 ms aggregation interval. It is assumed that at
finer time scales (microseconds), the link might achieve the OC-3 link capacity.
The ratio of 5 ms peak rate to 100-second peak rate is equal to the ratio of
100-second (aggregation interval) peak rate to the 1-hour peak rate (Figure 3.3).
This indicates a rapid decrease in peak rate from 100-second aggregation and the

traffic is much smoother than that at 5 millisecond interval.

Similar Analysis for OC-12 Link

The data on OC-12 links was collected with measurement period of 5 millisecond
similar to OC -3 link measurements. One of the OC-12 (Figure 3.4) links consists
of 37 VCs. Similar (in shape) peak rate curves were plotted for different OC-12
links. The peak rates (at 5 ms interval) for all OC-12 links were noted [13] to
be approximately 175 Mbps and the ratio of maximum to minimum peak rate
is also approximately the same. There is a more gradual decrease in peak rate
of a link (at aggregation interval of 100 ms) as opposed to the rapid decrease
in peak rate in its VCCs (at 10 ms). Similar to the OC-3 links, these links do

not reach the OC-12 link capacity of 622 Mbps for 5 ms aggregation but may
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Figure 3.4: Peak Rate on OC-12 Link

reach the maximum link capacity at a much finer time scale. Had all VCs been
highly loaded, the peak rate at the 5 ms would have been much higher than that
observed in Figure 3.4. There is a rapid fall in the peak rate in VCC traffic at
around 100 second aggregation interval and at 100 millisecond interval in OC link
traffic. The rate at which peak rate drops from 5 milliseconds to 100 seconds is
much less than the peak rate fall from 100 seconds to one-hour aggregation adding
another point of difference between OC and VCC curves. Similar traffic pattern
was observed in all OC-12 links [Appendix-PRV of OC-links, Figures 6.2-6.3] [13],
indicating consistency in the traffic on all the VCCs in OC-12. The peak rates for
all the OC-12 links can be noted from Figures 6.2 and 6.3. The peak rates of all
OC-12 links are approximately 175 Mbps and the ratio of maximum to minimum
peak rate is also approximately the same. For both OC-3 and OC-12 links, the

sharpest drop occurs in the region of 10ms-100ms aggregation.

44



3.4 Ratio of Maximum to Minimum Peak Rates

It is always not possible to store the traffic cell counts at 5 ms granularity due to
memory constraints in a switch. For most data networks, network traffic statis-
tics are recorded on one-hour time scale to analyze the traffic characteristics. As
we saw in the previous section, the peak rate at the lowest scale is incomparable
to the value at the hourly peak rate. So, the time scale is a major factor in deter-
mining peak rate. This section discusses the relationship between maximum and
minimum peak rates. The previous two sections showed that the coarse measure-
ments significantly underestimate the actual short-term peaks in the traffic. The
natural question is therefore, how can we use these coarse statistics to estimate
the traffic behavior at a 5 ms time scale. Analysis of the ratio of maximum to
minimum peak rate is done in order to show that there is a linear relationship
between this ratio and peak rate at one-hour aggregation. Analysis was done on
the data derived from the set of OC-3 links and OC-12 links.

Calculation of peak rate based on an hour aggregation for setting parameters
for various algorithms used in traffic shaping, performance, etc., would lead to
incorrect results. This analysis would help in reducing the percentage error in

calculation of various results.

OC Links

Given the one-hour peak rate, the maximum peak rate of OC-links can be esti-
mated by the equations given below:
The linear regression yields the following relationship with a coefficient of

determination of 72 = 0.853. Equation for OC-3 link (Figure 3.5 (a)),
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Figure 3.5: Ratio Plots of OC-links.
Sub-plot on the left is 3.5 (a) and on the right is 3.5 (b)

Rlog = —0.5032 % oc3log + 1.207 (3.1)

Where Rlog is the logarithm of ratio of maximum to minimum peak rate and
oc3log is the logarithm of hourly peak rate (Mbps) of OC-3 link.
Equation for OC-12 link (Figure 3.5 (b)),

Rlog = —0.9136 * oc12log + 2.1516 (3.2)

Rlog is the logarithm of ratio of maximum to minimum peak rate and oc12log
is the logarithm of hourly peak rate (Mbps) in equation 3.2. r? = 0.94.

Given the peak rate at one-hour aggregation of a link, the ratio can be calcu-
lated and multiplied by the one-hour peak rate to obtain approximate 5 millisec-

ond peak rate.
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Figure 3.6: Ratio Plot of VCs

VCCs on OC Link

We now investigate the ratio of the maximum to minimum peak rate of the VCCs,
in particular as a function of hourly (minimum) peak rate. A specific pattern is
typical of all the VCCs in all the links. Certain VC’s carried heavy traffic and
it resulted in the high peak rate in its link. All the links have a regular pattern
indicating similar traffic flow in them [13].

Finally, an equation can be obtained for the peak rate of a VCC on an OC-
link. Figure 3.6 plots the logarithm of ratio of maximum to minimum peak rate
of all VCCs combined sketched on a single plot. The resulting linear fit (equation
3.3) can be used to characterize the behavior of VCCs in the OC-links. The
equation of the straight-line fitted to the cluster of ratio points with coefficient

of determination, r?=0.85, is,

rlog = —0.6565hourpeaklog + 1.287 (3.3)
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Where rlog is the logarithm of ratio of maximum to minimum peak rate and

hourpeaklog is the logarithm of hourly peak rate (Mbps) of all the VCCs.
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Chapter 4

Approach, Models and Analysis

4.1 Traffic Characterization

A traffic model is a stochastic process that includes a set of parameters. Given a
realistic traffic trace, a traffic model can be considered to be accurate if its queuing
performance is similar to that of the trace. Using inaccurate models may result in
over-engineering (low efficiency) or under-engineering (poor performance). Con-
sidering modeling and analysis of traffic loads in high-speed networks, a huge set
of arrival processes with different short- and long-term correlation structures have
been developed and numerous light- and heavy-tailed distributions describing the
underlying random variables of the load models have been identified. Recently,
there were attempts to estimate the parameters of such models from real data
[29]. This complex correlation structure that spans across wide range of time
scales usually called long-range dependence is not taken into consideration in
traditional Markovian models. Various studies have indicated [1, 7, 15, 19] that
LRD has significant impact on resource management and network performance

evaluation. Current network traffic trace phenomenon suggests that self-similar
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modeling is better than Poisson modeling. The central idea of traffic modeling is
to construct analytical models that capture perhaps not all statistics, but ones
that are important for performance analysis.

Understanding the nature of traffic, identifying its characteristics and building
practical models are vital for the tele-traffic engineering of today’s packet switched
networks. New observations of measured traffic call for new approaches (e.g.,
multiple time scale characterization) and the ever changing services and protocols
of the Internet trigger particular models (e.g. Ethernet models, WWW models).
This chapter overviews the traffic characterization and modeling activities of this

thesis, presenting different models developed for packet traffic.

4.2 Previous Research

4.2.1 Markov Models

The long held paradigm was that network traffic could be adequately described
by Markovian models (e.g., Poisson) with sufficient accuracy. This modeling
can be used if the network traffic shows a little or no auto-correlation. The
memoryless property in Markov models demand that the time spent in a state
is distributed exponentially with a particular mean arrival rate corresponding to
that state. The models available in literature for modeling traffic (like MMPP)
can be considered traditional. These models assume arrival rate process to have
finite mean and finite variance unlike that expected for LRD traffic. The basic
assumption of arrival process being Markovian ignores the significant correlation
present in the network traffic. A very large state space is needed for capturing
the complex network behavior, and the use of Markov models seems problematic.

The Poisson process has traditionally been used to model traffic. The inter-
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Figure 4.1: PDF of Exponential Distribution

arrival time distribution is exponential for a Poisson count process. The pdf for
an exponential distribution is shown in Figure 4.1. This results in a data where
the bursts smooth out as the aggregation interval increases (Figure 2.3).

If traffic were to follow a Poisson arrival process, it would have a smooth traffic
characteristic when considered at large time scales. Poisson traffic aggregates
well over time, implying that peaks in the arrival process tend to be canceled
out rapidly by the succeeding dips. Also, the burstiness is restricted due to
high degree of multiplexing as aggregation of traffic from multiple number of
Poisson sources causes a smooth Poisson traffic stream. Non-Poisson traffic fails
to aggregate like the well-behaved Poisson traffic (peak rate of the link, Figure
3.3), where the resulting aggregated non-Poisson traffic is still highly bursty. A
property that is worth noting for Poisson process, is that the values of the random
variable representing arrival process at different time scales are uncorrelated. This
is explained by the fundamental memoryless property of Poisson. Therefore, it

does not fit into the modeling of self-similar traffic, where the random variables
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are correlated. The main purpose of next section is to investigate theoretical
distributions that approximate the empirical distribution of the measured cell

inter-arrival distribution.

4.3 Models for Packet Traffic

4.3.1 Markov Modulated Poisson Process (MMPP)

A Markov-modulated Poisson process (MMPP) is a doubly stochastic process,
that is, a Poisson process with an intensity changing in time in accordance with
another Markovian process. An MMPP can be modeled as a continuous time
Markov chain, with state space {1, ..., k}. We say that the MMPP is of order £,
and each of the k£ states corresponds to an arrival rate A;, when the chain is in
state 7. We consider a two-state MMPP where the mean sojourn times in state
1 and state 2 are a~! and 37! respectively. Using the notations used in previous
sections for the cumulative point processes (N(t)), mean of the counting process

is defined as,

(/\1ﬁ + /\ga)t

EN@) =

(4.1)

From [4],

1+ Al — (1+ pt)e]
(1+ pA)t — A(1 — e—rt)

H,(t) =05

Where p = a+  and A = 2a8(\; — )\2)2/(p3()\1ﬁ + Xoar)).
This model captures randomness of arrivals across sources, but it fails to

capture complete variability though a closed form analysis [4]. There are just
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four parameters involved in a two-state MMPP and three degrees of freedom if
the mean arrival rate is matched. It was observed during the analysis that three
parameters were not sufficient to match the IDV curve as it could not match the
bi-modal nature of a typical ATM traffic trace. This two-state model captures
variability with a small number of parameters but is incapable of matching the
IDV of a real traffic trace (Figure 4.2). Just by heuristics, the parameters were
varied to find an IDV curve that is closest to ATM traffic trace IDV. One of
the arrival rates should be less than the mean arrival rate and the other arrival
rate should be greater than the mean. The space to search for one of the arrival
parameters is constrained, leaving the difficulty to search the other arrival rate.
A Matlab program was used to generate various plots by varying the parameters.
The closest match was visually observed to find the matching IDV plot. The
theoretical trace (solid line in Figure 4.2) was the closest that could be obtained

using the MMPP model.

93



Multiplexing of several MMPP sources could be done but it involves the pro-
cess of setting parameters for the states. Though it is easy to build a simulation
model, it would be tedious to manipulate parameters and observe the variation
in the IDV trace. There was an effort to generate synthetic traces using the
parameters from the two-state MMPP analysis by building a model in Extend,
a simulation tool. Long traces (order of gigabit) are needed to achieve a close
match to the real traffic trace. With short length traces (a few Mega Bytes of
data), there will be less number of points to calculate variance and it is erratic
to estimate the correct IDV of the trace. Another reason for not attempting to
continue this model is a minor problem in the simulation model. In simulation,
the transition from one state to another has to synchronize with the change of
arrival rates. There was some delay in change of arrival rates. The percentage
error in the final mean rate of the synthetic trace will be less if a long trace is
generated. The major constraint, however, is the memory to store the synthetic
trace data, so short traces had to be generated, leading to mismatch of IDV due
to insufficient data points. Also, while arrival processes based on such models can
be described using a few parameters, it is analytically very difficult to analyze a

queuing system for such a process as input.

4.3.2 Renewal Process Model for Inter-arrival Distribution

: Hyperexponential Distribution

A renewal process involves recurrent patterns connected with repeated trials.
This best suits to describe self-similar models as self-similarity is the the invari-
ance of an intrinsic pattern under scaling. Hyperexponential can be categorized

as one such renewal process [8]. Previous studies in earlier sections revealed
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that network traffic exhibits burstiness, that is variability, over multiple time
scales. In many circumstances, heavy-tailed distributions have been appropriate
for capturing variability because of the slow decaying property of those prob-
ability distributions compared to the ones belonging to the exponential family
and the heavy-tailed property of the bursts. This implies that the length of
the burst is highly variable i.e, exhibits variability over a wide range of time
scales. We have shown that the aggregate process (counting) of network traffic
data is long-range dependent and hence self-similar. Collected ATM data is in
the form of events in successive intervals of fixed length whereas the estimation
of the renewal function to calculate the IDV is based on the observation of the
inter-arrival times between the events of interest. Cox’s construction by a re-
newal structure [8] for inter-arrival time distribution is straightforward, since it
requires only that inter-arrival times are i.i.d and variance can be obtained from
the counting process.

A random variable X has a heavy tailed distribution if its complementary
cumulative distribution (cedf) F'(t) satisfies

F'(t) = Pr{X(t) >t} ~ct > ast — oo ( f(t) ~ g(t) means (f(¢)/g(t)) =1
as t — 00)

where o and c are positive constants. A common situation is 1 < a < 2
for which the random variable X has finite mean and infinite variance. This
gives rise to long-range dependence, i.e, non-summable autocorrelation function.
Heavy tailed distributions have high or even infinite variance and therefore show
extreme variability on all time scales. Distributions with infinite variance lead to
self-similarity. Recent studies have shown evidence indicating that the aspects of
communication and computer systems can show heavy-tailed distribution [35, 36].

They also highlighted the predominance of heavy tails in arrivals. The analysis
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of existing measurements of high speed network traffic by statistical methods has
shown that the characteristic random variables are often heavy-tail distributed
or even follow mixtures of heavy-tailed distributions [30]. There is a class of
sub-exponential distributions like Pareto and Weibull that could also be used for
modeling [10] but their Laplace transforms are not tractable for queueing analy-
sis. The Laplace transform makes it possible to analyze the performance models
by numerical inversion [33]. Derivation of IDV involves solving the Laplace trans-
forms and their integrals. There is no convenient Laplace expression for Pareto
and Weibull distributions and hence it is difficult to use queuing models like
G/G/1. For any number of phases of hyperexponential, Laplace expression is
easy to calculate. This is also another reason for the choice of hyperexponential
distribution for modeling. Also, since we have finite variance, hyperexponential
models are best suited for tractable models. Hyper-exponential could be used
to match the heavy-tailed distributions [17]. But, matching Pareto or Weibull
inter-arrival probability density function (pdf) with hyperexponential pdf requires
various approximations as pdf needs to be calculated from continuous process.
We can calculate probability mass function from the data and approximate it to
pdf. The following approximations result in failure of fitting a hyperexponential

to a heavy-tailed distribution:
1. Calculating real traffic data pdf from pmf of the traffic data.
2. Fitting Pareto/Weibull pdf to the traffic data pdf.

3. Fitting hyperexponential pdf to the Pareto/Weibull pdf to find the param-

eters of hyperexponential distribution.

Every data set cannot be fit using Pareto/Weibull distribution. Also, these nu-

merous approximations involved in calculating the parameters of hyperexponen-
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tial lead to inaccuracy in parameter values [17]. We tried to fit hyperexponential
pdf to the data pdf but were unsuccessful due to inaccuracy involved in parameter
values due to above mentioned approximations.

Highly bursty traffic can be generated using the hyperexponential inter-arrival
time distribution, thus providing a basis for modeling traffic varying over multiple
time scales. A parametric approach is discussed in later sections to estimate the
IDV of hyperexponential distributions and to cope with the data analysis in a
highly variable environment such as the ATM.

One of our goals was to show that the hyperexponential distribution inter-
arrival time can be used to emulate the data in its peak rate characteristics and
self-similarity through IDV curve. This requires search procedures and optimiza-

tions to find the parameters of hyperexponential (discussed in section 4.4).

4.3.3 Derivation of IDV for H,

Let E;;i = 1,2,...,n be n independent exponential random variables each with
parameter \;, ¢ = 1,2,...,n, where \; # A; for ¢ # j. Suppose that there are n

positive constants w; for ¢ = 1,2,...,n such that

dowi=1 (4.3)

If the random variable H,, = E; with probability w;, then X is a hyperexpo-

nential random variable with n exponential stages (or order n) and parameters

Wi Ay 1 =1,2,......... n. The probability density function of H, is:
fa(X) = widie™® (4.4)
i=1
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1
Am, (4.6)
[H]
For example, an order 3 hyperexponential pdf is:
f3 (.’L‘) = wl)\le_)‘lz + wQ)\Qe_)\zm + ’U}3)\36_>\3$ (47)
w w w
E[Hs)= L+ 2+ 2 (4.8)

For an n'® order hyperexponential, there are 2n — 2 degrees of freedom as two
parameters are determined using the equations (4.3) and (4.6). Therefore, there
are four degrees of freedom for an Hj distribution.

An analytical expression for IDV was derived for hyperexponential distribu-
tion in [4]. The derivation involves finding the variance of the counting process

since the underlying process is assumed to be a point process. The result from

|4] for the Hj is:

Var[N(t)] = 2 / w)du + Nt — N2t (4.9)

where fgb(t) 1[ = f3 ]

L' implies inverse Laplace transform and f3(s) is the Laplace transform of

f3 (.T)
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Solving equation we get,

y@)::L‘ﬂ—4§l£¥;] (4.11)

and hence we can get ¢(t) as

mn:fqmm (4.12)

Now IDV can be calculated using the equation 2.6. An analytical expression
was derived for Hy in [4] and we derived IDV for Hj distribution [Appendix].
After this basic step of deriving IDV, we observe the different IDV curves using
the Hj distribution. It was observed that the IDV spans across a few orders of
time scales proving the high variability. We classify the hyperexponential into

two categories where the degrees of freedom are reduced.
1. Balanced hyperexponential.
2. Doubly balanced hyperexponential.

These different hyperexponential distributions demonstrate convincingly that
multiple time scale traffic can be modeled by appropriate choice of H, parame-

ters.

4.3.4 Balanced Hyperexponential

When the ratio of weights to arrival rates are equal i.e., ’;\’—: = %, the distribution
is called a balanced hyperexponential distribution. For the Hj distribution, this
reduces another two degrees of freedom leaving us with two degrees of freedom.

By fixing one variable and varying the other, we get a highly variable traffic

(Figure 4.3), over a broad range of time scales. Figure 4.3 is a set of unimodal H;
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Figure 4.3: Balanced H3

IDV curves where wy = 0.75, 1/X = 1/5183 and w; is varied from 0.1 to 10e™8
(moving towards left, i.e., from (i) to (vii)). By decreasing wi, we decrease \i,
implying the increase in mean inter-arrival time of the first term in the f;. As
a consequence, IDV being nearly unity spans across several orders of magnitude.

Notice that the curves decay to 0.5 eventually.

4.3.5 Doubly Balanced Hyperexponential

Now, in addition to the requirements of the balanced hyperexponential, suppose

=k,where0 <k <1lfori=1,2,...n—1. We

we fix the ratios of weights i.e, -

Wi+1
call this a double-balanced H,,. Now for the Hj distribution there is only a single
degree of freedom. A bimodal IDV can be generated by using this model. Value
of k controls the variability at all time scales. When k is decreased (see k=1e~%

in Figure 4.4), two of the weights are increased leading to higher values of their

corresponding \'s. This implies that short inter-arrival times occur frequently
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Figure 4.4: Doubly Balanced Hj

leading to bursts between large inter-arrival times. This increases variance in the

“counting process” with large values of IDV.

4.3.6 Matching Real Network traces

Hj can be used for modeling self-similar traffic by matching the mean and the
IDV of the real traffic trace data. There are infinite solutions for the parameter
values by just matching the mean value of the trace data. Here we attempt to

match the trace IDV reasonably by heuristic method and optimization technique.

Heuristic Method

The heuristic method is a tedious and inefficient method of finding the parameter
values. This method uses the general information of the relation between parame-
ters to find “good” approximate values for the parameters. The generation of IDV

involves the use of a heuristic, or a combination of several equations proceeded
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sequentially to calculate the final result. Our approach uses pattern matching
where the pattern is an IDV of a real network trace. In a doubly balanced Hj,
there is only one independent variable (assume it to be A;) and the other Hj
parameters are constrained. Equating the mean of the Hs to the mean of the
real network traffic trace, the independent variable ()\;) is changed. The change
in the variable gives numerous curves and a curve nearest to the trace IDV curve
is chosen. Now this independent variable (\;) attains a constant value. All the
parameters of H3 are now fixed. Now, each of the parameters (other than \;) is
varied to check if we can get any better match to the real traffic trace IDV. The
basis for this decision is to minimize the maximum magnitude difference between
the trace IDV and generated H; IDV (observed visually). A smaller magnitude
implies a better match.

Using the heuristics, the IDV was matched for most of the time scales (Figure
4.5). Though we did not succeed in matching the queuing performance analy-
sis of the synthetic trace generated using the parameters obtained from heuris-
tic method to the performance of the real data trace, the synthetic trace IDV
matched the real trace IDV at various time scales (further discussed in chapter
5). Another drawback of this method was the mismatch of the PRV curve (Figure
4.6). The synthetic trace (dashed line) is not as bursty as the real traffic trace
as the peak rate at 5 ms is approximately half the peak rate of the real trace
5 ms-peak rate (solid line). An advantage of the heuristic approach is that the
sequential classification of the equations are explicitly defined implying that the
parameters can be controlled without using any random approach. Therefore,

software problems in implementing this approach can be easily found out.
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Optimization Technique

The IDV expression is non-linear with multiple local minima. There are very
few solvers dealing with non-linear constrained optimization problems. One of
such solvers, AMPL [26] is used for matching the IDV of the trace data to the
IDV of Hj generated data. The objective function was to minimize the maximum
magnitude difference between the two curves. There was a reasonably good match
between the two IDV curves and the performance analysis results (mentioned in
chapter 5).

Figure 4.7 shows the IDV match between ATM traffic data, synthetic Hj
data and the theoretical Hj calculated from Hj3 IDV expression. Though the
match between real ATM trace and synthetic trace is not exact, the latter and
the theoretical H; IDV curves match very well. The peak rate curve (Figure 4.8)

implies that a highly bursty data can be generated using Hs where the peak rate
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at the lowest time scale matched pretty well. This also shows that a higher order
hyperexponential can be used in modeling to get good results to imitate the real

data in terms of performance.

4.4 Optimization Technique

AMPL optimization package is used for finding the 2n parameter values in the
n** order hyperexponential model. The parameters in the hyperexponential are
the arrival rates and the weights associated with the arrival rates. One of the
linear constraints is the summation of weights to unity. The other constraint
is to satisfy the mean arrival rate which is the reciprocal of summation of ratio
of weight to corresponding arrival rate. The package uses a reduced gradient
approach where the algorithm manipulates the initial parameter values satisfying

the linear constraints. An iteration attempts to reduce the objective function
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within the subspace of the variables. Variables here are the results of non-linear
math equation involving the variable parameters. When no further progress can

be made with the current variable, AMPL displays the result.

Outline of the Problem

We describe an attempt to match the IDV curve obtained from a trace with
known mean arrival rate. The IDV values are calculated at multiples of the

lowest aggregation interval (5 milliseconds) or basic data measurement interval.

Constraints

1

/\mean )

1. The mean arrival rate (Ajeqn) should be matched. >; g\) =

2. Weight sum should be unity. > w; = 1.0.

3. The weight should not be less than millionth of a unit. w; > 1e7%7, Vi.

4. The parameter should be greater than the thousand of a unit. \; > 1e %,

V.

Model

Input of the AMPL requires the initial parameter values and IDV values to be
matched. All the IDV values calculated from trace are entered as an input to
the AMPL. There are around 1000 points which is fairly a large data set to
be matched. The objective function f is to minimize the maximum magnitude
between the IDV generated using the AMPL parameter values and the IDV from

trace.

f(z) = maz(|IDVipgee(1) — IDVi, (1)|, | IDViraee(2) — IDVi,(2)]| ... |IDVipgee(m) — IDVy,(m)|)

66



Preprocessing and Data Handling

The preprocessing of an optimization problem can not result in a substantial
reduction of the computation but is necessary for solving the problem.The initial
values for the 2n-1 parameters must be entered. The AMPL is set-up to choose
the initial parameter values using random method, but this allows the possibility
of generating initial parameters that might lead to non-convergent solution. So,
depending on the mean arrival rate, the initial values are scaled and certain
bounds are applied. There are ’2n’ parameters in H,, distribution (n > 0). If
'm’ is odd, set bounds on (2}!) arrival rate parameters such that each of them
is less than the mean arrival rate. The weights corresponding to arrival rates
lesser than mean, should have weights greater than 1/2. The rest of the arrival
rate parameters (") should be set such that they are more than mean arrival
rate with their corresponding weights set to weight less than 1/2. If 'n’ is even,
half of the arrival rates should be set greater than mean and rest should be set

lesser than mean. This allows AMPL to chose meaningful values and get a good

starting point for optimization.

Solving the model

A large number of iterations with different random seeds used in setting the
parameter values gives a better match with the real traffic IDV trace data values.
The output of the AMPL optimization writes data into a file in AMPL format
(a specific pattern for storing parameter values). The output file is parsed using
the awk program to get the Hj3 parameter values in a ’matlab input format’.
The values are used in generating IDV plots to compare the best match with the

original trace IDV.

67



0.95

0.9

0.85
Approximate match

0.8

Zost

0.6

0.55

0.5 1 1 1 1 1
-3 -2 -1 0 1 2 3
Log (Aggregation Time Interval) (seconds)

Figure 4.9: Curves for Matching the Real Trace IDV using AMPL

Model analysis

The optimization problem has practically non-unique solution (i.e there are many
very different solutions having almost the same value of the goal function). There-
fore a graphical technique has been used to provide a unique solution having some
additional properties. We need to somehow measure how good the estimates are.
One possibility is to compare the IDV curve of real traffic with that of the gener-
ated synthetic traffic trace. The highlighted curves in Figure 4.8 are quite close
in shape at lower aggregation intervals. One of the highlighted curves with the
least objective function is chosen to be the closest match. Matching the values
at the smaller aggregation levels makes sense as the IDV values are based on
the calculation of variance. Variance estimates are better when there are more
number of points ( smaller aggregation levels have large set of points). Second
possibility is to consider the queuing behavior and compare the queue with model

as input. The queuing behavior is discussed in chapter 5.
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4.4.1 IDV Derivation for Hyperexponential of Higher Or-

ders

IDV derivation involves the calculation of Inverse Laplace transform and integral
of the result. There is a potential difficulty in calculating the inversion of Laplace
transform in case of IDV derivation. Not all Laplace transforms have inverses,
especially in the derivation of IDV. The derivation involves polynomials in both
denominator and numerator which need to be factorized partially to apply inverse
Laplace transforms. Though not impossible, an analytical expression is difficult
to derive for H,, with n > 3. There are a number of numerical inversion methods
but they require pre-assignment of values to parameters. This restricts evaluation
of the correct IDV as the numerical inversions embed assumptions [39] that could
affect the IDV value drastically. This was the reason that we did not attempt to

analyze higher orders of hyperexponential.
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Chapter 5

Performance Evaluation of

Self-Similar Networks

High speed networks will be required to carry a broad range of traffic classes
ranging from bursty, variable bit rate traffic to smooth, constant rate traffic, while
satisfying the QoS requirements. Multiple time scale traffic is characterized by
considerable fluctuations in the traffic rate, well above or under the average rate,
over several time scales. Characterizing is important in dimensioning and design
for such traffic. Design requires determining link capacities, buffer sizing and
processing capacity of switches. It has been shown [34] that self-similar traffic
heavily impacts the queuing behavior of the system, and ignoring this aspect
leads to underestimation of loss probability and buffer sizes. In this chapter, we

try to provide analytical tools and techniques for characterizing the properties.
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5.1 Effect of High Variability Traffic on a Queue

ATM is connection oriented packet-switched mode of transfer using 53 byte cells.
All cells belonging to the same connection follow the same path along the network.
Available ATM data was easier to analyze as the cell size was fixed and inter-
arrival time could be calculated easily. The performance for a queuing system
with LRD input can be radically different from performance of a traditional
Markovian system [37]. As the number of LRD traffic sources increases, the
aggregate traffic becomes burstier than individual traffic streams. Traditional
analytical approaches towards performance evaluation cannot be applied to such
networks. The main performance metrics of interest are delay in the network
and loss probability. Little is known about the finite buffer and packet loss rate
except for observations like the relevance of time scales and correlation structure
at larger time scales [20].

Queuing analysis of Poisson traffic has been observed where the queuing be-
havior seemed insensitive to marginal properties of traffic [20]. As mentioned
earlier, there are various models described for packet traffic where arrival pro-
cesses are based on models like Chaotic maps or Fractional Brownian motion,
but it is difficult to analyze the queuing system. So, a tractable model, the hy-
perexponential inter-arrival model is chosen in this thesis. We next undertake a

queuing analysis using the G/M/1 queuing model.

5.1.1 G/M/1 Analysis

G/M/1 is a queuing situation in which the arrival pattern is unconstrained but
service times are exponentially distributed. The state of the G/M/1 queue con-

sists of two parts, a continuous and a discrete part, i.e, the state is given by
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the number of customers in the system and the time until the next arrival. An
embedded Markov chain is formed for the continuous part [27]. The standard
G/M/1 queue analysis applies where new arrivals find a system containing expo-
nentially distributed amount of work. This implies that the mean and standard
deviation of the packet delay are identical. In [28], a geometric parameter [ is
calculated from which the queuing delay can be calculated. Let f3(¢) be the pdf
of the order 3 hyperexponential inter-arrival times. L(s) is the Laplace transform
of the interarrival time distribution. p is the mean service rate and [ is a geo-
metric factor calculated from equation 5.3. We apply the technique [28] to Hj as
follows:

The pdf of the interarrival times is given by:

f3 (l‘) = wl/\le_A“ + ’U)Q)\QG_)QI —+ ’U)3)\3€_>\3$ (51)

Taking the Laplace of the above,

A1 A2 A3
S) +’UJ2(/\2 + 8) * w3(/\3 +s

) (5.2)

The geometric factor 8 can be calculated using this simple expression:

B=L(ul-p)) (5.3)
Replace s by u(1 — 3).
Al )\2 A3
G T T s O

By solving this polynomial equation in 3, we get various solutions depending
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on the degree of the polynomial. For Hj, we get four solutions for 8. Choosing
the value less than one, we can find the mean queuing delay (E[Q])and the mean

system delay (E[T1]).

H@:M1

7(1 — B (5.5)

E[T] = BE[Q] (5.6)

In order to make comparisons with the analytic results, we associate expo-
nentially distributed service times with the arrivals listed in the H3 and the real
traffic trace files, even though the real traffic trace was gathered from an ATM
(fixed packet size) link. Also, the trace files list number of arrivals in each 5
ms interval, so the simulation spaces each set of arrivals evenly throughout the

associated 5 ms interval.

5.1.2 Synthetic Hyperexponential Data Generation

Computer simulation is a standard tool for the verification process in network
analysis. Simulation has been used to create artificial ’data traces’. There are
valid reasons for using a simulated data rather than real data. The gigabit size
data files render simulation ineffective for systems of realistic size. Mainly, it is
less expensive in terms of storing the data (memory constraints), where a few
parameters could be stored to generate a traffic imitating its behavior.
Artificial network traffic generation should simulate the stream of packets on
several different levels of description. Such stream of of packets is characterized

by sequence of observations,

X (1) X (B)s X (Ens)s coveeeee
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at time points

These observations can be described as the inter-arrival times between pack-
ets. X (t;) is described by a family of random variables with known probability
distribution function and time index t.

Complementing the theme of traffic modeling is the issue of simulation, such
as generation of synthetic traffic traces. For validating the source model, synthetic
data with hyperexponential service algorithm times was generated with known
arrival rate. Hyperexponential inter arrivals times for the cells is constructed
based on the algorithm described in [32]. The method is based on the principle
that a random variable with any arbitrary probability density function can be
generated, by applying a simple transformation to a uniform random variable
varying between zero and one. This random variable is then used to weight
the exponentially distributed random variable with mean equal to one of the
parameters of hyperexponential distribution that maps to the weight parameter.

Since we are comparing the second order properties (note that IDV is de-
rived from variance) of the process of counts, we have to generate the number of
packets arriving during a time slot. A composition method is used to generate
the hyperexponential inter-arrival times and thus the counts in fixed interval of
time are calculated. By definition, we know that a random variable X follows a
hyperexponential distribution H(n; A1, Ag ... .. A W1, Way e ... ) if the p.d.f,

fl@) =35 widje N%, x> 0.

for 0 <w; <1, 3, w;=1,X>0,7=1,2,...... , M.

We already know the values of the w; and the ); from the optimization tech-
nique. The algorithm to generate a hyperexponential random variable is as fol-

lows:
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1. Generate a sample of uniform random variable U;’, between 0 and 1.

2. Depending on the value of 'U;’, select the value of A. Specifically, p, =
Zlew,- for k > 0. po=0. If pp < Uy < (pr + Pks1), n > k > 0, then the

arrival rate associated with the weight is A\y1; for n > k£ > 0.

3. Generate X as an exponential random variable, X = —Log(1 — Us)/A,

where U, is uniform random variable between 0 and 1.

A trace with length equal to real network trace length is generated. The correct-
ness is checked by the mean of the generated data to the mean of the original

trace data. This synthetic data is used in the same manner as the trace data.

5.2 Numerical Results

This section gives an exposition to queuing with self-similar input. We consider
a continuous time queueing model with infinite buffer and FIFO server. Let time
be divided into fixed length sampling intervals. The real traffic represents number
of cell counts in a sampling interval and we assume them to arrive equally spaced
in the time interval. This information is utilized in calculating the inter-arrival
time and hence the queuing delay of the traffic. The simulation technique for
the synthetic data is described in previous section. A queuing system (G/M/1)
is subject to self-similar arrival traffic to observe the delay in the queue. The
results are compared among the real traffic trace (simulation), synthetic trace
(simulation) and the G/M/1 analysis (theoretical).

We have shown in chapter 4 that the H3 model is able to match the IDV
reasonably well. Now we have to determine whether Hj is an appropriate sub-

stitute for the original trace with respect to performance measures. An infinite

75



Delay (seconds)

—— Trace data

q QO Theoretical 1
— — Generated H3 data | 1

10°° 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

load

Figure 5.1: Delay Characteristics comparing Real network trace, Synthetic trace
and Theoretical analysis

buffer, single server system with exponential service times and mean arrival rate
is considered. Though the traffic trace used for comparison is an ATM trace,
we assume an exponential service to match the analysis assumptions. We feed
the server with an arrival stream modeled by a point process whose inter-arrival
distribution is given by third order hyperexponential distribution. The queuing
delays of the traffic trace and generated Hj are calculated using the FIFO server
and infinite buffer and compared to the theoretical results of G/M/1. The delay

for different methods used in calculating Hs parameters is presented.

5.2.1 Hj3 with Parameters from Optimization

The simulated trace considered here is the data generated using parameters ob-
tained from the optimization technique. The mean delay is calculated for various
loads. The generated Hs and the G/M/1 theoretical coincide well (Figure 4.8)

at a few time scales. The real trace coincides well at very low and very high
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loads which can be explained using the peak rate curve. The delays for the real
network trace are high at intermediate loads compared to generated Hj loads. In
brief, G/M/1 yields optimistic results.

The delay increases steeply when the load is increased from 0.2 for the real
traffic trace. The service rate at 0.2 is approximately 11 Mbps and this exceeds
the peak rates even at small time scales for both real trace and Hjs trace. Hence,
the mean delay is low as expected. Next, consider an intermediate load of 0.4.
The service rate is 5.5 Mbps, which is lower than the peak rate of the real trace
but higher than the peak rate of the Hj at time scales less than 1 second. This
is reflected in the greater difference between the two traces. For a load of 0.6,
the service rate is approximately 3.7 Mbps, which is lower than the peak rates
of both the traces even for relatively large time scales. Consequently, there is a
queue build-up leading to high delays (hundreds of seconds) for both.

Obtaining parameters for the Hs by matching IDV is advantageous as it can
correctly estimate the queuing behavior of the real trace. IDV is an important

factor for generating a self-similar traffic with predefined peak rate characteristics.

5.2.2 Hj; with Parameters from Heuristics

Though the IDV is matched pretty well using heuristics, we can conclude from
queuing analysis that the generated trace cannot be a substitute for the real

trace.

From the peak rate curve (Figure 4.6), we can estimate the queuing behavior
of the generated Hj3 data. A single value of the mean delay at 80% load is
calculated for the generated Hjs trace and compared with the mean delay of the

real trace. The delay characteristics are as follows,
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Condition Mean (s) | Std Dev (s)

Hj Theoretical | 0.0114 0.0114
H; Simulation 0.0114 0.0114
Real Trace Sim 1491 1597

Here there is good agreement between analysis and simulation results for the
Hj; model, but the mean and standard deviation of the real traces are several
orders of magnitude larger than the corresponding values of H3 model. There are
infinite solutions to match the IDV but a correct solution is that which correctly
matches the performance characteristics. Given just the mean of the traffic trace
and the cell counts per fixed interval, there is no accurate procedure to determine
the solution that matches the performance characteristics because the generation
of synthetic traces is a random process. Since we cannot guarantee that matching
real trace IDV would match the performance results, performance tests should

be done on all those synthetic traces that match the real trace IDV.

5.3 Relevant Time Scales

If self-similarity is not taken into consideration, it can lead to inaccurate conclu-
sions in performance metrics. So, the Hurst parameter has been used in evalu-
ating the performance of networks. It was believed that higher Hurst parameter
values result in worse queuing performance. Recent approaches [31] showed that
queuing performances are related to a few important time scales. The authors
argue that a higher Hurst parameter may be associated with smaller queues. A
function is described which relates buffer size, capacity of link and the standard
deviation. For ease of use, we call the function as 'relevant time scale’ (RTS)

function. RTS is given by
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-~ S(t)

2(t) (5.7)

where B is the buffer size, m (= ean * 53 % 8) is the mean traffic rate, S(t) is
standard deviation of the data and ¢ (=C — m) is the excess capacity. C is the
percentage of actual capacity of link (capacity shared by a VC) because we are
considering the case of a VC here. Also, p =m/C, so we get:
m(1 — p)

c= — (5.8)

z(t) is minimized with respect to time scale to find the relevant time scale.
As RTS function decreases with decrease in size of buffer, the cell loss increases
with decreasing buffer size.

The z(t) function predicts the cell loss approximately. Observe that the sub

plots in Figure 5.2 almost look like mirror images. z(t) gives the region where the
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cell loss will rapidly decrease or will remain constant as the buffer size increases.
If the cell loss is decreasing with a lesser gradient as the buffer size increases
(1500-10000 cells), it would be a inefficient to increase buffer sizes in the switches

to support bursty traffic.

5.3.1 Cell Loss

We have used ATM traffic traces and performed queuing analysis in order to
investigate the effect of LRD on cell loss. As expected, the cell loss probability
decreases as the buffer size increases. The loss probability decreases steeply
though buffer has the capacity to accommodate thousands of cells. Figure 5.3 is
the loss probability of a VC with mean arrival rate of 5183 cells/second and load
of 70%. Probability is high (0.16, total number of cell counts being around 50
millions in a 24 hour long trace) with unrealistic buffer size of 100000 cells. For

Poisson process with same arrival rate and load factor, it was observed that the

80



1780

1760 b

1740 q

1720 q

Delay (seconds)

1700 q

1680 q

1660 | | | | | | |
0 2 4 6 8 10 12 14 16

Buffer Size (# of cells) x10°

Figure 5.4: Delay of Self-Similar data with 40% Load

loss probability was zero for large buffers. The effect of LRD is that the buffers
needed at the switches must be bigger than the predicted by traditional queuing
analysis and simulations. The degree to which self-similarity effects performance
is determined by the load on the link. We considered a moderate load situation
where delays are still high for large buffer sizes (Figure 5.4). This situation is
considered to demonstrate the realistic condition (40% load) where there can be

greater loss.
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Chapter 6

Conclusion and Future Work

6.1 Conclusions

This chapter concludes the work done for the thesis and summarizes the work for
future extensions. Our initial step was to visually inspect the self-similarity and
burstiness at various time scales. We then deviated to do some traffic engineering
by analyzing the peak rates of the real network trace data. A useful relationship
between peak rate at higher and lower aggregation levels was derived to calculate
peak rate at smaller aggregation level. We concluded that it would be erroneous
to consider the peak rate at higher aggregation levels for network management.

Continuing the work on self-similarity and LRD, the concept of IDV was ex-
tended to ATM traces to observe the variability in traffic. The possibility to
model self-similar traffic by means of hyperexponential distribution was assessed.
There was an attempt to match the IDV using heuristic and optimization meth-
ods. We showed that a hyperexponential model of order 3 can be used to match
IDV for a few time scales and estimate delay characteristics approximately. We

pointed that choice of parameters can have a drastic effect on queuing and peak
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rate though IDV matches well at most of the time scales.

Assuming an exponential inter-arrival distribution defeats the purpose of per-
formance evaluation in networks. Even assuming a hyperexponential distribution
that matches the mean and the constraints is misleading sometimes. G/M/1 anal-
ysis is presented to compare the queuing characteristics of the model. The delay
at higher loads of the real trace is successfully captured by the hyperexponential
model. Load-delay characteristics capture the statistical properties of the real
traffic at very high loads and very low loads. This has been correlated to the
peak rate behavior of the traffic. Finally, we address that our model has com-
plexity in calculating IDV and hyperexponential parameters for orders higher

than 3.

Contribution of Thesis

This thesis considered the aspects of packet networks with modeling of packet
arrivals and peak rate variability in the traffic. We analyzed the peak rate char-
acteristics and self-similarity in the ATM traffic. We now present our accom-

plishments in the thesis.

1. ATM traffic traces were analyzed to show the self-similarity in them. An
interesting subject that we applied to the ATM traffic trace was the concept
of IDV, a relatively new measure of self-similarity. We introduced a new

procedure to calculate IDV from the log-log variance time plot.

2. We also introduced a new measure for traffic analysis, peak rate variability
(PRV). We have shown that peak rate at 5 ms can be estimated, given the
peak rate at one-hour. Peak rate studies on the link as well as on VCs on

the link were done. The traffic flow at various aggregation was discussed in
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both VC and OC-links with the help of PRV curve.

. We have proposed that a higher order hyperexponential distribution can be

used for modeling the self-similar data.

. We showed that hyperexponential of small order (Hj) is able to model the
self-similarity behavior over several time scales. An equation to find the

IDV for H; was derived using the analysis in [4].

. We approached with a heuristic method to match the real traffic trace
IDV curve but failed to match the peak rate and queuing properties. We
then used optimization techniques to match the IDV. The synthetic traces
generated using the optimization method matched the peak rate properties

at a few time scales and matched the queuing properties quite well.

. We evaluated our techniques to match IDV by using the queuing results for

G/M/1 queue.

. As the final work, we have shown that self-similar data has higher cell
loss when compared to Poisson traffic, concluding that the analysis using

traditional models can drastically affect the network performance.

Future Work

Further work is needed to analyze the shape of PRV curves. There are few time

scales where the peak rate is constant and this is typical for all the ATM curves.

Also, the analysis on the peak rate relationship should be extended to other types

of traffic in the network. The proposed approach of Hs looks promising, but a

more rigorous algorithm to find the parameters of the hyperexponential of any
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order is still needed. A new approach to solve IDV from the counting process
has to be found without involving complex Laplace/Fourier calculations. Due to
inherent bursty nature of the traffic, there is a significant impact of packet loss and
network delay. Queuing incorporating the IDV should be focussed. To smooth
the traffic, an optimal allocation of buffers in the network is needed and this
resource allocation problem has to be solved using IDV. IDV expression is not in
closed form for higher order of hyperexponential and computationally inefficient.
Further research should also account for numerical tractability of the approach.
Nevertheless, the implementation of efficient numerical procedures for estimating
the parameters of a distribution remains an open problem that limits the use of
various class of distributions in applications. A better match of IDV is possible
if the queuing characteristics are also matched. Similar to the matching of IDV
curve, the queuing curve can be matched using the optimization techniques. We
hope this analysis will help in generating a trace data that matches in queuing

as well as IDV characteristics.
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IDV for Hj
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IDV for 3'9order hyper exponential distribution.

Probability density function of inter arrival time:
f(x) = kae=® + mb="® + nce=*®

1

Mean arrival rate = A =1

E(z)
Mean inter-arrival time = E(z) = é +m 4
Therefore, A = 2 —
Var[N(t)] = 2X [ ¢(t)dt + Xt — (At)?
To find ¢(t)

g(.’l?) = 1i(fx()$)&k+m+n: 1

F(5) = s+ s+ 22
o(t) = L[]
ak +b_m+ cn

- +a ' s+b ' s+c
g*(s) = Y
-l 5e tsistatel

_ ak(s+b)(s+c)+bm(s+a)(s+c)+en(s+a)(s+b)
T (s+a)(s+b)(s+c)—[ak(s+b)(s+c)+bm(s+a)(s+c)+cen(s+a)(s+b)]

s2(ak+bm-+cn)+slak(b+c)+bm(a+c)+en(a+b)]+abe(k+m+n)

§3+452(b+c+a)+s(ab+betca)+abe—[(ak+bm+cn)s? +s[ak(b+c)+bm(a+c)+cn(a+b)]|+abe(k+m+n)]

s2(ak+bm~+cn)+s[ab(k+m)+ac(k+n)+bc(m+n)]+abc
534 52(a+b+c)+s[ab+betcal+abe—s2(ak+bm—+cn)—s[ab(k+m)+ac(k+n)+be(m+n)]—abe
s%(ak+bm~+cn)+s[ab(k+m)+ac(k+n)+bc(m+n)|=abc
s34 s2[a+b+c—ak—bm—cn]+s[ab(l1—k—m)+be(1—k—n)+ac(l—m—n)]

s2(ak+bm-+cn)+s[ab(k+m)+ac(k+n)+be(m+n)]+abe
$3+s2(a+b+c—ak—bm—cn)+s(abn+acm-+bck)

Let,

x = ak +bm+cn

z = ab(k +m) + ac(k + n) + be(m + n)
F=a+b+c—(ak+bm+cn)=a+b+c—x
E = abn + acm + bck

Therefore equation reduces to

s2xz+sz+abe
$3+82F+sE

ST 2 abc
T $24sF+E + $24+SF+E + 5(52+3F+E)(1)
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Let roots of equation s + sF' + E be r; and ry
Therefore

r=(—F+F?—4E)/2

ry = (—F —\/F? —4FE)/2

Also,

TL—Te =]

Reducing 1 and 2 & partial fractions of 2 gives

b
(5—7‘13?5—1"2) + (3—7'1)2(3—7'2) + s(s—r?)gs_m) ( )
1 1 1
7137"2 [silh - smrg]—'_ T1-T2 [s T s r2]+abc[nr2 s T ri(ri—r)(s—7r1) 7'2(7"177‘2)(877’2)]
b b b
- (mirz) sw_T;2 - swr'r?g + o s—zrg + . cg?l"gsm) + (Z crl) - 7«2((;_07«2)] (3)

Taking Inverse Laplace of 3(above equation)
— —(rlim) [(xry + 2+ “T—blc)e”t — (zro+ 2+ ‘:,—’;C)e”t + 7“05:11,2 ”)]
Let Q:xr1+z+‘j,—bf
R=aro+ 2+ ‘jﬂ—b;
__ abc ~

— ~

172

M =\ (for t < 10%)

Therefore,

9(t) = oy [Qe™* — Re™ + M(ry — 13)]
From A

g(t) = %e”t — Lert + M

o(t) = Jo 9(u)du

_ Q _rit R’zt Q
- J_rleT1 7 + Mt — [Jrl J'rz]
Let
t
P = [; ¢(u)du
_ Q _rat R rat . M 1 Q _ R1;_[Q _ Q
- Jr2er2 B J_rger2 + T2 Jri Jrg] t [Jr2 Jr%]

From variance expression
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V =Var[N(t)] = 2\ [y ¢(u)du + M\t — (\t)?

=2 \p+ At — (At)?

D=%=o)\en — Eerst 4 Mt — [ — K|+ A —2X%
since M = A

D=\+ 2)\[%e”t N (J%l — %)]

Therefore
Idv = H,(t) = 0.5 *

<
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PRV Plots of OC-links
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Figure 6.1: PRV plots of OC-3 links
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Figure 6.2: PRV plots of OC-12 links
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Figure 6.3: PRV plots of OC-12 link



