I T 1T C

Building a Reliable Multicast Service

based on
Composite Protocols

Sandeep Subramaniam

Master’s Thesis Defense
The University of Kansas
06.13.2003

Committee:

Dr. Gary J. Minden (Chair)
Dr. Joseph B. Evans

Dr. Perry Alexander

&

Outline o

* Motivation

« Composite Protocol (CP) Framework

* Design of a composable service — multicast example
* Implementation of service over Ensemble

* Testing and Performance Evaluation

* Summary & Future Work

Basic definitions ﬁ

* Protocol component
— Single function entity that embeds minimal protocol functionality
— E.g. checksum, reliable-delivery, fragment

« Composite protocol

— Collection of protocol components arranged in orderly fashion

— E.g. An IP-like composite protocol would consist of forwarding,
fragment and checksum protocol components.

« Composable service
— Collection of 2 or more co-operating composite-protocols.

— E.g. multicast consists of multicast routing, group management and
replication of data

Advantages of Composite Protocols o

* Protocols implemented as collections of single-function
components
— Reusability
— Flexibility
— Aid in formal verification, building correct protocols.
— Customization , fine tuned protocol stacks
— “Properties-in Protocol-out”

Motivation "

* Motivation for composable service

— Apply the composite protocol approach to wider range of protocols
» Data and control plane protocols
» demonstrate feasibility and applicability
* Expand the library of protocol components

— Address issues of inter-protocol communication
* Building a network service addresses all above needs.

« Reliable multicast service chosen as an i1deal example

— 3 co-operating protocols operating in tandem
» Reliable replication of data (multicast forwarding)
* Multicast routing
* Group management

Composite Protocol Framework

RSM

ENDPOINT A ENDPOINT B
Composite Composite Composite Composite
Protocol X Protocol Y Protocol Y Protocol X
LT T I LT T I [I
] |] | Packet] |
: Local Memory :I Local Memory 44: ani"loiy771| i :
I
: I : I : I I
I I I I
: SLP SLP | : SLP SLP | : SLP SLP | |
| : E | : Packet | : g :
| £ | Memory | | £
I Local Memory | § Local Memory ¢| N Local Memory Ll § |
= 1 4> =2 I
: 13 | 13 .
I 3 I I I I 3 I I
I
| SLP SLP : | SLP SLP : | SLP SLP : I SLP SLP :
I | I | Packet I | I |
: Local M ' : Local M || | Memeny : Local M ' : Local M '
| oca emory oca emory 4_: 77777777 M oca emory oca emory I
I
I I
I I I I
I ! I I

RSM

Design of a Composable Service - Steps ~ #&

Decomposition

— Identify key functional entities in the monolithic counterpart.

« Specification of protocol components using AFSMs
— Represent each component as a pair of SMs (TSM & RSM)
— Specify local, SLP, packet and global memory requirement
— Identify data and control events

Building the stacks

— Linear composition to yield composite protocol

Deployment

— stacks to place on a particular network node

Global memory objects for inter-stack communication

Step 1 - Decomposition (Multicast Service) sf¢

e Multicast routing based on DVMRP
* Group Management based on IGMP
 DVMRP

— Neighbor Discovery

— Route Exchange

— Spanning Tree

— Pruning

— Qrafting
« IGMP

— Join/Leave
* Data

— Multicast Forwarding

— Reliable Multicast

— In-order Multicast

Step 2 — Specification "

« Each functional component has to confirm to CP specs.
— Independent of other components

« Each protocol component specification consists of

— Pair of AFSMs — TSM and RSM

— Memory requirements
» Packet memory — bits on the wire or component header
* Local memory — maintaining local state information
« SLP Memory - memory local to the stack but pertaining to packet
* Global memory — external memory requirements
— Events:
» Data: packet arrival from component above/below
« Control : timers , application-component interaction

* Specify assumptions and parameters

Building the Stacks — Step 3 g

e Group related components into composite protocol -
linear composition

* Try re-using existing components

Reliable Multicast

Multicast Routing Basic Multicast Application

Grafting Reliable Multicast

Pruning Application Multicast Forward

Group Management
Spanning Tree Unicast Forward

Route Exchange Application Uit m

Neighbor Discovery Fragment Fragment

Fragment Fragment Checksum Checksum

Checksum Checksum Replicator Replicator

10

Building the Stacks - Stack Ordering o

« Determine the order of stacking among components

 Does order matter ? Reliable Multicast

* Property — Oriented Appicaton

Reliable Multicast

— Layer N provides a property to Layer N+1

Multicast Forward

— Order of component determines stack behavior Unicast Forward

TTL

— E.g. reliable multicast stack

Fragment

* Control — Oriented
— Components in stack are independent Multicast Routing
— Layer N does not provide specific property to Layer N+1 =

— Order may affect performance not stack behavior el

Spanning Tree

— E.g. multicast routing stack Route Exchange

Neighbor Discovery

Fragment

Checksum

Deployment — Step 4 o

B end hosts

Multicast core Multicast leaf
router router

% Multicast data

H Multicast routing I Group management stack

stack stack

12

Inter-stack Communication - Global Memongy™

ENDPOINT A e Addresses the issue of cross-
_ protocol communication
Composite Composite
Protocol X Protocol Y e Acts as a repository for data

Packet shared among different stacks.

Memory

— *> + Accessible to all components of
all composite protocol instances

Local Memory

RSM

SLP SLP

Packet

Memory at that endpoint

Local Memory

|
1
|
| SLP SLP
|
|

Global Memory

any single protocol accessing it.

Packet
Memory

 Functional interface for
read/write

.
| ol

RSM

|
|
|
i
| « Scope and extent greater than
|
i
|
|
|

« Responsible for initialization

and maintenance of shared info

13

Global Memory — Features o

« Separation of Protocols and Data Management
— Independence between protocols and global memory data management

— Protocol component expresses requirements for global memory access
through its external functions

— Protocols that write to /read from global objects need not agree on internal
data format

* Functional Interface
— Access to shared data only through write/read functional interfaces
— Encapsulates shared data
— Hides internal representation of global memory object

WRITE @ — Global ——@ WRITE
Memory
READ O opject | READ

14

Global Memory - Features o

* Synchronization

— Each object solely responsible for providing synchronized access
to its shared data

— Synchronization not delegated to users of the shared object.
— Access control mechanism is implementation specific

— Semaphores or other mechanisms can be used

« Extensibility
— Object definition can be extended
— Internal data structures / external functions can be added

— Backward compatibility easily maintained

15

Implementation

Overview of Ensemble
Global Memory Implementation
Operational overview of service

Protocol Interaction through global memory

16

Ensemble K

* Group communication system developed at Cornell
« Used as base framework for building composite protocol
* Reasons:

— Written in OCaml functional programming language, aiding for
formal analysis of code

— Ensemble uses linear stacking of layers to form stack
— Event handlers executed atomically

— Unbounded message queues between layers

— Provides uniform interface

— Support for dynamic linking of components , adding/removing
components from stack at run-time

17

Multicast Global Memory Objects ~.3

* Neighbor Table

— Stores 1-1 mapping between an interface and neighbor discovered
on that interface

* Routing Table
— Repository for unicast routes

— Metric and next-hop information for each route prefix stored

* Source Tree
— Maintains spanning tree for each multicast source in the n/w

— Contains list of dependent downstream neighbors for each source

18

Multicast Global Memory Objects (contd)

 Prune Table

— Contains core and leaf interface prune-state information for each
(source/group) pair in the n/w

— Interfaces can be in 3 states : un-pruned/pruned/grafted

* Group Table
— Stores current list of group members on each leaf interface
— Updated when members join/leave groups

19

Global Memory — Linux Shared Memory &

e Shared memory — fastest form of IPC
— Single chunk of memory shared by 2 or more processes

« Steps in creating a global memory object
— Specify read/write functional interface using CamlIDL
— Implement functions using Linux shared memory system calls
— Handle concurrency issues by using semaphores
— Dynamically link global object with stacks at run-time

20

Functional Interface in CamlIDL ﬁ

 CamlIDL

— stub code generator

— generates C stub code required for Caml/C interface based on IDL
specification

* Neighbor Table
— Write
» void write_ntable([in] struct ntable entry ntable[], [in] int num)

— Read
o [int32] int getNeighborForinterface([in,int32] int intf)

struct ntable _entry {
int32 intf addr; // interface IP address
int32 nbor_addr; // neighbor IP address

},.

21

Multicast Service — Operational Overview

e eer e Initialization

« Routing stack runs

« Neighbor Table updated

* Routing Table updated

Net|Dn Nbors
2.2,3,2

Y * Source Tree updated

1.1,2.2

-

N

w

« HI, H2 joins group GI
e A multicasts to group G1

o e HI leaves G1

3.1

32 H2 leaves G1
« HI joins GI again

N

-

o

3.1

H2

22

Protocol Interactions thru Global Memory ﬁ

Data stack

~ Unicast
- Forwarding

Multicast
Forwarding

Group Mgmt

Join
Leave

Multicast Forwarding - RSM

RTable

10,11

Global Memory
Routing stack objects
Neighbor f
_’F M | @
Route -7 v <
Exchange / \\ Se
/ Routing ——@ \ _
/ Table <~
7 (){ \
Spanning g ii N \\
/ N N\
ARY
/ Source S
I Tree e ——
I O— --
/7 !
/
I
/ Prune
/ Table
m
5 /
roup */
® Member ®
O— Table
WRITE @ Global —@ WRITE
Memory
READ O opject | O READ

Functional Interface

—_— Write access

— — —pp- Read access

| PruneTable |

No leaf
intfs

9

Prune
Table

No Group
member

Grp
Table

23

Performance Evaluation — Test Setup

Acts as
Sender

15t level
host

2nd level
hosts H7

3rd level
hosts H1 Hz H3 H4

TEST NETWORK

O

CoreflLeaf
Fouter

Receiver

Care
interface

I1GMP
interface

* Pentium III 800 MHz

« 256 MB RAM, 20 GB HDD
100 Mbps NICs

« RedHat 7.1, Linux 2.4.6

« OCaml v3.06, native code

15 node test network
Ensemble test applications
similar to ping, ttcp used
Metrics
— Stack/Component latency
— One-way end-to-end latency
— Basic Multicast Throughput
— Reliable Multicast Throughput
— Join/Leave latency

Performance Improvement
Factors

— Native-code ocamlopt
compiler instead of byte-
code ocamlc

— Reducing global memory
lookups , use of caches

— Order of guards 24

Latency in micro-secs

160

140

120

80

40

Stack Latency vs. Message Size o

Stack Latency vs Msg Size
(averaged for 1000 pkts, 5 runs each)

- ._—

P/\/’v_/ .

100 -

—e— Router

=— Sender

-P.\./-——-———""_—._-\-—-——l\-——-—/"

60 -

A

I

20

0 200 400 600 800 1000 1200

Msg Size in bytes

1400

—a— Receiver

STACK
Mcast_Fwd
Fragment
Checksum
Replicator

5 runs of 1000 pkts each

Global memory lookup 1 in
100 pkts

Stack latency increases with
message size due to
checksum component

25

Throughput vs. Message size o

Throughput vs Msg Size

Averaged over 4 receivers, each 4 hops from multicast source
for 1000 packets and 5 runs et ruIlS 9 p ts

Throughput in Mbps

each
/\/ — * Receivers 4 hops from
e S source
Mcast
Repl

e Sharp decrease after

o — oot 1300 bytes due to

Frag

5 / o fragmentation
epl

200 400 600 M8§0g0SiZe , Il]()VOt(ls 1200 1400 1600 1800 . Stack A uses IP
fragment

» Stack B uses fragment
component

26

Throughput in Mbps

20

18

16

14

12

10

Reliable Multicast Throughput vs. Error ratefe”

Reliable Multicast Throughput

Averaged over 4 receivers , each 4 hops from multicast source

for 1000 packets , packet size 1000 bytes

b Yo

P

STACK

Rel Mcast
Mcast_Fwd
Ucast_Fwd
Frag
Checksum

Rnd_Drop
Replicator

@

—e— Average Throughput

4 6 8 10

% Error Rate

12

5 runs, 1000 packets each
1000 bytes

Receivers 4 hops from source

Random_Drop component
simulated link-error rate

Receiver-initiated NACK
scheme used for Reliable
component

27

Other metrics

Component Latencies

Component Latencies at sender

H1 Prune depth =1

Care
interface

H1 Prune depth =2

IGhMP

interface

Prured
interface

Msg Size | MCAST | FRAG |CHKSUM| REPL .
Node bytes | (in microl-seconds) | and receiver nOdeS
Sender 1000 26.09 8.23 20.49 7.61 . .
Receiver| 1000 | 326 | 337 | 1941 | 504 « Join and Leave latencies
Timer | (seconds)
Query 0.1
Graft 0.1
Prune 0.1

Prune | Join Latency
Depth [(milli-seconds)

1 405
2 458
3 535

Leave Latency : 146 ms

Sender rate : 10 pkts/sec

H1 Prune depth =3

28

Comparison with Linux IP Multicast o

 Mrouted 3.9 evaluated

Mrouted vs Composite Multicast Throughput

Averaged over 4 receivers each 4 hops aw ay from multicast source on Same tGSt netWOI‘k
for 1000 packets and 5 runs
120 e [perftool used to
—e— Mrouted Throughput d d
100 —=— Composite Mulficast | measure end-to-en
§ w Paantiiil throughput
S w / \ e « Composite multicast
g . / just worse by a factor
: of 2-3.
20, :
— SM execution adds
0 ‘ ‘ ‘ ‘ overhead
0 500 1000 1500 2000 2500] . .
Packet size in bytes o StrlCt layerlng m

framework prevents
pointer arithmetic
on buffers

— Ensemble is a user-
level program

29

Summary .

* Novel approach for building network services from
composite protocols

« Demonstrates applicability and feasibility of composite
protocol approach to data-plane and control-plane
protocols.

* Addresses challenging 1ssue of inter-stack communication
using global memory

* All components and global memory objects implemented
and tested for both functionality and performance

30

Future Work "

« The multicast service can be extended to support multi-
point to multi-point model

* Implement complex multicast protocols like MOSPF/ PIM
* Security and network management protocols
* Improve performance

* Deployment of service on an active network

31

Questions ?

ﬁ

32

	Building a Reliable Multicast Servicebased on Composite Protocols
	Outline
	Basic definitions
	Advantages of Composite Protocols
	Motivation
	Composite Protocol Framework
	Design of a Composable Service - Steps
	Step 1 - Decomposition (Multicast Service)
	Step 2 – Specification
	Building the Stacks – Step 3
	Building the Stacks - Stack Ordering
	Deployment – Step 4
	Inter-stack Communication - Global Memory
	Global Memory – Features
	Global Memory - Features
	Implementation
	Ensemble
	Multicast Global Memory Objects
	Multicast Global Memory Objects (contd)
	Global Memory – Linux Shared Memory
	Functional Interface in CamlIDL
	Multicast Service – Operational Overview
	Protocol Interactions thru Global Memory
	Performance Evaluation – Test Setup
	Stack Latency vs. Message Size
	Throughput vs. Message size
	Reliable Multicast Throughput vs. Error rate
	Other metrics
	Comparison with Linux IP Multicast
	Summary
	Future Work
	Questions ?

