

Generating exercise programs with the InMotion2
robotic system

By
Saina Parizadeh

B.S. – Computer Engineering
University Of Kansas, 2001

Submitted to the Department of Electrical Engineering and Computer
Science and the Faculty of the Graduate School of the University of
Kansas in partial fulfillment of the requirements for the degree of

Master of Science

Dr. Arvin Agah
(Committee Chair)

Dr. Nancy Kinnersley
(Committee Member)

Dr. John Gauch

(Committee Member)

Date of Acceptance

1

1. INTRODUCTION 3

2. BACKGROUND 4

3. INMOTION2 SYSTEM 5

 3.1. Tcl/TK 6

 3.2. System Basics 7

 3.3. The File Interface 9

 3.4. The coordinate System 9

4. METHODOLOGY 10

5. EXERCISES 15

 5.1 First Exercise 16

 5.2 Second Exercise 20

 5.3 Third Exercise 24

 5.4 Fourth Exercise 27

 5.5 Fifth Exercise 27

6. CODE EXPLANATION 27

 6.1 Commands Explanation 28

 6.2 Function Explanation 32

7. CONCLUSION 40

APPENDIX 42

REFERENCES 65

2

Abstract

InMotion2, also known as MIT-Manus, is a robotic system that stroke patients

work with to regain their arm movements. InMotion2 can only help improve

shoulder and elbow movement in patients and, to improve functioning, patients

need to be able to use their hands. In this paper the overall programming

structure, expected use of the InMotion2 System and workings of the system are

explained. In addition 5 therapy exercises are introduced for stroke patients that

can possibly be implemented using the robot. Three of these exercises are

explained in more details and one of them has been developed for the illustration

purposes.

3

1. Introduction

The objective of this document is to provide a quick guide to creating stroke

rehabilitation exercise programs for the InMotion2 system. The important and

necessary details of the system are outlined to give the reader a basic

understanding of the system, as well as an organized method for creating an

exercise.

This paper starts with a background in stroke and rehabilitation exercises to give

a general overview of what the main goals of these exercises are. The first topic

of discussion is an overview of the tools involved in this system followed with

several sections outlining the basics of the InMotion2 system. Next there is a

section “Exercises” which contains some of the recommended standard stroke

rehabilitation exercises. One of these recommended sample exercises is been

implemented. The final section gives the necessary details for creating the

algorithms to drive the InMotion2 system. The example program is put together in

a step by step manner to illustrate all aspects of the topics discussed. In the final

section, some of the main code functionality of few files is discussed along with

explanation of the changes for the sample exercise.

4

2. Background

Stroke is the third highest reason for death among Americans after heart disease

and cancer but yet so many people don’t know and don’t take the sign of stroke

as serious. If detected shortly after its occurrence stroke patients can be treated

and may have a full recovery. This is the intent and goal of physical therapy

exercises for stroke patients [4].

According to Dr. Edgar Kenton, a spokesman for the American Stroke

Association, about 700,000 Americans have stroke each year and about 4.6

million live with the stroke related problems [7, 12]. Yet so many insurance

companies don’t cover the rehabilitation more than six week after the stroke.

Stroke rehabilitation exercises are very effective in bringing a stroke patient to a

full recovery. However, these exercises take up a lot of a physical therapist’s

time and as it is been mentioned about these exercises are the function of time.

Therefore, a machine that can be configured to perform basic stroke therapy

exercises would be extremely beneficial both financially and time wise.

The primary symptom in all stroke patients is the loss of normal postural reflex or

reaction mechanism to initiate movement on the affected side [7]. Therefore, the

main objective of the physiotherapist is to help the patient to gradually return the

affected limb to the normal state and help the patient to regain control.

Essentially, treatment aims at re-establishing the normal postural reflex

mechanism [7].

5

The inability to move a part of the body results in poor blood circulation in that

part of the body and for this reason a stroke therapy exercise needs to focus on

improving blood circulation. However, it is important to keep in mind that the

effect of these exercises should be evaluated over time. Basically, the recovery

process is naturally a function of time and it changes gradually either slowly or

quickly, but not suddenly [8, 12].

Although, based on some studies that were done using a novel robotic device

called Assisted Rehabilitation and Measurement (ARM) Guide, the primary

stimuli to recover can be the repetitive movement attempts by patient rather than

the help from the robot [5], there are several studies that state using the robot

can result in better improvement.

Based on some studies at Burke Rehabilitation Hospital in White Plains, New

York, more than 200 patients used the InMotion2 robot, and they all have regain

motion while even for some of them the experts had lost hope for any

improvements [7, 12].

3. InMotion2 System

The InMotion2 system combines a real-time Linux interface with a robotic arm

that moves freely in the horizontal plane within two-dimensional space. The

arm/handle is being controlled by two motors and encoders for sensing the x/y

6

position. The software controls the system by reading data from the sensors and

writing data to the motors. Therefore the software can be manipulated to change

and control the behavior of the system in a desired way (Picture 1 and 2) [6].

Picture 1 Picture 2

3.1. Tcl/TK

Knowledge of the Tcl scripting language is necessary to start experimenting with

the InMotion2 system. Tcl has a website that incorporates descriptions of all built

in functions as well as a full description of syntax rules. The website is located at

http://www.tcl.tk/.

The second tool being used is the TK windowing environment. The sample

program in this paper illustrates an example of using TK with the Tcl scripting

language.

7

3.2. System Basics

InMotion2 hardware components are controlled through a data acquisition (DAQ)

board in the PC computer, by reading data from and writing data to the analog to

digital (a/d) and digital to analog (d/a) channels on the DAQ board [13].

The InMotion2 software runs on Linux 2.4 kernel, and it has been improved with

RTLinux3.1. The real time Linux provides low-latency interrupts for the system by

running the Linux kernel as a subordinate task under micro-kernel. There are

two different sets of programs, the User mode Linux programs and the control

loop program. RTLinux3.1 and the robot control loop each run as a set of

separate Linux Kernel Modules (LKM). At each sample period the InMotion2

robot control loop performs the following major tasks:

 Read data from robot sensors

 Read data from reference sources (or files)

 Calculate controls based on input data and check safety

 Write control data to robot motors

 Write data to log channels (or log data)

 Write display data

 Wait for next tick

User mode programs such as reference source data or save log data which

interact with the graphics display, communicate with the control loop using either

8

RTLinux real-time fifos or RTLinux shard memory buffers (mbuffs). A user mode

C program can share memory areas with LKM [13].

In this system, the control loop program is written in the language of the Linux

Kernel, C. The User mode programs (such as GUIs and data sources) can be

written in both C and C++. However, the GUI of this system is written in TCL/Tk,

because of the capacity and power of this language.

The changes in the system’s motor torques will control the movement of the

manipulandum. Therefore, to direct the movement of the robot’s handle, the

motor torques needs to change accordingly. InMotion2 system is a robot that is

used for interacting with the patient and guides patient to move his/her arm in

certain patterns that are determined in the therapy exercises. There are many

different exercises that a patient can do and should do to recover and regain

his/her arm’s motor skills. No matter what exercise and what pattern of

movement the system is programmed for, the robot handle is the part that is

moving around in order to execute the program.

Therefore there is a common action between all the exercises that are

implemented by this robot, which is moving the handle around. However where

the handle needs to move, depends the type of exercise, goal of the exercise,

the feed back from patient therapist and perhaps the patient’s condition.

9

3.3. The File Interface

The code to interact with the InMotion2 system is separated out into three files of

concern. These files are listed below:

Shm.c

This program gets and sets variables in the robot's shared memory mbuffs. It

creates a hash table of string names, so that they can be searched quickly. It is

a user mode program that provides command line access to a shared memory

buffer.

shm.tcl

Tcl script functions that interface to the shm program (shm.c). This function

library contains all necessary functions for interacting with the robot arm.

Vex

Tcl script sample, demonstrates how to interact with the system, as well as TK

GUI interface that plots the position of the robot arm onto a 2D plane. In this file

the state of variables such as force and acceleration are represented in the form

of vectors.

3.4. The coordinate System

The vectors on the canvas panel start at the (0,0) origin point at the center of the

canvas, which represents a point offset in Y .65 meters from the center of the

robot motors. The variables in the text panel are shown with three digits of

10

precision after the decimal point, but they are stored in the software system as

64-bit floating point values with precision and accuracy bounded by the design of

the sensors and algorithms used in the software system.

4. Methodology

The main focus of this paper is to show how to use the current functionalities and

programs of InMotion2 System to create and develop exercises that will help

stroke patients in their recovery. The InMotion2 system includes some working

examples to choose from to start the development. As it has been mentioned in

the previous section “vex” and “shm.tcl” are among the main programs and

examples in this system. The Vex example was chosen as a starting point given

that it exhibits the greatest insight to the inner workings of the InMotion2 system.

The vex program is the GUI for a practice example that provides a real-time

moving picture graphics or the state of the InMotion2 system. In this section the

general overview of how this program works is discussed as well as what has

been modified to implement one of the sample exercises - Move from left to right.

Vex program displays two panels. One is the canvas which displays the vectors

and the other is the text window which shows the numeric representation of the

vectors and their movements.

11

When the vex program starts, first the text window is displayed (Figure 1). This

window has four buttons on the top, load, run, star and quit. Load button will load

the LKM to he memory. The run button causes the control loop to start running

and enable read/write commands from and to the system motors and sensors.

The Star button runs the procedure that the vex GUI is representing. This

program directs the robot handle between the origin and the eight compass

directions that are represented by gray dots on the vex display (Figure 2).

The quit button perceptibly, quits the vex application by pausing the robot,

unloading the LKM and shutting down the shared memory.

Figure 1- Text window

12

As it is shown in figure 1, beside the buttons, the text window shows the value of

different data resulting from the movement of the robot handle. Some of the

variables it displays are such as x, y positions (mm), velocities (mm/sec), forces

(Newton) and shoulder and elbow degrees.

The position of the virtual objects in the space is called slots. InMotion2 system

offers several slot controller functions. These functions control the motor torques

of the robot based of the given data such as the current x, y position, velocity,

stiffness torque and damping value [13].

One of the objectives of the InMotion2 system is to have the patient move the

manipulandum (the handle at the end of the arm) from point A to point B in

preferably a straight line. Therefore, a slot controller function can be set up to

control the motors and force the manipulandum back to the path when the patient

moves it away. In general the slot control code in this system provides a

framework to set up the desired slot paths as well as control its behavior.

One of the slot control examples is star. This example moves the manipulandum

through a series of straight line slots back and forth from the center of the display

to each of the eight compass points shown in the figure 2.

The star program will not run unless the LKM is loaded therefore the user should

first press load button.

13

Figure 2- Original Vex GUI

As shown in figure 2, the vex program is representing the GUI that forces the

user to move the robot handle to eight different positions.

For the illustration purposes and to step through the necessary changes for

creating a new exercise, the second sample exercise-Move from left to right- has

been implemented. For more details of the sample exercise refer to the section 5.

The Vex has been modified to only move the robot from center to the left, back to

the center then to the right and back to the center to replicate the sample

exercise. This exercise only requires movement along the x axis and no

movement in the Y direction as it is shown in figure 3.

The area that robot
handle is moving. If the
manupulandum moves
out of this area, the star
program forces it back
to its path.

14

Figure 3- Modified vex GUI (representing the implemented example)

The black box in the center of vex represents the area that the movement of the

manipulandum is controlled and if the user moves the robot arm out of this area,

the controllers will draw the arm back to the path and within the area.

For this reason, for the sample exercise -Move from left to right- the GUI has

been modified to only show the two targeted points that the manipulandum has to

move to. Also since the arm needs to be moving only along the x-axis the height

of the controlled area is reduced to enforce the movement of the maniulandum in

a straight horizontal line. Any movement outside of this box will be met with an

opposing force pushing the arm back into the area of the box. This reaction will

force the robot handle to move in a straight line along the x- axis.

The area that
the robot‘s
handle is
moving

15

5. Exercises

As soon as an isolated muscle action is elicited, it must be practiced and

extended into meaningful actions. This requires the patient gaining control over

increasing ranges of a movement and be able to change to other movements

which also requires the muscle to contract in its prime mover, synergist and

fixture roles and shifting from concentric to eccentric in different parts of range at

various speed.

Gross pattern of movement of the upper limb should be avoided as these will not

allow either the therapist or the patient, to be aware of any minimal muscle

activity present and they will tend to encourage only the more active muscles

which may cause trauma around the shoulder [3, 6].

The major function of the arm is to enable the hand to be positioned for

manipulation. Therefore, the essential components are:

 Shoulder abduction/hold

 Shoulder forward flexion/bend

 Elbow flexion and extension

The following are the questions that should be addressed for each exercise:

1. Description of the exercise.

2. When patients can do this exercise?

3. What are the factors/types of data that need to be recorded for this exercise?

16

 Age

 Time that patient needs to do the exercise (T_EX)

 Number of repetitions

 Time it takes for the patient to do one repetition (T_P)

 Force that the machine has to apply to the patient's hand

 Amount of the force that the patient is expected to apply while he/she is

moving the handle

4. What type of data should each one of these factors be compared to?

 Mostly to a healthy person the same age as the patient.

5. What are the graphs factors? What do these graphs represent?

6. How to determine the patient has mastered the exercise?

In this section, based on various researches that were done about recovery

exercises for arm after stroke, several exercises are suggested that can be

implemented and be used for our experiment purposes.

5.1 First Exercise

Converting the rolling chair exercise to the steps that can be implemented by the

robot:

1. Description of the exercise:

Patient’s arm position starts with 90 degree bend at the elbow (Figure 4-

5). At that position the patient has to grab the handle (this is position Y =

17

0) and move the handle forward to position Y = y (along a straight line)

and back to position Y=0.

Movement factors: the shoulder should not move. Only the hand should

move forward and backward along a straight line.

Starting:

Figure 4

 Eventually:

Figure 5

2. When patient can do this exercise?

When patient can grab the handle and be able to move their elbow from

90 degree to some larger angle where the elbow is extended.

18

3. What are the factors/types of data that need to be recorded for this exercise?

AGE: Depending on the age of the patient, different levels of force is

expected to be applied by the patient. The force level should be compared

to a healthy person of comparable age as the patient.

When a healthy person performs the exercise the amount of force that

he/she applies to move the handle is measured. Keep in mind at this point

the robot handle has the stiffness level equivalent to the force required to

move a wheel chair. Therefore, a person has to apply the same amount of

pressure to move the handle as if he/she had to move a wheel chair.

T_EX: 10 minutes (Can be varied).

NUMBER OF REPETITIONS: Record the number of times that a person

moves the handle from Y= 0 to Y=y and back to Y=0.

T_P: How long it takes for the user to move the handle from Y= 0 to Y=y

and back to Y=0.

FORCE THAT THE MACHINE HAS TO APPLY TO THE PATIENT’S

HAND:

The robot handle needs a stiffness level equivalent to the weight of the

force required to move a wheel by a healthy person, however depending

on the age, the severity of the stroke and mobility/sensory level of patient

the stiffness level should be adjusted.

19

4. What type of data should each one of these factors be compared to?

 Same data as gathered from a healthy person of comparable age

5. What are the graph factors? What do these graphs represent?

Figure 6: An imaginary graph – for illustration purpose only.

The force applied by a healthy person to move the handle back and forth

for 10 minutes. Since after a few minutes, the person gets tired it is

expected that the average force applied will go down over the time. Figure

6 displays an imaginary graph that demonstrates this pattern.

Figure 7: Number of repetitions in 10 minutes vs. force applied in each

repetition.

0
10 Minutes

Force
Applied

For Age = x

Num of
repetitions

Force
Level ----- Patient

 movement
----- Healthy Person

20

We will generate the same type of graph (as the ones that were created

for a healthy person) for the patient and we should compare the trace of

the graph with the healthy person’s graph (Figure 7). The key is the

comparison of the pattern not the data for each patient. For instance if a

healthy person applies less force after 6-7 minutes into the exercise

because he/she got tired, we are looking for a similar decrease in force

applied around the same time from the patient.

6. When patient has mastered the exercise?

As the patterns get closer to each other we are hoping that the patient is

on their way to recovery.

5.2 Second Exercise

This is the example exercise, called “Move from left to right”.

1. Description of the exercise:

Patient’s arm position starts with 90 degree angle bend at the elbow.

At that position the patient has to grab the handle (this is position Y = 0,

X= 0) and move the handle left to position X = -x (in the straight horizontal

line) and back to position X=0 and again move right to position X= +x and

back to X= 0.

21

Movement factors: Shoulder and elbow should not move. Elbow should

maintain the 90 degree angle all the time. Only the forearm should move

right and left in horizontal (X) direction.

2. When patient can do this exercise?

When the patient can grab the handle, position their affected hand at the

90 degree angle at the elbow and be able to move their forearm in right

and left direction long the horizontal (X) axis

3. What are the factors/types of data that need to be recorded for this exercise?

AGE: Depending on the age of the patient and the severity of the stroke,

different levels of force is expected to be applied by the patient as well as

different range of motion. The force level and range of movement in the

(“+” and “-“X) direction should be compared to that of a healthy person of

comparable age.

A healthy person performs the exercise (for the same amount of time-10

min) and the amount of the force that he/she applies to move the handle is

measured. We record the distance that he/she moves the handle in the x

direction. At this point the handle has no stiffness. We can also record the

time and calculate how fast the person moves the handle right and left.

Then the same exercise can be repeated for different stiffness levels of

the robot handle.

22

So important factor is how stiff the handle should be or what is the range

of stiffness that the robot handles should have. We can compare the

stiffness of the handle to the weight that a person can move around. The

harder it is to move the robot handle, heavier the weight the person is

moving around and therefore, the stronger force he or she is applying to

the handle. We can measure and analyze the force as we increase the

stiffness of the machine

T_EX: 10 minutes (Can be varied)

NUMBER OF REPETITIONS: Record the umber of times that a person

moves the handle from X= -x to X= +x for each level of stiffness, as well

as how far he moves the handle in both directions. Also we can measure

the force that the patient applies. As the patient recovers he/she can move

the handle with considerable ease and can apply more force for higher

stiffness levels.

T_P: How long it takes for the patient to move the handle from X= 0 to X=-

x to X= +x and back to X=0 depending on the stiffness of the handle.

FORCE THAT THE MACHINE HAS TO APPLY TO THE PATIENT’S

HAND:

The handle should be programmed for different stiffness level. Also the

maximum stiffness level should depend on the patient’s age and the

severity of the stroke.

23

4. What type of data should each one of these factors to be compared to?

As was mentioned before, we can measure the force that the patient

applies to move the handle, how far he/she moves the handle along each

x direction, how long it takes for him/her to complete one repetition of the

exercise as well as how many repetitions the person completes within the

given time for each level of the stiffness.

The same data should be recorded from the performance of a healthy

person. Plot a graph of the recorded data from a healthy person and

compare the pattern of the two graphs.

5. What are the graph factors? What do these graphs represent?

We are hoping to see the same pattern of movement of a healthy person

for the patient over time. However since the patient might get tired faster

and lose his/her energy, the force level might be lower than the healthy

person.

6. When patient has mastered the exercise?

Patient should be able to move the handle to the desired X position given

a particular level of stiffness with considerable ease.

24

5.3 Third Exercise

Straight hand

1. Description of the exercise:

Starting position: Patient’s arm is outstretched (elbow is extended at180

deg) parallel to the floor and 90 degree angle with the body (Figure 8). At

this position the patient grabs the handle (this is position X = 0, Y = 0) and

move the handle back and forth in the x axis direction. Starting at position

X = 0 go to position X = -x, back to X=0, then go all the way to going

forward to X= +x and back to the original position X=0. The distance of –x

and +x is determined by the movement ability of the patient. The goal is

that the patient should eventually be able to move his\her arm in the full

range of motions.

Figure 8- Patient’s arm movement pattern.

2. When patient can do this exercise?

When patient can grab the handle and hold onto it, be able to hold his/her

arm outstretched in front the robot and move the arm back and forth along

the x direction.

25

This is perhaps a more advanced exercise compared to the previous two

exercises since the patient should be able to hold the handle as well as be

able to maintain the straight arm position.

3. What are the factors/types of data that need to be recorded for this exercise?

AGE: Depending on the age of the patient, and the severity of the stroke,

the patient is expected to be able to move the handle to certain X

distance. The movement of the patient’s arm has to be compared to the

movement of a healthy person of comparable age. Depending on how far

the patient can move the handle while keeping his/her arm straight in

front, the force that is applied by the handle should be adjusted. It is

adjusted such that the handle can help the patient move his/her arm to the

positions that a healthy person would. The patient should work within the

range he/she can control the handle, and gradually increase the range.

T_EX: 10 minutes

NUMBER OF REPETITIONS: Record the number of times that a person

moves the handle from X= 0 to X=-x, to X=0, to X=+x back to X = 0.

Number of repetitions should be about 10-15 at a time.

T_P: How far the patient can move his/her handle along the x direction

while he/she is maintaining an outstretched arm.

26

FORCE THAT THE MACHINE HAS TO APPLY TO THE PATIENT’S

HAND:

The handle should have no stiffness at the beginning. However it has to

apply enough force to direct the patient’s hand to an acceptable +, - X

position for that patient. Hopefully as the patient repeats this exercise

he/she can eventually move his/her arm in full range of motion by just

holding the handle and does not need any guiding force from the robot.

4. What type of data should each one of these factors be compared to?

The force applied by a healthy person to move the handle back and forth

as well as the number of times he/she was able to do this exercise within

the given time.

5. What are the graph factors? What do these graphs represent?

The graph should show the amount of the guiding force that the robot

applies to move the hand to the desired x position for each set of exercise.

It can be the average force for 15-20 set repetitions or the average of

several sets of 15-20 repetition for a day of exercise. Hopefully as the

patient repeats the exercise, the affected arm recovers and can move the

handle with less help from the machine.

Also compare how far in the X direction can the patient move the handle

with that of the desired distance that has been measured from a healthy

person.

27

6. When patient has mastered the exercise?

The patient has mastered the exercise when he/she can move his/her arm

in a straight line in the full motion range from +x to –x with the arm

outstretched.

5.4 Fourth Exercise

Repeating the same movement as the third exercise but this time the

outstretched arm should be at a 45 degree angle from the shoulder.

5.5 Fifth Exercise

Patient’s arm position starts with 90 degree bend at the elbow.

At that position the patient has to grab the handle (this is position Y = 0,

X=0) and rotate the wrist, from left to right and back.

Movement factors: Through out this exercise the entire hand does not

move and only the wrist rotates [10].

6. Code Explanation

In this section the function calls that are required to move the robot’s arm are

discussed. First section explains commands in general. Second part explains the

28

function calls that are required to move the robot handle from one place to

another, regardless of what the exercise is.

6.1 Commands Explanation

The “canvas” command creates a new window and makes it into a canvas widget

(w). Additional options in the command line can specify the aspects of the canvas

such as its color or the size [13].

set c [canvas $w.c -height 600 -width 600]

This line displays a square canvas window with the dimensions of 600 in height

and width.

chwin $c [winfo width $c] [winfo height $c]

“Winfo” returns the window related information, such as the height and the width.

“Chwin” is a function that handles window resizing.

Centxy[$x $y rad]

29

“Centxy” function is defined in shm.tcl file. This function returns a list of four

elements x-rad, y-rad ,x+rad, y+rad given the x , y and the rad value. For

instance if 100,100 and 10 is passed, the list (90, 90, 110, 110) is returned.

$c create rect [centxy 0 0 .14]

The Key word “create” creates the object specified after it. Therefore, this line

creates a square with .14 meters in dimensions. This code is used to draw a

black box (or a square) where the dots of the compass are lying (Figure 2).

Therefore, if the size of this area needs to be changed, the values passed to this

function have to be changed accordingly (Figure 3).

$c create oval [centxy $I $j .01] -fill gray

“Fill” Simply fills in the created area in this case the oval shaped object with the

color that is specified after it which in this case is gray color.

Each item in the canvas widget is named in either by id or by tag. Each item has

its own unique identifying number id which gets assigned to it when it is created.

This number never gets changed or reused within the lifetime of a canvas widget.

In addition each item can also have a tag number associated with it, which is not

a unique number to the item. A tag may be associated with many different items

to group them in different ways.

30

$c create line {0 0 0 0} \

-tags "kscale linep" -width $linewidth -fill gray -capstyle round

The above statement simply draws a gray line at the given line width and a round

cap at the end of it (Figure 2) for the items with same tag name “kscale linep”.

proc init {}{ body.}

The “proc” command creates a new Tcl procedure for instance named init, and

replaces any existing command or procedure that may have been referred by

that name.

Whenever the new command is invoked, the contents of body will be executed

by the Tcl interpreter.

gets channelId ?varName?

“Gets” command reads a line from a channel. This command reads the next line

form channelId, returns everything in the line up to (but not including) the end-of-

line character(s). If varName is omitted the line is returned as the result of the

command. If varName is specified then the line is placed in the variable by that

name and the return value is a count of the number of characters returned [19].

lindex list {indice}

31

The” lindex” command accepts a list parameter and zero or more indices into the

list and returns the requested index of the list. Keep in mind that 0 refers to the

fist element of the list. The indices may be presented either consecutively on the

command line, or grouped in a Tcl list and presented as a single argument [19].

set what [lindex $istr 3]

 return $what

In general, “lindex” retrieve an element from a list. For instance, the above

statement sets the value of “what” variable to the 4th element of the “istr” list and

returns the value of “what”.

foreach varname list {body}

foreach varlist1 list1 ?varlist2 list2 ...? {body}

The “foreach” command implements a loop where the loop variable(s) take on

values from one or more lists. For each element of list (in order from first to last),

foreach assigns the contents of the element to varname

Exp {int (x) + int (y)}

“int” returns the integer value of the variable and “exp” returns the final result of

the mathematical expression. For instance, If the value of $sec is 100, the

following expression will set the value of atime2 for star to 200000 msec.

32

set star(atime2) [expr {int(2 * $sec * 1000)}]

The following section explains some of the general functions that are involved in

moving the robot’s handle. For the purpose of the demonstration the second

suggested exercise –Move from left to right -is implemented and it is used as an

example to explain what needs to be changed to implement the exercise. The

comments are included in the source code.

6.2 Function Explanation

VEX.tcl File:

The following lines actually draw the dots at desired places and fill them with gray

color.

foreach I {-.14 0.0 .14} //Horizontal line, (i) values
 { foreach j {-.14 0.0 .14} //Vertical line, (j) values

 {.
 $c create oval [centxy $I $j .01] -fill gray

}
}

This code draws the circles at compass points and the center. Given x, y and a

value for radius of the dots, “centxy” returns x1 y1 x2 y2 where the ovals dots are

drawn (refer to Figure 2). It draws a circle where the robot needs to be moved to

which in the original code were the 8 dots along the square.

33

Since in the move from left to right exercise there are just two points that the arm

needs to be moved to, the function has been modified to only display two dots on

the sides of the rectangular box (Figure 3).

In order to have only two circles on the left (West) and the right (East) the

functions is modified as follow:

foreach I {-.14 0.0 .14}
{foreach j {0.0 0.0 0.0} // We are not drawing any compass pint

 {
 $c create oval [centxy $I $j .01] -fill gray
 }
}

The following lines deal with creating and drawing vectors.

$c create line {0 0 0 0} \

 -tags "kscale linep" -width $linewidth -fill gray -capstyle round

This command creates a line (or vector) indicating the change of the variables

such as force and velocity. Since in this exercise showing the change of x, y and

the velocity vectors were not necessary, these lines are commented out.

shm.tcl file

The shm program allocates the shared memory buffers that are needed by the

program. Ob (general objects) is one type of these allocations. Others are Rob

(robot data), and Daq (data acq data).

34

A typical need in a robot GUI program is to query the control loop for the current

position of the manipulandum. This is a similar idea to getting the x/y cursor

position from a mouse driver on a PC windowing system [13]. For this reason

every function that is involved with manipulating variables based on the interaction

of the user and the robot, first grasps an object by declaring a global ob.

The main two functions in this program are “wshm” and “rshm”.

“wshm” writes to a variable or updates a variables(“puts”) by a value of the

memory location. Basically, it writes system tcl variables from where the value is

equal what (like /sbin/sysctl -w where=what).

proc wshm {where what {I 0}} {
 global ob
 if {![info exists ob(shm)]} {
 return
 }
 if [info exists ob(shm_puts_exit_in_progress)] {
 return
 }
 shm_puts "s $where $I $what"

 gets $ob(shm) istr
 set what [lindex $istr 0]
 if {[string equal $what "?"]} {
 puts stderr $istr } }

 “rshm” reads memory locations or system tcl variables(“return”) from where (like

/sbin/sysctl where). The memory location, specified by values of x, y is passed on

and the value of it is retuned.

This is an important function and it has been utilized through out this file several

times.

35

proc rshm {where {I 0}} {
 global ob
 set what "???"
 if {![info exists ob(shm)]} {
 return "0.0"
 }
 if [info exists ob(shm_puts_exit_in_progress)] {
 return "0.0"
 }
 shm_puts "g $where $I"

 gets $ob(shm) istr
 set what [lindex $istr 0]
 if {[string equal $what "?"]} {
 puts stderr $istr
 return "0.0"
 }
 set what [lindex $istr 3]
 return $what
}

“movebox” is implementing the Slot technique by moving the robot’s arm from

one spot to the other. This is one of the most important functions and has been

called several times through out this file.

proc movebox {slot_id slot_fnid forlist box0 box1} {

 # the uplevel/subst allows users to put $vars in the lists.
 set forlist [uplevel 1 [list subst -nocommands $forlist]]
 set box0 [uplevel 1 [list subst -nocommands $box0]]
 set box1 [uplevel 1 [list subst -nocommands $box1]]

 foreach {slot_I slot_term slot_incr} $forlist break
 foreach {slot_b0_x slot_b0_y slot_b0_w slot_b0_h} $box0 break
 foreach {slot_b1_x slot_b1_y slot_b1_w slot_b1_h}

 foreach I {
 slot_id slot_fnid
 slot_I slot_term slot_incr
 slot_b0_x slot_b0_y slot_b0_w slot_b0_h
 slot_b1_x slot_b1_y slot_b1_w slot_b1_h
 } {wshm $I [set $I]}

 wshm slot_running 1

36

 wshm slot_go 1
 wshm slot_max 1}

slot_id is a slot management code function that stops slot # id which is default to

zero. Forlist is a list of mainly three elements {0, $star(time), 1}, which represent

the tick time. Box0 is the current position of the handle (slot) and box1is the

position that we want the handle to move to.

Uplevel evaluates commands in different scope. Therefore uplevel 1 means to

execute the command in the scope of calling procedures or the user level.

Break returns a TCL_BREAK code, which causes a break exception to occur.

The exception causes the current script to be aborted out to the innermost

containing loop command, which then aborts its execution and returns normally.

There is no need to make any changes to this function. This function is being

called from several different functions such as “center_arm”, “star_proc” which

will be introduced later on.

“center_arm” moves the robot’s arm from its current position to center, at a

constant speed.

proc center_arm {{cx 0.0} {cy 0.0}} {

set x [getptr x] //Gets the horizontal value of current
position of the robot’s arm and sets it to x.

set y [getptr y] //Gets the vertical value of current position
of the robot’s arm and sets it to y.

 set dist [edist $x $y $cx $cy] //Sets dist to Euclidean distance of x, y, cx
and cy.

set ticks [expr {int($dist * 4000.)}] //Sets the ticks value (which is the
tick time) to the integer value of
dist*4000.

 movebox 0 0 {0 $ticks 1} {$x $y 0.0 0.0} {$cx $cy 0.0 0.0}
}

37

At the end after knowing the tick time, start position and the end position this

function calls the movebox function to actually move the robot’s arm from its

current position (start place) to the center (end place) within ticks time.

When the “star” button on the text window is clicked, there are three functions

that will get called. First the “star_once” function gets called. This function

initializes the star process and the compass points that the robot arm must move

to. Next, “Start_star” function places the arm in its initial position which in the

case of vex, it is set to the center of the box and calls “star_proc”. Finally,

“star_proc” function actually executes the star procedure which is directing the

maniupulandum through all the compass points as it is shown in Figure 2.

“star_once”, first checks to see if star is already in process or in the other word

has the “star” button been already clicked. If not, it will initialize its variables.

proc star_once {} {

 global star
 if {[info exists star(I)]} {
 return // If the function is in process don’t do anything
 } // Else
 set star(i) 0 //Sets star(i) to zero

 set star(hw) 0.005 //Set star(hw) to constant value 0 .005. hw is just a

 constant
 set star(c) [list 0.0 0.0 $star(hw) $star(hw)] //Sets the center position to 0
 set star(s) [list 0.0 -0.14 $star(hw) $star(hw)] //The south position is at
 -.14 below the center
 set star(n) [list 0.0 0.14 $star(hw) $star(hw)] //The North position is

 at +.14 above the center
 set star(w) [list -0.14 0.0 $star(hw) $star(hw)] //And so on ..
 set star(e) [list 0.14 0.0 $star(hw) $star(hw)]

38

 set star(nw) [list -0.14 0.14 $star(hw) $star(hw)]
 set star(ne) [list 0.14 0.14 $star(hw) $star(hw)]
 set star(sw) [list -0.14 -0.14 $star(hw) $star(hw)]
 set star(se) [list 0.14 -0.14 $star(hw) $star(hw)]
 set star(dirs) {n ne e se s sw w nw} //“dirs” contains the list of all
the directions
}

The example exercise -Move from left to right.- has only two compass points

(east and west) that the robot arm is moving between, however the starting

position is still the center or at (0,0). For this reason the “star_once” function is

modified as follow:

proc star_once {} {

 global star
 if {[info exists star(i)]} {
 return
 }
 set star(i) 0

 set star(hw) 0.005
 set star(c) [list 0.0 0.0 $star(hw) $star(hw)]
 set star(w) [list -0.14 0.0 $star(hw) $star(hw)]
 set star(e) [list 0.14 0.0 $star(hw) $star(hw)]
 set star(dirs) {e w}
}

The start_star{x} function starts the actual star program after x amount of time by

centering the robot arm. In this case the star program starts after 5 second.

To position the arm, “start_star” function sets the number of trips to zero, since

we don’t want the arm starts the movements yet and calls the “center_arm”

function(this function has been explained already) to position the robot’s arm in

the center of the window. Then “star_proc” is called after a given time (for

39

instance 5 sec) to start the laps for vex program. There is no change to this

function for the example exercise.

proc start_star {{sec 5}} {
 global star

 set star(trips) 0
 # takes 1 second

center_arm // First trip (putting the handle at the center
position) takes 1 second

 # after 2 seconds
 lappend star(afters) [after 2000 star_proc $sec] //….
}

The “star_proc” function begins the star process by creating a star object.

First check if the object already exists if not it starts the run. It calculates the

speed at which the handle has to move by using the expression (2* $sec*100).

Knowing that it will start from center, it calls the movebox function to get to the

next direction.

proc star_proc {{sec 5}} {

 global star ob
 if {!$ob(running)} { //If the star process is already running, meaning is in the

middle of a trip through all the compasses, return.
 return
 }
incr star(trips) //Otherwise, increment the round trip number by one

 set star(sec) $sec
 set star(atime) [expr {int($sec * 1000)}] //atime is a constant time for pausing

 between the trips (mSec)

 set star(atime2) [expr {int(2 * $sec * 1000)}]

 set star(dir) [lindex $star(dirs) $star(I)] //Finds the next direction that it has

 to go
set star(stime) [expr {int($sec * .9 * 200)}] //stime is secs * sample time in Hz

(one trip time)

 movebox 0 0 {0 $star(stime) 1} $star(c) $star($star(dir)) //moves from center to
 the direction passed

40

 // then after “atime”, from that direction move back to the center
set star(afters) [after $star(atime) {movebox 0 0 {0 $star(stime) 1}
$star($star(dir)) $star(c)}]
//After the puss time (atime2) call the star_proc again to move from the center to
//the next direction
lappend star(afters) [after $star(atime2) star_proc $star(sec)]

set star(I) [expr {($star(I) + 1) % 8}] //calculate the next index of “dirs”

array to determine where to go next

}

Star(i) contains the index of directions array. Since in the example program there

are only tow target points the star(i) is calculated based on that and it is modified

to the following:

 set star(I) [expr {($star(I) + 1) % 2}]

7. Conclusion

Using InMotion2 system for stroke patient recovery has significant advantages in

quality and cost of care. Using the robot can minimize involvement of the

therapist and therefore dramatically decrease the cost for the patient or the

insurance companies. The system would also have a higher degree of accuracy

than the human would and therefore it will increase the effectiveness of the

therapy.

The key objective of this work was to recommend some basic arm exercises for

the stroke patients and to implement one of them as an example to show that

exercises outlined can be used as a fundamental module for implementing more

41

advanced exercise. Therefore, once basic system movements are implemented

the additional exercises can be developed fairly easily and that will increase

sophistication of the system.

This system besides the vex example, includes several other simpler examples

that requires the user interaction with GUI, such as following a ball or a dot

shown in the screen that is moving in the pattern by the manipulandum. Some of

these exercises are:

Chase.tcl- In this sample program there are two object balls on a canvas. The

small yellow ball is a cursor that in this case follows the mouse. The large red ball

is the target. The goal is to touch the target ball with the cursor ball. The Target

ball is moving at random.

Xy1- This program print x/y in response to new line.

Xy2- script that prints position and velocity once per second.

One InMotion2 robot, which now costs about $70,000 to install in a clinic, can

provide intensive therapy for hundreds of patients. Even as an adjunct to a

human therapist, the robot will be cost-effective, and will eventually pay for itself.

A long-term goal is for people to be able to rent or buy the robot for home use,

but that is maybe five years in the future according to Susan Fasoli, a post-

doctoral fellow at MIT's department of mechanical engineering [4].

42

Appendix

Shm.tcl source code

tcl i/o with shm (user mode shared memory buffer) program
sourced by other tcl scripts

InMotion2 robot system software for RTLinux

Copyright 2003-2004 Interactive Motion Technologies, Inc.
Cambridge, MA, USA
http://www.interactive-motion.com
All rights reserved

if {[info exists env(CROB_HOME)]} {
 set ob(crobhome) $env(CROB_HOME)
} else {
 set ob(crobhome) /home/imt/crob
}

proc every {ms body {id ::after_id}} {
 eval $body
 set $id [after $ms [info level 0]]
}

proc procname {} {return [lindex [info level -1] 0]}

proc cancel_afters {} {
 foreach id [after info] {after cancel $id}
 foreach id [after info] {after cancel $id}
}

reap zombie processes after "exec &" commands exit
see: http://mini.net/tcl/1039
proc reap_zombies {} {
 catch {exec ""}
}

flip y coordinate

proc y_up args {
 set ret ""
 if {[llength $args]==1} {set args [lindex $args 0]}
 foreach {x y} $args {lappend ret $x [expr {-$y}]}
 return $ret
}

given a center position and radius, like 100 100 10,
centxy returns x1 y1 x2 y2, like 90 90 110 110.

proc centxy {x y rad} {
 set x1 [expr {$x - $rad}]
 set y1 [expr {$y - $rad}]
 set x2 [expr {$x + $rad}]
 set y2 [expr {$y + $rad}]
 list $x1 $y1 $x2 $y2
}

proc centertag {w tag} {
 foreach {x1 y1 x2 y2} [$w coords $tag] break
 set x [expr {$x1 + $x2 / 2.}]
 set y [expr {$y1 + $y2 / 2.}]
 list $x $y
}

lkm loaded?

43

proc is_lkm_loaded {} {
 file exists /proc/pwrdaq
}

load lkms

proc start_lkm {} {
 global ob
 if {![file executable $ob(crobhome)/go]} {
 error "start_lkm: could not run go"
 }

 # set status [catch {tk_exec sh $ob(crobhome)/go} result]
 set status [catch {exec sh $ob(crobhome)/go} result]
 if { $status != 0 } {
 stop_lkm
 error "start_lkm: could not start kernel module robot.o\n\
 result string:\n<<\n$result\n>>\n"
 }
}

unload lkms

proc stop_lkm {} {
 global ob
 if {![file executable $ob(crobhome)/stop]} {
 puts "stop_lkm: could not run stop"
 exit 1
 }

 set status [catch {tk_exec sh $ob(crobhome)/stop} result]
 set status [catch {exec sh $ob(crobhome)/stop} result]
 if { $status != 0 } {
 puts "stop_lkm: could not stop kernel module robot.o"
 puts "result string:\n<<\n$result\n>>\n"
 }
}

start shm - the shared memory buffer C program

proc start_shm {} {
 global ob
 if {! [file exists $ob(crobhome)/shm] } {
 puts stderr "start_shm: can't find shared memory program $ob(crobhome)/shm"
 exit 1
 }
 set ob(shm) [open "|$ob(crobhome)/shm" r+]
 fconfigure $ob(shm) -buffering line
 after 100
 set check [rshm last_shm_val]
 if {$check != 12345678} {
 puts "start_shm: bad shm check value."
 puts "make sure all software has been compiled with latest cmdlist.tcl"
 exit 1
 }
}

proc stop_shm {} {
 global ob
 if {![info exists ob(shm)]} {
 return
 }
 set ob(loaded) 0
 puts $ob(shm) "q"
 close $ob(shm)
 unset ob(shm)
}

proc start_log {logfile {num 3} {uheaderfile ""}} {
 global ob

44

 # puts "start_log $logfile $num"
 wshm nlog $num

 # make sure the dir is there
 file mkdir [file dirname $logfile]

 # write log header
 logheader $logfile $num $uheaderfile

 set ob(savedatpid) [exec cat < /dev/rtf1 >> $logfile &]
}

proc stop_log {} {
 global ob

 # puts "stop_log"
 wshm nlog 0
 if [info exists ob(savedatpid)] {
 exec kill $ob(savedatpid)
 unset ob(savedatpid)
 }
}

proc xyplot_log {filename} {
 global ob
 exec [file join $ob(crobhome) xygp] $filename &
}

proc plot_log {filename {plotcmd {}}} {
 global ob
 exec [file join $ob(crobhome) gp] $filename $plotcmd &
}

if the shm process gets killed from outside, the puts here will fail.
this will set shm_puts_exit_in_progress, and cleanup should happen.
don't call stop_shm or stop_loop, since these just do more i/o to the
now broken shm channel.

proc shm_puts str {
 global ob
 if [info exists ob(shm_puts_exit_in_progress)] {
 puts stderr "shm_puts error, exit in progress..."
 }
 if [catch {puts $ob(shm) $str}] {
 set ob(shm_puts_exit_in_progress) 1
 puts stderr "shm_puts error, stopping lkm."
 stop_lkm
 exit 1
 }
}

i is array index in both.

wshm writes systcl vars
like /sbin/sysctl -w where=what

proc wshm {where what {i 0}} {
 global ob
 if {![info exists ob(shm)]} {
 return
 }
 if [info exists ob(shm_puts_exit_in_progress)] {
 return
 }
 shm_puts "s $where $i $what"

 gets $ob(shm) istr
 set what [lindex $istr 0]
 if {[string equal $what "?"]} {
 puts stderr $istr

45

 }
}

rshm reads systcl vars
like /sbin/sysctl where

proc rshm {where {i 0}} {
 global ob
 set what "???"
 if {![info exists ob(shm)]} {
 return "0.0"
 }
 if [info exists ob(shm_puts_exit_in_progress)] {
 return "0.0"
 }
 shm_puts "g $where $i"

 gets $ob(shm) istr
 set what [lindex $istr 0]
 if {[string equal $what "?"]} {
 puts stderr $istr
 return "0.0"
 }
 set what [lindex $istr 3]
 # set what [expr int($what * 1000)]
 return $what
}

proc start_loop {} {
 wshm paused 0
}

proc stop_loop {} {
 wshm paused 1
}

proc mouse_getptr {p} {
 expr {[winfo pointer$p $::tachw]}
}

proc mouse_getvel {p} {
 # delta motion since last tick
 set d($i) [expr {$p($i) - $::lastp($i)}]
 # velocity in pixels/sec
 set v($i) [expr {$d($i) * $::hz}]

 # smooth $v
 set v($i) [iirsmooth $v(i)]
}

robot ptr/vel

proc getptr {p} {
 rshm $p
}

proc soft_getvel {p} {
 rshm soft_${p}vel
}

proc fsoft_getvel {p} {
 rshm fsoft_${p}vel
}

proc tach_getvel {p} {
 rshm tach_${p}vel
}

proc getvel {p} {
 rshm ${p}vel
}

46

proc gettrq {p} {
 rshm ${p}_torque
}

proc getvolts {p} {
 rshm ${p}_volts
}

proc getfrc {p} {
 rshm ${p}_force
}

proc getftfrc {p} {
 rshm ft_${p}dev
}

proc getwftfrc {p} {
 rshm ft_${p}world
}

proc f3k {n} {
 format %.3f [expr {1000.0 * $n}]
}

proc f3 {n} {
 format %.3f $n
}

checkerror should be called from inside a user-mode program event loop,
to make sure that the event loop isn't generating too many errors or
warnings. a few such errors are expected in normal operation, but if
something goes wrong, they should happen on every sample and they will
exceed the max (10, for example) quickly.

proc checkerror {{max 10}} {
 global ob
 set ob(errormax) max
 set nerrors [rshm nerrors]
 if {$nerrors > $ob(errormax)} {
 set i [rshm errorindex]
 set ei $i
 set error0i [rshm errori $i]
 set error0code [rshm errorcode $i]
 incr i -1
 set error1i [rshm errori $i]
 set error1code [rshm errorcode $i]
 incr i -1
 set error2i [rshm errori $i]
 set error2code [rshm errorcode $i]

 set estring "InMotion2 System, Pausing control loop.\n\
nerrors = $nerrors,\n\
last ($ei): iteration = $error0i, code = $error0code.\n\
last-1: iteration = $error1i, code = $error1code.\n\
last-2: iteration = $error2i, code = $error2code.\n\
You may run shm to analyze system state, then run ./stop ."
 stop_loop
 error $estring
 # stop_lkm
 # after 2000
 # exit 1
 }
}

movebox to move a box
i f forlist from to
e.g.: movebox 0 0 {0 1000 1} {0.0 0.0 0.005 0.005} {0.15 0.15 0.005 0.005}

proc movebox {slot_id slot_fnid forlist box0 box1} {
puts "movebox $slot_id $slot_fnid $forlist $box0 $box1"

47

 # the uplevel/subst allows users to put $vars in the lists.
 set forlist [uplevel 1 [list subst -nocommands $forlist]]
 set box0 [uplevel 1 [list subst -nocommands $box0]]
 set box1 [uplevel 1 [list subst -nocommands $box1]]

 foreach {slot_i slot_term slot_incr} $forlist break
 foreach {slot_b0_x slot_b0_y slot_b0_w slot_b0_h} $box0 break
 foreach {slot_b1_x slot_b1_y slot_b1_w slot_b1_h} $box1 break

 foreach i {
 slot_id slot_fnid
 slot_i slot_term slot_incr
 slot_b0_x slot_b0_y slot_b0_w slot_b0_h
 slot_b1_x slot_b1_y slot_b1_w slot_b1_h
 } {wshm $i [set $i]}

 wshm slot_running 1
 wshm slot_go 1
 wshm slot_max 1

}

stop a slot currently in progress

proc stop_movebox {slot_id} {
 wshm slot_max 0
 foreach i {
 slot_id slot_fnid
 slot_i slot_term slot_incr
 slot_b0_x slot_b0_y slot_b0_w slot_b0_h
 slot_b1_x slot_b1_y slot_b1_w slot_b1_h
 slot_running
 } {wshm $i 0}
 wshm slot_go 1
}

proc star_once {} {
 global star

 if {[info exists star(i)]} {
 return
 }

 set star(i) 0

 set star(hw) 0.005
 set star(c) [list 0.0 0.0 $star(hw) $star(hw)]
 #set star(s) [list 0.0 -0.14 $star(hw) $star(hw)]
 #set star(n) [list 0.0 0.14 $star(hw) $star(hw)]
 set star(w) [list -0.14 0.0 $star(hw) $star(hw)]
 set star(e) [list 0.14 0.0 $star(hw) $star(hw)]
 #set star(nw) [list -0.14 0.14 $star(hw) $star(hw)]
 #set star(ne) [list 0.14 0.14 $star(hw) $star(hw)]
 #set star(sw) [list -0.14 -0.14 $star(hw) $star(hw)]
 #set star(se) [list 0.14 -0.14 $star(hw) $star(hw)]
 # set star(dirs) {n ne e se s sw w nw}
 set star(dirs) {e w}
}

star_once

proc start_star {{sec 5}} {
 global star

 #while (1) {
 # set x [getptr x]
 # set y [getptr y]
 # puts "xvalue is: $x"

 # if {$x > .14} {

48

 # puts " iam here"

 # after 50 {movebox 0 0 {0 0 0} {x y 0.0 0.0} {.14 0.0 0.0 0.0}}
 # puts " now i ma herjelkjreklj"
 # } elseif {$x < -.14} {
 # puts " i am after -.14"
 # after 50 {movebox 0 0 {0 0 0} {x y 0.0 0.0} {-.14 0.0 0.0 0.0}}
#puts " i am aftere hrlkejrlkejklejrlek"
 # }
 #}

#theirs

 set star(trips) 0

 # takes 1 second

 center_arm

 # after 2 seconds

 lappend star(afters) [after 2000 star_proc $sec]

}

proc star_proc {{sec 5}} {
 # x y
 global star ob

 if {!$ob(running)} {
 return
 }
 incr star(trips)
 # puts "round trips: $star(trips)"
 set star(sec) $sec
 # after msec
 set star(atime) [expr {int($sec * 1000)}]
 set star(atime2) [expr {int(2 * $sec * 1000)}]
 # samples Hz

 set star(dir) [lindex $star(dirs) $star(i)]

 # stime is secs * sample time in Hz
 # set star(stime) [expr {int($sec * .6 * 200)}]
 set star(stime) [expr {int($sec * .9 * 200)}]
 # movebox 0 0 {0 $star(stime) 1} $star(c) $star($star(dir))
 # after $star(atime) [list movebox 0 0 {0 $star(stime) 1} $star($star(dir)) $star(c)]
 # after $star(atime2) star_proc

 movebox 0 0 {0 $star(stime) 1} $star(c) $star($star(dir))
 # puts "<after $star(atime) <movebox 0 0 <0 $star(stime) 1> $star($star(dir))
$star(c)>"

 set star(afters) [after $star(atime) {movebox 0 0 {0 $star(stime) 1}
$star($star(dir)) $star(c)}]

 lappend star(afters) [after $star(atime2) star_proc $star(sec)]

 set star(i) [expr {($star(i) + 1) % 2}]
}

proc star_stop {} {
 global star ob

 if {![info exists star(afters)]} {
 return
 }
 foreach i $star(afters) {
 after cancel $i

49

 }
}

calculate Euclidean distance. (Why not Pythagorean?)
proc edist {x1 y1 x2 y2} {
 expr {hypot($x1 - $x2, $y1 - $y2)}
}

send arm from current position to center, at constant speed
proc center_arm {{cx 0.0} {cy 0.0}} {
 set x [getptr x]
 set y [getptr y]

 set dist [edist $x $y $cx $cy]
 set ticks [expr {int($dist * 40.)}]
 movebox 0 0 {0 $ticks 1} {$x $y 0.0 0.0} {$cx $cy 0.0 0.0}
}

send arm from current position to center, taking two seconds.
proc center_arm_2s {{cx 0.0} {cy 0.0}} {
 set x [getptr x]
 set y [getptr y]

 set ticks [expr {2 * [rshm Hz]}]
 set dist [edist $x $y $cx $cy]
 movebox 0 0 {0 $ticks 1} {$x $y 0.0 0.0} {$cx $cy 0.0 0.0}
}

set ob(kd) .05

proc kick {{dir down}} {
 global ob
 set x [getptr x]
 set y [getptr y]
 set x2 $x
 set y2 $y

 switch $dir {

 west -
 left {
 set x2 [expr {$x - $ob(kd)}]
 }

 east -
 right {
 set x2 [expr {$x + $ob(kd)}]
 }

 south -
 down {
 set y2 [expr {$y - $ob(kd)}]
 }

 north -
 up {
 set y2 [expr {$y + $ob(kd)}]
 }

 default { return }

 }

 movebox 0 0 {0 10 1} {$x $y 0.0 0.0} {$x2 $y2 0.0 0.0}
 after 50 {movebox 0 0 {0 0 0} {0.0 0.0 0.0} {0.0 0.0 0.0 0.0}}
}

bias the ft, just one iteration, but the ft jitters anyway.
proc ft_bias {} {
 for {set i 0} {$i < 6} {incr i} {
 wshm ft_bias [rshm ft_raw $i] $i

50

 }
}

shortcuts for start/stop

proc start_rtl {} {
 start_lkm
 start_shm
 start_loop
 after 100
}

proc stop_rtl {} {
 stop_loop
 stop_shm
 stop_lkm
}

if there is no arm and you want to use the mouse as a pointer

proc no_arm {} {
 global ob
 # pixel offset between 0 and center, same here for x/y
 # this is a kludge, but close enough.

 set ob(ptroffset) 0

 # make all these do nothing
 proc start_lkm {} {}
 proc start_shm {} {}
 proc start_loop {} {}
 proc stop_lkm {} {}
 proc stop_shm {} {}
 proc stop_loop {} {}
 proc rshm {where {i 0}} {}
 proc wshm {where what {i 0}} {}

 proc start_log {logfile {num 3} {uheaderfile none}} {
 # make sure the dir is there
 file mkdir [file dirname $logfile]

 # write log header
 logheader $logfile $num
 }

 proc stop_log {} {}

 # make getptr read the mouse, and hack it into a screen positon.

 proc getptr {p} {
 global ob
 set w $ob(bigcan)
 set val [expr {[winfo pointer$p $w] - [winfo root$p $w]}]
 # flip y
 if {$p == "x"} {
 set val [expr {$val - $ob(half,x)}]
 } else {
 set val [expr {$val - $ob(half,y)}]
 set val [expr {-$val}]
 }
 # scale world to screen
 expr {$val / $ob(scale)}
 }

}

write a log file header.
pad with commented dots to 4096 bytes of ascii stuff
(or truncate)
make sure this is ascii, multi-byte chars will be messy here.

51

proc logheader {filename ncols {headerfile ""}} {
 global ob
 # puts "exec $ob(crobhome)/loghead $ncols $filename"
 exec $ob(crobhome)/loghead $filename $ncols
}

exec with event loop, for tk.
for long running progs, like go/stop
http://mini.net/tcl/3039

not using it right now, because it doesn't seem to handle
error return from exec'd program correctly

proc tk_exec_fileevent {id} {
 global tkex

 if {[eof $tkex(pipe,$id)]} {
 fileevent $tkex(pipe,$id) readable ""
 set tkex(cond,$id) 1
 return
 }

 append tkex(data,$id) [read $tkex(pipe,$id) 1024]
}

proc tk_exec {args} {
 global tkex
 global tcl_platform
 global env

 if {![info exists tkex(id)]} {
 set tkex(id) 0
 } {
 incr tkex(id)
 }

 set id $tkex(id)

 set keepnewline 0

 for {set i 0} {$i < [llength $args]} {incr i} {
 set arg [lindex $args $i]
 switch -glob -- $arg {
 -keepnewline {
 set keepnewline 1
 }
 -- {
 incr i
 break
 }
 -* {
 error "unknown option: $arg"
 }
 ?* {
 # the glob should be on *, but the wiki reformats
 # that as a bullet
 break
 }
 }
 }

 if {$i > 0} {
 set args [lrange $args $i end]
 }

 if {$tcl_platform(platform) == "windows" && [info exists env(COMSPEC)]} {
 set args [linsert $args 0 $env(COMSPEC) "/c"]
 }

 set pipe [open "|$args" r]

52

 set tkex(pipe,$id) $pipe
 set tkex(data,$id) ""
 set tkex(cond,$id) 0

 fconfigure $pipe -blocking 0
 fileevent $pipe readable "tk_exec_fileevent $id"

 vwait tkex(cond,$id)

 if {$keepnewline} {
 set data $tkex(data,$id)
 } {
 set data [string trimright $tkex(data,$id) \n]
 }

 unset tkex(pipe,$id)
 unset tkex(data,$id)
 unset tkex(cond,$id)

 if {[catch {close $pipe} err]} {
 error "pipe error: $err"
 }

 return $data
}

grasp sensor

the quiet value of the sensor changes when it warms up.
this squeeze code asks for an initial grasp voltage, which may vary.

proc start_grasp {{w .}} {
 global ob

 set ob(grasp_running) "true"
 set ob(grasp_state) "released"
 set gv [rshm adcvolts 8]

 # puts "calibrating grasp voltage $gv"

 # up is release, down is squeeze, akin to a mouse click.
 # up must be less than down, of course.
 set ob(grasp_up_thresh) [expr $gv + .2]
 set ob(grasp_down_thresh) [expr $gv + .3]
}

proc stop_grasp {} {
 global ob

 set ob(grasp_running) "false"
}

game calls this proc from its main loop
it generates
<<GraspSqueeze>> when squeezed
<<GraspRelease>> when released
<<GraspMotion>> every sample in between

proc grasp_iter {{w .}} {
 global ob

 set ob(grasp_volts) [rshm adcvolts 8]
 if {$ob(grasp_state) == "released"} {
 if {$ob(grasp_volts) > $ob(grasp_down_thresh)} {
 set ob(grasp_state) "squeezed"
 event generate $w <<GraspSqueeze>> -x $ob(screen,x) -y $ob(screen,y)
 }
 } else {
 if {$ob(grasp_state) == "squeezed"} {
 event generate $w <<GraspMotion>> -x $ob(screen,x) -y $ob(screen,y)

53

 if {$ob(grasp_volts) < $ob(grasp_up_thresh)} {
 set ob(grasp_state) "released"
 event generate $w <<GraspRelease>>
 }
 }
 }
}

Vex source code

tcl i/o with shm (user mode shared memory buffer) program
sourced by other tcl scripts

InMotion2 robot system software for RTLinux

Copyright 2003-2004 Interactive Motion Technologies, Inc.
Cambridge, MA, USA
http://www.interactive-motion.com
All rights reserved

if {[info exists env(CROB_HOME)]} {
 set ob(crobhome) $env(CROB_HOME)
} else {
 set ob(crobhome) /home/imt/crob
}

proc every {ms body {id ::after_id}} {
 eval $body
 set $id [after $ms [info level 0]]
}

proc procname {} {return [lindex [info level -1] 0]}

proc cancel_afters {} {
 foreach id [after info] {after cancel $id}
 foreach id [after info] {after cancel $id}
}

reap zombie processes after "exec &" commands exit
see: http://mini.net/tcl/1039
proc reap_zombies {} {
 catch {exec ""}
}

flip y coordinate

proc y_up args {
 set ret ""
 if {[llength $args]==1} {set args [lindex $args 0]}
 foreach {x y} $args {lappend ret $x [expr {-$y}]}
 return $ret
}

given a center position and radius, like 100 100 10,
centxy returns x1 y1 x2 y2, like 90 90 110 110.

proc centxy {x y rad} {
 set x1 [expr {$x - $rad}]
 set y1 [expr {$y - $rad}]
 set x2 [expr {$x + $rad}]
 set y2 [expr {$y + $rad}]
 list $x1 $y1 $x2 $y2
}

proc centertag {w tag} {
 foreach {x1 y1 x2 y2} [$w coords $tag] break
 set x [expr {$x1 + $x2 / 2.}]
 set y [expr {$y1 + $y2 / 2.}]

54

 list $x $y
}

lkm loaded?

proc is_lkm_loaded {} {
 file exists /proc/pwrdaq
}

load lkms

proc start_lkm {} {
 global ob
 if {![file executable $ob(crobhome)/go]} {
 error "start_lkm: could not run go"
 }

 # set status [catch {tk_exec sh $ob(crobhome)/go} result]
 set status [catch {exec sh $ob(crobhome)/go} result]
 if { $status != 0 } {
 stop_lkm
 error "start_lkm: could not start kernel module robot.o\n\
 result string:\n<<\n$result\n>>\n"
 }
}

unload lkms

proc stop_lkm {} {
 global ob
 if {![file executable $ob(crobhome)/stop]} {
 puts "stop_lkm: could not run stop"
 exit 1
 }

 set status [catch {tk_exec sh $ob(crobhome)/stop} result]
 set status [catch {exec sh $ob(crobhome)/stop} result]
 if { $status != 0 } {
 puts "stop_lkm: could not stop kernel module robot.o"
 puts "result string:\n<<\n$result\n>>\n"
 }
}

start shm - the shared memory buffer C program

proc start_shm {} {
 global ob
 if {! [file exists $ob(crobhome)/shm] } {
 puts stderr "start_shm: can't find shared memory program $ob(crobhome)/shm"
 exit 1
 }
 set ob(shm) [open "|$ob(crobhome)/shm" r+]
 fconfigure $ob(shm) -buffering line
 after 100
 set check [rshm last_shm_val]
 if {$check != 12345678} {
 puts "start_shm: bad shm check value."
 puts "make sure all software has been compiled with latest cmdlist.tcl"
 exit 1
 }
}

proc stop_shm {} {
 global ob
 if {![info exists ob(shm)]} {
 return
 }
 set ob(loaded) 0

55

 puts $ob(shm) "q"
 close $ob(shm)
 unset ob(shm)
}

proc start_log {logfile {num 3} {uheaderfile ""}} {
 global ob

 # puts "start_log $logfile $num"
 wshm nlog $num

 # make sure the dir is there
 file mkdir [file dirname $logfile]

 # write log header
 logheader $logfile $num $uheaderfile

 set ob(savedatpid) [exec cat < /dev/rtf1 >> $logfile &]
}

proc stop_log {} {
 global ob

 # puts "stop_log"
 wshm nlog 0
 if [info exists ob(savedatpid)] {
 exec kill $ob(savedatpid)
 unset ob(savedatpid)
 }
}

proc xyplot_log {filename} {
 global ob
 exec [file join $ob(crobhome) xygp] $filename &
}

proc plot_log {filename {plotcmd {}}} {
 global ob
 exec [file join $ob(crobhome) gp] $filename $plotcmd &
}

if the shm process gets killed from outside, the puts here will fail.
this will set shm_puts_exit_in_progress, and cleanup should happen.
don't call stop_shm or stop_loop, since these just do more i/o to the
now broken shm channel.

proc shm_puts str {
 global ob
 if [info exists ob(shm_puts_exit_in_progress)] {
 puts stderr "shm_puts error, exit in progress..."
 }
 if [catch {puts $ob(shm) $str}] {
 set ob(shm_puts_exit_in_progress) 1
 puts stderr "shm_puts error, stopping lkm."
 stop_lkm
 exit 1
 }
}

i is array index in both.

wshm writes systcl vars
like /sbin/sysctl -w where=what

proc wshm {where what {i 0}} {
 global ob
 if {![info exists ob(shm)]} {
 return
 }
 if [info exists ob(shm_puts_exit_in_progress)] {
 return

56

 }
 shm_puts "s $where $i $what"

 gets $ob(shm) istr
 set what [lindex $istr 0]
 if {[string equal $what "?"]} {
 puts stderr $istr
 }
}

rshm reads systcl vars
like /sbin/sysctl where

proc rshm {where {i 0}} {
 global ob
 set what "???"
 if {![info exists ob(shm)]} {
 return "0.0"
 }
 if [info exists ob(shm_puts_exit_in_progress)] {
 return "0.0"
 }
 shm_puts "g $where $i"

 gets $ob(shm) istr
 set what [lindex $istr 0]
 if {[string equal $what "?"]} {
 puts stderr $istr
 return "0.0"
 }
 set what [lindex $istr 3]
 # set what [expr int($what * 1000)]
 return $what
}

proc start_loop {} {
 wshm paused 0
}

proc stop_loop {} {
 wshm paused 1
}

proc mouse_getptr {p} {
 expr {[winfo pointer$p $::tachw]}
}

proc mouse_getvel {p} {
 # delta motion since last tick
 set d($i) [expr {$p($i) - $::lastp($i)}]
 # velocity in pixels/sec
 set v($i) [expr {$d($i) * $::hz}]

 # smooth $v
 set v($i) [iirsmooth $v(i)]
}

robot ptr/vel

proc getptr {p} {
 rshm $p
}

proc soft_getvel {p} {
 rshm soft_${p}vel
}

proc fsoft_getvel {p} {
 rshm fsoft_${p}vel
}

57

proc tach_getvel {p} {
 rshm tach_${p}vel
}

proc getvel {p} {
 rshm ${p}vel
}

proc gettrq {p} {
 rshm ${p}_torque
}

proc getvolts {p} {
 rshm ${p}_volts
}

proc getfrc {p} {
 rshm ${p}_force
}

proc getftfrc {p} {
 rshm ft_${p}dev
}

proc getwftfrc {p} {
 rshm ft_${p}world
}

proc f3k {n} {
 format %.3f [expr {1000.0 * $n}]
}

proc f3 {n} {
 format %.3f $n
}

checkerror should be called from inside a user-mode program event loop,
to make sure that the event loop isn't generating too many errors or
warnings. a few such errors are expected in normal operation, but if
something goes wrong, they should happen on every sample and they will
exceed the max (10, for example) quickly.

proc checkerror {{max 10}} {
 global ob
 set ob(errormax) max
 set nerrors [rshm nerrors]
 if {$nerrors > $ob(errormax)} {
 set i [rshm errorindex]
 set ei $i
 set error0i [rshm errori $i]
 set error0code [rshm errorcode $i]
 incr i -1
 set error1i [rshm errori $i]
 set error1code [rshm errorcode $i]
 incr i -1
 set error2i [rshm errori $i]
 set error2code [rshm errorcode $i]

 set estring "InMotion2 System, Pausing control loop.\n\
nerrors = $nerrors,\n\
last ($ei): iteration = $error0i, code = $error0code.\n\
last-1: iteration = $error1i, code = $error1code.\n\
last-2: iteration = $error2i, code = $error2code.\n\
You may run shm to analyze system state, then run ./stop ."
 stop_loop
 error $estring
 # stop_lkm
 # after 2000
 # exit 1
 }
}

58

movebox to move a box
i f forlist from to
e.g.: movebox 0 0 {0 1000 1} {0.0 0.0 0.005 0.005} {0.15 0.15 0.005 0.005}

proc movebox {slot_id slot_fnid forlist box0 box1} {
puts "movebox $slot_id $slot_fnid $forlist $box0 $box1"

 # the uplevel/subst allows users to put $vars in the lists.
 set forlist [uplevel 1 [list subst -nocommands $forlist]]
 set box0 [uplevel 1 [list subst -nocommands $box0]]
 set box1 [uplevel 1 [list subst -nocommands $box1]]

 foreach {slot_i slot_term slot_incr} $forlist break
 foreach {slot_b0_x slot_b0_y slot_b0_w slot_b0_h} $box0 break
 foreach {slot_b1_x slot_b1_y slot_b1_w slot_b1_h} $box1 break

 foreach i {
 slot_id slot_fnid
 slot_i slot_term slot_incr
 slot_b0_x slot_b0_y slot_b0_w slot_b0_h
 slot_b1_x slot_b1_y slot_b1_w slot_b1_h
 } {wshm $i [set $i]}

 wshm slot_running 1
 wshm slot_go 1
 wshm slot_max 1

}

stop a slot currently in progress

proc stop_movebox {slot_id} {
 wshm slot_max 0
 foreach i {
 slot_id slot_fnid
 slot_i slot_term slot_incr
 slot_b0_x slot_b0_y slot_b0_w slot_b0_h
 slot_b1_x slot_b1_y slot_b1_w slot_b1_h
 slot_running
 } {wshm $i 0}
 wshm slot_go 1
}

proc star_once {} {
 global star

 if {[info exists star(i)]} {
 return
 }

 set star(i) 0

 set star(hw) 0.005
 set star(c) [list 0.0 0.0 $star(hw) $star(hw)]
 #set star(s) [list 0.0 -0.14 $star(hw) $star(hw)]
 #set star(n) [list 0.0 0.14 $star(hw) $star(hw)]
 set star(w) [list -0.14 0.0 $star(hw) $star(hw)]
 set star(e) [list 0.14 0.0 $star(hw) $star(hw)]
 #set star(nw) [list -0.14 0.14 $star(hw) $star(hw)]
 #set star(ne) [list 0.14 0.14 $star(hw) $star(hw)]
 #set star(sw) [list -0.14 -0.14 $star(hw) $star(hw)]
 #set star(se) [list 0.14 -0.14 $star(hw) $star(hw)]
 # set star(dirs) {n ne e se s sw w nw}
 set star(dirs) {e w}
}

star_once

proc start_star {{sec 5}} {
 global star

59

 #while (1) {
 # set x [getptr x]
 # set y [getptr y]
 # puts "xvalue is: $x"

 # if {$x > .14} {
 # puts " iam here"

 # after 50 {movebox 0 0 {0 0 0} {x y 0.0 0.0} {.14 0.0 0.0 0.0}}
 # puts " now i ma herjelkjreklj"
 # } elseif {$x < -.14} {
 # puts " i am after -.14"
 # after 50 {movebox 0 0 {0 0 0} {x y 0.0 0.0} {-.14 0.0 0.0 0.0}}
#puts " i am aftere hrlkejrlkejklejrlek"
 # }
 #}

#theirs

 set star(trips) 0

 # takes 1 second

 center_arm

 # after 2 seconds

 lappend star(afters) [after 2000 star_proc $sec]

}

proc star_proc {{sec 5}} {
 # x y
 global star ob

 if {!$ob(running)} {
 return
 }
 incr star(trips)
 # puts "round trips: $star(trips)"
 set star(sec) $sec
 # after msec
 set star(atime) [expr {int($sec * 1000)}]
 set star(atime2) [expr {int(2 * $sec * 1000)}]
 # samples Hz

 set star(dir) [lindex $star(dirs) $star(i)]

 # stime is secs * sample time in Hz
 # set star(stime) [expr {int($sec * .6 * 200)}]
 set star(stime) [expr {int($sec * .9 * 200)}]
 # movebox 0 0 {0 $star(stime) 1} $star(c) $star($star(dir))
 # after $star(atime) [list movebox 0 0 {0 $star(stime) 1} $star($star(dir)) $star(c)]
 # after $star(atime2) star_proc

 movebox 0 0 {0 $star(stime) 1} $star(c) $star($star(dir))
 # puts "<after $star(atime) <movebox 0 0 <0 $star(stime) 1> $star($star(dir))
$star(c)>"

 set star(afters) [after $star(atime) {movebox 0 0 {0 $star(stime) 1}
$star($star(dir)) $star(c)}]

 lappend star(afters) [after $star(atime2) star_proc $star(sec)]

 set star(i) [expr {($star(i) + 1) % 2}]
}

proc star_stop {} {

60

 global star ob

 if {![info exists star(afters)]} {
 return
 }
 foreach i $star(afters) {
 after cancel $i
 }
}

calculate Euclidean distance. (Why not Pythagorean?)
proc edist {x1 y1 x2 y2} {
 expr {hypot($x1 - $x2, $y1 - $y2)}
}

send arm from current position to center, at constant speed
proc center_arm {{cx 0.0} {cy 0.0}} {
 set x [getptr x]
 set y [getptr y]

 set dist [edist $x $y $cx $cy]
 set ticks [expr {int($dist * 40.)}]
 movebox 0 0 {0 $ticks 1} {$x $y 0.0 0.0} {$cx $cy 0.0 0.0}
}

send arm from current position to center, taking two seconds.
proc center_arm_2s {{cx 0.0} {cy 0.0}} {
 set x [getptr x]
 set y [getptr y]

 set ticks [expr {2 * [rshm Hz]}]
 set dist [edist $x $y $cx $cy]
 movebox 0 0 {0 $ticks 1} {$x $y 0.0 0.0} {$cx $cy 0.0 0.0}
}

set ob(kd) .05

proc kick {{dir down}} {
 global ob
 set x [getptr x]
 set y [getptr y]
 set x2 $x
 set y2 $y

 switch $dir {

 west -
 left {
 set x2 [expr {$x - $ob(kd)}]
 }

 east -
 right {
 set x2 [expr {$x + $ob(kd)}]
 }

 south -
 down {
 set y2 [expr {$y - $ob(kd)}]
 }

 north -
 up {
 set y2 [expr {$y + $ob(kd)}]
 }

 default { return }

 }

 movebox 0 0 {0 10 1} {$x $y 0.0 0.0} {$x2 $y2 0.0 0.0}

61

 after 50 {movebox 0 0 {0 0 0} {0.0 0.0 0.0} {0.0 0.0 0.0 0.0}}
}

bias the ft, just one iteration, but the ft jitters anyway.
proc ft_bias {} {
 for {set i 0} {$i < 6} {incr i} {
 wshm ft_bias [rshm ft_raw $i] $i
 }
}

shortcuts for start/stop

proc start_rtl {} {
 start_lkm
 start_shm
 start_loop
 after 100
}

proc stop_rtl {} {
 stop_loop
 stop_shm
 stop_lkm
}

if there is no arm and you want to use the mouse as a pointer

proc no_arm {} {
 global ob
 # pixel offset between 0 and center, same here for x/y
 # this is a kludge, but close enough.

 set ob(ptroffset) 0

 # make all these do nothing
 proc start_lkm {} {}
 proc start_shm {} {}
 proc start_loop {} {}
 proc stop_lkm {} {}
 proc stop_shm {} {}
 proc stop_loop {} {}
 proc rshm {where {i 0}} {}
 proc wshm {where what {i 0}} {}

 proc start_log {logfile {num 3} {uheaderfile none}} {
 # make sure the dir is there
 file mkdir [file dirname $logfile]

 # write log header
 logheader $logfile $num
 }

 proc stop_log {} {}

 # make getptr read the mouse, and hack it into a screen positon.

 proc getptr {p} {
 global ob
 set w $ob(bigcan)
 set val [expr {[winfo pointer$p $w] - [winfo root$p $w]}]
 # flip y
 if {$p == "x"} {
 set val [expr {$val - $ob(half,x)}]
 } else {
 set val [expr {$val - $ob(half,y)}]
 set val [expr {-$val}]
 }
 # scale world to screen
 expr {$val / $ob(scale)}
 }

62

}

write a log file header.
pad with commented dots to 4096 bytes of ascii stuff
(or truncate)
make sure this is ascii, multi-byte chars will be messy here.

proc logheader {filename ncols {headerfile ""}} {
 global ob
 # puts "exec $ob(crobhome)/loghead $ncols $filename"
 exec $ob(crobhome)/loghead $filename $ncols
}

exec with event loop, for tk.
for long running progs, like go/stop
http://mini.net/tcl/3039

not using it right now, because it doesn't seem to handle
error return from exec'd program correctly

proc tk_exec_fileevent {id} {
 global tkex

 if {[eof $tkex(pipe,$id)]} {
 fileevent $tkex(pipe,$id) readable ""
 set tkex(cond,$id) 1
 return
 }

 append tkex(data,$id) [read $tkex(pipe,$id) 1024]
}

proc tk_exec {args} {
 global tkex
 global tcl_platform
 global env

 if {![info exists tkex(id)]} {
 set tkex(id) 0
 } {
 incr tkex(id)
 }

 set id $tkex(id)

 set keepnewline 0

 for {set i 0} {$i < [llength $args]} {incr i} {
 set arg [lindex $args $i]
 switch -glob -- $arg {
 -keepnewline {
 set keepnewline 1
 }
 -- {
 incr i
 break
 }
 -* {
 error "unknown option: $arg"
 }
 ?* {
 # the glob should be on *, but the wiki reformats
 # that as a bullet
 break
 }
 }
 }

 if {$i > 0} {
 set args [lrange $args $i end]

63

 }

 if {$tcl_platform(platform) == "windows" && [info exists env(COMSPEC)]} {
 set args [linsert $args 0 $env(COMSPEC) "/c"]
 }

 set pipe [open "|$args" r]

 set tkex(pipe,$id) $pipe
 set tkex(data,$id) ""
 set tkex(cond,$id) 0

 fconfigure $pipe -blocking 0
 fileevent $pipe readable "tk_exec_fileevent $id"

 vwait tkex(cond,$id)

 if {$keepnewline} {
 set data $tkex(data,$id)
 } {
 set data [string trimright $tkex(data,$id) \n]
 }

 unset tkex(pipe,$id)
 unset tkex(data,$id)
 unset tkex(cond,$id)

 if {[catch {close $pipe} err]} {
 error "pipe error: $err"
 }

 return $data
}

grasp sensor

the quiet value of the sensor changes when it warms up.
this squeeze code asks for an initial grasp voltage, which may vary.

proc start_grasp {{w .}} {
 global ob

 set ob(grasp_running) "true"
 set ob(grasp_state) "released"
 set gv [rshm adcvolts 8]

 # puts "calibrating grasp voltage $gv"

 # up is release, down is squeeze, akin to a mouse click.
 # up must be less than down, of course.
 set ob(grasp_up_thresh) [expr $gv + .2]
 set ob(grasp_down_thresh) [expr $gv + .3]
}

proc stop_grasp {} {
 global ob

 set ob(grasp_running) "false"
}

game calls this proc from its main loop
it generates
<<GraspSqueeze>> when squeezed
<<GraspRelease>> when released
<<GraspMotion>> every sample in between

proc grasp_iter {{w .}} {
 global ob

 set ob(grasp_volts) [rshm adcvolts 8]
 if {$ob(grasp_state) == "released"} {

64

 if {$ob(grasp_volts) > $ob(grasp_down_thresh)} {
 set ob(grasp_state) "squeezed"
 event generate $w <<GraspSqueeze>> -x $ob(screen,x) -y $ob(screen,y)
 }
 } else {
 if {$ob(grasp_state) == "squeezed"} {
 event generate $w <<GraspMotion>> -x $ob(screen,x) -y $ob(screen,y)
 if {$ob(grasp_volts) < $ob(grasp_up_thresh)} {
 set ob(grasp_state) "released"
 event generate $w <<GraspRelease>>
 }
 }
 }
}

65

References

[1] M.H. Beers and R. Berkow. Chapter 29. Rehabilitation For Specific
Problems. In The Merch Manual of Geriatrics [online]. Available from:
http://www.merck.com/mrkshared/mm_geriatrics/sec3/ch29.jsp

[2] C.G. Burgar and P.S. Lum. Robot-Assisted Upper Limb Neuro-

Rehabilitation [online]. VA Rehab R&D, 2000. Available from:
http://guide.stanford.edu/Projects/2kprojects/stroke05.html

[3] J.H. Carr, R.B. Shepherd, A Motor Relearning Programme For Stroke,
Rockville, Maryland, London: Aspen publication, 1983.

[4] M. Johnstone and C. Livingstone, Restoration of Motor Function in the
Stroke patient, London Melbourne and New York: 1983.

[5] L.E. Kahn, M. Averbuch, W.Z. Rymer and D.J. Reinkensmeyer.
Comparison of Robot-Assisted Reaching to Free Reaching in Promoting
Recovery From Chronic Stroke [online]. Available from:
http://www.eng.uci.edu/~dreinken/publications/us03.pdf

[6] A.P. Olsson, C.R. Carignan and J. Tang. Cooperative control of virtual

objects using haptic teleportation over the internet [online]. Available from:
http://www.icdvrat.reading.ac.uk/2004/papers/S05_N2_Olsson_ICDVRAT
2004.pdf

[7] R. Rabkin. Robot helps strike Patients [online]. Columbia News Service,
April 2002. Available from:
http://www.jrn.columbia.edu/studentwork/cns/2002-04-30/569.asp.

[8] J.G. Smits and E.C smits-Boone, Hand Recovery After Stroke- Exercises
and Results Measurements, Boston Oxford Auckland Johannesburg
Melbourne New Delhi: Butterworth- Heinemann, 2000.

66

[9] Arm exercises after stroke improve function. In Carolinas HealthCare
System [online]. Your Health- Health information, March 2004. Available
from:
http://healthinfo.carolinas.org/HealthNews/Reuters/20040304elin017.htm

[10] Arm Exercises for Stroke Patients. In TSAO foundation For Successful
Ageing [online]. Available from:
http://www.tsaofoundation.org/healthtips/stroke04.html

[11] Recovering Arm and Hand function. Regaining Arm Movement [online].
Available from:http://www.strokesurvivors.ca/Regaining%20arm.htm

[12] Robotic Physical Therapy Improves Movement Long After Stroke. In
ScienceDaily LLC [online]. February, 2002. Available from:
http://www.sciencedaily.com/releases/2002/02/020211080854.htm

[13] Additional documentation can be found at the following location:
\notes\index.html- InMotion2RTLinuxSoftware System Design overview

[14] An Overview of Basic Measurement Theories
http://www.measurementexperts.org/learn/theories/theories.asp

[15] Expert System
http://www.aaai.org/AITopics/html/expert.html

[16] Functional Status Measures
http://www.vard.org/rorc/functional_measures.htm

[17] Medical Export Systems
http://www.computer.privateweb.at/judith/

[18] Post-Stroke Rehabilitation Fact Sheet
http://www.ninds.nih.gov/health_and_medical/pubs/poststrokerehab.htm

[19] Tcl/Tk 8.5 Manual. In Tcl Developer Xchange [online]. Available from:
http://www.tcl.tk/man/tcl8.5/

67

