
Implementation of a BPSK Transceiver

for use with the University of Kansas Agile Radio

by

Ryan Reed

Bachelor of Science, University of Kansas, Lawrence, Kansas, 2004

Submitted to the Department of Electrical Engineering and Computer

Science and the Faculty of the Graduate School of the University of Kansas

in partial fulfillment of the requirements for the degree of Master of Science

in Electrical Engineering

Thesis Committee

Chairperson: Dr. Gary Minden

Dr. David Petr

Dr. Alexander Wyglinski

Date Accepted: May 1, 2006

ii

The Thesis Committee for Ryan Reed certifies

That this is the approved version of the following thesis:

Implementation of a BPSK Transceiver

In a Xilinx FPGA for use with KUAR

Committee:

Chairperson

Date approved: _______________________

iii

A designer knows he has achieved perfection not when there is nothing left
to add, but when there is nothing left to take away.

- Antoine de Saint-Exupéry, Wind, Sand and Stars

iv

Abstract

The purpose of this study was to design a binary phase-shift-keying (BPSK)

transceiver specifically for use in the University of Kansas Agile Radio (KUAR). The

resulting transmitter communicates 1 Mbaud of data over a 5 MHz carrier, sampling at 80

Msps. The receiver compensates for frequency and phase errors presented by Doppler

shift and bit-time errors. Simulations show an error rate performance of 0.002835 at 10

dB of Eb/No. The resulting design could be used with other transceivers by making

slight alterations.

v

Acknowledgements

First, I’d like to thank Dr. Gary Minden, my advisor and mentor during my

graduate career at the University of Kansas. His ingenuity and guidance are so valuable

to everyone who works on the Flexible Wireless Systems for Rapid Network Evolution

project. I’d also like to thank Dr. Joseph Evans, who developed the proposal for this

project and received Grant AN-0230786 from the National Science Foundation.

Dr. Glenn Prescott, who was the first person to ignite my interest in engineering,

inspired me to learn more about digital signal processing and communication systems. It

was my pleasure to have him as an advisor during my undergraduate career.

Dr. David Petr showed me how to take signals and create communications

systems. Because of his teaching, I decided to become a communications engineer. His

creativity and inspiration both in the classroom and out were very encouraging to me.

I owe a very large thank you to Dr. Alex Wyglinski. His personality,

encouragement, and wisdom were inspiring. Our meetings were invaluable to my work.

I’d also like to thank Dr. Erik Perrins, who gave me a good starting point for my research.

My experiences as an undergraduate student at the University of Kansas showed

me the excellence of the program and helped me to appreciate the great opportunities that

this wonderful school provides to all of its students. I would like to thank the National

Science Foundation for funding Dr. Minden and the Flexible Wireless Systems for Rapid

Network Evolution Wireless Project.

Finally, thanks to my co-workers in the lab: Jordan Guffey, Ted Weidling, Rory

Petty, Leon Searl, Dan DePardo, Tim Newman, Brian Cordill, Levi Pierce, Megan

Lenherr, Rakesh Rajbanshi, Qi Chen, Anu Veeragandham, and Wes Mason who were

always helpful with the project. Thanks to my mom for her constant support and love;

vi

thanks to my dad for being a wonderful role model; thanks to my sister for bearing the

burden of older sibling; thanks to Jennifer for her support and assurance; and thanks to

Kodi, the greatest dog in the world.

vii

Table of Contents

Acceptance Page ... ii

Quote .. iii

Abstract .. iv

Aknowledgements .. v

CHAPTER 1 A BPSK TRANSCEIVER... 1

1.1 Introduction .. 1
1.2 Thesis Organization.. 2
1.3 Motivation to Build Software-Defined Radios .. 3

CHAPTER 2 Background.. 7

2.1 Overview of Implementations of Software-Defined Radios.................................... 7
2.2 Similar Work.. 8
2.3 Technologies for Synchronization ... 11
2.4 Technologies for Bit-Time Recovery... 14

CHAPTER 3 KUAR – Experimental Test-Bed.. 19

3.1 Introduction .. 19
3.2 RF Front End.. 19
3.3 Digital Board .. 21
3.4 Control Processor Host .. 22
3.5 Battery board .. 23

CHAPTER 4 SIMULATION OF BPSK TRANSCEIVER... 25

4.1 Introduction .. 25
4.2 Transmitter ... 25
4.3 Receiver.. 29

4.3.1 Receiver Overview and Scope of Problems ... 30
4.3.2 Details of the Matched Filter ... 36
4.3.3 Frequency and phase tracking... 38

viii

CHAPTER 5 HARDWARE IMPLEMENTATION.. 53

5.1 Introduction .. 53
5.2 Boxcar filter implementation ... 56
5.3 Loop filter implementation... 58
5.4 Early-Late Gate Implementation.. 61
5.5 Transmitter ... 63

CHAPTER 6 CONCLUSION.. 64

6.1 Future Work ... 65

CHAPTER 7 REFERENCES .. 66

ix

List of Figures

Figure 1: Simplified block diagram of the 5 GHz RF section [32] 20

Figure 2: Illustration of the CPH attached to the digital board [33] 22

Figure 3: Diagram of boards assembled in the KUAR case [33] 23

Figure 4: Simplified block diagram of a BPSK transmitter created through multiplication

... 26

Figure 5: Simplified block diagram of a BPSK transmitter created through ROM lookup

... 26

Figure 6: Ideal constellation of the BPSK transmitter .. 27

Figure 7: Output waveforms of the transmitter... 28

Figure 8: Simulink model showing the modified schematic of the BPSK transmitter..... 29

Figure 9: Original synchronous receiver as proposed by Costas in 1956 [1] 30

Figure 10: Modified Costas loop implemented in the KUAR [19] 30

Figure 11: Simulink model of the receiver ... 31

Figure 12: A constellation demonstrating the effect of Doppler shift 33

Figure 13: A clock not synchronized with bit samples... 35

Figure 14: Frequency response of an 80-tap boxcar filter .. 37

Figure 15: Block diagram of a traditional PLL loop filter [19] .. 40

Figure 16: Simulink model of the loop filter .. 43

Figure 17: The test schematic for carrier synchronization.. 44

Figure 18: The ideal case for the loop filter.. 45

Figure 19: The loop filter’s response to a constant phase error.. 46

x

Figure 20: The loop filter’s response to a Doppler Shift .. 47

Figure 21: Verification that the loop filter compensates for the designed shift................ 48

Figure 22: Simulink model of the Early-Late Gate bit recovery algorithm...................... 50

Figure 23: An Early-Late Gate Algorithm locking to a signal ... 51

Figure 24: Simulated SNR vs. BER for the BPSK Transceiver after carrier and bit

synchronization. .. 52

Figure 25: Schematic of the receiver, created in Xilinx ISE .. 55

Figure 26: Schematic of the transmitter, created in Xilinx ISE.. 55

Figure 27: Xilinx IP Core used to create a DDS for use as a local oscillator 56

Figure 28: Schematic of the boxcar filter implementation. .. 58

Figure 29: Schematic of the loop filter implemented in single-order cascaded form....... 60

Figure 30: Results of the loop filter .. 61

Figure 31: The result of a synchronized symbol... 62

Figure 32: Sampling faster due to a rising edge ... 62

Figure 33: Sampling slower due to a falling edge .. 63

Figure 34: Simulated waveform of the transmitter from Modelsim................................. 63

Figure 35: Sample simulation of the receiver ... 64

xi

List of Tables

Table 1: PLL filter algorithms .. 9

Table 2: Symbol timing algorithms .. 10

Table 3: Survey of SDR hardware systems .. 11

Table 4: Tradeoffs of discussed PLL filters.. 14

Table 5: Symbol timing algorithms .. 18

Table 6: Resource consumption... 65

xii

List of Symbols and Acronyms

ADC – Analog-digital converter KUAR – University of Kansas Agile Radio

ASIC – Application-specific integrated
circuit

Mbaud – Megabaud

AFC – Automatic frequency control MHz - Megahertz

AM – Amplitude modulation MSPS – Mega-samples per second

BER – Bit-error rate NCO – Numerically-controlled oscillator

BPSK – Binary phase shift-keying PC – Personal computer

CPH – Control Processor Host PCMCIA – Personal Computer Memory
Card International Association

CRC – Communications Research Center PLL – Phase-locked loop

DARPA – Defense Advanced Research
Projects Agency

PSK – Phase-shift-keying

DSP – Digital signal processing RAM – Random access memory

FCC – Federal Communications
Commission

RC – Resistor, capacitor, inductor
components

FIR – Finite impulse response RF – Radio frequency

FPGA – Field programmable gate array SCA – Software Communications
Architecture

GHz – Gigahertz SDR – Software-defined radio

GUI – Graphical user-interface SFDR – Spurious-free dynamic range

IF – Intermediate frequency SNR – Signal-to-noise ratio

IIR – Infinite-impulse response SSB – Single side-band

IP – Intellectual property

JTRS – Joint Tactical Radio System

xiii

SSB-AM – Single side-band amplitude
modulation

UNII – Unlicensed National Information
Infrastructure

SSL – Symbol synchronization loop XG – Next Generation

CHAPTER 1 A BPSK TRANSCEIVER

1.1 Introduction

The thesis describes the design of a binary phase-shift-keying (BPSK) transceiver

specifically for use in the University of Kansas Agile Radio (KUAR), a test-bed for

software-defined radio (SDR) development. The design is simulated using Matlab

Simulink and implemented using Xilinx ISE targeted for the Xilinx Field Programmable

Gate Array (FPGA), a reconfigurable processor. The scope of the research is the

following.

This receiver design is based on the single side-band (SSB) receiver proposed by

Costas in 1956 [1]; the majority of the research in this thesis is in the area of

improvements to his original design. An overview of the research in the area of digital

communications and digital signal processing is presented with respect to the Costas loop

and bit-time recovery algorithms.

The thesis shows the requirements to build a BPSK transceiver with the design

constraints as follows:

• The transmitter must communicate 1 MBaud of data over a 5 MHz carrier,

sampling at 80 Msps. The receiver must compensate for two problems:

the frequency and phase errors presented by Doppler shift and bit-time

errors. The thesis will examine approaches to solve for carrier frequency

and phase errors. Furthermore, existing bit-time recovery algorithms will

be explored for use within an SDR. This design will not cover other

problems such as multi-path, fading, channel estimation, or gain control.

2

• Use as few resources as possible, while maintaining performance.

Components are being developed by other KUAR researchers and there

must be enough resources for the implementations to run concurrently.

• Other modulation schemes are yet to be implemented on the KUAR. The

research presented shows how different transceivers might be

implemented by making slight alterations to this design.

The thesis shows the steps that were required to port the design from a

mathematical simulation to a firmware implementation. While most of the porting

process was one-to-one, some algorithms were modified for an improvement in FPGA

resource efficiency.

The thesis provides the reader with an overview of the progress made in the field

of SDR. The implementation of a BPSK transceiver in the KUAR is one step toward

developing a small form factor SDR.

1.2 Thesis Organization

The thesis is organized such that in Chapter 1 there is a description of the thesis

goals and an outline of the political and engineering developments that oversee and

propel the innovations in SDR. In Chapter 2, there is an overview of various

implementations of SDR. Also there is a discussion of the basic components of an SDR

and the technologies for synchronization. It also examines known algorithms for solving

the problems described in the scope of this research. In Chapter 3 there is a review of the

KUAR system as a test bed for research in SDR. It includes a description of the

hardware and a brief overview of the system’s characteristics and specifications.

Chapter 4 contains a summary of the simulation of the selected algorithms used in

the research of this problem. The simulations were completed in Matlab Simulink to

3

predict how the hardware implementation will behave. It concludes with a prediction of

the signal-to-noise ratio versus bit-error rate (SNR vs. BER) plot.

Chapter 5 describes the method of porting the previously simulated algorithms to

the firmware construction tool, Xilinx ISE. Finally, Chapter 6 describes the results in

detail and explains how this research met the scope of requirements. It also describes the

steps to expand on this research for future work.

1.3 Motivation to Build Software-Defined Radios

The current spectrum allocation structure implemented by the Federal

Communications Commission (FCC) allocates the entire spectrum for specific activities,

including un-regulated regions for WiFi, protected regions for mobile phones, as well as

protected regions for municipal services. However, recent findings by the Spectrum

Policy Task Force indicate that the FCC will need to revise its policies in order to meet

the growing demand for spectrum. The task force met with several entities in 2002 to

promote innovations for using the spectrum more efficiently, more effectively, and more

responsibly. [2]

The task force suggested that the following changes need to occur: the majority of

the radio spectrum could be used much more effectively, outdated policies should be

replaced with more efficient dynamic systems, and the given command and control

regulations should be replaced by regulations which encourage flexibility, robustness,

efficiency, and incorporation of better technologies. [2]

Rather than doing away with the current “command and control” regulations, the

task force would rather see sections of it reserved for special circumstances, such as

public works or treaty compliance. The majority of the spectrum would be broken into

two groups: exclusive use and commons. Exclusive spectrum would assign a range of

frequencies in a given geographic area to an entity and would protect these transmissions

4

from interference. The commons spectrum would be an area for any user to transmit a

given set of technology standards and etiquette, but would provide no assurances to the

user. [3]

Under the Defense Advanced Research Projects Agency (DARPA) Next

Generation (XG) program, researchers have found that even within these coveted regions

of spectrum, the power ratio is very small, meaning that most frequencies are unused.

Researchers perform these measurements dynamically, such that a section of spectrum is

sampled over a long period of time to form a large data set. It is easy to see from this

data set that large sections of spectrum are unused for a large period of time. Thus, the

focus of the following research should not only go towards finding narrowband methods

of communications, but also towards time-sharing the spectrum. [4]

One of the goals of the spectrum research project is to document these regions of

unused spectrum with time to form a database. If a Software- Defined Radio (SDR)

system were incorporated with this database, spectral resources could be allocated for

both time and bandwidth.

One of the goals of the XG program is to develop a hardware platform that would

enable the dynamic access of spectrum, allowing users to maintain communication links

by changing radio operating parameters and not interfering with other users, such as the

license holders. [5]

While DARPA is primarily focused on creating the means for the military to

communicate anywhere in the world, the FCC’s Spectrum Policy Task Group is

attempting to implement similar technologies in the United States. In a similar fashion to

DARPA XG, flexible communications systems would allow users to identify unused

portions of spectrum and possibly borrow them from an assigned user. This leads to the

concept of an agile radio, which is a device capable of quickly changing its operating

parameters, such as carrier frequency, bandwidth, or modulation scheme. The device

5

also needs to be capable of selecting a transmission style appropriate for a given channel

characteristic set. [3]

The SDR Forum has outlined its vision of the capabilities of these next generation

radios into four tiers. Most of these radios have not been created yet; however, this is a

good vision of what will likely be developed chronologically. The most basic radio is the

“Tier 0 Hardware Radio”, which is capable of changing system parameters by user

operation with switches, dials, buttons, or physical interaction with the hardware. A

“Tier 1 Software-Controlled Radio” would be capable of changing its characteristics by

user interaction with software. Instead of dials and switches, it would have soft dials and

switches, perhaps in a graphical user-interface (GUI). A “Tier 2 Software- Defined

Radio” has a broad operational radio frequency (RF) bandwidth and performs the

majority of its Intermediate frequency (IF) operations in a processor. It would be capable

of operating over a wide bandwidth using a large variety of modulations and modify a

subset of its software to perform the user’s commands. This would be done without

reloading the entire system and without handling any hardware aside from the RF front

end. The “Tier 3 Ideal Software-Defined Radio” improves on the Tier 2 radio by

implementing more aspects of the RF front end in software, such as gain control or

mixing. The final “Tier 4 Ultimate Software Radio” has a very futuristic set of

capabilities: uses very little power, requires no external antenna, can operate at any

frequency, performs all transactions by a single connector, switches operational

parameters in milliseconds, uses GPS, stores money in the smartcard format, provides

video via satellite or terrestrial broadcasts, and stores several programs. [6]

The goal of these theoretical radios is to work under the guidelines proposed by

the Spectrum Policy Task Force and to borrow unused sections of spectrum. Through

current research, researchers are recording and statistically analyzing spectrum

measurements to provide a potential database of unused spectrum at given times of day.

6

The KUAR is designed to meet the criteria of a Tier 2 software-defined radio and

was created to research wireless communications. It is capable of communicating using

“many modulation schemes, media access protocols, and adaptation mechanisms.” [7]

As an experimental device, future implementations could provide valuable information to

DARPA or the Spectrum Task Force.

7

CHAPTER 2 Background

2.1 Overview of Implementations of Software-Defined Radios

Faster microprocessor speeds have enabled the telecommunications industry to

push radio frequency (RF) hardware further back in the receiver chain and also has

allowed processors to handle more of the reception and detection process. These

advances in microprocessor architecture also drive the advances in alternative processing,

such as Application Specific Integrated Circuit (ASIC) processors, Field Programmable

Gate Array (FPGA) processors, and digital converters so that this RF integration is

possible. The technology in the field of FPGA processors has advanced to enable the

innovation of the SDR. [8]

The integration of RF algorithms in microprocessors allows the functionality of

the microprocessor to be integrated with the RF section. The advantage of using

microprocessors in a software-defined radio (SDR) is that multiple operations can be

performed within a flexible architecture. For example, instead of simply using the

processor to take over some of the intermediate frequency (IF) conversion and detecting a

signal, the processor can change algorithms in order to detect several types of signals

with different modulation schemes and frequency characteristics. Secondly, FPGA and

Digital Signal Processing (DSP) processors have a chance of being forward compatible.

Their firmware can be updated if an unforeseen change occurs in the device’s operating

requirements, so that it is not necessary to replace the whole unit. For example, assume

that all the mobile phone companies agreed to use one common modulation scheme. An

SDR would be capable of downloading the new algorithms and would still be able to

operate in those bands. Hardware would likely not have to be replaced in an SDR. [9]

Until now, most development in SDR has been in base station improvements.

[52] This is primarily due to the immense power necessary to operate an SDR. Several

processors, amplifiers, and converters are necessary to create an SDR. Some of the

8

hardware innovations are the following. The University of California at Berkeley has

developed a system called the Berkeley Emulation Engine (BEE), which uses 20 FPGA

processors and is capable of DSP algorithms. It fits in a box about the size of a single-

drawer filing cabinet. [10] Vanu, Inc. has developed a fully operational base station for

Cingular Wireless. Furthermore, they have integrated an SDR with very few applications

into a Personal Data Assistant (PDA). [11, 12, 13] Portland State University has recently

developed a software defined radio, which is about the size of a laptop computer, based

on GNU Radio. Their modulation sets include GPS, 802.11, and FM. [14] Spectrum

Signal Processing has also developed a software-defined radio platform. Offering a

variety of systems, the smallest is about the size of a desktop computer and the largest is

about the size of a mini-refrigerator. Designed for base-station operations, they house

several processors, digital converters, and FPGA processors giving the user a very broad

operating bandwidth. [15] Finally, ISR Technologies has developed a unit about the size

of a desktop computer for Joint Tactical Radio System (JTRS) communications. Using

Xilinx Virtex-4 FPGA processors, it complies with the Communications Research Center

(CRC) Software Communications Architecture (SCA) and Radio Manager Platform. It is

primarily a tool for engineers to develop JTRS-oriented firmware. [16]

2.2 Similar Work

This thesis will examine several analog and digital algorithms for detecting BPSK

signals, locking on to the carrier and phase, and synchronizing the symbol. Many of

these previously analog designs have been translated to the digital domain. [17, 18]

These digital designs vary on their intended implementations: some are for digital

circuits, some are for ASIC, and some are for FPGA. These are outlined in the Tables 1

and 2.

The Costas loop takes RF input from a complex source and analyzes the real and

imaginary parts separately. In the traditional design, a PLL analyzes the data from to two

parts to make a decision about how to adjust the phase and frequency. This decision

9

affects both arms in an attempt to synchronize to the carrier. In the case of the KUAR,

the selected algorithm will compensate for frequency and phase errors.

Table 1: PLL filter algorithms

Reference Basic Method Intended Implementation

Berner [23] Second-order integrator Digital system

Cahn [22] Automatic Frequency Control RC components

Mirabbasi [21] Third-order Bessel IIR filter RC components

Rice [19] Traditional second-order IIR filter Digital system

Statman [20] Two second-order IIR filters Digital and RC components

Just as the carrier needs to be synchronized, the data also needs to be

synchronized to ensure the maximum probability of estimation. This will be handled by

a symbol timing algorithm.

10

Table 2: Symbol timing algorithms

Reference Basic Method Intended
Implementation

Gardner [27] Interpolation and timing circuit Digital system

Georghiades [25] Early-late gate method Digital system

Gervargiz [17] Several integrate and dump filters Digital system

Hang [29] Two Gardner algorithms Digital system

Holmes [18] Filter, square, and filter RC components

Hwang [30] Interpolator and recursive Costas loop Digital system

Judd [26] Modified early-late gate algorithm Digital system

Liu [28] Interpolation and rate conversion Digital system

Pomalaza-Ráez [24] Tree-search algorithm Digital system

With the recent emergence of the SDR as a viable communications tool, there

have also been several implementations of SDR hardware besides KUAR. The thesis

will examine some of these devices for comparison. These radios are discussed in greater

detail in Section 2.1, but a summary is shown in Table 3.

11

Table 3: Survey of SDR hardware systems

Device Key feature Approximate size

JTRS SDR Kit [16] JTRS Testbed Desktop computer

KUAR [7] Extremely mobile Alarm clock

PSU SDR [14] Rocket telemetry system Laptop PC

SDR-3000 [15] Compact-PCI, SCA compliant One-drawer filing cabinet

UC-BEE [10] Several FPGA processors One-drawer filing cabinet

USRP [54] Open source project Laptop PC

Vanu Basestation [11] Currently being used by Cingular Unknown

Vanu iPaq [12, 13] Handheld PDA

2.3 Technologies for Synchronization

Synchronization occurs when the timing of the transmitter is known to the

receiver. This is an important step in communications as unsynchronized transmissions

can have detrimental affects on the estimation process, which will be shown in Section

4.3.1.1. In the scope of this research, two synchronization algorithms need to be

implemented. One will recover the carrier from frequency and phase errors; the other

will recover the symbol from the transmission and is discussed later, in Section 2.4.

This design is based on the Costas loop, first implemented in 1956 to “take full

advantage of AM communications.” [1] There was a movement in the military to move

from AM to SSB-AM due to the capability of SSB-AM to nearly double the number of

channels in a given bandwidth.

12

Although his design was primarily for synchronous AM systems, the same design

has been proven effective for demodulating binary phase shift-keying (BPSK) signals, as

BPSK is essentially synchronous AM with only two amplitudes. Costas went on to show

that it would be very difficult to force his receiver to see a null, a lack of signal power

caused by a phase misalignment between the receiver and transmitter. Phase lock is

achieved through a loop filter, which drives the local oscillator to the correct frequency

and phase. Costas showed that this receiver design was significantly more robust than a

SSB system in the scope of difficulty to jam, signal-to-noise ratio (SNR) required to

accurately detect a message, and receiver complexity.

Rice proposed a digital version of the Costas Loop using a traditional second-

order PLL and two frequency synthesizers. The algorithm requires two synthesizers due

to the necessity to synchronize the carrier. The first modulates the carrier to baseband.

The second is constantly being updated by the result of the loop filter. With the write

enable always active, the second synthesizer can only perform fine tuning as the

frequency value will never increment. Using write enable always sets the frequency

starting point to zero. This makes it appropriate for designs with small frequency offsets.

[19]

While the overall structure of the Costas loop is fairly simple, the loop filter has

been the center of debate ever since the design’s publication. Several engineers have

proposed methods of improving various aspects of the filter’s performance. Statman and

Hurd propose using two oscillators and two filters. In this way, one filter acts as an

estimator. In their experiment, a least-squares estimator was used. This is coupled with a

predictor, which is used to remove the time delay associated with these digital filters.

They suggest that their approach for solving for the loop filter is better than the trial-and-

error approach. However, the design is more appropriate for an ASIC than an FPGA as it

assumes certain components are built in hardware and others in software. Implementing

this design in an FPGA is equivalent to building two third-order infinite-impulse response

(IIR) filters. [20]

13

Mirabbasi and Martin propose a method of designing third-order or higher IIR

filters that have similar bandwidths to the lower order filters. This is accomplished by

using Bessel filter coefficients, which makes the design expandable to higher-order

filters. [21]

Cahn proposes a method of increasing the error detection and correction by using

two separate filters and calls the system automatic frequency control (AFC). This new

system expands the bandwidth of the Costas error detection by tracking the frequency

even if it leaves the operating bandwidth of the Costas filter. Cahn adjusts his filter to

compensate for false lock on a sideband. [22]

The most promising alternative to the traditional loop filter proposes

implementing a second-order IIR filter in the parallel form and provides the flexibility of

being reconfigurable. The PLL filter proposed by Berner, Layland, and Kinman is

targeted for spacecraft. [23] Another implication of being spacecraft based is the high

mobility, but the Doppler shift in this system is potentially much higher than the scope of

the KUAR system. Both perfect and imperfect integrators are examined and the

performance is compared under the presence of Gaussian noise. Their findings show that

a perfect integrator will offer better tracking while an imperfect integrator will drift away

from the best-lock frequency less. This implementation looks promising as it uses one

less coefficient (multiplier) than the traditional implementation. However, they do not

compare a traditional IIR loop filter to any of their proposed filters.

A summary of the designs researched is provided in Table 4.

14

Table 4: Tradeoffs of discussed PLL filters

Reference Advantages Disadvantages

Berner [23] Small Very wide bandwidth

Cahn [22] Good pull-in range Third-order, large bandwidth

Mirabbasi [21] Easy design Third-order

Rice [19] Easy design, small Mediocre performance

Statman [20] Very good performance Large, uses external components

The smallest designs researched are the Rice and Berner proposals as they are

both of the second-order. However, the Rice algorithm has a much smaller bandwidth,

thus it will pull in less noise and be less susceptible to errors. The Berner algorithm was

designed for spacecraft, where speeds will have a much larger effect on the Doppler shift.

If there is a desire to place the KUAR on a spacecraft, the Berner design should be

reconsidered.

2.4 Technologies for Bit-Time Recovery

Bit-time recovery algorithms analyze streams of data in order to estimate the

transmitted message. Two algorithms on which this research focuses are the Gardner

algorithm and the early-late algorithm. The data-transmission tracking loop was not

considered as it has no benefits over the early-late algorithm. [24] A few less common

algorithms were also examined, such as the tree search algorithm and the filter and square

bit synchronizer. [24, 18] It is with one of these algorithms that the data will be

synchronized to provide the best estimate of the transmitted message.

The Early-Late Gate algorithm determines if the algorithm has sampled the bit

stream too early, on time, or too late. The algorithm uses three chronologically

15

sequential samples to form the limit approaching the center point from both sides. If the

two limits differ, the algorithm assumes it has sampled in the correct position. However,

if the two limits are the same (both increasing or both decreasing), then the algorithm

uses the center point to gate one sample faster or slower. [25]

One proposal to improve this method of bit synchronization has been made by

Judd. In this method, the first half of a bit period is integrated on one arm and the second

half of a bit period is integrated on a second arm. By comparing the energy in the two

arms, the algorithm can determine if the sampling needs to occur faster or slower.

Furthermore, the integration of the late gate becomes the bit estimate. [26]

The Gardner method is another means of estimating the transmitted bit. The

result of an integration of the sampled bits becomes the input to an interpolator. The

filtered output of this interpolator becomes the bit estimate. The output of the filter is

analyzed by a timing circuit. This is done to determine how to better estimate the value

of the bit. The result of this calculation becomes the control for the interpolator. [27]

This method has been the topic of several papers since Gardner first proposed it in

1993. Some investigators analyze interpolation methods to determine which method is

the best to use. [28] Others propose filtering methods for better estimating the symbol.

[29] Although this method and proposed changes to it have the advantage of resolving

errors very quickly, the timing circuit is very complicated and difficult to build.

Liu and Willson propose a method of reducing digital resources using the Gardner

method by altering the standard interpolator structure, a “Farrow” cubic interpolator. In

their proposal, the bit samples are up-sampled and linearly interpolated. The up-sampling

is accomplished in two stages. First, the samples are interpolated by two; next, the

samples are interpolated at a variable rate, which is controlled by the feedback loop. This

method saves two multipliers. They claim that performance is increased because errors

are reduced by a factor of five. This method was geared towards implementation in

16

ASIC, where multipliers might be considered more costly than implementation in FPGA.

[28]

Hang and Renfors propose a method of adjusting the gain in the loop filter to

reduce jitter while increasing the time to convergence. This is accomplished by using an

adaptive filter. When the gain is large, convergence is fast but jitter is high. Likewise,

when the gain is small, convergence is slow but jitter is low. Thus, the filter gain starts

high and decreases once the filter senses convergence has occurred. [29]

There can also be differences within the Costas Loop. Hwang and Chu propose

using a Gardner algorithm to recover the symbols before passing them into the Costas

Loop for phase recovery. The bits from the analog-digital converter (ADC) pass through

a matched filter before being interpolated and decimated with a Cubic Farrow

Interpolator. The results then are frequency and phase corrected with a digital Costas

Loop. [30]

As an alternative to both the Gardner and Early-Late Gate algorithms, Gevargiz

proposes using a Symbol Synch Loop (SSL) to synchronize his symbol timing. This loop

uses samples out of a matched filter as well as samples out of a subsequent integrate and

dump filter. The result of this loop triggers the integrate and dump filter to provide the

best estimate for the rest of the system, a Costas Loop and decoder. The loop attempts to

reduce errors produced by the Costas Loop sample frequency, Costas Loop sample phase,

and estimated SSL timing error. This is done through differentiation, integrate and dump,

a loop filter, a numerically-controlled oscillator (NCO), and a windowed integrate and

dump filter. [17]

Another alternative to the Gardner and Early-Late Gate algorithms is proposed by

Pomalaza-Ráez and Mohan. This method applies tree search algorithms, which they

claim will reach steady state faster than the Early-Late Gate algorithm. They also

determine that the (M, L) search algorithm is a better choice than either the Viterbi or

17

Ungerboek algorithms. The algorithm dictates that M samples of the data set are further

broken into L subsets. The L subsets are analyzed and M samples are chosen as the best

candidates; the remaining samples are discarded. This process continues until the

smallest data set has been analyzed. [24]

The final alternative to the Gardner and Early-Late Gate algorithms, called the

Filter and Square Bit Synchronizer, is proposed by Holmes. The goal of this algorithm is

to reduce resources consumed while providing performance comparable to the Early-Late

Gate algorithm and Digital Transition Tracking loop. It consists of a one-pole RC filter,

a mixer, and a PLL and performs only 2 percent worse than the Early-Late Gate

algorithm. He admits that this algorithm could have trouble tracking in multi-rate

systems. [18]

A summary of the advantages and disadvantages of each synchronization

algorithm is shown below in Table 5.

18

Table 5: Symbol timing algorithms

Reference Advantages Disadvantages

Gardner [27] Accurate and fast response Very difficult to design

Georghiades [25] Simple design, few resources Average performance

Gervargiz [17] Very simple to build Uses several resources

Hang [29] More accurate Gardner algorithm Uses several resources

Holmes [18] Very few resources Sub-optimal performance

Hwang [30] More efficient than Gardner algorithm Difficult to design

Judd [26] Easier than early-late algorithm Performance not quantified

Liu [28] More efficient than Gardner algorithm Clock rate unattainable

Pomalaza-Ráez [24] All digital design Sub-optimal performance

The early-late gate algorithm proposed by Georghiades will be implemented in

this design. It was selected due to the ease of construction and manipulation between

different data rates. This will be discussed further in Section 5.2. The algorithm also

uses few resources and provides performance better than the filter and square bit

synchronizer and tree search algorithms. However, the Gardner methods provide better

performance than the early-late gate algorithm at the expense of resources and

complexity.

19

CHAPTER 3 KUAR – Experimental Test-Bed

3.1 Introduction

The University of Kansas Agile Radio (KUAR) consists of five primary units: the

RF section, the digital board, the Control Processor Host (CPH), the battery board, and

two antennas. All of the units are contained in a metal box which measures 7 inches

high, 5 inches deep, and 2 inches wide. The antennas are attached on either side of the

metal box by a boom. The RF front end is responsible for accurately moving a section of

bandwidth from 5.25-5.85 GHz down to baseband and vise versa for modulation. The

primary function of the digital board is to receive and detect signals at baseband from 0 to

30 MHz bandwidth. The CPH unit’s primary function is to control the digital board and

to provide external communication to the user. The battery board’s primary function is to

provide power to the other units while managing the charge of the batteries. Finally, the

antenna radiates transmissions and receives electromagnetic power. [7]

3.2 RF Front End

The current RF board is capable of modulating between baseband and a radiation

frequency range of 5.25-5.85 GHz. Through a two-stage mixing process, complex

modulation and demodulation is performed to translate to the baseband range of 0-30

MHz. A voltage controlled local oscillator, controlled by the CPH, is used to select the

30 MHz out of the radiated frequency range and an automatic gain control mechanism

(AGC) sets the power to the optimal levels.

Physically, there are multiple RF sections that interact with the KUAR. This is

necessary because the baseband bandwidth of the KUAR is only 30 MHz. Thus, in order

for the KUAR to interact with other radios operating at other frequencies, different

modules must be present, such as a 2.4 GHz module for communicating with WiFi or

cordless phones; or a 5 GHz module, shown in Figure 1, for communicating in the

20

Unlicensed National Information Infrastructure (UNII) band of WiFi. However, for

operating with no up-conversion, a shortwave section is being developed. The RF

section is shielded as much as possible from the rest of the radio to prevent interference,

especially from the digital board. A cutaway of the radio is shown in Figure 3.

Figure 1: Simplified block diagram of the 5 GHz RF section [32]

Since the analog digital converters are located on the digital board, the connection

between the digital and RF boards is the analog. Transmitted messages are converted

from the digital domain to the analog domain by a 16-bit digital-analog converter,

operating at 80 MHz. Received signals are filtered with a low-pass filter to 30 MHz

before being converted to the digital domain by two 14-bit analog-digital converter

(ADC) circuits, operating at 80 MSPS. The entire system operates with in-phase and

quadrature-phase components before detection occurs.

21

3.3 Digital Board

The digital board performs a great number of functions, including programming

certain aspects of the RF section, modulating, demodulating, and detecting signals,

storing data in RAM, and performing analog digital conversion. The goal of the digital

board is to perform several modulation schemes, which are provided by the CPH, and to

switch very quickly between them.

The Xilinx Virtex-II Pro FPGA is component of the digital board. This

component provides the RF front end with the analog transmitted signal via two analog-

digital converters and digitizes the received signal from the RF front end via one digital-

analog converter, has a bank of 4 MB of RAM for storage, and holds the smaller control

processor board, along with a few other specific functions. All digital signal processing

is handled in the FPGA, including modulating signals, demodulating signals, analyzing

spectra, filtering, and estimating. Most functions are implemented in logic slices, the

primary fabric of FPGA processors; however, some functions are under development for

implementation in the internal Power PCs. This board generates a lot of heat, which must

be monitored and controlled. This is done via an on-board thermometer, which reports to

the CPH, and by heat sinking.

22

Figure 2: Illustration of the CPH attached to the digital board [33]

3.4 Control Processor Host

The CPH is a Power PC which runs Linux. Its limited memory, 32 MB of

SDRAM and 32 MB of flash, is primarily used to store different modulation schemes

with which to load on to the FPGA on the digital board. “The CPH is designed to

perform four basic functions: radio control; signal processing configuration management;

execute adaptive algorithms; and interface with conventional networks.” [7] This board

physically snaps on to the digital board and connects through a 32-bit wide bus, allowing

for several input/output connections. A diagram of these connected boards is shown in

Figure 2. This processor, which is approximately 4 cubic inches in size, was designed to

CPH

Digital Board

23

be a very small stand-alone computer. It has several connections, including Ethernet

(10/100), serial, and a PCMCIA card. It is capable of storing around 20 bit files, which

are used to program the FPGA. Also, it makes several digital connections to the digital

board for communication with the FPGA, RAM, and other components.

3.5 Battery board

The battery board uses two Lithium-Ion battery packs to provide both digital and

analog power to all components in the system. All components on the RF front end

require analog power; the digital board uses a mix of both; and the control processor uses

only digital power. Estimates show a battery lifespan of three hours from fully charged

to empty. The batteries have a capacity of approximately 4.4 A-Hr at 11 Volts.

Figure 3: Diagram of boards assembled in the KUAR case [33]

The drive towards mobility constrains the design of the digital section. Designs

must attempt to conserve power, and any modulation scheme implemented must be able

to handle the Doppler shifts associated with the mobile system. Although estimated to be

minimal these frequency shifts, described in section 4.3.1.3, could have detrimental

effects on more complicated modulation schemes.

Since the batteries have a limited lifetime before exhaustion, the battery board has

been designed with as much charging flexibility as possible. It can be charged from a

24

wall socket or a car battery. The ability to quickly switch between power sources is due

to a bank of capacitors that keeps charge while a switch toggles.

25

CHAPTER 4 SIMULATION OF BPSK TRANSCEIVER

4.1 Introduction

The first step in building the transceiver for the KUAR is to show how it operates

mathematically. The transceiver is modeled in Matlab Simulink and consists of a BPSK

transmitter, an additive white Gaussian noise (AWGN) channel, and a receiver. The

system is designed with Xilinx intellectual property (IP) cores because this is the ultimate

destination for the design. The receiver design is based on a modified Costas loop

proposed by Dr. Michael Rice. [19]

For review, the goal of this research is to design a 1 MBaud BPSK transceiver

with a carrier of 5 MHz and use algorithms to synchronize the carrier and symbol.

4.2 Transmitter

In the analog domain, multiplying the carrier by a positive or negative DC voltage

is the best method of creating a BPSK signal for this design as a square symbol will use

the fewest resources. While this is an option in the digital domain, a better approach for

the KUAR is to change the lookup address of a direct digital synthesizer (DDS). The

DDS is an IP Core provided by Xilinx that uses two registers to determine the address of

a look-up table containing the value of the sine and cosine of the argument. The two

registers used to calculate the address are the phase increment and phase accumulator.

The phase increment is proportional to the desired output frequency and inversely

proportional to the input clock. The phase accumulator is the primary factor in the output

width of the signal. [31] The two methods are illustrated in Figure 4 and Figure 5, where

m(t) is the transmitted binary message.

Since a DDS is already necessary for the waveform output, few extra resources

are required. The message bit serves as the address bit for a ROM containing the phase

26

value, which is loaded into the DDS on every bit change. This method uses an equal

number of slices as multiplier method. A ROM would still be necessary to generate a

negative one for the symbol zero. The phase design also has the advantage of being

easily expandable for M-ary Phase Shift Keying (PSK) designs. Thus, it is possible that

the same load of the FPGA can be used for multiple versions of PSK modulation. Since

expandability is one of the primary goals of the KUAR, this design uses the ROM

method. That is, in order to add more phases, expand the ROM to contain more angles.

Until the other simultaneously running operations are known to this transceiver in the

FPGA, multipliers are considered a more valuable resource than slices.

Figure 4: Simplified block diagram of a BPSK transmitter created through multiplication

Figure 5: Simplified block diagram of a BPSK transmitter created through ROM lookup

The DDS outputs both the sine and cosine waveforms simultaneously. Any

change to the addressing affects both waves. Thus it is the DDS method is expandable to

M-ary PSK by adding more phases to the ROM while using the same DDS. The

BPSK

m(t) = {0,1} DDS
ROM
{0,π}

() ()()tMHzts i φπ += 52sin

BPSK

m(t) = {-1,1}

DDS
() () ()MHztmts i 52sin π=Product

27

redundancy is also an advantage as it is not necessary to build a Hilbert transform, which

would be necessary in M-ary PSK without this feature. If the transmitter and receiver are

out of phase, the signal will still be received. This is due to the rotation feature of the

loop filter. The receiver will attempt to align itself to the transmitter based on the result.

It follows that the final waveform is a BPSK signal, aligned on one of the axes, as shown

in Figure 6, and an example of the output waveforms is shown in Figure 7.

Figure 6: Ideal constellation of the BPSK transmitter

28

Figure 7: Output waveforms of the transmitter

In either implementation, the ideal final output of the transmitter is given in

Equation 1, where m(t) is the message, {-1, 1}, and fc is the carrier frequency. The

Simulink model is shown in Figure 8.

Equation 1: The ideal output of a quadrature BPSK transmitter

() () ()
() () ()tftmtx

tftmtx

cq

ci

π
π

2sin

2cos

⋅=
⋅=

29

1

cos

cos

cosine

1/z

Rate Transition

Product

pi

Gain1

2*pi

Gain

Int_Carrier_Freq

Constant

Clock

1

Bit

Figure 8: Simulink model showing the modified schematic of the BPSK transmitter

4.3 Receiver

Given that the preferred method of receiving phase-shift-keying (PSK) signals is

through a Costas loop, the analog design must be ported to the digital domain. [22] This

process involves converting mixers to multipliers, analog filters to digital filters, and

using DDS modules instead of local oscillators. However, the theory remains the same as

his original design in 1956, which is displayed in Figure 9. [1] The first step is to

demodulate the signal. Next, the signal is filtered and integrated. Then, phase tracking

techniques are used to lock the receiver’s carrier and phase to the transmitted signal.

Simultaneously, the estimated bit pattern is aligned to the system clock. The

modifications are shown in Figure 10 demonstrate the similarities between the original

and modified receiver designs.

30

Figure 9: Original synchronous receiver as proposed by Costas in 1956 [1]

4.3.1 Receiver Overview and Scope of Problems

Figure 10: Modified Costas loop implemented in the KUAR [19]

I

From RF
front-end

I

DDS DDS Loop
Filter

Bit
Synch.

()txi
~

()txq
~

()tyi

Integrate
& Dump

()tyq

Integrate
& Dump

31

In the KUAR BPSK design, the first step modulates the received signal to

baseband. Mathematically, the DC component should therefore be the message, as

shown in Equation 2.

Equation 2: The ideal result of demodulation on a BPSK signal

() () () () () ()
() () () () ()tftmtftxtx

tftmtmtftxtx

cciq

ccii

ππ
ππ

4sin5.02sin~
4cos5.05.02cos~

=⋅=
+=⋅=

However, real-life implementation shows that there are multiple scenarios for

which the receiver must accommodate according to the given requirements. The

Simulink model of the entire receiver is shown in Figure 11.

Uniform Random
Number

sin

Trigonometric
Function1

cos

Trigonometric
Function

Phase sin

Transmitter

DSP

Sine Wave3

DSP

Sine Wave2

Sign

Scope6

Scope5

Scope1

round

Rounding
Function

I_Rx
Q_Rx
cos_adj
sin_adj

I_out

Q_out

Rotate

Rate Transition

Product1

Product

I_In

Q_In
Ph_adj

Loop Fi l ter

Lookup Table

 -125
Z

Integer Delay

 Error Rate
 Calculation

Tx

Rx

Error Rate
Calculation

Samples
Sy mbols

Correction

Early/Late
Bit Recovery

In1 Out1

Dump1

In1 Out1

Dump

num(z)

80

Discrete Fi lter1

num(z)

80

Discrete Fil ter

Add

|u|

Abs

AWGN

AWGN
Channel

Figure 11: Simulink model of the receiver

32

4.3.1.1 Transmitter – Receiver phase offset

First, if the receiver’s and transmitter’s clocks are misaligned, this phase shift

could affect reception on either arm of the receiver. This scenario is described

mathematically in Equation 3.

Equation 3: The result of demodulation on a BPSK signal with a phase misalignment

() () () () () () ()[]
() ()() ()()[]

() () () () ()tftmtftmtm

tftftm

tftftftmtftxtx

cc

cc

ccccii

πφπφφ
πφπφ

πφπφππφ

4sinsin5.04coscos5.0cos5.0

4sin5.0sin4cos5.05.0cos

2sinsin2coscos2cos2cos~

−+=
−+=

−=⋅+=

and similarly,

() () () () () () () ()tftmtftmtmtftxtx ccciq πφπφφπφ 4sincos5.04cossin5.0cos5.02sin~ ++=⋅+=

Therefore, if φ is π, the power at baseband will be reduced.

4.3.1.2 Analog filter not present

Secondly, this design assumes there is an analog filter immediately before the

ADC. If the filter is not in place, conversion will cause signals at 75 MHz, 85 MHz, 155

MHz, 165 MHz, etc. to also translate to baseband. Sampling at 80 MSPS causes aliasing

at every 80 MHz interval. This analog filter will eliminate signals with frequencies

above 30 MHz and thus prevent signals from being translated to 5 MHz and then,

consequently to baseband.

4.3.1.3 Doppler shift due to mobility

Third, this system assumes at least one user is mobile. According to the Doppler-

Shift Principle, this will result in a frequency offset according to the formula given in

Equation 4, where f0 is the transmitter’s carrier frequency, v is the wave speed, and vs,r is

the transmitter’s relative velocity. It can be shown that the frequency will increase if the

33

receiver and transmitter are moving towards each other, and likewise the frequency will

decrease if the receiver and transmitter are moving away from each other. This will

result in a continuously varying rotation of the constellation, as shown in Figure 12.

Equation 4: The resulting frequency due to Doppler shift, assuming a moving transmitter relative to
a stationary receiver [34]

+=
rsvv

v
ff

,
0

Figure 12: A constellation demonstrating the effect of Doppler shift

34

If both users are moving away from each other at a rate of 300 m/s, roughly Mach

1, according to Equation 4, the corresponding Doppler shift will be 10 Hz. Thus, the

filter will synchronize for frequency errors in a range of -10 to 10 Hz.

4.3.1.4 Unsynchronized bits

The receiver needs to detect the transition between bits in order to tell the

processor when a new bit has been detected. If the receiver has some time offset, T,

compared to the transmitter, the final integrator will integrate over a portion of two bit

periods, if one bit period is called τ. This will detract from performance since noise, n(t),

also in the system, increases the likelihood of an error in the estimation, ()tm̂ , of the

transmitted message. This is described in Equation 5.

Equation 5: The bit estimation algorithm

() () ()∑ ++=
τ

0

ˆ tnTtmtm

Thus, an algorithm is necessary to reduce T to 0 and the integration will reduce

the affects of the noise.

All of these problems will be handled later by blocks in the detector chain. The

problems for the analog filter need to be handled externally to the FPGA.

After demodulation to baseband, both the in-phase and quadrature signals pass

through a matched filter, as seen in Figure 10, labeled “integrate & dump.” This matched

filter suppresses signals outside of the message bandwidth. This stage is easier since the

message baud rate is known, as τ can be “hardwired” into the algorithm. The ideal result

is a square-wave version of the message signal, as calculated in Equation 6, and shown in

Figure 13.

35

Equation 6: The result of integrating the demodulated signal

() () () () () () ()
()∑

∑
+

+

+=

++−++=
τ

τ

φ

πφπφφ
t

t

t

t
ccq

Ttm

tntfTtmtftmTtmty

cos5.0

4coscos5.04sinsin5.0cos5.0

Figure 13: A clock not synchronized with bit samples

The next block in the detector attempts to eliminate frequency and phase errors

from the signal, and is labeled loop filter in Figure 10. This tracking is performed in a

second-order infinite-impulse response (IIR) filter. The result is a complex signal, which

is translated into trigonometric form via another DDS. The estimated message is the sign

of the result of the in-phase result of this rotation.

36

Finally, the bit-time recovery algorithm uses data from the integrate and dump

block to synchronize the symbol. The data is sampled internally to the early-late

algorithm and triggers the integrator to dump. The result is an integration of the

transmitted symbol and a clock pulse indicating to the rest of the receiver that a new

symbol has been estimated.

4.3.2 Details of the Matched Filter

As was previously shown in Equations 6, at baseband, the ideal signal is a square

wave envelope of the bit. After sampling the 1 MBaud now square-wave at 80 MSPS, it

becomes a sequence of eighty ones or negative ones and represented in Equation 7.

Thus, the goal of the matched filter is to attempt to create a symbol identical to the

transmitted one and compare to the symbol. The matched filter is an integration of the

previous eighty samples. This integration is performed with a boxcar finite-impulse

response (FIR) filter. Mathematically, a boxcar FIR filter follows the format of Equation

8, and has a frequency response shown in Figure 14.

Equation 7: The ideal sampled, demodulated received signal

() ()79321 ...1 −−−− +++++±= zzzzzS

Equation 8: Impulse response of the matched boxcar filter

() 79321 ...1 −−−− +++++= zzzzzH

37

Boxcar Response

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency

M
ag

n
it

u
d

e
S

q
u

ar
ed

Figure 14: Frequency response of an 80-tap boxcar filter

According to Shanmugan, based on the performance, ease of construction, and

on-the-fly adaptability, the boxcar FIR filter is the best choice for a matched filter. In

fact, he suggests that any filter placed in this position must match the symbol in order to

yield the maximum probability of estimating the bit correctly. [35] Since the boxcar

filter follows this rule, it is the best choice for a matched filter. The ease of construction

will be discussed in the following section; it will be shown that this filter can be adapted

to handle several different lengths easily and can be modified quickly to handle a

different message rate.

This filter is triggered to dump its result after 79, 80, or 81 samples. This is

determined by the result of the early-late gate algorithm. It works in parallel to the

matched filter and corrects for bit-time errors. This will be discussed in greater detail

later.

38

4.3.3 Frequency and phase tracking

4.3.3.1 Complex multiplication

The result of the boxcar FIR filter passes into a complex multiplier. This

multiplication follows the format shown in Equation 9.

Equation 9: Complex multiplication

()() () ()LoopRxLoopRxLoopRxLoopRxLoopLoopRxRxoutout IQQIjQQIIjQIjQIjQI ++−=++=+

The result of this multiplication rotates the input so that the phase and frequency

is steady with the constellation. This operation is necessary as both the loop and the

received lines are complex.

The in-phase result of this multiplication should resemble the transmitted bit

stream. The quad-phase result should be driven to zero by the loop filter.

4.3.3.2 Loop filter

This message signal passes into the loop filter, which determines how to rotate the

signal around the constellation. The loop filter is a second-order IIR filter, designed in

the traditional method. The traditional method provides an adequate response while

using few resources. Although a FIR is easier to design in the DSP world, it does not

have the same latency as that of an IIR filter with a comparable frequency response. For

example, a comparable FIR filter would require a substantially larger number of taps to

achieve the same degree of performance relative to this IIR filter. This excess of latency

drastically affects the ability of the loop. For instance, if one user moves suddenly and

stops, this creates a brief frequency deviation. If a FIR filter is used, this latency will

“update” the rotation significantly later than is necessary. Either this will allow an error

to pass through the system or it will modify a correct estimation to an incorrect value.

39

With only two orders, the IIR filter can update the loop significantly faster than the FIR

filter.

The traditional method is a second-order system because there are no third order

errors. A phase error is compensated with a first-order system; a frequency error is

compensated with a second-order system. This is described mathematically in Equations

10 and 11.

Equation 10: A phase error is corrected with a step response phase correction, which is a first-order
system [19]

()() ()()
() ()
()

s
s

tut

tutAttA

θ
θθ

θωθω

∆=Θ
∆=

∆+=+ 00 coscos

Equation 11: A frequency error is corrected with a ramp response frequency correction, which is a
second-order system [19]

()() () ()()
() () ()
()

2

00 coscos

s
s

ttut

tttAtA

ω
ωθ

ωωωω

∆=Θ
∆=

∆+=∆+

A PLL loop filter, designed in the traditional method, is described below, in

Figure 15.

40

Figure 15: Block diagram of a traditional PLL loop filter [19]

It can be shown that the phase error, Θe(s), for the step and ramp responses is

given by Equation 12. Furthermore, the boundary conditions of F(0) are also given in

Equation 12.

Equation 12: The phase error responses for a step and ramp, used to determine the boundary
conditions [19]

() () ()
()

() () ()
() ∞==

 +
∆=

+
∆=Θ

≠=

 +
∆=

+
∆=Θ

→

→

0if0

lim

00if0

lim

0
0

0
2

0
0

0

F

sFKKs
ssFKKs

s

F

sFKKs

s

sFKKs
s

p
s

p
e

p
s

p
e

ωω

θθ

A Proportional and Integrator filter, as described in Equation 13, fulfills the

boundary conditions, as () ∞=0F .

F(s)Kp

s

K0

()sΘ

()sΘ̂

() () ()ssse Θ−Θ=Θ ˆ

E(s)

-

+

41

Equation 13: The response of a Proportional and Integrator filter [19]

()
s

K
KsF 2

1 +=

Inserting the filter in the system gives the transfer function as follows in Equation

14.

Equation 14: Closed-loop transfer function of the PLL loop filter [19]

() ()
()

()
()

2

01

20

22

2

2010
2

2010

0

0

2

2

2

1

ˆ

K

KKK

KKK

ss

s

KKKsKKKs

KKKsKKK

s

sF
KK

s

sF
KK

s

s
sH

p

pn

nn

nn

pp

pp

p

p

=

=

++
+=++

+=
+

=Θ
Θ=

ζ

ω

ωζω
ωζω

Given the closed-loop transfer function, it can be shown that the equivalent noise

bandwidth of the loop is described by Equation 15.

Equation 15: Equivalent noise bandwidth of the closed-loop transfer function [19]

() ()

 +== ∫∞ ζζωωω
4

1

20

1

0

2

2
n

N djH
H

B

The equivalent noise bandwidth of the filter is used to describe characteristics of

the loop, such as the pull-in range and acquisition time, which are described in Equations

16 and 17.

Equation 16: Pull-in range of the loop filter [19]

NBf 6≈∆

42

Equation 17: Acquisition time of the loop filter [19]

()
NN

LOCK BB

f
T

3.1
4

3

2

+∆≈

Moving to the digital domain allows for the solution to the loop filter, given

design parameters. The solution equations are shown in Equation 18.

Equation 18: Solution equations for the digital loop filter [19]

()

()2

220

10

4

1

4

4

1
4

TBKKK

TBKKK

Np

Np

 +
=

+
=

ζζ

ζζ
ζ

The solution equations determine the filter coefficients given the design

parameters BN, Ts, and ζ. The final design parameter is given in Equation 19, where N is

the number of samples per symbol.

Equation 19: The final design parameter, the critical phase of the loop filter [19]

 +
=

ζζ
θ

4

1
N

TBN
n

Following the design procedure, the loop filter will be designed such that

0003125.0

025.0

20

10

=
=

KKK

KKK

p

p

Finally, the closed-form digital loop filter is solved in Equation 20.

43

Equation 20: The solution of the closed-loop digital filter [19]

() ()
()

()
() ()

21

21

2
10

1
210

2
10

1
210

21

025.00253125.0

1
2

1
121

ˆ

−−
−−

−−

−−

+−
−=

−+

 +−−
−+=Θ

Θ=

zz

zz

zKKKzKKKK

zKKKzKKKK

z

z
zH

pp

pp

This output becomes the phase input to a DDS module. In effect, this translates

the exponential complex number to a trigonometric complex number. The entire loop is

shown in Figure 16.

Figure 16: Simulink model of the loop filter

The first test of the loop filter will be a near optimal case where the transmitter is

in phase with the receiver and there is a 20 dB SNR AWGN channel. The test schematic

is shown in Figure 17. Each of the following figures shows three things: the transmitted

message, the estimated message, and the output of the loop filter, respectively. Due to

sin

Trigonometric
Function1

cos

Trigonometric
Function

Sign

I_Rx
Q_Rx
cos_adj
sin_adj

I_out

Q_out

Rotate

I_In

Q_In
Ph_adj

Loop Filter

44

the nature of BPSK, a unique symbol set will need to be transmitted in order to

differentiate between the phases. Thus, the second line in the results may be inverted

with respect to the transmitted signal.

Uniform Random
Number

sin

Trigonometric
Function1

cos

Trigonometric
Function

Phase sin

Transmitter

DSP

Sine Wave3

DSP

Sine Wave2

Sign

Scope

round

Rounding
Function

I_Rx
Q_Rx
cos_adj
sin_adj

I_out

Q_out

Rotate

Product1

Product

I_In

Q_In
Ph_adj

Loop Filter

-1

Gain

80

Downsample1

80

Downsample

num(z)

80

Discrete Filter1

num(z)

80

Discrete Filter

AWGN

AWGN
Channel

Figure 17: The test schematic for carrier synchronization

45

Figure 18: The ideal case for the loop filter

Figure 18 shows that the filter has compensated for the noise and shows that the

filter comes to steady state in about 10 µs. The next case will show how the filter reacts

to a constant phase misalignment in Figure 19.

46

Figure 19: The loop filter’s response to a constant phase error

Once again, the filter compensates for the error within 10 µs. The next case

shows how the filter will react to a 20 Hz deviation. Figure 20 shows the expected, that

the output of the filter is a sloped line, while Figure 21 shows that the bits are correct and

that the error is compensated within 60 µs.

47

Figure 20: The loop filter’s response to a Doppler Shift

48

Figure 21: Verification that the loop filter compensates for the designed shift

This shows that the filter is capable of synchronizing to the designed frequency

deviations.

4.3.3.3 Bit-time recovery

The bit-time recovery block estimates the location of the symbol clock with

respect to the estimated symbol. It also does a final estimation of the transmitted symbol.

The simplicity of the early-late gate algorithm made it a very good choice compared to

other algorithms. [25] While the other algorithms discussed in the background section

claim to have faster response time or estimation accuracy, these algorithms use more

49

resources. The tradeoff of resources to performance led to the determination that the

early-late gate algorithm is the best choice.

This algorithm uses another eighty-tap boxcar FIR filter to average over an

arbitrary bit interval. The result then splits into three branches: one has no delay, one has

one cycle of delay, and the final has two cycles of delay. In the middle of these three

branches is a latch, which gates based on the result of the next section. The final stage of

the three branches is the math, which determines both when to gate the latch and what the

bit estimate is. The slope of the input is determined by subtracting the top branch from

the lower branch. If the slope is zero, the clock is locked on the bit interval and the gate

will latch every eighty cycles. The center branch is multiplied by the slope to determine

if the slope is positive or negative. Thereby, the algorithm determines if the gate needs to

latch every seventy-nine or eighty-one cycles. The result appears as if the integration

window shifts towards the correct bit interval.

The center branch also serves as the bit estimate. Assuming the clock is locked,

the integration over the previous eighty samples provides the most accurate estimate of

the message. The downside of this algorithm is the lock time. If the transmitter and

receiver are one half bit-cycle off and the transmitted message is alternating on every bit,

it will take forty cycles to attain lock. If the message does not alternate on every bit, it

will take longer to lock. This does not mean that the bit estimate will be incorrect until

lock, but it will have little confidence. Although not coded, this is a possible output if

desired in the future. It would be preferable to have the algorithm output a locked line,

indicating if the algorithm is gating every eighty cycles.

This algorithm may be selected for implementation in software if space becomes

an issue. The advantage of performing this operation in logic is the parallel computation

versus the single thread of a microprocessor. However, since the algorithm runs

primarily at the symbol time, the fast speed of the microprocessor should be able to

handle this algorithm without diverting much from its other tasks. The Simulink model

50

of the Early-Late Gate algorithm is shown in Figure 22, and an example of an output is

shown in Figure 23.

z

1

Unit Delay2

z

1

Unit Delay1

z

1

Unit Delay Sign

Scope6

Early

Current

Late

Early Sample

Current Sample

Late Sample

Sampler

Correction Pulse

Sample T imer

Repeating
Sequence

Product1

Product

u
y

fcn
Embedded
MATLAB Function

num(z)

80

Discrete Fi lter

Figure 22: Simulink model of the Early-Late Gate bit recovery algorithm

51

Figure 23: An Early-Late Gate Algorithm locking to a signal

The results, seen in Figure 24, demonstrate that this receiver is capable of

estimating the message. Although other algorithms may realize a better SNR vs. bit-error

rate (BER) curve, that the novelty of this receiver is the implementation in an FPGA for a

mobile SDR.

With the combination of error-control and error-correction algorithms, the BER

performance should improve. These algorithms are proposed to run concurrently in the

FPGA’s embedded processor.

52

-2 0 2 4 6 8 10 12
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No

B
E

R

SNR vs. BER

Ideal

Simulated

Figure 24: Simulated SNR vs. BER for the BPSK Transceiver after carrier and bit synchronization.

53

CHAPTER 5 HARDWARE IMPLEMENTATION

5.1 Introduction

The previous simulation shows that the transceiver is capable of communicating a

message between the transmitter and receiver mathematically, and in simulation.

However, the transceiver needs to be built into firmware. The design is ported into

Xilinx ISE, a program that Xilinx sells for use with their FPGA processors. It provides

primarily three methods of creating designs to a user: programming in VHDL,

programming in Verilog, and programming through schematic. If the user chooses to

type code in the VHDL or Verilog languages, ISE will interpret this code and virtually

wire the processor to perform the algorithms. However, if the user chooses to draw the

algorithms in schematic format, the user will also have the option of coding in VHDL or

Verilog and produce modules that the schematic will interpret. The final schematic,

similarly, can be loaded in the FPGA processor. The design for KUAR was created in

schematic, and a few modules were designed in VHDL.

Since the simulation was created with as many simple blocks as possible, the port

to Xilinx ISE is nearly one to one. Xilinx provides the ability to create most digital and

math structures through their Intellectual Property Cores (IP Cores). These cores provide

the best optimization of selectable speed or resources, using the look-up table (LUT)-

based hardware in the Virtex-II Pro FPGA. Should a designer decide to not use an IP

Core, it would still be possible to create most algorithms from digital basics (e.g. Flip

Flops, logic gates, hardware multipliers, or block RAM) through a graphical schematic

approach, a programming VHDL approach, or a combination of the two.

Under these constraints, the Simulink design is ported to Xilinx ISE. In the

transition, mixers become multipliers, filters become delays, multipliers, and

accumulators, and delays become shift registers. Only two modules did not port easily in

54

this transition: the boxcar FIR filters and the IIR loop filter. The IP Core did not

efficiently build the boxcar FIR and there is no IP Core for an IIR filter.

Local oscillation is provided through a Direct Digital Synthesizer IP Core. This

module constructs sinusoids by use of LUT hardware. The DDS module’s size is

determined by the frequency accuracy and desired SFDR. The frequency is determined

through the pace at which the index increments through the LUT. Since these sinusoids

are created through LUT hardware, they also create a great deal of harmonic resonance.

This noise is counter-acted in one of two ways: Taylor Series Correction or Phase

Dithering. Taylor Series Correction is accomplished by using otherwise discarded bits in

an attempt to increase spurious-free dynamic range (SFDR). The result pushes the noise

floor very low, but leaves spectral harmonics throughout the working frequency range.

The Phase Dithering actually adds noise to the least significant bits in the phase slope.

The randomness thereby nearly eliminates harmonic components, but increases the noise

floor slightly. [31] Phase dithering was used in all local oscillators in this project as

harmonic interference is considered a bigger problem than noise floor. An example of

the GUI used to construct a DDS is shown in Figure 27.

Another component used in the simulation that does not port one-to-one is the

Boxcar Filter. Instead of using either of the Xilinx-provided FIR creation modules, this

filter was implemented more abstractly. Since the algorithm performs a non-weighted

moving average, only two modules are necessary. The two modules are an 80-tap shift

register and a block to perform the mathematical operations. This is discussed in greater

detail later in Section 5.2.

The final consideration is the switch from floating point in simulation to fixed

point in implementation. The data input to the FPGA comes from two analog-digital

converters running at a sampling frequency of 80 MSPS with a width of 14 bits. Thus,

all modules use at least 16 bits in an attempt to negate this problem. Sign extension and

truncation are used wherever necessary.

55

In most modules, this never becomes a problem. For example, the boxcar filter

sums over eighty samples, which causes high bit growth. However, this bit growth is

fixed and can never grow more than this known quantity of bits. The only block in which

this poses a problem is the IIR filter, where a result is accumulated. The accumulation

register is expanded to 32 bits wide to compensate for the bit growth. Furthermore, the

filter is driving numbers to zero; thus, the issue should not become a problem. The top

level of the receiver schematic is shown below in Figure 25, and the transmitter is in

Figure 26.

Figure 25: Schematic of the receiver, created in Xilinx ISE

Figure 26: Schematic of the transmitter, created in Xilinx ISE

56

Figure 27: Xilinx IP Core used to create a DDS for use as a local oscillator

5.2 Boxcar filter implementation

Several different designs for the boxcar filter module were explored before the

final design was selected. The goal was not only to perform the operations necessary to

the algorithm, but also to minimize the consumption of the FPGA resources. The first

method of designing this filter was to use one of the Xilinx FIR IP Cores. This process

included telling the core GUI how many taps to include, 80 in this case; what bit

resolution to use (16 in this case), the symmetry of the taps (symmetric), whether the bits

are signed or unsigned (signed), and if the coefficients need to be reloaded at any point

(false). Following this procedure, and loading the coefficients (eighty ones) into the core,

the core generates a filter, designed in Direct Form, which performs the desired

57

operation. The problem with this algorithm is the overuse of FPGA resources. Instead of

eliminating the multipliers it used forty multipliers. Due to the coefficient’s symmetry,

multipliers can be reused. Finally, since adders only have two inputs, this design will use

several in hierarchy to produce a result.

The next implementation involved using an adder, a subtractor, and several flip

flops. The input split as one input into the adder and the input into a chain of 79 flip

flops. The adder result was stored into a single flip flop. This flip flop output provided

the second input to the adder; thus, incoming samples are accumulated. Only 79 flip

flops were necessary on the flip flop chain due to the delay through the math chain. This

caused the eightieth sample to reach the subtractor at the same time as the input. The

output of the flip flop chain was subtracted from the math chain flip flop. This reduced

the resource consumption compared to the FIR IP Core. However, now, the algorithm

was incorrect. Since the single flip flop in the math chain is before the subtractor, this

flip flop will overflow if the input is not alternating ones and zeros. Furthermore, shift

registers consume fewer resources than flip flops, allowing for one more size

optimization.

The final and best algorithm replaces the flip flop chain with an 80-length, 16-

deep shift register. Inputs are stored here and pass into the math block after 80 cycles.

The shift register can also be configured for variable length. This is an advantage for

flexibility as the ratio of sampling rate to symbol rate determines the integration period.

Thus, the boxcar filters can be reused for different M-ary PSK designs.

Instead of using IP Cores to build the necessary adders and subtractors, the same

operation can be performed in two lines of VHDL code. First, a signal is instantiated to

zero to serve as the memory register. Secondly, the math is performed and, the result is

assigned to the output. This code serves the same purpose as blocks designed to add and

subtract. The result is the sum of the previous eighty input samples on every clock cycle.

The same design techniques are used on the boxcar filter in the early-late-gate operation.

58

This boxcar filter, however, integrates widths of one bit instead of sixteen. The boxcar

schematic is shown, in Figure 28.

Figure 28: Schematic of the boxcar filter implementation.

5.3 Loop filter implementation

Since the IIR loop filter is of such a low order, only a few stages are necessary.

Two methods of implementing an IIR filter have been considered. The first and most

efficient method is the parallel form. This form takes advantage of the parallel

processing capabilities of the FPGA. In order to design the filter in this method, first, the

coefficients need to be in the transfer function form. An example of converting a second-

order form (the default output form of Matlab) to transfer function form is shown in

Equation 21.

Equation 21: Converting a second-order equation to a transfer function.

() ()() ()()
4321

4321

2
4

1
3

2
6

1
54

2
2

1
1

2
3

1
21

1

11

−−−−

−−−−

−−

−−

−−

−−

−−−−
++++=

−−
++

−−
++=

zzzz

zzzz

zz

zz

zz

zz
zH

DCBA

EDCBA

αααα
βββββ

αα
βββ

αα
βββ

Using partial fraction expansion, the transfer function will ideally break into

several single-order sections. An example of partial fraction expansion is shown in

Equation 22.

59

Equation 22: An example of using partial fraction expansion on a transfer function.

()

1
3

3
1

2

2
1

1

1
1

0

0
0

4321

4321

1111

1

−−−−

−−−−
−−−−

−+−+−+−+=
−−−−

++++=

zp

r

zp

r

zp

r

zp

r
k

zzzz

zzzz
zH

DCBA

EDCBA

αααα
βββββ

This would be the ideal structure for any IIR implemented in an FPGA if the

partial fraction expansion yields single-order sections. It is ideal because the entire

operation could be performed in one cycle. However, with the coefficients used in this

design, the expansion yields a double pole equation, thereby nullifying the reason for

choosing this structure, as the algorithm would take more than one cycle. The

implementation of the filter in this design would yield one branch with a single-order

section and one with a second-order section. This is shown in Equation 23.

Equation 23: The result of using partial fraction expansion on a system with a double pole.

() ()21
0

1
1

0

0
0

11 −− −+−+=
zp

r

zp

r
kzH

The final structure explored in this research is Biquad Direct Form II Transposed.

In this form, the second-order structure is used to create the filter. This structure has

more latency than the parallel form; however, timing is met since the data rate is equal to

the symbol rate, which is much slower than the clock rate. Therefore, several operations

can be performed before the result must be known. This schematic is shown in Figure

29.

60

Figure 29: Schematic of the loop filter implemented in single-order cascaded form.

The block labeled sign performs the initial operation of multiplying the quad-

phase line by the sign of the in-phase line. The next block, labeled “feedback_add,”

performs the second-order feedback operations. The result is fed into both itself and a

delay block such that the result is ()
2121

1
−− +−=

zz
zH fb . The result of this operation is

passed into the feed-forward loop to perform the operations in the numerator. Therefore,

the result is the desired ()
21

21

21

025.00253125.0
−−

−−

+−
−=

zz

zz
zH .

Results are shown below in Figure 30. The output of the filter algorithm differs

from the predicted output typically by 1 due to rounding error.

61

Loop Filter Results

-300,000

-200,000

-100,000

0

100,000

200,000

300,000

400,000

0 2 4 6 8

Time sample

V
al

ue Predicted

Calculated

Figure 30: Results of the loop filter

5.4 Early-Late Gate Implementation

The early-late gate algorithm takes the un-sampled results of the integration and

determines when the sample of the symbol should occur to maximize estimation results.

If the algorithm detects that the sampling is occurring on an edge (in between samples), it

will sample either earlier or later until the ideal sampling time is determined. If the

derivative of the inputs is flat, the ideal sampling time has been reached. These cases are

shown in the following figures.

62

Figure 31: The result of a synchronized symbol

Figure 32: Sampling faster due to a rising edge

63

Figure 33: Sampling slower due to a falling edge

5.5 Transmitter

The transmitter was implemented exactly as described in the simulation section.

The output waveform is shown below in Figure 34.

Output

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

0 20 40 60 80 100 120

Time

A
m

p
li

tu
d

e

Figure 34: Simulated waveform of the transmitter from Modelsim

64

CHAPTER 6 CONCLUSION

The results shown above validate that the firmware implementation is a precise

realization of the computer simulation. Given that all the components of the firmware

match those of the simulations, the SNR vs. BER curve should also meet those of the

simulation. A sample simulation of the entire receiver is in Figure 35, showing that the

output is the estimate and a pulse dictating that the estimate is complete.

Figure 35: Sample simulation of the receiver

The thesis proposes larger algorithms which should provide better performance.

It also demonstrates means of using this design as the basis of M-PSK transceivers. The

transceiver is capable of communicating 1 Mbaud of data at the provided SNR vs. BER

ratio. Finally, the selected algorithms provide an adequate means of solving for

frequency, phase, and bit-time errors.

Algorithms were chosen such that errors are reduced while maintaining resource

efficiency. The resource consumption by the receiver and transmitter is shown in Table

6.

65

Table 6: Resource consumption

Receiver Transmitter Total

Slices 1481/9280 158/9280 1639/9280

Multipliers 10/88 0/88 10/88

BRAMs 5/88 4/88 9/88

Maximum Freq. 151.469 MHz 250.062 MHz 151.469 MHz

6.1 Future Work

This transceiver is one of the first designed for use with KUAR. It is intended to

be a starting point for future designs in the radio. The thesis provides several points

where the design can be expanded to more complicated transceivers, such as M-PSK. As

it was the original intention of Costas, this design could also be expanded for use as a

SSB-AM transceiver.

This transceiver is intended to be a module of a larger design. Since the phase-

tracking loop could lock on to an inversion of the signal, the system will need to use a

unique symbol for data synchronization. This transceiver also provides a research tool

for channel sounding, equalization, multi-path, fading, and other communications issues.

66

CHAPTER 7 REFERENCES

[1] J. Costas, “Synchronous Communications,” Proceedings of the IEEE, vol. 44, p.
1713-1718, 1956.

[2] Spectrum Policy Task Force, “Spectrum Policy Task Force Report ET Docket No. 02-
135,” U. S. Federal Communications Commission, 2002.

[3] J. Mitola, “Cognitive Radio for Flexible Mobile Multimedia Communications,” in
IEEE International Workshop on Mobile Multimedia Communications, 1999, p.
3-10.

[4] F. Weidling, D. Datla, V. Petty, P. Krishnan, and G. J. Minden, “A Framework for
R.F. Spectrum Measurements and Analysis,” in Proceedings of IEEE Dynamic
Spectrum Access Networks 2005, Baltimore, Maryland, 2005.

[5] DARPA XG Working Group, “XG Policy Language Framework, Request for
Comments,” version 1.0, prepared by BBN Technologies, Cambridge,
Massacusetts, USA, April 2004.

[6] C. Serra, “SDR Forum,” 2006, http://www.sdrforum.org/.

[7] G. J. Minden, “KU Agile Radio Overview,” technical report, University of Kansas,
Lawrence, Kansas, 2005.

[8] C. Dick, “The Platform FPGA: Enabling the Software Radio,” in Proceedings of the
2002 Software Defined Radio Technical Conference and Product Exposition,
2002.

[9] J. Mitola, “Software Radios Survey, Critical Evaluation and Future Decisions,” IEEE
Aerospace and Electronic Systems Magazine, vol. 8 p. 25-36, 1993.

[10] BEE Home Page, Berkeley Wireless Research Center, University of California,
Berkeley, 2006, http://bwrc.eecs.berkeley.edu/Research/BEE/.

[11] J. Steinheider, V. Lum, J. Santos, “Field Trials of an All-Software GSM
Basestation,” Vanu, Inc, 2003.

[12] A. Chiu and J. Forbess, “A Handheld Software Radio Based on the iPAQ PDA:
Software,” in Proceedings of the 2003 Software Defined Radio Technical
Conference, 2003.

[13] J. Forbess and M. Wormley, “A Handheld Software Radio Based on the iPAQ PDA:
Hardware,” in Proceedings of the 2003 Software Defined Radio Technical
Conference, 2003.

67

[14] B. Massey, NWACC/PSU SDR, “WebHome – sdr,” 2006,
http://wiki.cs.pdx.edu/~sdr/.

[15] “SDR-3000 Series Software Defined Radio Transceiver Platform,” Spectrum Signal
Processing, 2005.

[16] “JTRS SDR Kit,” ISR Technologies, 2006.

[17] J. Gevargiz, “Performance Analysis of an all Digital BPSK Demodulator,” in
Proceedings of IEEE Global Telecommunications Conference, vol. 3, p. 1670-
1676, 1993.

[18] J. Holmes, “Tracking Performance of the Filter and Square Bit Synchronizer,” IEEE
Transactions on Communications, vol. 28 (8), p. 1154-1158, 1980.

[19] M. Rice, “Introduction to Digital Communication Theory,” 2004,
http://www.ee.byu.edu/class/ee485public/ee485.fall.04/.

[20] J. Statman and W. Hurd, “An Estimator-Predictor Approach to PLL Loop Filter
Design,” IEEE Transactions on Communications, vol. 38 (10), p. 1667-1669,
1990.

[21] S. Mirabbasi, and K. Martin, “Design of Loop Filter in Phase-Locked Loops,” IEEE
Electronics Letters, vol. 35 (21), p. 1801-1802, 1999.

[22] C. Cahn, “Improving Frequency Acquisition of a Costas Loop,” IEEE Transactions
on Communications, vol. 25 (12), p. 1453-1459, 1977.

[23] J. Berner, J. Layland and P. Kinman, “Flexible Loop Filter Design for Spacecraft
Phase-Locked Receivers,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 37 (3), p. 957-964, 2001.

[24] C. Pomalaza-Ráez and S. Mohan, “Application of Tree Search Algorithms to Bit
Synchronization,” in Proceedings of the 33rd Midwest Symposium on Circuits and
Systems, vol. 2, p. 1026-1029, 1991.

[25] C. Georghiades, “Synchronization,” The Communications Handbook, 2nd ed., Ed. J.
Gibson, Boca Raton: CRC Press, 2002.

[26] D. Judd, “Data Synchronization Simulation Using the Mathworks Communications
Toolbox,” IEEE International Conference on Communications, vol. 2, p. 706-
710, 1996.

68

[27] F. Gardner, “Interpolation in Digital Modems – Part I: Fundamentals,” IEEE
Transactions on Communications, vol. 41 (3), p. 501-507, 1993.

[28] X. Liu and A. Willson, “An New Interpolated Symbol Timing Recovery Method,”
IEEE International Symposium on Circuits and Systems, vol. 2, p. 569-572, 2004.

[29] Z. Hang and M. Renfors, “A New Symbol Synchronizer with Reduced Timing Jitter
for QAM Systems,” in Proceedings of the IEEE Global Telecommunications
Conference, vol. 2, p. 1292-1296, 1995.

[30] J. Hwang and C. Chu, “FPGA Implementation of an All-Digital T/2-Spaced QPSK
Receiver with Farrow Interpolation Timing Synchronizer and Recursive Costas
Loop,” Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System
Integrated Circuits, p. 248-251, 2004.

[31] Xilinx LogiCore, “Direct Digital Synthesizer, v. 5.0,” Xilinx, DS246, Apr. 2005.

[32] D. DePardo, “5 GHz Block Diagram,” technical report, University of Kansas: Agile
Radio Project, Lawrence, Kansas, 2005.

[33] L. Searl, “Radio Digital Board Assembly Bottom,” technical report, University of
Kansas: Agile Radio Project, Lawrence, Kansas, 2005.

[34] Wikipedia, “Doppler Effect,” 2006, http://en.wikipedia.org/wiki/Doppler_effect.

[35] K. Shanmugan and A. Breipohl, Random Signals: Detection, Estimation and Data
Analysis, New York: Wiley, 1988.

[36] C. Bergstrom, S. Chuprun, S. Gifford and G. Maalouli, “Software Defined Radio
(SDR) Special Military Applications,” in Proceedings of the IEEE Military
Communications Conference, vol. 1, p. 383-388, 1988.

[37] S. Blust, “Modular Multifunction Information Transfer System Forum on Sofware
Defined Radio,” 1998, in Proceedings of the 8th Annual International Symposium
on Advanced Radio Technologies,
http://www.its.bldrdoc.gov/isart/art98/slides98/blust /blus_s_all.pdf.

[38] S. Blust, “Software Based Radio,” Software Defined Radio, Ed. W. Tuttlebee, West
Sussex: John Wiley & Sons, Ltd., 2002, pp. 3-22.

[39] S. Blust, “Stephen Blust Presentation to SDR Workshop in Tokyo on 17 October
2001,” 2002, Report on Global Regulatory Views on SDR and Radio Software
Download for RF Reconfiguration (Working Paper), http://sdrforum.org/MTGS
/mtg_27_feb02/02_i_0008_v0_00_dl_reg_01_25_02.pdf.

69

[40] A. Cinquino and Y. Shayan, “A Real-Time Software Implementation of an OFDM
Modem Suitable for Software Defined Radios,” in Proceedings of the 2004 IEEE
Canadian Conference on Electrical and Computer Engineering, vol. 2, p. 697-
701, 2004.

[41] L. Erup, F. Gardner and R. Harris, “Interpolation in Digital Modems – Part II:
Implementation and Performance,” IEEE Transactions on Communications, vol.
41 (6), p. 998-1008, 1993.

[42] A. Haghighat, “A Review on Essentials and Technical Challenges of Software
Defined Radio,” in Proceedings of the IEEE Military Communications
Conference, vol. 1, p. 377-382, 2002.

[43] E. Lee and D. Messerschmitt, “Synchronous Data Flow,” Proceedings of the IEEE,
vol. 75 (9), p. 1235-1245, 1987.

[44] J. MacLeod, T. Nesimoglu, M. Beach and P. Warr, “Enabling Technologies for
Software Defined Radio Transceivers,” in Proceedings of the IEEE Military
Communications Conference, vol. 1, p. 354-358, 2002.

[45] D. Messerschmitt, “Synchronization in Digital System Design,” IEEE Journal on
Selected Areas in Communications, vol. 8 (8), p. 1404-1419, 1990.

[46] J. Mitola, “SDR Architecture Refinement for JTRS,” in Proceedings of the IEEE
Military Communications Conference, vol. 1, p. 214-218, 2000.

[47] Wikipedia, “Moore’s Law,” 2006, http://en.wikipedia.org/wiki/Moore’s_law.

[48] S. Rajagopal, S. Rixner and J. Cavallaro, “A Programmable Baseband Processor
Design for Software Defined Radios,” in Proceedings of the IEEE Midwest
Symposium on Circuits and Systems, vol. 45 (3), p. 413-416, 2002.

[49] A. Shah, “An Introduction to Software Radio,” Cambridge: Vanu, Inc, 2002.

[50] T. Shono and M. Matsui, “Software Defined Radio Prototype (II) – Implementation
and Evaluation of IEEE 802.11 Wireless LAN,” NTT Technical Review, vol. 1
(4), p. 24-30, 2003.

[51] S. Srikanteswara, R. Palat, J. Reed and P. Athanas, “An Overview of Configurable
Computing Machines for Software Radio Handsets,” IEEE Communications
Magazine, vol. 41 (7), p. 134-141, 2003.

[52] J. Steinheider, V. Lum and J. Santos, “Field Trials of an All-Software GSM
Basestation” in Proceedings of the 2003 Software Defined Radio Technical
Conference, Orlando, 2003.

70

[53] A. Veeragandham, OFDM Testbed Analysis and Implementation Framework, M.S.
Thesis, The University of Kansas, Lawrence, Kansas, 2005.

[54] GNURadio, “UniversalSoftwareRadioPeripheral,” technical report, GNU Radio,
<http://comsec.com/wiki?UniversalSoftwareRadioPeripheral>.

