
Extending the Thread Programming Model Across
Hybrid FPGA/CPU Architectures

Dissertation Defense
by

Razali Jidin

Advisor: Dr. David Andrews

Information Technology and Telecommunications Center (ITTC)
University of Kansas

April 15, 2005

Thank you
• Committee members

– Dr. David Andrews
– Dr. Douglas Niehaus
– Dr. Perry Alexander
– Dr. Jerry James

– Dr. Carl E. Locke Jr.
• Research members

– Wesley Peck
– Jason Agron, Ed Komp, Mitchel Trope, Mike Finley, Jorge Ortiz,

Swetha Rao, …….

Presentation Outline

• Problem Statement & Motivation
• Background – Previous works
• Research Objectives
• Hybrid Synchronization Mechanisms
• Hardware Thread
• Performance Results
• Evaluation of Hybrid Thread - Image Processing
• Conclusion & Future Works

Contributions
• Status: Completed HW/SW co-design of multithreading programming model,

stable and running.
• Publications:

1. Andrews, D.L., Niehaus, D., Jidin, R., Finley, M., Peck, W., Frisbee, M., Ortiz,
J. Komp, E. Ashenden, P., Programming Model for Hybrid FPGA/CPU
Computational Components: A Missing Link, IEEE Micro, July/Aug 2004

2. R.Jidin, D.L. Andrews, W. Peck, D. Chirpich, K. Stout, J. Gauch, Evaluation of
the Hybrid Thread Multithreading Programming Model using Image Processing
Transform, RAW 2005, April 4-5, 2005, Denver Colorado

3. R. Jidin, D.L. Andews, D. Niehaus, W. Peck, Fast Synchronization Primitives
for Hybrid CPU/FPGA Multithreading, IEEE RTSS, WIP 2004, Dec 5-8,
Lisbon Portugal

4. R.Jidin, D.L.Andrews, D. Niehaus, Implementing Multithreaded System
Support for Hybrid Computational Components, ERSA 2004, June 21-24, Las
Vegas

5. Andrews, D., Niehaus,D., Jidin, R., Implementing the Thread Programming
Model on Hybrid FPGA/CPU Computational Components, WEPA, International
Symposium on Computer Architecture, Feb 2004, Madrid, Spain

• Further impacts:
Inquiries received from universities world wide and Cray Research

Problem Statement
• FPGAs serve as computing platforms ?

– History: serve as prototyping and glue logics devices
– Becoming more denser and complex devices
– Hybrid devices: embedded CPUs + other resources
– Require better tools to handle new complexities

• Current FPGA programming practices
– Require hardware architecture knowledge – not familiar

to the software engineers
– Have to deal with timing issues, propagation delays,

fan-out, etc.
– Hardware and software components interaction using

low level communication mechanisms

Motivation: Hybrid CPU/FPGA Architectures

• Embedded PPC 405 CPU + Sea of
free FPGA Gates (CLB’s) + …

• BRAM provides efficient storage to
save system “states”.

• System components provided as
libraries or soft IPs:
- System buses (PLB, OPB)
- Interrupt controllers, UARTs

• Migration of system services from
CPU into FPGA can provide new
capabilities to meet system timing
performance. New services are
provided in the form of soft IPs Source: IBM T.J Watson Research Center

Motivation: Higher Abstraction Level
• Need to use high level of

abstraction to increase
productivity
– Focus on applications not on

hardware details.
– Reduce the gap between

between HW and SW
designs, to enable
programmer access to hybrid
devices.

• Hybrid Thread Abstraction
Layer
– abstract out hardware

architectures such as buses
structure, low level
peripheral protocols,
CPU/FPGA components, etc.

 system bus

Hardware Thread
Interface

Component

User
Hardware
Thread 2

CPU

Hybrid
thread

abstraction
layer

Software Thread Interface Component

Hardware Thread
Interface

Component

User
Hardware
Thread 1

Software
Thread1

Software
Thread 2

Hardware Threads

Previous Works
• Research efforts to bring High Level Languages (HLL)

into hardware domain
• Streams-C [Los Alamos]

– Supplements C with annotations for assigning resources on FPGA
– Suitable for systolic based computations, compiler based on SUIF
– Hardware/software communication using FIFO based streams
– Programming productivity versus device area size

• Handel C [Oxford]
– Subset of C + additional constructs for specifying FPGA circuits
– Compile Handel C programs into synchronous machines
– Hardware/software interactions using low level communication

mechanisms
• System level [System C, Rosetta]

– Attempt to remove hardware/software boundaries
– High level integration between hardware & software components?

Research Objectives
• Goal: Create an environment where programmers can express system

computations using familiar parallel thread model
– standard thread semantics across CPU/FPGA boundaries
– threads represented such that they can exist on both components
– enable threads to share data with synchronization mechanisms

• Issues of interest:
–– FPGA based Thread Control and ContextFPGA based Thread Control and Context:

• initiating, terminating, synchronizing threads
• computational models (threads over FSM’s)
• new definition of thread context

–– Synchronization Mechanisms for CPU/FPGA based ThreadsSynchronization Mechanisms for CPU/FPGA based Threads
• Semaphore, lock (mutex) or condition variables

–– API and Operating System (OS) SupportAPI and Operating System (OS) Support
• User Application Program Application (API) Library Functions
• System services adaptation and migration

– Ex. thread scheduling

Current Thread Programming Model (TPM)

critical
section

T15 T11

CPU

T3

Memory

bus

T7T5

queue

• An application can be broken
into executable units called
threads (a sequence of
instruction).

• Threads execute concurrently
on CPUs (M threads map to N
CPUs)

• Threads interleave on a single
CPU to create an illusion of
concurrency

• Accesses to shared data are
serialized with the aid of
synchronization mechanisms.

Current Synchronization Mechanisms
• Current synchronization mechanisms

– Depend on atomic operations provided by HW or CPU
– SW: CPU instructions Test and Set

• Set variable to one, return old value to indicate prior set
– HW: Snoopy cache on multiprocessors

• Challenges
– Current methods do not extend well to the HW based Thread
– Do not want to increase overhead on CPU

• New methods
– FPGAs provide new capabilities to create more efficient

mechanisms to support semaphores
– No special instruction, no modification to processor core
– New FPGA based synchronization mechanism provided as IP

cores

Achieving Atomic Operations with FPGA
• Atomic transaction controller on FPGA

– Read acknowledgement is delayed
– Hardware operation completes within this delay
– Use lower order address lines to encode necessary information

such thread ID and lock ID
– Controller returns status & grant to the application program

interface (API) request on data bus
• Issues on cost of FPGA resources when the number of

synchronization variables in a system is large
– Implement all the synchronization variables within a single entity.
– Use a single controller to manage multiple synchronization

variables.
– Use on chip block memory (BRAM) instead of LUT to save the

state of each individual variables
– Example our multiple (64) spin locks core

Multiple Spin Locks Core
• APIs

– Spin_lock
– Spin_unlock

• Lock BRAM
– 64 Recursive counters
– 64 Lock Owner register

• Controllers
– Common controllers for

multiple locks
– Access to Lock BRAM
– Atomic read transaction
– Recursive error
– Reset all locks

Controllers :
- spin locks
- recursive counters

3

1

2

Lock Owner
Registers

Data Bus

Thread_7

Thread_9

Thread_1

Recursive
Counters

Address bus:
 6 lines for spin lock ids
 9 lines for thread ids
 2 lines for operation codes

Blocking Type Synchronization
• Spin vs. blocking type synchronization

– Blocking reduces bus activities and does not tie CPU
– Blocking requires queues to hold the sleeping threads

• Mapping of synchronization variables to sleep queues
– Provides a separate queue for each blocking semaphore is costly

when many semaphore variables are needed on a system

• Global Queue
– Creates multiple semaphores with a single global queue
– Efficient queuing operation but not at the expense of hardware

resources
• Wakeup mechanism & delivery of unblocked threads

– De-queue operation of unblocked threads
– Delivery of unblocked threads either to the scheduler queue or

individual hardware threads (bus master capability)

Hybrid Thread System

T7F1

F2T4T8

Threads in Sleep Queues

Mutexes IP

T15 T11

CPU

T3
F3

Hardware
API

HW Thread IP

Mutex 1

Mutex 2

API

Memory

critical
section

Other
IP core

• Moves Mutexes + queues + wake-up into FPGA from memory
• Provides synchronization services to FPGA & CPU threads

Blocking Synchronization Core Design
• Global Queue

– Conceptually configured as multiple sub-queue
associated with different semaphores

– Combined lengths of all sub-queues will not be greater
than the number of total threads in the system as a
blocked thread cannot make another request

– For efficient operation, the global queue is divided into
four tables:

• Queue Length Table contains an array of queue lengths
• Next owner Pointer Table contains an array of lock next

owners
• Last Request Pointer Table contains an array of last requesters
• Next Next Owner Table contains link pointers

00

Link Pointer
Table

Last Request = 04

Last Request = 11

...

Last Request = 05

Last Request
 Pointer Table

Next owner = 08

Next owner = 07

...

Next owner = 20

Next Owner
Pointer Table

Queue length = 0

Queue length = 3

Queue length = 8

….

Queue Length
Table

 lock owner S0 = 00

lock owner S1 = 00

lock owner S2 = 99

lock owner S3 = 00

…...

lock owner S26 = 00

lock owner S27 = 00

…...

lock owner S40 = 00

…..

….

lock owner S63 = 01

Next next owner = 09

00

Next next owner = 11

00

indexed
by

lock id

indexed
by

lock id

indexed
by

lock id

indexed by
thread id

00

62
63

62
63

511

62
63

00

00

000

008

02

325

02

009

007

011

02

Address

Address
 + 64

Lock owner registers

Global
Queue &
Lock
Owner
Registers

Multiple Recursive Mutexes Core
• Provide exclusive accesses to shared data & allow threads to block
• Operations: mutex_lock (recursive), unlock and trylock

Controllers :
- recursive mutexes
- global queue
- bus master

3

1

2

Mutex Owner
Registers

Data Bus

Gobal Queue

Last Request
Pointers

Mutex
Next Owners

Queue
Lengths

Link List
Pointers

Thread_7

Thread_9

Thread_1

Recursive
Counters

Address bus:
 6 lines for mutex ids
 9 lines for thread ids
 2 lines for operation codes

mutex_lock()
if thread ID = OWNER

lock selected mutex

cnt = cnt + 1

else

queue thread ID

mutex_unlock()
cnt = cnt – 1

releases the mutex

when its cnt reaches 0

Multiple Semaphores Core

Controllers :
- semaphores
- global queue
- bus master

3

1

2

Data Bus

Gobal Queue

Last Request

Semaphore
Next Owner

Queue Length

Link Pointer

Semaphore
Counters

Address bus:
 6 lines for semaphore ids
 9 lines for thread ids
 3 lines for operation codes

• sem_wait(sm)
– if C ≥ 1 then C = C - 1
– else queues thread ID

• sem_post(sm)
– if blocked thread,

dequeues
– else C = C + 1

• sem_trywait(sm)
– non blocking

A Condition Variable
• Implements sleep/wakeup semantics using

condition variables
• Useful for event notification
• Associated with a predicate which is protected by

a mutex or spin lock
• Wakeup one or all sleeping threads
• Up to 3 or more mutexes are typically required:

– one for the predicate
– one for the sleep queue (or CV list)
– one or more for the scheduler queue (context_switch)

• New approach requires one mutex (predicate)

Condition Variable APIs
void signal (cv *c)
{ lock (&c->qlistlock);

remove a thread from list
unlock (&c->qlistlock);
if thread, make runnable;
return; }

void broadcast (cv *c)
{ lock (&c->qlistlock);

while (qlist is nonempty) {
remove a thread
make it runnable}

unlock (&c->qlistlock);
return;}

void wait (cv *c, mutex *m)
{
lock (&c->qlistlock);
add thread to queue
unlock (&c->qlistlock);
unlock (m); //release mutex
context_switch ();
/* when wakes-up */
lock (m); //acquire mutex
return;

}

Source: VAHALIA, UNIX Internals

Multiple Condition Variables Core

• cond_wait(cv, mutex)
– Queuing of thread Ids

• cond_signal(cv)
– De-queuing of a thread

ID

• cond_broadcast(cv)
– De-queuing & delivery

of all blocked threads
– Return busy status to

new requests if delivery
is not complete yet.

Controllers :
- condition variables
- global queue
- bus master

Data Bus

Gobal Queue

Last Request

Next Owner

Queue Length

Link Pointer

Address bus:
 6 lines for condition var ids
 9 lines for thread ids
 2 lines for operation codes

Bus Master Interface
(IPIF MASTER)

B
Bus Slave Interface (IPIF SLAVE)

A

1. Determine next owner:
 HW or SW thread
2. Generate read or write to
 Bus Master
3. Calculate next owner
 address

F Comparator

1. Enqueue blocking thread
2. Dequeue next lock owner
 - signals E to update owner register
 - signals D to via F to deliver next owner
3. Manage queue/4 tables
4. Soft Reset, clear all the table

H Queue Controller
Link Pointers

Last Request

Next Owners

Queue Lengths

1. Manage recursive mutexes
2. Update owner register
 - with new owner if free
 - with next owner (deque)
3. Gen enque if lock not free
4. Gen deque if lock release
5. Soft Reset all own registers

E Controller for multiple
 mutexes

1. Request Handlers
2. Bus Mastering
 - reader
 - writer

Bus Master
Atomic read operation
 - control owner register
 - read req ack delay

C Atomic transaction

mutex_id register

thread_id register

G Operation mode

enque
deque

deq_done
deq_none
enq_done

nx_owner

request*

release

a_enable
a_r/w

opr

qread_write

qenable

qaddr

qdata_in

enable
addr

data_in

next_owner register

rreq
wreq

ack

nx_owner

latch_next_owner

msc_start

- Decode address & read
- Determine lock/unlock

saddrrdreq rd_ack

nx_owner
Queue with 4 tables

wr_ack
wr_req

D

xaddr +
control

qdata_out

prev status
register

cur status
register

- Status busy/OK
- Xfer status betw regs

deq_done
deq_start

status
addr_out

data_out

J Next Owner Address Generator

Parameters:
- HW thread base address
- HW Thread size
- SW thread Manager address

data_out

addr_out

do_compare

K API return status

addr_out &
data_out

regs

Multiple
mutex

recursive
counters

Multiple
mutex
owner

registers

Data mux

status
error bit

error bit

mutex ID

error

sel

sdata xdata
& xack

msc_
done

deq_start
deq_done

API ret status

rcnt
thr id

Multiple
Mutex Core
RTL level
description

Hardware Thread Architecture

data-write

address

parameter1operation status

Hardware Thread Interface Component

User Hardware Thread

command

Bus Interface (Architectural dependent + independent components)

State Machines:
- Thread state scheduler
- Status process
- Command process
- Bus Slave Handshake

argument2

result1

result2

argument1

State.Machines:
- Bus Master Handshake
- Address Generator
- Bus Writer/Reader
- Data in/out
- Synchronization tests,
 Busy wait

read data

parameter2

Control Unit uses API (operation=mutex, mutex_id=xx, parameter=thread_id

Data and data processing such as image processing algorithm like median filter

Read Addr Gen

Write Addr Gen

Address
MUX

Delay bet Reads

Repeat Rd Max

Bus Master (BM)
- read/write reqs
- coordinate test

Mutex Test

Sema Test

Read Req Handler

Write Req Handler

Mutex Req Handler Write Data A

Read Data

Write Data B

Data Out
MUX

Sema Req Handler

Spin Lock Handler

Thread Scheduler
idle/run/block

- request to Handlers
- wait response fr BM

Cmd run/stop/wakeup

Read/Write ACK, MUX

Status

param1

param2

addr

Status
Control

 Bus Interface (Architecture Dependent + Independent)Bus Interface

RdReq WrReqack

operation

addr data

states

sem
mtx
read
write

cmd

APIs User Application

addr
req/
ack

args

latch

latch

latch
Hardware Thread Interface Core
(HWTI) RTL level description.

Hardware Thread States (Contexts)

idle

run

wait

usr_request
or

cmd stop

cmd_run

hw thread
waits for
mutex

reset

cmd_stop

wakeup_cmd

1. Moves to RUN if receives cmd_run
2. Moves to WAIT while in the process
 of obtaining mutex or semaphore
3. Moves to RUN state if mutex is
 obtained.
4. If mutex is not available, block waits
 in WAIT state until wake-up command
 is received from the mutex core
5. Thread state visible via status register
6. User computation decides when it is
 appropriate to check status register
 and control it’s own operation

Hardware Thread APIs
• HW_Thread_Create API on CPU

– CPU loads arguments to registers
– CPU writes “code” into command register to start/stop

• HW APIs on HW Thread
– Synchronization APIs

• Mutex: blocking lock, unlock
• Semaphore: wait, post
• Spin lock: lock, unlock

– Memory read/write accesses APIs
– APIs write operation codes into the operation register,

and status register provides feedback to the user

HW/SW Threads Spin Lock Access Ratios

• Baseline performance HW and SW thread run individually to own and release a
spin lock, hw faster by a 6:1 ratio.

• Allow both Hardware/Software Hybrid Threads to compete:

0 . 5

2

5 . 4 4

8 . 8 7 5

2 3

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

 HW + SW Accesses / Max HW Accesses

Timing Performance

Timing Performance

Synchronization Hardware Cost

Synchronization
type

Total slices for 64
synchronization

variable

Number of slices
per synchronization

variable

Spin Lock 123 1.9
Mutex 189 3
Semaphore 229 3.6
Condition Variable 137 2.1

Resource
Type

Resources
Used

Total
Resources

On-chip
% Used

4-input LUT 328 9856 3.3%
Flip-flop 134 9856 1.4%
Slices 189 4928 3.8%
BRAMs 2 44 4.5%

Hardware Resources
for 64 MUTEXES
(excluding bus
interface)

Synchronization Access Time

spin_lock 8 3 11
spin_unlock 8 3 11
mutex_lock 8 3 11
mutex_trylock 8 3 11
mutex_unlock 13 10 23
sem_post 9 10 19
sem_wait 6 3 9
sem_trywait 6 3 9
sem_init 3 3 6
sem_read 6 3 9
cond_signal 11 10 21
cond_wait 10 3 13
cond_broadcast 6n 10n 16n

Synchronization
APIs

internal
operation

(clk cycles)

bus transaction
after internal

operation start
(clk cycles)*

Total clock
cycles

Hybrid Threads: Image Processing

CPU

BRAM

Semaphores HW
Thread

SDRAM

Ethernet

 bus

Ethernet

Virtex2ProP7

ControllerController

IBM Compatible

Camera: USBVISION

Image Display: SDL

O/S: Linux

Image Processing Flow Diagram

CPU loads
image into
memory at
address a1

HW thread
interface*

sema
s1

CPU
init()

ether_init()
a1 = malloc()
a2 = malloc()
hw_create(a1, a2)

receive image
recv(a1, img_size)

get image from
memory
- read (a1)

sema
s2

CPU reads
memory a2
and send
processed

image

HW thread
image

processing*
(Filter)

HW thread
interface*

store processed
image in memory
- write (a2)

hw image process
- 3x3 win median
- invert
- threshold
- 3x3 win binomial

send image out
send(a2, img_size)

image in

image out

Note* VHDL

8 6

1 2 4

5

3

7

sem_post(s1) sem_wait(s1)

sem_wait(s2)

sem_post(s2)

Image Transform Example: SW + HW Components
PART HARDWARE (FPGA):
If command == run
{
SW: sem_wait(&sema1)
RD: read data

processing wait
write data
if count != image_size

RD:
else

SP:
SP: sem_post (&sema2)

branch SW:
}

PART OF SOFTWARE (CPU):
addr1 = malloc(image_size) //raw image ptr
addr2 = malloc(image size) //proc image ptr
//Hardware thread create API
hw_thread_create(addr1, addr2, function)
while (1) {
//Get image from Ethernet

receive(src, addr1, img_size)
//Let hw thread know image data is available

sem_post(&sema1);
//Wait for hw thread finish processing

sem_wait(&sema2);
//Send processed image

send(dest, addr2, img_size); }

Frame buffer & Parallel Median Filter

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

Padding zeroes to handle boundary conditions

shift

0 21 w w+2w+1 2w

cc c

c c c c

2w+2

shift0 76

Pipelined Median filter
9 stages 8 bit comparators,

Calculate median of 9 pixels

Boundary condition:
top left, top side, top right,
right side, etc

Frame Buffer
 Size (2W+3) * 8 bits
 Output: 3x3 window or 9 pixels
 Image size: W * H * N

8 x 8-bit shift register

4 byte outputs/ 4 medians

Image
4 byte /
pixels

HW vs.SW Image Processing
• Image frame size 240 x 320 x 8 bits
• FPGA & CPU clocked at 100 MHz
• For median transform, FPGA can process 100 frames/sec,

speed-up about 40x, consistence with [12, 27]
• Execution time dominated by communication

Image
Algorithms

HW Image
Processing

SW Image
Processing
Cache OFF

SW Image
Processing
Cache ON

Threshold 9.05 ms 140.7 ms 19.7 ms
Negate 9.05 ms 133.9 ms 17.5 ms
Median 11.2 ms 2573 ms 477 ms
Binomial 10.6 ms 1084 ms 320 ms

Conclusion & Future Works
• Extend thread programming model across CPU/FPGA
• Our synchronizations cores provides services similar to

POSIX thread.
– Test program uses our CVs and mutex produced similar result when

port it to desktop running with Pthread.
– Semaphores used in the image transform evaluations.

• Effective synchronization mechanism, improve system
performance & reduce memory requirements.

• Improve programming productivity, while at the same time
providing the benefit of customized hardware from within a
familiar software programming model

• Hardware thread can be used as a base to implement other
computations into hardware.

• High level language compiler that can translate applications
into hybrid hardware and software components

Thank You!

