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Problem Statement
• FPGAs serve as computing platforms ?

– History: serve as prototyping and glue logics devices
– Becoming more denser and complex devices
– Hybrid devices: embedded CPUs + other resources
– Require better tools to handle new complexities 

• Current FPGA programming practices
– Require hardware architecture knowledge – not familiar 

to the software engineers
– Have to deal with timing issues, propagation delays, 

fan-out, etc.
– Hardware and software components interaction using 

low level communication mechanisms 



Motivation: Hybrid CPU/FPGA Architectures

• Embedded PPC 405 CPU + Sea of 
free FPGA Gates (CLB’s) + …

• BRAM provides efficient storage to 
save system “states”.

• System components provided as 
libraries or soft IPs:
- System buses (PLB, OPB)
- Interrupt controllers, UARTs

• Migration of system services from 
CPU into FPGA can provide new 
capabilities to meet system timing 
performance. New services are 
provided in the form of soft IPs Source: IBM T.J Watson Research Center



Motivation: Higher Abstraction Level
• Need to use high level of 

abstraction to increase 
productivity
– Focus on applications not on 

hardware details.
– Reduce the gap between 

between HW and SW 
designs, to enable 
programmer access to hybrid 
devices.

• Hybrid Thread Abstraction 
Layer 
– abstract out hardware 

architectures such as buses 
structure, low level 
peripheral protocols, 
CPU/FPGA components, etc.
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Previous Works
• Research efforts to bring High Level Languages (HLL) 

into hardware domain
• Streams-C [Los Alamos]

– Supplements C with annotations for assigning resources on FPGA
– Suitable for systolic based computations, compiler based on SUIF
– Hardware/software communication using FIFO based streams
– Programming productivity versus device area size

• Handel C [Oxford ]
– Subset of C + additional constructs for specifying FPGA circuits
– Compile Handel C programs into synchronous machines
– Hardware/software interactions using low level communication 

mechanisms 
• System level [System C, Rosetta]

– Attempt to remove hardware/software boundaries
– High level integration between hardware & software components?



Research Objectives
• Goal: Create an environment where programmers can express system

computations using familiar parallel thread model
– standard thread semantics across CPU/FPGA boundaries
– threads represented such that they can exist on both components
– enable threads to share data with synchronization mechanisms

• Issues of interest:
–– FPGA based Thread Control and ContextFPGA based Thread Control and Context: 

• initiating, terminating, synchronizing threads
• computational models (threads over FSM’s)
• new definition of thread context

–– Synchronization Mechanisms for CPU/FPGA based ThreadsSynchronization Mechanisms for CPU/FPGA based Threads
• Semaphore, lock (mutex) or condition variables

–– API and Operating System (OS) SupportAPI and Operating System (OS) Support
• User Application Program Application (API) Library Functions
• System services adaptation and migration    

– Ex. thread scheduling



Current Thread Programming Model (TPM)
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• An application can be broken 
into executable units called 
threads (a sequence of 
instruction).

• Threads execute concurrently 
on CPUs ( M threads map to N 
CPUs)

• Threads interleave on a single 
CPU to create an illusion of 
concurrency

• Accesses to shared data are 
serialized with the aid of 
synchronization mechanisms.



Current Synchronization Mechanisms
• Current synchronization mechanisms

– Depend on atomic operations provided by HW or CPU
– SW: CPU instructions Test and Set

• Set variable to one, return old value to indicate prior set
– HW: Snoopy cache on multiprocessors

• Challenges
– Current methods do not extend well to the HW based Thread
– Do not want to increase overhead on CPU

• New methods
– FPGAs provide new capabilities to create more efficient 

mechanisms to support semaphores
– No special instruction, no modification to processor core
– New FPGA based synchronization mechanism provided as IP 

cores



Achieving Atomic Operations with FPGA
• Atomic transaction controller on FPGA

– Read acknowledgement is delayed
– Hardware operation completes within this delay
– Use lower order address lines to encode necessary information 

such thread ID and lock ID
– Controller returns status & grant to the application program 

interface (API) request on data bus
• Issues on cost of FPGA resources when the number of 

synchronization variables in a system is large
– Implement all the synchronization variables within a single entity.
– Use a single controller to manage multiple synchronization 

variables.
– Use on chip block memory (BRAM) instead of LUT to save the 

state of each individual variables
– Example our multiple (64) spin locks core



Multiple Spin Locks Core
• APIs

– Spin_lock
– Spin_unlock

• Lock BRAM
– 64 Recursive counters
– 64 Lock Owner register

• Controllers
– Common controllers for 

multiple locks
– Access to Lock BRAM
– Atomic read transaction
– Recursive error
– Reset all locks

Controllers :
- spin locks
- recursive counters
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  6 lines for spin lock ids
  9 lines for thread ids
  2 lines for operation codes



Blocking Type Synchronization
• Spin vs. blocking type synchronization

– Blocking reduces bus activities and does not tie CPU
– Blocking requires queues to hold the sleeping threads

• Mapping of synchronization variables to sleep queues
– Provides a separate queue for each blocking semaphore is costly 

when many semaphore variables are needed on a system

• Global Queue
– Creates multiple semaphores with a single global queue
– Efficient queuing operation but not at the expense of hardware 

resources
• Wakeup mechanism & delivery of unblocked threads

– De-queue operation of unblocked threads
– Delivery of unblocked threads either to the scheduler queue or 

individual hardware threads (bus master capability)



Hybrid Thread System
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• Moves Mutexes + queues + wake-up into FPGA from memory
• Provides synchronization services to FPGA & CPU threads



Blocking Synchronization Core Design
• Global Queue

– Conceptually configured as multiple sub-queue 
associated with different semaphores

– Combined lengths of all sub-queues will not be greater 
than the number of total threads in the system as a 
blocked thread cannot make another request

– For efficient operation, the global queue is divided into 
four tables:

• Queue Length Table contains an array of queue lengths
• Next owner Pointer Table contains an array of lock next 

owners
• Last Request Pointer Table contains an array of last requesters
• Next Next Owner Table contains link pointers
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Multiple Recursive Mutexes Core
• Provide exclusive accesses to shared data & allow threads to block
• Operations: mutex_lock (recursive), unlock and trylock

Controllers :
- recursive mutexes
- global queue
- bus master
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Address bus:
  6 lines for mutex ids
  9 lines for thread ids
  2 lines for operation codes

mutex_lock( )
if thread ID = OWNER

lock selected mutex

cnt = cnt + 1

else

queue thread ID

mutex_unlock( )
cnt = cnt – 1

releases the mutex

when its cnt reaches 0



Multiple Semaphores Core

Controllers :
- semaphores
- global queue
- bus master
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Address bus:
  6 lines for semaphore ids
  9 lines for thread ids
  3 lines for operation codes

• sem_wait(sm)
– if C ≥ 1 then C = C - 1
– else queues thread ID

• sem_post(sm)
– if blocked thread, 

dequeues
– else C = C + 1

• sem_trywait(sm)
– non blocking



A Condition Variable
• Implements sleep/wakeup semantics using 

condition variables
• Useful for event notification
• Associated with a predicate which is protected by 

a mutex or spin lock
• Wakeup one or all sleeping threads
• Up to 3 or more mutexes are typically required:

– one for the predicate
– one for the sleep queue (or CV list)
– one or more for the scheduler queue (context_switch)

• New approach requires one mutex (predicate)



Condition Variable APIs
void signal (cv *c)
{  lock (&c->qlistlock);

remove a thread from list
unlock (&c->qlistlock);
if thread, make runnable;
return; }

void broadcast (cv *c)
{ lock (&c->qlistlock);

while (qlist is nonempty) {
remove a thread
make it runnable}

unlock (&c->qlistlock);
return;}

void wait (cv *c, mutex *m)
{
lock (&c->qlistlock);
add thread to queue
unlock (&c->qlistlock);
unlock (m); //release mutex
context_switch ( );
/* when wakes-up */
lock (m); //acquire mutex
return;

}

Source: VAHALIA, UNIX Internals



Multiple Condition Variables Core

• cond_wait(cv, mutex)
– Queuing of thread Ids

• cond_signal(cv)
– De-queuing of a thread 

ID

• cond_broadcast(cv)
– De-queuing & delivery 

of all blocked threads
– Return busy status to 

new requests if delivery 
is not complete yet. 

Controllers :
- condition variables
- global queue
- bus master

Data Bus

Gobal Queue

Last Request

Next Owner

Queue Length

Link Pointer

Address bus:
  6 lines for condition var ids
  9 lines for thread ids
  2 lines for operation codes



Bus Master Interface
(IPIF MASTER)

B
Bus Slave Interface  (IPIF SLAVE)

A
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Hardware Thread Architecture
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- Bus Writer/Reader
- Data in/out
- Synchronization tests,
  Busy wait

read data
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Control Unit uses API (operation=mutex, mutex_id=xx, parameter=thread_id

Data and data processing such as image processing algorithm like median filter
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Hardware Thread States (Contexts)
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1. Moves to RUN if receives cmd_run
2. Moves to WAIT  while in the process
    of obtaining mutex or semaphore
3. Moves to RUN state if mutex is
    obtained.
4. If mutex is not available, block waits
    in WAIT state until wake-up command
    is received from the mutex core
5. Thread state visible via status register
6. User computation decides when it is
    appropriate to check status register
    and control it’s own operation



Hardware Thread APIs
• HW_Thread_Create API on CPU

– CPU loads arguments to registers
– CPU writes “code” into command register to start/stop

• HW APIs on HW Thread
– Synchronization APIs

• Mutex: blocking lock, unlock
• Semaphore: wait, post
• Spin lock: lock, unlock

– Memory read/write accesses APIs
– APIs write operation codes into the operation register, 

and status register provides feedback to the user



HW/SW Threads Spin Lock Access Ratios

• Baseline performance HW and SW thread run individually to own and release a 
spin lock, hw faster by a 6:1 ratio.

• Allow both Hardware/Software Hybrid Threads to compete:
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Timing Performance



Timing Performance 



Synchronization Hardware Cost

Synchronization 
type

Total slices for 64 
synchronization 

variable 

Number of slices 
per synchronization 

variable 

Spin Lock 123 1.9
Mutex 189 3
Semaphore 229 3.6
Condition Variable 137 2.1

Resource 
Type

Resources 
Used

Total 
Resources 

On-chip
% Used

4-input LUT 328 9856 3.3%
Flip-flop 134 9856 1.4%
Slices 189 4928 3.8%
BRAMs 2 44 4.5%

Hardware Resources 
for 64 MUTEXES 
(excluding bus 
interface)



Synchronization Access Time

spin_lock 8 3 11
spin_unlock 8 3 11
mutex_lock 8 3 11
mutex_trylock 8 3 11
mutex_unlock 13 10 23
sem_post 9 10 19
sem_wait 6 3 9
sem_trywait 6 3 9
sem_init 3 3 6
sem_read 6 3 9
cond_signal 11 10 21
cond_wait 10 3 13
cond_broadcast 6n 10n 16n

Synchronization 
APIs

internal 
operation 

(clk cycles)

bus transaction 
after internal  

operation start 
(clk cycles)*

Total clock 
cycles



Hybrid Threads: Image Processing
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Image Processing Flow Diagram
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Image Transform Example: SW + HW Components
PART HARDWARE (FPGA):
If command == run 
{
SW:    sem_wait( &sema1 )
RD:     read data

processing wait
write data
if count != image_size 

RD:
else

SP:
SP:     sem_post ( &sema2)

branch SW: 
}

PART OF SOFTWARE (CPU):
addr1 = malloc(image_size) //raw image ptr
addr2 = malloc(image size) //proc image ptr
//Hardware thread create API
hw_thread_create(addr1, addr2, function )
while (1) {
//Get image from Ethernet

receive(src, addr1, img_size)
//Let hw thread know image data is available

sem_post( &sema1 );
//Wait for hw thread finish processing

sem_wait( &sema2 );
//Send processed image

send(dest, addr2, img_size); }



Frame buffer & Parallel Median Filter
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Pipelined Median filter
9 stages 8 bit comparators,

Calculate median of 9 pixels

Boundary condition:
top left, top side, top right,
right side, etc

Frame Buffer
 Size (2W+3) * 8 bits
 Output: 3x3 window or 9 pixels
 Image size: W * H * N

8 x 8-bit shift register

4 byte outputs/ 4 medians
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4 byte /
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HW vs.SW Image Processing
• Image frame size 240 x 320 x 8 bits
• FPGA & CPU clocked at 100 MHz
• For median transform, FPGA can process 100 frames/sec, 

speed-up about 40x, consistence with [12, 27]
• Execution time dominated by communication

Image 
Algorithms

HW Image 
Processing

SW Image 
Processing 
Cache OFF

SW Image 
Processing 
Cache ON

Threshold 9.05 ms 140.7 ms 19.7 ms
Negate 9.05 ms 133.9 ms 17.5 ms
Median 11.2 ms 2573 ms 477 ms
Binomial 10.6 ms 1084 ms 320 ms



Conclusion & Future Works
• Extend thread programming model across CPU/FPGA
• Our synchronizations cores provides services similar to 

POSIX thread.
– Test program uses our CVs and mutex produced similar result when 

port it to desktop running with Pthread.
– Semaphores used in the image transform evaluations.

• Effective synchronization mechanism, improve system 
performance & reduce memory requirements.

• Improve programming productivity, while at the same time 
providing the benefit of customized hardware from within a 
familiar software programming model

• Hardware thread can be used as a base to implement other 
computations into hardware.

• High level language compiler that can translate applications 
into hybrid hardware and software components
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