
1

Implementation of a Single Threaded User level
Asynchronous I /O Library using the Reactor pattern

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Ramakrishnan Kalicut

Master’s Thesis Defense

Jan 20, 2003

Committee:

Dr. Jerry James (Chair)

Dr. Gary Minden

Dr. Arvin Agah

2

Overview
Introduction
Motivation
Related Work
Single-threaded asynchronous I /O library
Performance Evaluation
Conclusions & Future work

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

3

Introduction
Due to increase in data access
n Conventional I /O has become a bottleneck

w Scientific applications involve huge amounts of I /O. I /O device
speed is 2-3 orders of magnitude less than the CPU

n Need to mask disk latencies with application processing

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Non-Blocking I / O

Threads poll() or
/ dev/ poll

Async I / O
library

Real-time
signals

Threads True async
state machine

…………

4

Motivation
Disadvantages of multi-threaded asynchronous I /O
n Thread maintenance & context switching overhead
n Poor scalability
n Complex synchronization requirements

Solution
n Single-threaded library on top of an event-driven framework

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

5

Related Work
Asynchronous I /O implementations
n Entire subsystem in an asynchronous model

w Built from scratch
w Microsoft Windows NT I /O subsystem

n Separate asynchronous interface
w Interface built coexists with existing synchronous interfaces
w Most Linux implementations

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

6

Related Work
Asynchronous I /O implementation models
n Multi-threading

w One thread per process – glibc/ librt version
w Using a thread pool – Solaris laio version

n Hybrid approach – multi-threading and use of the asynchronous behavior
of underlying hardware.
w Need specific routines at the device-driver level
w SGI KAIO implementation

n True asynchronous state machine
w Sequence of non-blocking steps, with state transitions driven by IRQ

techniques and event threads
w AIO interface being developed at IBM

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

7

Single-threaded AIO Library
A POSIX compliant asynchronous I /O interface
n Created on top of Reactor, an object-oriented event driven

framework

Library Components
n The interface
n Library internal queue

w free list
w run list
w done list

n Reactor
w select() at its core
w Time triggered

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

8

Single-threaded AIO Library
Library Initialization/Finalization
n Allocate resources for some requests in free list

w Defers later allocations for each request

n Set the timer to schedule the Reactor
n Resources freed as part of finalization

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

9

Single-threaded AIO Library
Interaction among various components

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Asynchronous I/O Handler Methods
Methods to create AIO handlers, register & deregister

them, handle_input() & handle_output()

Library Internal Queue
Enqueue or De-queue the request in the queue.

Contains functions associated with queue maintenance

Asynchronous I/O Interface
Request for asynchronous I/O (POSIX Conformance)

Reactor
registerHandler
RemoveHandler

handleEvents

Timer Interrupt
Scheduler

10

Si
ng

le
-t

hr
ea

de
d

AI
O

 L
ib

ra
ry

D
at

a
st

ru
ct

ur
es

 a
va

ila
bl

e
to

 t
he

 u
se

r

©
 I

nf
or

m
at

io
n

&
 T

el
ec

om
m

un
ic

at
io

ns
 T

ec
hn

ol
og

y
Ce

nt
er

 (
IT

TC
),

 E
EC

S,
 U

ni
ve

rs
ity

 o
f K

an
sa

s

A
sy

n
ch

ro
n

ou
s

I/
O

 C
on

tr
ol

 B
lo

ck

st
ru

ct
 a

io
cb

{

in
t

ai
o_

fil
de

s;

in
t

ai
o_

lio
_o

pc
od

e;

in
t

ai
o_

re
qp

rio
;

vo
la

til
e

vo
id

 *
ai

o_
bu

f;

si
ze

_t
 a

io
_n

by
te

s;

st
ru

ct
 s

ig
ev

en
t a

io
_s

ig
ev

en
t;

of
f_

t a
io

_o
ffs

et
;

};

A
sy

n
ch

ro
n

ou
s

In
it

ia
liz

at
io

n
 B

lo
ck

st
ru

ct
 a

io
in

it{

in
t

ai
o_

th
re

ad
s;

in
t

ai
o_

nu
m

;

in
t

ai
o_

lo
ck

s;

in
t

ai
o_

us
ed

ba
;

in
t

ai
o_

de
bu

g;

in
t

ai
o_

nu
m

us
er

s;

in
t

ai
o_

re
se

rv
ed

[2
];

};

11

Single-threaded AIO Library
Library Features
n Initialization primitives – aio_init()

w Allocate resources
w Set timer to schedule the Reactor

n Single asynchronous read/write request
n Batch asynchronous read/write requests
n Cancellation of one or more request
n Synchronization primitives
n Status check primitives

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

12

Single asynchronous read/write

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

YES

Create an aiohandler object
Enqueue request in internal queue

Register handler with Reactor

Valid request?

Error in storing request?

YES

NO

NO

aio_read () or aio_write()
library call

Return 0 Return –1
Set appropriate errno.

Arguments:
aiocbp – AIO control block

Arguments:
aiocbp – AIO control block

13

Batch asynchronous read/write

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Arguments:
mode – function behavior
list[] – request list
num – # of requests
sig – signal to indicate completion of requests

Arguments:
mode – function behavior
list[] – request list
num – # of requests
sig – signal to indicate completion of requests

NO

LIO_WAIT

Submit all requests
(read/write using aio_lio_opcode)

Request
enqueued ?

mode ? LIO_NOWAIT

lio_listio() library call

Return –1
Set errno to EIO

I f sig is specified, enqueue another
request containing the signal

All req
successful ?

Return 0 Return –1
Set errno to EAGAIN

NO

YES

YES

Wait until all the requests are
completed

14

Cancel one or more requests

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Arguments:
fildes – file descriptor
aiocbp – AIO control block

Arguments:
fildes – file descriptor
aiocbp – AIO control block

YES

Create list containing the element
corresponding to the request (aiocbp)

aiocbp = NULL YES

NO

aio_cancel() library call

Return
AIO_ALLDONE

reqs already
done ?

Create list containing all the
requests on the particular fildes

Deregister all the list element
from reactor. Update these

element and move to done_list

Any
uncanceled

req ?

Return
AIO_NOTCANCELED

Return
AIO_CANCELED

NO

YES

NO

15

Synchronization primitives

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Make a consistent view of a file Arguments:
op – fsync or fdatasync flag
aiocbp – AIO control block whose error state

is to be found

Arguments:
op – fsync or fdatasync flag
aiocbp – AIO control block whose error state

is to be found

Enqueue the request in internal
queue as LIO_SYNC type

aio_fildes
opened for
writing ?

YES

NO

aio_fsync() library call

LIO_SYNC

op ?Return –1
Set errno to EBADF

Enqueue the request in internal
queue as LIO_DSYNC type

LIO_DSYNC

16

Synchronization primitives

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Wait for one/more requests to complete
Arguments:
list[] – request list waiting on
num – # of requests
timeout – time to wait without any request

completion

Arguments:
list[] – request list waiting on
num – # of requests
timeout – time to wait without any request

completion

NO

Schedule the reactor to
process the requests

If each request
in list already
completed ?

YES

aio_suspend() library call

Return 0

Any req in list
is completed Timeout ?

Return –1
Set errno to EAGAIN

YES

NO

YES

NO

17

Status check primitives

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Check error state associated with a request
Arguments:
aiocbp – AIO control block whose error state

is to be found

Arguments:
aiocbp – AIO control block whose error state

is to be found

NO

NO

Find element
corresponding to the

request in run_list

Such element
exists ?

aio_error() library call

Return error number of
the request

Find element
corresponding to the
request in done_list

Such element
exists ?

YES
YES

Return –1
Set errno to EINVAL

18

Status check primitives

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Check return status associated with a request
Arguments:
aiocbp – AIO control block whose return

status is to be found

Arguments:
aiocbp – AIO control block whose return

status is to be found

NO

NO

Delete the element
from the done_list

Req error state is
EINPROGRESS?

aio_return() library call

Return return status of
the request

Find element
corresponding to the
request in done_list

Such element
exists ?

YES

YES
Return –1

Set errno to EINVAL

19

Reactor Handle function

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Arguments:
arg – AIO handle
fildesc – file descriptor set by select() in

reactor

Arguments:
arg – AIO handle
fildesc – file descriptor set by select() in

reactor

Next element
NULL or type I ?

handle_input() or
handle_output() Reactor call

Perform pread/pwrite using
fields of the request. Update
the request queue element

YES

Return 0

Go to next element in
run list

type I - LIO_READ, LIO_WRITE, LIO_NOPtype I - LIO_READ, LIO_WRITE, LIO_NOP

NO

YESelement is
LIO_SIGNAL type?

Raise signal specified in
aio_sigevent . Remove the

queue element

LIO_FSYNC?

Perform fdatasync() on the
file specified by aio_fildes.

Update the element

Perform fsync() on the file
specified by aio_fildes.

Update the element

NO
YES

NO

20

Single-threaded AIO Library
Limitations
n As there is only one thread in the process, the user process

cannot wait
n In multi-processor systems

w UAIO cannot utilize more than one processor
w The glibc version, a multi-threaded implementation, may

perform better
n Each thread can be handled by a separate processor

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

21

Performance Evaluation
Compared with the glibc version
n glibc version is multi-threaded in nature

All tests conducted on a Pentium- II I 802.933MHz
machine with 256MB RAM
Tests were performed for file I /O operations
In the graphs
n GAIO – glibc version
n UAIO – user-level single-threaded library

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

22

Performance Evaluation – Test1
Buffer size of single write call is varied

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Throughput Vs Write buffer size

0

20

40

60

80

100

120

140

160

Write buffer size (MB)

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

GAIO 133.83 137.43 15.391 17.536 4.7243 4.6691 4.8064 5.0162 5.0131 5.0688

UAIO 141.61 141.69 15.682 15.818 4.7173 4.7457 4.8385 5.0507 5.0432 5.0352

50 100 150 200 250 300 350 400 450 500

23

Performance Evaluation – Test2
A load of 300MB is distributed over a number of I /O
write calls

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Throughput Vs # of IO Calls

0

1

2

3

4

5

6

of IO Calls

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

GAIO 2.7151 2.7604 2.5797 2.8996 2.7665 2.4294 2.8358 2.94 2.3813 2.4876

UAIO 5.2499 5.0102 5.0698 4.978 4.8585 4.8366 4.7223 4.6865 4.7603 4.7586

50 100 150 200 250 300 350 400 450 500

24

Performance Evaluation – Test3
Number of instances of a process (that does 200 I /O
reads) is varied

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

Throughput Vs # of Instances

0

5

10

15

20

25

30

35

40

45

of Instances

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

GAIO 28.848588 15.782656 12.060056 10.109117 8.9081153 8.0237879

UAIO 38.860475 33.211297 32.471623 31.222849 31.048276 29.961972

10 20 30 40 50 60

25

Conclusions
Built an user-level asynchronous I /O library on top of
a event-driven framework (Reactor)
Tested POSIX compliance of the library
Evaluated performance of the UAIO library with
system loads in excess of 300MB
n Performed better in comparison to glibc AIO library (multi-

threaded library) on a single CPU machine

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

26

Future Work
Wrappers to blocking system calls
n wait(), sigsuspend()

Conditional-threading
n Requests for different files handled by separate threads
n Useful in a multi-processor machine

Proactor
n Pattern that supports the demultiplexing and dispatching of

multiple event handlers triggered by completion of
asynchronous events

n Proactor can be built on top of UAIO library

© Information & Telecommunications Technology Center (ITTC), EECS, University of Kansas

27

Q
ue

st
io

ns
 ?

©
 I

nf
or

m
at

io
n

&
 T

el
ec

om
m

un
ic

at
io

ns
 T

ec
hn

ol
og

y
Ce

nt
er

 (
IT

TC
),

 E
EC

S,
 U

ni
ve

rs
ity

 o
f K

an
sa

s

