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Introduction
One of the biggest problems in computing is to process large quantities of data 
in the minimum time with minimum levels of power consumption

Reconfigurable computing offers better price/performance ratio over COTS 
components

Programming hybrid devices in such a way as to maximize the usage of 
available resources is difficult

The threaded programming model is established as a mechanism for handling 
the interactions of concurrent, lightweight computations

The proposed research addresses the question of how to efficiently map a 
threaded programming model onto a computational model for modern
FPGAs.
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Related Work
HARDWAREC is a fully synthesizable language with a C-like 
syntax .It doesn’t support pointers, recursion and dynamic 
memory allocation.

CONES is an automated synthesis system that takes behavioral 
models written in a C-based language and produces gate-level 
implementations. This subset is very restricted and doesn’t 
contain unbounded loops nor pointers.

SYSTEMC supports a mixed synchronous and asynchronous 
approach implemented as a C++ library.

Other extensions include ECL from Cadence based on C and 
Esterel, HANDEL-C
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Computational Model
Types of Transformations

A computational model is defined informally as a systematic,
coherent framework for computation.

A transformation is an atomic unit of computational model 
roughly analogous to a machine instruction or a set of instructions.

Simple transformations 
Routing transformations 
Dual transformations 
First-in-First-out (FIFO) transformation

Flow control and Scheduling
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Simple Transformations

f: A→B
The set of functions f
could be, is constrained by 
the capabilities of 
hardware and timing 
requirements
Simple transformations 
make up the primary data 
computations in the 
system 

B

f

A

ADD

A

A=add(A,B)
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Routing Transformations

Routers are structures that route thread states between 
other transformations. They are analogous to, but different 
from, branch instructions in traditional processes.

Contd..
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Routing Transformations
process(input,selector)
begin

if (selector ='0') then
output 1 <= input;

else output 2 <=input;
end if;

end process;

process(input1,input2,selector)
begin

if (selector ='0') then
output<= input 1;

else output<= input 2;
end if;

end process;

Output 2

Router

Input 

Output 1 

Output

Router

Input 1 Input 2
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Dual Transformations
Example

CALL
Thread at the input of port A
RAM write (save state)
New thread containing return 
information at the output of port A

RETURN 
The function returns at the input of   
port B 
RAM read
The saved state of the thread is 
appended with the function return 
value and is emitted at the output of 
port B 

Contd..

A B 

Input BInput A

Output A Output B

RAM

General form of Dual Transformation
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Dual Transformations

The mechanism for storing the thread state in the RAM 
depends on the nature of the function. 

If the function requires that the threads be returned in the 
same order as they were called, then the RAM can be 
organized as a simple FIFO.

If the threads are returned in a random order, then a unique 
address must be passed along with the thread state.

Contd..
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Dual Transformations
Special logic is required to keep track of addresses of RAM 
entries that are empty and those that are full. 

One way to do is to assign a flag bit for each address. The flag
bit is set to ‘1’ if the address is free and set to ‘0’ if the address 
is full. 

Extra memory space to store the flag bits. As the length of 
the RAM  increases the number of flag bits increases. 

Search algorithm to find out which flag bit is ‘1’ and which 
is ‘0’.

Contd..
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Dual Transformations
Another implementation is to use a linked list to manage the free memory address.

Freed address is inserted into the head of the list, and requires one memory write to 
that address to update the link to the head pointer. 

free(addr)
RAM[addr]<= head
head<=addr

When requested, a free address is allocated from the head of the list, which requires a 
memory read to update the head pointer. 

alloc( )
head′ <= head
head<=RAM[head]

return(head′)

If an allocation and a free request occur in the same cycle, then the freed address can 
be used immediately to satisfy the allocation request, and the linked list remains 
unchanged.
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FIFO Transformations

When a  portion of a thread 
is inactive, i.e it is not 
being used, it may 
sometimes make sense to 
store it in the RAM. 

The FIFO transformations, 
just like the route 
transformations, do not 
change the thread state. 

FIFO

Inactive 
thread

Active thread state

Inactive thread state
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Flow Control and Scheduling
In general, some threads may attempt to use the same resources 
at the same time, causing deadlock, thus some sort of 
flow-control is necessary.

One adequate approach is to use a simple control mechanism 
involving a valid bit and pause signal.

The valid bit defines whether the signal carries some valid data or 
not.
When a transformation such as merge cannot accept a thread, the 
pause signal is asserted.

There is no particular format to implement scheduling policies 
in the computational model. Scheduling policies depends on 
the system designer and also the components available.

Scheduling policies for the Fibonacci program are discussed later.
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Examples of Transformations

Call-Return Block

Non-Blocking Static Priority Router

Send-Receive Block
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Call-Return Block (Call Only)Call-Return Block (Call Only)

we

SRAM

di do 

addr

call_ data

call_ output_ address

Head

call_output_ address <= head
addr <= head
di <= call_data
head<= do
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Call-Return Block (Return Only)

addr<= return_ input_address
return_data<= do
di<=head
head<= return_ input_address 

we

SRAM

di do 

addrreturn_ input_ address

return_ data

head
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Call-Return Block 
(Both Call and Return)

addr<= return_ input_address
return_ data<= do
di <= call_data
call_output_address <= 

return_input_address

we

SRAM

di do 

addr
return_ input_address

call_data

return_ data

call_output_address
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Call-Return Block

Call output address

0
Din

mux

Addrin
mux

Callout
mux

Headin
mux

Head

we

SRAM

di do 

addrReturn input address

Call data

Return Data

Head out

Head in

1

0

1

0

1

1 0
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Scheduling Policies
Deadlocks are caused when more than one thread compete for 
the use of a transformation. Prudent use of FIFO and good 
capacity planning can be used to avoid deadlock.

Round Robin strategy: fairness 

Blocking Static Priority Routers: only one thread is given 
priority and the other thread has to wait for the higher priority 
thread to complete. 

Non-Blocking Static Priority Router: higher priority thread is 
passed to the next transformation and the lower priority 
thread is placed in a FIFO 
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Non-Blocking Static Priority Router
VHDL Pseudo Code 

case select is
when "000" =>output<=(others=>'0');
when "001" =>output<= FIFOOUT;
when "010" =>output<= input2;
when "011" =>output<= input2;
when "100" =>output<= input1;
when "101" =>output<= input1;
when "110" =>output<= input1;

FIFOIN<=input2;
when "111" =>output<= input1;

FIFOIN<=input2;
when others=>NULL;

end case;

FIFOFIFO

ROUTER

select

Input 1 Input 2

Fifoout

Fifoin

Output

n
n

n

n

n

Highest Priority

Lowest Priority
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Example of Dual Transformations: 
Send-Receive Block

Send-Receive module for interprocess communication allows threads to 
communicate among themselves without sharing data.
With indirect communication, the messages are sent to and received from 
mailboxes.
Each mailbox has a unique identification.
The Send and Receive primitive are defined as follows:

Send (A, message) – Send a message to mailbox A
message=Receive (A) – Receive a message from mailbox A

When there is a message in the mailbox and a sender tries to send a 
new message to that mailbox then the old message is overwritten with 
the new one.
When a receiver a tries to access a mailbox and there is no message for 
it then that thread blocks and waits for the message.
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Status Bits

00 – Empty
01 – Message
10 – X
11 - Thread

message/thread
status bits 

RAM
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Send-Receive Block (Send Only)

send( s.msg, s.addr)
if ( M[s.addr].status == empty) 

then     M[s.addr] <= s.msg     
M[s.addr].status <= msg

else if ( M[s.addr].status == thread) 
then     r2_o.msg <= s.msg     
r2_o.data<= M[s.addr].data
M[s.addr].status <= empty

else ERROR 

we

SRAM
di

do 

addr

1

0

LSB

empty

msg

s.addr
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Send-Receive Block (Receive Only)
receive(r.thread, r.addr)
if (M[r.addr].status == empty) then     

M[r.addr] <= r.thread     
M[r.addr].status <= thread

else if (M[r.addr].status == msg)
then  

r1_o.msg<= M[r.addr].msg
M[r.addr].status <= empty

else ERROR 

we

SRAM
di

do 

addr

1

0

LSB

empty

thread

r.addr

r1_o.msg
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Send-Receive Block (Both Send and 
Receive)

send( s.msg, s.addr), receive(r.thread, r.addr) 
if ( s.addr == r.addr) then                       

r1_o.msg <= s.msg
r1_o.data<= r.thread 
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Send-Receive Block

0 mux

we

SRAM

addr               
do                           

di

1

1

0

s.addr

r.addr1

0

empty

msg

1

0

empty

thread

mux

mux

mux



Model of Computation Fibonacci
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{(X.11),3}

Cycle # 1



Model of Computation Fibonacci
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{(X.11),3,0}

Cycle # 2



Model of Computation Fibonacci
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{(X.11),3}

Cycle # 3



Model of Computation Fibonacci
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{(X.11),3}

{(X.11),3,0}

Cycle # 4



Model of Computation Fibonacci
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(X.11,3,0){3,(0)}

Cycle # 5



Model of Computation Fibonacci
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(2,0} {(X.11),1,0}

Cycle # 6



Model of Computation Fibonacci

34

{2,0} {(X.11),1,0}

{(0.01),2}

{(0.10),1}

Cycle # 7



Model of Computation Fibonacci
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{(0.01),2,1}

Cycle # 8



Model of Computation Fibonacci
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{(0.01),1}

{(0.10),1}

Cycle # 9



Model of Computation Fibonacci
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{0,1}

{(0.01),1}

{(0.10),1}

Cycle # 10



Model of Computation Fibonacci
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(0.10,1)

{0,1}

{1}

{(X.11,1,0}

Cycle # 11



Model of Computation Fibonacci
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{(X.11),0,1,1}

Cycle # 12
(1)



Model of Computation Fibonacci

40{(11),0,1,1}

Cycle # 13

{(X.11),1,1)



Model of Computation Fibonacci
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{(X.11),2}

Cycle # 14



Model of Computation Fibonacci {2}
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{(X.11),2}

Cycle # 15
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Fibonacci Results

Observations:

The number of cycles 
taken to obtain the 
fibonacci of a number is 
dependent on the number 
of threads.

Input Input Cycle 
Number

Output Output 
Cycle 

Number

8 2 21 103 

1,2 2,3 1,1 3,4 

1,3,5 2,3,4 1,2,5 3,26,41

1,2,4 2,3,4 1,1,3 3,4,29 

1,2,5,6 2,3,4,5 1,1,5,8 3,4,61,63 

1,2,3,4,5 2,3,4,5,6 1,1,2,3,5 3,4,25,36,50

1,2,3,4,5,7 2,3,4,5,6,7 1,1,2,3,5,13 3,4,30,55,90
,124 

Simulation Results
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Fibonacci Results
Input Threads Calls Mailboxes Cycles

1 1 0 0 3

2 1 0 0 3

3 3 2 1 15

4 5 4 2 25

5 9 8 4 36

6 15 14 7 48

7 25 24 12 75

8 41 40 20 103
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Fibonacci Results
Synthesis Report Summary

Device utilization summary
Selected Device: 2vp20ff1152-7 

Number of Slices:                1088 out of    9280   11%  
Number of Slice Flip Flops:  346 out of  18560     1%  
Number of 4 input LUTs:    1762 out of  18560     9%  
Number of bonded IOBs:         12 out of     564     2%  
Number of GCLKs:                    2 out of       16   12% 
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Future Work
BlockRAM instead of Distributed SelectRAM 

The programs were limited to input sizes that were small. 
Increase in the input size would increase the number of 
resources used

The next step to improve this computational model will be to 
implement pointers to functions and to include memory 
management capabilities.

Integrating this work with hybrid threads
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Features

Fully recursive

High-level Concurrency, allows multiple threads

Implements complex constructs such as call-return 
subroutine and message passing

Utilizes modest resources 



48

Conclusion

There is now a computational model that allows 
reconfigurable logic to provide an excellent base for the 
design and implementation of various complex algorithms 
such as genetic algorithms in hardware.

This computational model will help the system designers 
to bridge the gap between hardware and software. 
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Thank You


