
1

Computational Model for Re-entrant
Multiple Hardware Threads

Rakhee Keswani
University of Kansas

21st July 2005

Committee Members
Dr. Daniel Deavours
Dr. Perry Alexander

Dr. James Stiles

2

Outline

Introduction
Computational Model
Examples of Transformations
Fibonacci Example
Results and Future Work

3

Introduction
One of the biggest problems in computing is to process large quantities of data
in the minimum time with minimum levels of power consumption

Reconfigurable computing offers better price/performance ratio over COTS
components

Programming hybrid devices in such a way as to maximize the usage of
available resources is difficult

The threaded programming model is established as a mechanism for handling
the interactions of concurrent, lightweight computations

The proposed research addresses the question of how to efficiently map a
threaded programming model onto a computational model for modern
FPGAs.

4

Related Work
HARDWAREC is a fully synthesizable language with a C-like
syntax .It doesn’t support pointers, recursion and dynamic
memory allocation.

CONES is an automated synthesis system that takes behavioral
models written in a C-based language and produces gate-level
implementations. This subset is very restricted and doesn’t
contain unbounded loops nor pointers.

SYSTEMC supports a mixed synchronous and asynchronous
approach implemented as a C++ library.

Other extensions include ECL from Cadence based on C and
Esterel, HANDEL-C

5

Computational Model
Types of Transformations

A computational model is defined informally as a systematic,
coherent framework for computation.

A transformation is an atomic unit of computational model
roughly analogous to a machine instruction or a set of instructions.

Simple transformations
Routing transformations
Dual transformations
First-in-First-out (FIFO) transformation

Flow control and Scheduling

6

Simple Transformations

f: A→B
The set of functions f
could be, is constrained by
the capabilities of
hardware and timing
requirements
Simple transformations
make up the primary data
computations in the
system

B

f

A

ADD

A

A=add(A,B)

7

Routing Transformations

Routers are structures that route thread states between
other transformations. They are analogous to, but different
from, branch instructions in traditional processes.

Contd..

8

Routing Transformations
process(input,selector)
begin

if (selector ='0') then
output 1 <= input;

else output 2 <=input;
end if;

end process;

process(input1,input2,selector)
begin

if (selector ='0') then
output<= input 1;

else output<= input 2;
end if;

end process;

Output 2

Router

Input

Output 1

Output

Router

Input 1 Input 2

9

Dual Transformations
Example

CALL
Thread at the input of port A
RAM write (save state)
New thread containing return
information at the output of port A

RETURN
The function returns at the input of
port B
RAM read
The saved state of the thread is
appended with the function return
value and is emitted at the output of
port B

Contd..

A B

Input BInput A

Output A Output B

RAM

General form of Dual Transformation

10

Dual Transformations

The mechanism for storing the thread state in the RAM
depends on the nature of the function.

If the function requires that the threads be returned in the
same order as they were called, then the RAM can be
organized as a simple FIFO.

If the threads are returned in a random order, then a unique
address must be passed along with the thread state.

Contd..

11

Dual Transformations
Special logic is required to keep track of addresses of RAM
entries that are empty and those that are full.

One way to do is to assign a flag bit for each address. The flag
bit is set to ‘1’ if the address is free and set to ‘0’ if the address
is full.

Extra memory space to store the flag bits. As the length of
the RAM increases the number of flag bits increases.

Search algorithm to find out which flag bit is ‘1’ and which
is ‘0’.

Contd..

12

Dual Transformations
Another implementation is to use a linked list to manage the free memory address.

Freed address is inserted into the head of the list, and requires one memory write to
that address to update the link to the head pointer.

free(addr)
RAM[addr]<= head
head<=addr

When requested, a free address is allocated from the head of the list, which requires a
memory read to update the head pointer.

alloc()
head′ <= head
head<=RAM[head]

return(head′)

If an allocation and a free request occur in the same cycle, then the freed address can
be used immediately to satisfy the allocation request, and the linked list remains
unchanged.

13

FIFO Transformations

When a portion of a thread
is inactive, i.e it is not
being used, it may
sometimes make sense to
store it in the RAM.

The FIFO transformations,
just like the route
transformations, do not
change the thread state.

FIFO

Inactive
thread

Active thread state

Inactive thread state

14

Flow Control and Scheduling
In general, some threads may attempt to use the same resources
at the same time, causing deadlock, thus some sort of
flow-control is necessary.

One adequate approach is to use a simple control mechanism
involving a valid bit and pause signal.

The valid bit defines whether the signal carries some valid data or
not.
When a transformation such as merge cannot accept a thread, the
pause signal is asserted.

There is no particular format to implement scheduling policies
in the computational model. Scheduling policies depends on
the system designer and also the components available.

Scheduling policies for the Fibonacci program are discussed later.

15

Examples of Transformations

Call-Return Block

Non-Blocking Static Priority Router

Send-Receive Block

16

Call-Return Block (Call Only)Call-Return Block (Call Only)

we

SRAM

di do

addr

call_ data

call_ output_ address

Head

call_output_ address <= head
addr <= head
di <= call_data
head<= do

17

Call-Return Block (Return Only)

addr<= return_ input_address
return_data<= do
di<=head
head<= return_ input_address

we

SRAM

di do

addrreturn_ input_ address

return_ data

head

18

Call-Return Block
(Both Call and Return)

addr<= return_ input_address
return_ data<= do
di <= call_data
call_output_address <=

return_input_address

we

SRAM

di do

addr
return_ input_address

call_data

return_ data

call_output_address

19

Call-Return Block

Call output address

0
Din

mux

Addrin
mux

Callout
mux

Headin
mux

Head

we

SRAM

di do

addrReturn input address

Call data

Return Data

Head out

Head in

1

0

1

0

1

1 0

20

Scheduling Policies
Deadlocks are caused when more than one thread compete for
the use of a transformation. Prudent use of FIFO and good
capacity planning can be used to avoid deadlock.

Round Robin strategy: fairness

Blocking Static Priority Routers: only one thread is given
priority and the other thread has to wait for the higher priority
thread to complete.

Non-Blocking Static Priority Router: higher priority thread is
passed to the next transformation and the lower priority
thread is placed in a FIFO

21

Non-Blocking Static Priority Router
VHDL Pseudo Code

case select is
when "000" =>output<=(others=>'0');
when "001" =>output<= FIFOOUT;
when "010" =>output<= input2;
when "011" =>output<= input2;
when "100" =>output<= input1;
when "101" =>output<= input1;
when "110" =>output<= input1;

FIFOIN<=input2;
when "111" =>output<= input1;

FIFOIN<=input2;
when others=>NULL;

end case;

FIFOFIFO

ROUTER

select

Input 1 Input 2

Fifoout

Fifoin

Output

n
n

n

n

n

Highest Priority

Lowest Priority

22

Example of Dual Transformations:
Send-Receive Block

Send-Receive module for interprocess communication allows threads to
communicate among themselves without sharing data.
With indirect communication, the messages are sent to and received from
mailboxes.
Each mailbox has a unique identification.
The Send and Receive primitive are defined as follows:

Send (A, message) – Send a message to mailbox A
message=Receive (A) – Receive a message from mailbox A

When there is a message in the mailbox and a sender tries to send a
new message to that mailbox then the old message is overwritten with
the new one.
When a receiver a tries to access a mailbox and there is no message for
it then that thread blocks and waits for the message.

23

Status Bits

00 – Empty
01 – Message
10 – X
11 - Thread

message/thread
status bits

RAM

24

Send-Receive Block (Send Only)

send(s.msg, s.addr)
if (M[s.addr].status == empty)

then M[s.addr] <= s.msg
M[s.addr].status <= msg

else if (M[s.addr].status == thread)
then r2_o.msg <= s.msg
r2_o.data<= M[s.addr].data
M[s.addr].status <= empty

else ERROR

we

SRAM
di

do

addr

1

0

LSB

empty

msg

s.addr

25

Send-Receive Block (Receive Only)
receive(r.thread, r.addr)
if (M[r.addr].status == empty) then

M[r.addr] <= r.thread
M[r.addr].status <= thread

else if (M[r.addr].status == msg)
then

r1_o.msg<= M[r.addr].msg
M[r.addr].status <= empty

else ERROR

we

SRAM
di

do

addr

1

0

LSB

empty

thread

r.addr

r1_o.msg

26

Send-Receive Block (Both Send and
Receive)

send(s.msg, s.addr), receive(r.thread, r.addr)
if (s.addr == r.addr) then

r1_o.msg <= s.msg
r1_o.data<= r.thread

27

Send-Receive Block

0 mux

we

SRAM

addr
do

di

1

1

0

s.addr

r.addr1

0

empty

msg

1

0

empty

thread

mux

mux

mux

Model of Computation Fibonacci

28

{(X.11),3}

Cycle # 1

Model of Computation Fibonacci

29

{(X.11),3,0}

Cycle # 2

Model of Computation Fibonacci

30

{(X.11),3}

Cycle # 3

Model of Computation Fibonacci

31

{(X.11),3}

{(X.11),3,0}

Cycle # 4

Model of Computation Fibonacci

32

(X.11,3,0){3,(0)}

Cycle # 5

Model of Computation Fibonacci

33

(2,0} {(X.11),1,0}

Cycle # 6

Model of Computation Fibonacci

34

{2,0} {(X.11),1,0}

{(0.01),2}

{(0.10),1}

Cycle # 7

Model of Computation Fibonacci

35

{(0.01),2,1}

Cycle # 8

Model of Computation Fibonacci

36

{(0.01),1}

{(0.10),1}

Cycle # 9

Model of Computation Fibonacci

37

{0,1}

{(0.01),1}

{(0.10),1}

Cycle # 10

Model of Computation Fibonacci

38

(0.10,1)

{0,1}

{1}

{(X.11,1,0}

Cycle # 11

Model of Computation Fibonacci

39

{(X.11),0,1,1}

Cycle # 12
(1)

Model of Computation Fibonacci

40{(11),0,1,1}

Cycle # 13

{(X.11),1,1)

Model of Computation Fibonacci

41

{(X.11),2}

Cycle # 14

Model of Computation Fibonacci {2}

42

{(X.11),2}

Cycle # 15

43

Fibonacci Results

Observations:

The number of cycles
taken to obtain the
fibonacci of a number is
dependent on the number
of threads.

Input Input Cycle
Number

Output Output
Cycle

Number

8 2 21 103

1,2 2,3 1,1 3,4

1,3,5 2,3,4 1,2,5 3,26,41

1,2,4 2,3,4 1,1,3 3,4,29

1,2,5,6 2,3,4,5 1,1,5,8 3,4,61,63

1,2,3,4,5 2,3,4,5,6 1,1,2,3,5 3,4,25,36,50

1,2,3,4,5,7 2,3,4,5,6,7 1,1,2,3,5,13 3,4,30,55,90
,124

Simulation Results

44

Fibonacci Results
Input Threads Calls Mailboxes Cycles

1 1 0 0 3

2 1 0 0 3

3 3 2 1 15

4 5 4 2 25

5 9 8 4 36

6 15 14 7 48

7 25 24 12 75

8 41 40 20 103

45

Fibonacci Results
Synthesis Report Summary

Device utilization summary
Selected Device: 2vp20ff1152-7

Number of Slices: 1088 out of 9280 11%
Number of Slice Flip Flops: 346 out of 18560 1%
Number of 4 input LUTs: 1762 out of 18560 9%
Number of bonded IOBs: 12 out of 564 2%
Number of GCLKs: 2 out of 16 12%

46

Future Work
BlockRAM instead of Distributed SelectRAM

The programs were limited to input sizes that were small.
Increase in the input size would increase the number of
resources used

The next step to improve this computational model will be to
implement pointers to functions and to include memory
management capabilities.

Integrating this work with hybrid threads

47

Features

Fully recursive

High-level Concurrency, allows multiple threads

Implements complex constructs such as call-return
subroutine and message passing

Utilizes modest resources

48

Conclusion

There is now a computational model that allows
reconfigurable logic to provide an excellent base for the
design and implementation of various complex algorithms
such as genetic algorithms in hardware.

This computational model will help the system designers
to bridge the gap between hardware and software.

49

Thank You

