
1

An Architecture for Logging Text and Searching
Chat Messages

Master’s Thesis Defense
Rajan Vijayaraghavan

04.28.2003

Committee:
Dr. Susan Gauch (Chair)

Dr. Arvin Agah
Dr. Joseph Evans

I T T C

2

Organization

Motivation
Objectives
Architecture
Testing
Evaluation
Future Work

3

Motivation

Instant Messaging
Chat Rooms
Instant Messengers

Growing Popularity
People of nearly different age groups participate
All conceivable topics discussed

Reach of Instant Messenger Services
Corporate users
Home users
US Marines

4

Motivation (cont’d)

So what is the problem ?
Parental Controls
Need for message archiving
Search Feature
Scalability Issues

5

Related Works

Chat Track Project

Commercial Systems (Archiving capability)
Iambigbrother (Keyword search)
Net Nanny
Cyber-Scoop
Desktop Snooper
I-Spy Now

6

Objective

To create a system that can log text from Microsoft MSN
Messenger

Index the text frequently

Support variety of queries

7

Architecture

Message Logging system for MSN Messenger
Indexing System
Retrieval System

Logging
System Files Indexing

Program

Inverted IndexRetrieval
System

8

Message Logging System

Stand Alone Application
Actions

Identify new/existing conversation window
Check for new message
Log both incoming and outgoing messages
Log the sign-in name of the speaker of the message
Keep track of entering/leaving users of a conversation window
Log administrative messages
Detect Window Closing

9

Message Logging System (cont’d)

Conversation window monitoring based on Window Handles
Each window will have a unique window handle
Any MSN messenger window will have “ – Instant Message” or
“ – Conversation “ in the title bar

10

Message Logging System (cont’d)

Logs messages approximately every 1 second
Writes message file, speaker id file and listener id file
Adding messages is an incremental process

If (current message length > previous message length)
If Administrative Message

Log the event;
else if User Message

Log Message, Speaker Id, Listener Id(s), Add File name to “to be indexed list”;
else

continue;

Monitors administrative messages
Logs them as said by user ‘none’
This helps in playing back the conversation as it happened

11

Message Logging System (cont’d)

Example.,
Assume Window Handle 41157726; date 04.26.2003; time 15:17 PM

12

Message Logging System (cont’d)

Message File : session000041157726/2003/04/26/151754866.mesg
Speaker Id File : session000041157726/2003/04/26/151754866.uid
Listener Id File :

session000041157726/2003/04/26/151754866.receiver

File Contents:
Message File: “there's a concept that works 20 million other white rappers emerge but
no matter how many fish in the sea it'd be so empty without me”
Speaker Id File: “rharishnandan”
Listener Id File : “rharishnandan”
File to Index list: session000041157726 2003 04 26 151754866

13

Message Logging System (cont’d)

Current system monitors 100 conversation windows
Practical number might be around 10 conversation windows

Calls the indexing program periodically
If (Files to Index)

Call Indexer;
else

continue;

14

Indexing System

Indexing
Creation of Inverted Index from the raw files.

- Dictionary File
- Contains one record for each unique word in the collection

Words, number of documents in which the word is present, total frequency of the
word in the collection, inverse document frequency, pointer to postings record

- Postings File
- Each record Information contains information about the word occurrence in a

document.
Frequency of the word in a document, weight of the word in a document, document id

for the document, pointer to next postings record.

Example
Word ‘prozac’ occurs in 100 documents and total number of documents 200 and occurs 120 times

in total.
One dictionary record { ‘prozac’, 100,120, idf = log2(200/100), pointer to postings }
Postings File { 100 postings record (100 documents),

weight in document j = idfi * frequency of ‘prozac’ in document j;
document id = unique for a document;
pointer to next postings record; }

15

Indexing System (cont’d)

Indexing
Batch Indexing
Incremental Indexing

Creates Two sets of Inverted Index
One for Keyword (kyDictionary, kyPostings and kyDocuments)
One for Speaker Id (spDictionary, spPostings and spDocuments)

16

Retrieve Application

17

Scenario 1: “keyword” query

18

Scenario 2: “key word + user name” query

19

Scenario 3: “key word + date query” specifying
“from” option

20

Scenario 4: “key word + date query” specifying
“to” option

21

Scenario 5: “key word + date query” specifying
“from” & “to” options

22

Scenario 6: “key word + Speaker Id + date sorted”

23

Scenario 7: “key word + date + Speaker id sorted”

24

Scenario 8: “key word + Speaker id sorted”

25

Scenario 9: “key word + date sorted”

26

Scenario 10: “key word + two results per page
option”

27

Scenario 11: “key word + 4 lines before/after
match”

28

Scenario 12: “key word + show who listened”

29

Summary of queries supported

Keywords
Keyword + Speaker Id
Keyword + Date based filtering of results
Keyword + Speaker Id + Date based filtering of results
Keyword + Speaker Id + Date based sorting of results
Keyword + Date based Filtering + sorting results by speaker id
Keyword + sorting results based on Speaker id
Keyword + sorting results based on dates
Varying number of results per page
Showing text around the exact document match
Showing who (all) listened

30

Latest Additions

Queries based on Dates, Returns session ids
Queries based on Listener Id, Returns session ids
Displaying complete session as it happened

31

Screen Shot Showing the complete session

32

Scalability Issues

Issues
Number of Files

- Assuming a user chats 1 hour a day, creating 12 message files/minute
In a day, 720 message files. (Total files = 2,160)
In a month, 21,600 message files. (Total files = 64,800)
In a year, the total will be 259,200 files (Total files = 777,600)
Windows allows up 232-1 Files = 4,294,967,295 files.

Disk usage for files
- Assuming each message file with 150 Bytes of data

39 MB of Message data + 7 MB for storing user information per year

Size of inverted index
Time for retrieve

33

Key Word Inverted Index File Growth

Keyword Inverted Index File Growth

0

2000

4000

6000

8000

10000

12000

10 100 1000 5000 10000 25000 50000

Num ber of Files

Fi
le

 S
iz

e
(in

 K
B

)

Keyw ord Dictionary

Keyw ord Postings

Keyw ord Documents

34

Speaker Id Inverted Index File Growth

Speaker Id Inverted Index File Growth

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 100 1000 5000 10000 25000 50000

Number of Files

Fi
le

 S
iz

e
(in

 K
B

)

Speaker Id Dictionary

Speaker Id Pos tings

Speaker Id Docum ents

35

Number of Files Vs Indexing Time

Number of Files Vs Indexing Time

1 4 16
74

142

446

769

0

100

200

300

400

500

600

700

800

900

10 100 1000 5000 10000 25000 50000

Number of Files

Ti
m

e
(in

 S
ec

on
ds

)

Indexing time (in Seconds)

36

Number of Files Vs Retrieval Time

Number of Files Vs Retrieve Time

0.11 0.12 0.13 0.19

0.42

1.703

2.143

0

0.5

1

1.5

2

2.5

10 100 1000 5000 10000 25000 50000

Number of Files

Re
tri

ev
e

Ti
m

e
(in

 S
ec

on
ds

)

Retrieve Time (in Seconds)

37

System Features

Environments
- Windows NT
- Windows 2000 Professional

MSN Messenger Versions
- 5.0 and earlier

38

Future work

XML
Able to be used by chat servers open architecture

Building User Profiles

Topic Detection and Tracking

Segmentation

Text Summarization

39

Conclusions

An architecture for logging text, index and retrieve information in
an efficient way

First academic system to do research with chat data

Shares code with server-based version

40

Special Acknowledgements

The 5 Ss

41

Questions ??

