
Development and Per formance Character ization of Enhanced

AODV Routing for CBR and TCP Traffic

by

PRADEEPKUMAR MANI

Bachelor of Engineering, Electrical and Electronics Engineering

Anna University

Chennai, India, 2001.

Submitted to the Department of Electrical Engineering and Computer

Science and the Faculty of the Graduate School of the University of Kansas

in partial fulfillment of the requirements for the degree of

Master of Science

Thesis Committee:

 Dr . David W. Petr : Chairperson

Dr . Joseph B. Evans

Dr . Victor S. Frost

 Date Submitted: ________________

 ii

Dedicated to

my parents, my brother and my fiancée

 iii

Abstract

This thesis aims to modify an existing mobile ad-hoc network (MANET) reactive routing

protocol (AODV) into a hybrid protocol by introducing adaptive, proactive behavior to

improve its performance. Under our proposed scheme, route maintenance decisions are

based on predicted values of 'link-breakage times' (when the next-hop node will move out

of transmission range) obtained from a series of position/velocity estimates of the next-

hop node. These estimates are based on the power level of the received MAC frames. If a

link is about to break, proactive discovery of new routes to all destinations using the next-

hop node depends on the history of traffic to that destination. We simulated (using the

ns2 simulator) numerous test conditions using CBR and TCP traffic and compared

performance metrics for the original and modified versions of the protocol. We were

able to achieve (1) a significant reduction in mean packet latency for CBR traffic and (2)

a reduction in control overhead in TCP traffic, while incurring other small penalties for

both types of traffic. Also, a comparison of some performance metrics for TCP and CBR

traffic led us to conclude that slight modifications in TCP can lead to its improved

performance over MANETs.

 iv

Acknowledgements

First of all, I would like to thank my advisor and my committee chair, Dr. David W. Petr,

for his invaluable guidance and timely input provided throughout the duration of this

thesis work. I am indebted to him for funding me throughout my graduate studies and for

allowing me to choose the area of research for my thesis work. His constant motivation

and support has helped me perform better not only in research but also in my graduate

coursework. His excellent teaching has equipped me with sound fundamentals in

communication network analysis and integrated telecommunication networks. I have

learnt a lot about simulation-based research by working under him. I am very grateful to

him for all the time he has had to spare for the numerous discussions we have had

regarding my future plans.

I would like to thank Dr. Evans for serving in my thesis committee and for providing me

with the opportunity to work with MANETs in my directed graduate reading course. This

course provided me exposure to research in MANETs, which helped me decide on my

area of research. I would also like to thank Dr. Frost for serving in my thesis committee. I

would also like express my gratitude to all the technical and administrative staff at ITTC

for their support.

I would like to thank all my friends with whom I have had a wonderful time in the past

and in the present. A special thanks to my parents, my brother and my fiancée for being

there for me and providing me with all the encouragement I needed. Finally, I would like

to thank GOD for all the blessings without which none of this would have been possible.

 v

Table of Contents

Chapter 1 Introduction... 1

1.1 MOTIVATION.. 2
1.2 RESEARCH OVERVIEW ... 2
1.3 ORGANIZATION OF THESIS... 4

Chapter 2 Background... 5

2.1 INTRODUCTION .. 5
2.2 ROUTING PROTOCOLS FOR MANETS .. 6

2.2.1 Table Driven or Proactive Protocols...7
2.2.1.1 Destination Sequenced Distance Vector Routing ...7

2.2.2 On-Demand or Reactive Protocols..9
2.2.2.1 Dynamic Source Routing..10
2.2.2.2 Ad-hoc On-Demand Distance Vector Routing (AODV) ..13
2.2.2.3 Signal Stability-Based Adaptive Routing (SSA)...15

2.3 DISCUSSION OF TABLE-DRIVEN VS. ON-DEMAND ROUTING PROTOCOLS................ 17

Chapter 3 Link Lifetime Prediction Algorithm................. 19

3.1 INTRODUCTION .. 19
3.2 RADIO PROPAGATION MODEL.. 19
3.3 PREDICTION ALGORITHMS.. 21

3.3.1 Details of Prediction algorithm...22
3.4 DISCUSSION ... 25

Chapter 4 Protocol Design and Implementation.............. 27

4.1 PROTOCOL CHOICE... 27
4.1.1 Hybrid Protocol ...27

4.2 PROTOCOL IMPLEMENTATION DETAILS ... 28
4.2.1 MAC layer Implementation..28
4.2.2 AODV layer Implementation..30

4.2.2.1 Active Routes in AODV ...30
4.2.2.2 Proactive Route Discovery..32
4.2.2.3 Replacing a ‘broken’ route..32

4.3 DISCUSSION ... 33

Chapter 5 Evaluation... 35

5.1 INTRODUCTION .. 35
5.2 SIMULATOR CHOICE .. 35

5.2.1 NS-2 basics...36
5.3 PERFORMANCE METRICS ... 37
5.4 SIMULATION DETAILS.. 38

5.4.1 Simulations with UDP traffic...39
5.4.1.1 Simulations with Random Waypoint Model ...39

5.4.1.1.1 Simulation Results...41
5.4.1.2 Simulation parameters for Manhattan Grid Model: ..53

5.4.1.2.1 Simulation Results...55

 vi

5.4.2 Simulations with TCP traffic..61
5.4.2.1 Simulations with Random Waypoint Model ...62

5.4.2.1.1 Simulation Results...62
5.4.2.2 Simulation parameters for Manhattan Grid Model: ..70

5.4.2.2.1 Simulation Results...70
5.4.3 Comparison of CBR and TCP results..77

5.5 CONCLUSIONS.. 80

Chapter 6 Conclusions and Future work 81

6.1 SUMMARY OF WORK DONE... 81
6.2 CONCLUSIONS.. 81
6.3 FUTURE WORK .. 82

References.. 84

Appendix... 87

 vii

L ist of Figures

FIGURE 2-1 A MANET OF 3 NODES..5

FIGURE 2.2 CLASSIFICATION OF MANET ROUTING PROTOCOLS...7

FIGURE 2.3 ROUTE DISCOVERY PROCESS IN DSR...11

FIGURE 3.1 SCHEMATIC FOR SIMPLE PREDICTION MODEL USING GPS..22

FIGURE 4.1 INTERACTION BETWEEN EAODV AND AODV ROUTE MAINTENANCE34

FIGURE 5.4.1.1 E2E VS MAX VELOCITY (RW MODEL, CBR TRAFFIC)..43

FIGURE 5.4.1.2 E2E VS PAUSE TIME (RW MODEL, CBR TRAFFIC)..43

FIGURE 5.4.1.3 E2E VS MEAN PACKET INTER-ARRIVAL TIME (RW MODEL, CBR TRAFFIC)44

FIGURE 5.4.1.4 P.D.R VS MAX VELOCITY (RW MODEL, CBR TRAFFIC)46

FIGURE 5.4.1.5 P.D.R VS PAUSE TIME (RW MODEL, CBR TRAFFIC) ...47

FIGURE 5.4.1.6 P.D.R VS MEAN PACKET INTER-ARRIVAL TIME (RW MODEL, CBR TRAFFIC)......47

FIGURE 5.4.1.7 C.P.D VS MAX VELOCITY (RW MODEL, CBR TRAFFIC)49

FIGURE 5.4.1.8 C.P.D VS PAUSE TIME (RW MODEL, CBR TRAFFIC) ...49

FIGURE 5.4.1.9 C.P.D VS MEAN PACKET INTER-ARRIVAL TIME (RW MODEL, CBR TRAFFIC)......50

FIGURE 5.4.1.10 HOPS VS MAX VELOCITY (RW MODEL, CBR TRAFFIC)52

FIGURE 5.4.1.12 HOPS VS MEAN PACKET INTER-ARRIVAL TIME (RW MODEL, CBR TRAFFIC)52

FIGURE 5.4.1.13 E2E VS TURN PROBABILITY (MG MODEL, CBR TRAFFIC)56

FIGURE 5.4.1.14 E2E VS PAUSE PROBABILITY (MG MODEL, CBR TRAFFIC)57

FIGURE 5.4.1.15 P.D.R VS TURN PROBABILITY (MG MODEL, CBR TRAFFIC)58

FIGURE 5.4.1.16 P.D.R VS PAUSE PROBABILITY (MG MODEL, CBR TRAFFIC)...............................59

FIGURE 5.4.1.17 C.P.D VS TURN PROBABILITY (MG MODEL, CBR TRAFFIC)59

FIGURE 5.4.1.18 C.P.D VS PAUSE PROBABILITY (MG MODEL, CBR TRAFFIC)...............................60

FIGURE 5.4.1.19 HOPS VS TURN PROBABILITY (MG MODEL, CBR TRAFFIC)60

 viii

FIGURE 5.4.1.20 HOPS VS PAUSE PROBABILITY (MG MODEL, CBR TRAFFIC)...............................61

FIGURE 5.4.2.1 C.P.D VS MAX VELOCITY (RW MODEL, TCP TRAFFIC) ..65

FIGURE 5.4.2.2 C.P.D VS PAUSE TIME (RW MODEL, TCP TRAFFIC) ..66

FIGURE 5.4.2.3 THROUGHPUT VS MAX VELOCITY (RW MODEL, TCP TRAFFIC)66

FIGURE 5.4.2.4 THROUGHPUT VS PAUSE TIME (RW MODEL, TCP TRAFFIC)67

FIGURE 5.4.2.5 E2E VS MAX VELOCITY (RW MODEL, TCP TRAFFIC) ..67

FIGURE 5.4.2.6 E2E VS PAUSE TIME (RW MODEL, TCP TRAFFIC)...68

FIGURE 5.4.2.7 HOPS VS MAX VELOCITY (RW MODEL, TCP TRAFFIC) ..68

FIGURE 5.4.2.8 HOPS VS PAUSE TIME (RW MODEL, TCP TRAFFIC) ..69

FIGURE 5.4.2.9 C.P.D VS TURN PROBABILITY (MG MODEL, TCP TRAFFIC)...................................72

FIGURE 5.4.2.10 C.P.D VS PAUSE PROBABILITY (MG MODEL, TCP TRAFFIC)73

FIGURE 5.4.2.11 THROUGHPUT VS TURN PROBABILITY (MG MODEL, TCP TRAFFIC)73

FIGURE 5.4.2.12 THROUGHPUT VS PAUSE PROBABILITY (MG MODEL, TCP TRAFFIC)74

FIGURE 5.4.2.13 E2E VS TURN PROBABILITY (MG MODEL, TCP TRAFFIC)74

FIGURE 5.4.2.14 E2E VS PAUSE PROBABILITY (MG MODEL, TCP TRAFFIC)..................................75

FIGURE 5.4.2.15 HOPS VS TURN PROBABILITY (MG MODEL, TCP TRAFFIC).................................75

FIGURE 5.4.2.16 HOPS VS PAUSE PROBABILITY (MG MODEL, TCP TRAFFIC)76

FIGURE 5.4.3.1 NUMBER OF TCP PACKETS VS TIME...79

FIGURE 5.4.3.2 NUMBER OF CBR PACKETS VS TIME ..79

 ix

List of Tables

TABLE 2.1 ON-DEMAND VS. TABLE-DRIVEN ROUTING PROTOCOLS..18

TABLE 5.4.1.1 STATISTICAL PARAMETER VALUES FOR VARIOUS RW MOBILITY PATTERNS.......41

TABLE 5.4.1.2 STATISTICAL PARAMETER VALUES FOR VARIOUS MG MOBILITY PATTERNS.......55

 1

Chapter 1 Introduction

Recent advances in wireless communication technologies and availability of less

expensive computer processing power have led to a surge in interest in mobile computing

and its applications. A "mobile ad hoc network" (MANET) is an autonomous system of

mobile routers (and associated hosts) connected by wireless links - the union of which

forms an arbitrary graph. The routers are free to move randomly and organize themselves

arbitrarily; thus, the network’s wireless topology may change rapidly and unpredictably.

Such a network may operate in a standalone fashion, or may be connected to the larger

Internet [1]. Applications of MANETs are aplenty - some examples include military use

in battle fields, where a centralized command center is not only infeasible but also

undesirable; and disaster management scenarios, where communication between various

rescue teams is required in the absence of any existing communication infrastructure.

A key challenge in MANETs is to devise efficient methods to ensure route availability

while incurring minimal control overhead. MANET routing protocols are of two kinds:

proactive (table-driven) and reactive (on-demand). Proactive protocols always have

routes to any destination in the network, while reactive protocols need to discover routes

as needed. Proactive protocols suffer from excessive control overhead associated with

maintaining routes to destinations even when not required, while reactive protocols

experience higher end-to-end packet delays when compared to proactive protocols.

Examples of proactive protocols are Destination Sequenced Distance Vector (DSDV) [2]

and Optimized Link State Routing (OLSR) [3] while some examples of reactive protocols

include Dynamic Source Routing (DSR) [4], Ad hoc On-demand Distance Vector

 2

(AODV) routing [5] etc. A third class of protocols, Hybrid Protocols, imbibes the

qualities of both proactive and reactive protocols. One example of a hybrid protocol is the

Zone Routing Protocol (ZRP) [6].

1.1 Motivation

Ideally, a routing protocol that produces routing overhead comparable to a reactive

protocol and offers end-to-end packet delays comparable to a proactive protocol is

desired. End-to-end packet latency is an important consideration in real time applications

like voice, video etc, which are time critical. In the near future, one can expect a

significant amount of multimedia traffic in ad hoc networks. Conventional ad hoc

protocols are not capable of handling real time traffic. The work described here is an

attempt to design a routing protocol that offers lesser end-to-end packet delays for real-

time traffic and lesser control overhead for TCP traffic. This can only be achieved by

tapping link state information, which is generally ignored in conventional ad hoc routing

protocols. Existing hybrid protocols do not make use of link state information, and hence

do not offer a great performance advantage over existing reactive or proactive protocols;

each protocol performs better in certain scenarios.

1.2 Research Overview

The scope of this research is to provide extensions to an existing reactive ad hoc routing

protocol (AODV) in the form of cross-layer interaction capabilities along with a

prediction algorithm to predict link breakage times. Further, the reactive protocol is

 3

modified into an adaptive, hybrid protocol by suitably modifying the route maintenance

procedure in AODV to introduce selective proactivity. We call the resulting protocol

Enhanced AODV (EAODV). The following presents a summary of the total work done:

1. Developed a prediction algorithm to predict link breakage time from signal

strength information extracted from a packet received on that particular logical

link

2. At the MAC layer, introduced a table of link-to-neighbor breakage times of

logical links associated with the particular mobile node, and provided an interface

for upper layers to access this table

3. Provided methods to assess the state of any link as ACTIVE or IDLE

4. At the AODV layer, provided methods to assess the state of each route as

ACTIVE or IDLE

5. Through the interface provided at the MAC layer, used the available link state

information to make intelligent, proactive AODV route maintenance decisions for

ACTIVE routes only.

6. Implemented the above enhancements to AODV and 802.11 MAC in the ns-2

simulator and ran simulations for thorough performance evaluation studies to

compare AODV and Enhanced AODV (EAODV)

7. For CBR traffic, achieved a significant reduction in mean end-to-end packet

latency at a small cost in the form of a marginal increase in control overhead and

a marginal decrease in packet delivery ratio

 4

8. For TCP traffic, achieved a significant reduction in percentage routing control

overhead at a small cost in the form of a marginal reduction in TCP throughput.

9. Realized the need for modifications to TCP to increase TCP throughput in ad hoc

networks.

1.3 Organization of Thesis

This thesis is organized as follows: Chapter (2) is an introduction to mobile ad hoc

networks and some of the existing reactive, proactive and hybrid protocols. Some results

from published works are discussed as well. Chapter (3) presents the prediction algorithm

in detail. Chapter (4) gives a brief introduction to the network simulator (ns-2) and deals

with implementation details of the prediction algorithm and cross-layer capabilities.

Chapter (5) details the performance metrics chosen, simulation scenarios and results of

simulations. Chapter (6) discusses conclusions drawn from simulation experiments and

scope for future work.

 5

Chapter 2 Background

2.1 Introduction

A Mobile Ad Hoc Network generally does not have any infrastructure and each mobile

host also acts as a router. Communication between various hosts takes place through

wireless links. Direct communication can take place between hosts that are within the

communication range of the antennas of the respective hosts; otherwise, communication

is achieved through multi-hop routing. Figure 2.1 represents a MANET of 3 nodes. Node

2 can communicate directly with Node 1 and Node 3. But any communication between

Nodes 1 and 3 must be routed through Node 2.

 Figure 2-1 A Manet of 3 Nodes

A major part of this chapter is based on [7]. The following are the salient features of

MANETs:

• Dynamic Topologies: All nodes in the MANET generally move with varying

velocities, and hence the network topology changes dynamically. Frequent link

breaks are quite common. New nodes may join the network or existing nodes can

leave the network. The dynamic changes in the network topology pose the biggest

challenge to routing in Ad Hoc Networks.

 1 2 3

 6

• Asymmetrical Communication: Each node in the Ad Hoc Network may have

antennas of different characteristics, and hence symmetrical, bi-directional

communication over the same link is not always possible. In some cases, only

unidirectional communication is possible.

• Bandwidth limitations: Since the nodes communicate via wireless links, the

realized throughput in these networks when compared to a wired network of

similar size is quite small. The relatively lower capacity of the wireless links does

not facilitate transmission of delay-constrained traffic (real-time or multimedia

traffic). Moreover, the wireless links are quite error-prone, which may further

degrade throughput due to upper layer retransmissions, etc.

• Energy limitations: The nodes in the MANET are generally battery operated.

Hence, energy conservation techniques and energy-aware routing in MANETs

become necessary.

Existing routing protocols in wired networks (both link state and distance vector) are not

suitable for MANETs. These routing protocols distribute topological information across

the network to update other nodes of topological changes. This mechanism is not suitable

in MANETs, because there are frequent topological changes as the nodes move randomly

causing frequent link breakages.

2.2 Routing Protocols for MANETs

The existing routing protocols in MANETs can be classified into two categories: (1)

Table-driven routing protocols, and (2) On-demand routing protocols. Fig 2.2 shows the

classification along with some examples of existing MANET protocols.

 7

Figure 2.2 Classification of MANET Routing Protocols

2.2.1 Table Dr iven or Proactive Protocols

Table-driven protocols (proactive protocols) generate frequent updates of network

topology information to maintain a consistent view of the network at all nodes. These

nodes are required to maintain tables containing topology information, so that any node

wishing to communicate with any other node may do so by computing a route to the

destination node from the table. It is fairly expensive in terms of table size and control

overhead to maintain a table of topological information of all nodes. The chief

disadvantage of this method is that the nodes may be maintaining topological information

about nodes with which it may never communicate.

2.2.1.1 Destination Sequenced Distance Vector Routing

Destination-Sequenced Distance-Vector (DSDV) Routing is based on the classical

Bellman-Ford routing scheme. DSDV, unlike traditional distance vector protocols,

guarantees loop-freedom by tagging each route table entry with a sequence number to

order the routing information. Each node maintains a routing table with all available

 8

destinations along with information like next hop, the number of hops to reach to the

destination, sequence number of the destination originated by the destination node, etc.

DSDV uses both periodic and triggered routing updates to maintain table consistency.

Triggered routing updates are used when network topology changes are detected , so that

routing information is propagated as quickly as possible. Routing table updates can be of

two types - "full dump" and “ incremental” . “Full dump” packets carry all available

routing information and may require multiple network protocol data units (NPDU);

“ incremental” packets carry only information changed since the last full dump and should

fit in one NPDU in order to decrease the amount of traffic generated.

Mobile nodes cause broken links when they move from place to place. When a link to the

next hop is broken, any route through that next hop is immediately assigned an infinity

metric and an updated sequence number. This is the only situation when any mobile node

other than the destination node assigns the sequence number. Sequence numbers assigned

by the origination nodes are even numbers, and sequence numbers assigned to indicate

infinity metrics are odd numbers. When a node receives an infinity metric, and it has an

equal or later sequence number with a finite metric, it triggers a route update broadcast,

and the route with infinity metric will be quickly replaced by the new route. When a

mobile node receives a new route update packet, it compares it to the information already

available in the table and the table is updated based on the following criteria:

• If the received sequence number is greater, then the information in the table is

replaced with the information in the update packet

 9

• Otherwise, the table is updated if the sequence numbers are the same and the

metric in the update packet is better.

The metrics for newly received routes are each incremented by one hop since incoming

packets will require one more hop to reach the destination. In an environment where

many independent nodes transmit routing tables asynchronously, some fluctuations could

develop. DSDV also uses settling time to prevent fluctuations of routing table updates.

The settling time is used to decide how long to wait before advertising new routes. The

DSDV protocol guarantees loop-free paths to each destination and detects routes very

close to optimal. It requires nodes to periodically transmit routing update packets. These

update packets are broadcast throughout the network. When the number of nodes in the

network grows, the size of the routing tables and the bandwidth required to update them

also grows, which could cause excessive communication overhead. This overhead is

nearly constant with respect to mobility rate.

2.2.2 On-Demand or Reactive Protocols

Reactive protocols discover routes only as needed. When a node wishes to communicate

with another node, it checks with its existing information for a valid route to the

destination. If one exists, the node uses that route for communication with the destination

node. If not, the source node initiates a route request procedure, to which either the

destination node or one of the intermediate nodes sends a reply back to the source node

with a valid route. A soft state is maintained for each of these routes – if the routes are

not used for some period of time, the routes are considered to be no longer needed and

are removed from the routing table; if a route is used before it expires, then the lifetime of

the route is extended.

 10

2.2.2.1 Dynamic Source Routing

Dynamic Source Routing (DSR), as the name suggests, is based on the concept of source

routing. There are no periodic routing advertisements; instead, routes are dynamically

determined based on cached information or on the result of a route discovery process. In

source routing, the sender of the packet specifies the complete sequence of the nodes that

the packet has to take. The sender explicitly lists this route in the packet’s header,

identifying each forwarding “hop” by the address of the next node to which the packet

must be sent on its way to the destination host. A key advantage of source routing is that

intermediate hops do not need to maintain routing information in order to route the packet

they receive, since the packets themselves already contain all the necessary routing

information.

Unlike conventional routing protocols, the DSR protocol does not periodically transmit

route advertisements, thereby reducing control overhead, particularly during periods

when little or no significant host movement is taking place. The DSR protocol consists of

two mechanisms: Route Discovery and Route Maintenance. When a mobile node wants

to send a packet to some destination, it first consults its route cache for a non-expired

route. If the node does not have such a route, it will initiate route discovery by

broadcasting a route request (RREQ) packet, which contains the addresses of the source

node and the destination, and a unique sequence number “ request id” , which is set by the

source node. Each node in the network maintains a list of (source address, request id) pair

that it has recently received from any host in order to detect duplicate route requests

received.

 11

On receiving a RREQ, a node checks to see if it has already received a request with the

same (source address, request id) pair (duplicate RREQ). In such an event, or if the node

sees its own address already recorded in the request (routing loop), it discards the copy

and does not process it further. Otherwise, it appends its own address to the route record

in the route request packet and re-broadcasts the query to its neighbors. When the request

packet reaches the destination, the destination node then sends a route reply packet to the

source with a copy of the route. If a node can complete the query from its route cache, it

may unicast a route reply (RREP) packet to the source without propagating the query

packet further. Furthermore, any node participating in route discovery can learn routes

from passing data packets and gather this routing information into its route cache. Figure

2.3 (from [7]) is an example of the creation of a route record in DSR.

Figure 2.3 Route Discovery process in DSR

Route Maintenance is used to detect if the network topology has changed such that the

route in the node’s route cache is no longer valid. Each node along the route, when

transmitting the packet to the next hop, is responsible for detecting if its link to the next

hop has broken. Many wireless MAC protocols, such as IEEE 802.11, retransmit each

packet until a link-layer acknowledgement is received, or until a maximum number of

 12

retransmission attempts have been made. Alternatively, DSR may make use of a passive

acknowledgement. When the retransmission and acknowledgement mechanism detects

that the link is broken, the detecting node unicasts a Route Error packet (RERR) to the

source of the packet. Every hop en-route to the source that received or overheard the

RERR removes the broken link from any route caches and truncates all routes that

contain this hop. The source can then attempt to use any other route to the destination that

is already in its route cache, or can invoke Route Discovery again to find a new route.

There are several optimization options for the DSR protocol to reduce the latency and

control message overhead [8]:

• Non-propagating Route Requests: When performing Route Request, nodes first

send a RREQ with the maximum propagation limit (hop limit) set to one,

prohibiting their neighbors from re-broadcasting it.

• Gratuitous Route Replies: If a node overhears a packet that is not destined to it,

but that has its address listed in the list of hops, the node knows that the packet

could bypass the unprocessed hop preceding it in the source route. The node then

sends a gratuitous RREP message to the packet’s source, giving it the shorter

route without these hops.

• Salvaging: When an intermediate node forwarding a packet finds that the next

hop of the packet is broken, it checks its route cache for another route to the same

destination. If a route exists, the node replaces the broken source route on the

packet’s header with the route from its cache and retransmits the packet, and

returns a RERR to the source of the data packet.

 13

• Gratuitous RERR: When a source node receives a RERR message, it will

piggyback this bad link on its next RREQ message. In this way, stale information

in the route caches around this source node will not generate RREP that contain

the same bad link.

The DSR protocol is intended for networks in which the mobile nodes move at a

moderate speed with respect to packet transmission latency. An advantage of DSR over

some on-demand protocols is that DSR does not use periodic routing advertisements,

thereby saving bandwidth and reducing power consumption. On the other hand, as the

network becomes larger, control packets and data packets also become larger because

they need to carry addresses for every node in the path. Also, aggressive use of route

cache and the absence of any mechanism to expire stale routes will cause poor delay and

throughput performance in more stressful situations [9].

2.2.2.2 Ad-hoc On-Demand Distance Vector Routing (AODV)

Ad-hoc On-Demand Distance Vector Routing (AODV) is essentially a combination of

both DSR and DSDV. It borrows the conception of sequence numbers from DSDV, plus

the use of the on-demand mechanism of route discovery and route maintenance from

DSR. It is called a “pure on-demand route acquisition system”; nodes that do not lie on

active paths neither maintain any routing information nor participate in any periodic

routing table exchanges. It is loop-free, self-starting, and scales to a large number of

mobile nodes.

 14

When a source node needs to send a packet to a destination node for which it has no

routing information in its table, the Route Discovery process is initiated. The source node

broadcasts a route request (RREQ) to its neighbors. Each node that forwards the RREQ

packet creates a reverse route for itself back to source node. Every node maintains two

separate counters: a node sequence number and a broadcast id. Broadcast id is

incremented when the source issues a new RREQ. Together with the source's address, it

uniquely identifies a RREQ. In addition to the source node's IP address, current sequence

number and broadcast ID, the RREQ also contains the most recent sequence number for

the destination which the source node is aware of.

A node receiving the RREQ may unicast a route reply (RREP) to the source if it is either

the destination or if it has a route to the destination with corresponding sequence number

greater than or equal to that contained in the RREQ. Otherwise, it re-broadcasts the

RREQ. Each node that participates in forwarding a RREP packet back to the source of

RREQ creates a forward route to the source node. Each node remembers only the next

hop unlike source routing which keeps track of the entire route. Nodes keep track of the

RREQ’s source IP address and broadcast ID. If they receive a RREQ packet that they

have already processed, they discard the RREQ and do not forward it.

As the RREP propagates back to the source, nodes set up forward pointers to the

destination. Once the source node receives the RREP, it may begin to forward data

packets to the destination. At any time a node receives a RREP (for any existing

destination in its routing table) containing a greater sequence number or the same

 15

sequence number with a smaller hop count, it may update its routing information for that

destination and begin using the better route.

Routes are maintained as follows: If an upstream node in an active route senses a break in

the active route, it can reinitiate the route discovery procedure to establish a new route to

the destination (local route repair) or it can propagate an unsolicited RERR with a fresh

sequence number and infinity hop count to all active upstream neighbors. Those nodes

subsequently relay that message to their active neighbors. This process continues until all

active source nodes are notified. Upon receiving notification of a broken link, source

nodes can restart the discovery process if they still require the destination. Link failure

can be detected by using Hello messages or by using link-layer acknowledgements

(LLACKS).

The main benefit of AODV over DSR is that the source route does not need to be

included with each packet, which results in a reduction of routing protocol overhead.

Because the RREP is forwarded along the path established by the RREQ, AODV requires

bidirectional links.

2.2.2.3 Signal Stability-Based Adaptive Routing (SSA)

Signal Stability-Based Adaptive Routing [10] performs on-demand route discovery by

selecting longer-lived routes based on signal strength and location. Selecting the most

stable links leads to less route maintenance. Functionally, the SSA protocol consists of

two protocols, the Forwarding Protocol (FP) and the Dynamic Routing Protocol (DRP),

which utilize the extended device driver interface. This interface is responsible for

 16

making available to routing protocols the signal strength information from the device.

DRP maintains the routing table by interacting with the DRP on other mobile nodes. FP

performs the actual routing table lookup to forward a packet onto the next hop. Two

tables are maintained in the SSA protocol: the Signal Stability Table (SST) and the

Routing Table (RT). Every node sends out a link layer beacon to its neighbors once every

time quantum. Each node classifies its neighbors as strongly connected (SC) or weakly

connected (WC) by comparing the received beacon signals strength with a threshold,

which are recorded in the SST. Only SC nodes in the SST have an entry in RT, which

stores destination and next hop pairs for each known route.

When a source wants to send a packet to the destination, if there is no entry for the

destination in the RT, the FP initiates a route search to find a route to the destination by

sending a route search packet. When a node receives the query packet, it propagates the

packet further only if the query packet is received over a strong link and the node has not

seen this query before (to prevent looping). A query packet that is received over a weak

link is dropped. When a query reaches the destination, it contains the address of each

intermediate node. The destination selects the route recorded in the first received query

packet since it probably was received via the shortest path, and then it sends a reply

packet back to the source along the selected route. Each intermediate node along the path

includes the new (destination, next hop) pair in its RT based on the route contained in the

reply packet. If there is no route that consists of strong links, the query packet may never

reach the destination. When the source does not receive a reply after some timeout

 17

period, it must decide whether it wants to find any route that has strong links or wait and

try to find a strong route at a later time.

When a host moves out of range of its neighbors or shuts down, the neighbors will

recognize that the node is not reachable because they no longer receive beacons from that

node. The DRP will modify the SST and RT to reflect the changes. The node detecting

the failure sends an error packet to the source. The source FP will send a message to erase

the invalid route, and will also initiate a new route discovery to find an available route.

The advantage of SSA arises from the buffer zone effect. If an SC link is chosen as part

of a route, it will have to become WC before breaking, therefore the entire route has a

longer life; this in turn reduces the number of route reconstruction required. One of the

drawbacks of SSA is that, unlike in AODV and DSR, intermediate nodes cannot reply to

route requests sent towards the destination. This results in potentially long delays before a

route can be discovered. SSA also results in routes with slightly higher hop counts than

optimal routing because of limiting links to strong links.

2.3 Discussion of Table-Dr iven vs. On-Demand Routing Protocols

As discussed earlier, table-driven routing relies on a routing table update mechanism that

involves the constant propagation of routing information, which incurs substantial

signaling traffic and power consumption. Since both bandwidth and battery power are

scare resources in mobile computers, this becomes a serious limitation. In on-demand

routing, when a route to a new destination is needed, it will have to wait until a route is

discovered, but in table-driven protocols, a route to every node is always available. Table

2.1 [11] lists some basic differences between the two classes of protocols.

 18

Table 2.1 On-demand vs. Table-dr iven routing protocols

Parameters On-demand routing protocols Table-dr iven routing protocols

Availability of routing

information
Available as required Always available

Periodic route updates Not required Required

Dealing with Link

breakage
Use route discovery

Propagate information to neighbors to

maintain consistent routing table

Routing overhead Increases with mobility of nodes
Independent of traffic and mostly

greater than On-demand protocols

Simulation results for some existing ad hoc routing protocols (AODV, DSDV, DSR,

TORA) found in numerous papers [11] [12] [13] have concluded that AODV and DSR

are two ad hoc routing protocols with overall better performance in terms of three

metrics: packet delivery ratio, routing overhead and path optimality. In the situation with

smaller number of nodes and lower load and/or mobility, DSR outperforms AODV;

otherwise, AODV outperforms DSR. Because DSR places a source route header in each

packet, DSR becomes more expensive than AODV in larger network topologies and/or at

higher load except at higher rates of mobility. In short, DSR is well suited to low

mobility, low load scenarios, while AODV is better suited to higher mobility scenarios.

 19

Chapter 3 L ink L ifetime Prediction Algor ithm

3.1 Introduction

Conventional ad hoc routing protocols do not generally make use of any link-state

information that is available, except when using LLACKS to determine whether the link

is broken. Most on-demand protocols refresh their routing cache/tables based on the

frequency of usage by traffic routed by the nodes. It can be intuitively argued that the on-

demand routing protocols can schedule route maintenance procedures with information

on the state of the links (for example, strong link, weak link etc.). If the routing protocol

can sense an impending link breakage in one of links, then it can suitably initiate route

discovery procedures. The benefits are two-fold if the route discovery is proactive: (1)

Packets already in the queue will not be delayed by the route discovery procedure in case

of a link breakage (2) Link breakage can be sensed even without using LLACKS, which

reduces packet delay further in the event of a link breakage. This chapter presents a new

algorithm that predicts the lifetime of a link based on the signal strength information

present in the MAC layer frames.

3.2 Radio Propagation Model

Two radio propagation models that were considered for the algorithm are: the Friis Free

Space Attenuation model and the Two-Ray Ground Reflection model. At near distances,

the Friis free space attenuation model holds true, where the received signal strength is

inversely proportional to the square of the distance (d) between the transmitting antenna

and the observing point (d2), while at far distances the received signal strength varies in

accordance with the Two-Ray Ground propagation model (inversely proportional to d4).

 20

For distances less than the cross-over point, which is also called the reference point, the

Friis model is used, and beyond the cross-over point the Two-Ray model is used. In our

simulation model, for the parameters used, the cross-over point is computed is as 86.14

meters (corresponding to a signal power of 2.59 x 10-8 W at the receiver). Since the

transmission ranges of all antennas are assumed to be identical (250 meters), it was

decided to use the Two-Ray propagation model to compute d to feed to the prediction

algorithm. The Two-Ray Ground Reflection model equation is as follows:

4

2)*(***

d

hhGGP
P rtrtt

r = ---------- (1)

where: Pr is the received signal power

 Pt is the transmitted signal power

 Gt is the transmitter antenna gain (1.0 for all antennas)

 Gr is the receiver antenna gain (1.0 for all antennas)

 ht is the transmitter antenna height (1.5 m for all antennas)

 hr is the receiver antenna height (1.5 m for all antennas)

It is assumed that Pt is a constant. Also, in our wireless ad hoc network simulations, a

directional antenna is used. Further, it can be assumed that the ground is flat to remove

dependence of h and d values on the geography of the simulation area. So equation (1)

can be simplified under the conditions of ad hoc wireless network simulation to:

4d

P
kP t

r =

where: 2)*(** rtrt hhGGk = is a constant

 21

This equation means the signal power at receiver node has relation (1/d4) with the signal

power at the transmitter node.

3.3 Prediction algor ithms

The distance (d) between a transmitting antenna and an observing point can be easily

computed if the received signal strength (Pr) and the respective radio propagation model

are known. Note that the radio propagation model is assumed to be a free-space

propagation model [14], where the received strength depends solely on d. There are

basically two ways to predict the connectivity between two neighboring nodes. The first

method assumes knowledge of motion parameters of two neighbors (e.g. speed, direction,

and transmission range), from which the duration of connectivity of these two mobile

nodes can be determined. The motion parameters can be obtained from sources such as a

Global Positioning system (GPS). A simple calculation model is [15]: suppose from time

t0 to t, node A and node B do not change their speeds and directions, which means that

velocity vectors vA and vB and the angle between them θ in Figure 3.1 are constants with

time t (l and m are assumed to be known).

The distance (d) between the two nodes, which is a function of t, can be computed using

the cosine formula:

])(][)([cos2])([])([00
2

0
2

0
2 lttvmttvlttvmttvd BABA +−+−−+−++−= θ

By setting d to the transmission range of the transmitting antenna, the time of link

breakage (tbreak) can be computed.

 22

Figure 3.1 Schematic for simple prediction model using GPS

The second method to predict tbreak uses received signal power measurements. This

method has been proposed in [16] and assumes that the sender power level is constant.

Received signal power samples are measured from packets received from a mobile

node’s neighbor. From this information it is possible to compute the distance of

separation between the two nodes, and also one can predict when the nodes will move out

of transmission range of each other. Details are provided in the next section.

3.3.1 Details of Prediction algor ithm

Our algorithm estimates the velocity of the neighbor node based on the radial distance

that the node has traveled and the time elapsed since the last observation. The estimate is

derived from the change in signal strength of the received MAC frames. From the

computed value of velocity, the algorithm conservatively estimates the time when the

neighbor would move out of transmission range. We did not follow any formal procedure

 23

to arrive at this prediction algorithm; rather this algorithm is very heuristic in nature. The

details of the algorithm are as follows.

Let V be the (scalar) estimated velocity of the mobile node averaged over time, and v be

the (scalar) estimated instantaneous velocity of the node. Let dmax be the transmission

range of the node antenna and d the (scalar) estimated distance from the source node to

the node under consideration at time of observation. Let tbreak be the predicted value of

link lifetime. Known values for the algorithm are: transmitted signal power (Pt), received

signal power (Pr), previous estimate of velocity of node (Vprev), previous estimate of

distance between the two nodes (dprev), time of last observation (tprev), and the maximum

node velocity (Vmax). We always assume the transmitting node is moving radially away

from the receiving node with velocity V. Also, d is estimated from Pr assuming a two-ray

ground reflection model for signal propagation.

Let V = Vprev = 0.0 m/s and dprev = 0.0 m for algorithm initialization. Let t be the time of

current observation and w be the weight assigned to v while calculating V.

1. v =
prev

prev

tt

dd

−
−

The absolute value of d-dprev is taken to get an ultra-conservative estimate of tbreak - the

node under observation is assumed to be moving away even when it is moving

towards the observing node. This represents the worst case scenario where the node

under observation reverses its direction (and moves with a velocity no greater than V)

immediately after an observation instant and there are no further observations until

the node moves out of the transmission range of the observing node.

 24

2. V = (w) * v + (1-w) * V

The weight (w) is assigned based on time since last sample. In earlier versions of our

prediction algorithm, the weight w was set to a value of 0.5. But since the samples are

not available periodically, we realized that we could not attach equal weights to the

average and instantaneous velocities. Hence, it was decided to assign weights based

on time between samples. A running average of T_avg (mean interval of samples) is

maintained. T_avg is computed as a weighted sum of the previous value of T_avg and

the interval between the current sample and previous sample (t–tprev). The weight (wt)

assigned depends on the extent of deviation of the time interval from T_avg (with

maximum allowable deviation T_DEV_MAX as 4.0). Higher deviation places higher

weight on instantaneous value. This is to ensure that the protocol adapts itself quickly

to changes and, at the same time, has a smoothing function in case of transients. A

similar smoothing function, which is indirectly a function of wt, is applied to V, with

maximum allowable deviation V_DEV_MAX as 4.0. The reasoning is that after a

long time interval between two samples, the average velocity V is no longer truly

reflective of the actual velocity of the node.

T_avg = wt * (t-tprev) + (1- wt) * T_avg

 (t–tprev)/T_avg, if (t–tprev) < T_avg

 t_ratio =

 T_avg/ (t–tprev), if (t–tprev) >T_avg

 25

 t_ratio/T_DEV_MAX, if t_ratio < T_DEV_MAX

 wt =

 1.0, if t_ratio >= T_DEV_MAX

 v/V_avg, if v < V_avg and V_avg >0

 v_ratio =

 V_avg/v, if v >V_avg

 v_ratio/V_DEV_MAX, if v_ratio < V_DEV_MAX

 w = wt*

 1.0, if v_ratio >= V_DEV_MAX

3.

 −

=
V

dd
tbreak

max seconds

4. Vprev = V; dprev = d

The algorithm is re-initiated if there is no activity between the two nodes for

TIME_USELESS (50) seconds.

3.4 Discussion

The predicted value of tbreak can be used by any on-demand ad hoc routing protocol to

intelligently schedule route maintenance procedures. Unfortunately, the prediction

 26

algorithm cannot be very accurate because the nodes keep changing their speed and

direction randomly. The accuracy of the prediction algorithm increases as the rate of the

number of packets received increases. The prediction algorithm may make “ false

predictions” which mostly happens in high mobility scenarios, with low traffic load.

These false predictions will cause overhead, and can be reduced when the

implementation parameters are optimized. When the prediction is made closer to the

actual link breakage, the more accurately it can be made, but the improvement in

accuracy is not significant.

 27

Chapter 4 Protocol Design and Implementation

4.1 Protocol choice

Comparing the features of on-demand and table-driven protocols, it was felt that reactive

protocols offered more scope for improvement and, in general, offered better

performance than their proactive counterparts. Among on-demand protocols, DSR and

AODV were considered. Considering the relative merits and demerits of AODV and

DSR (as discussed in chapter 2) and given the relative ease of implementation of

enhancements in AODV as compared to DSR, AODV was chosen over DSR as the

routing protocol to be modified.

4.1.1 Hybr id Protocol

A hybrid protocol can be constructed in at least one of the following ways:

1) Introduce proactivity in a reactive protocol

2) Introduce reactivity in a proactive protocol

In method (1), one can expect reduction in end-to-end packet latency, while in (2) one

can expect reduction in control overhead. Hence, method (1) is followed to construct the

hybrid version the routing protocol – Enhanced AODV (EAODV). In method (1),

information regarding the state of the underlying wireless link is needed before initiating

a proactive route discovery. Hence, a common interface for cross-layer interaction

between the MAC and IP (AODV) layers has to be devised to make available the state of

the underlying link to the IP (AODV) layer. This information, along with the prediction

algorithm to predict the residual lifetime of the wireless link and flow of traffic across the

link, is a key component to achieve judicious proactivity in EAODV.

 28

4.2 Protocol Implementation Details

The prediction algorithm and EAODV were implemented in the ns-2 simulator [16]. The

ns-2 version used for simulation purposes is 2.1b9a. The wireless MAC standard

implemented in this version of ns-2 is the 802.11 standard. In ns-2, a packet is the unit of

communication; it encapsulates a MAC frame, an IP datagram, a transport layer segment

(e.g TCP segment) etc. Each layer receives the packet as a whole. The required data is

then extracted from the packet through layer-specific routines. Hence, in the rest of this

thesis, the term packet is used interchangeably with a frame, a datagram or a segment in

the appropriate layers.

In our initial design of EAODV, we considered refreshing the prediction algorithm by

proactively sending HELLO packets on idle links to probe the strength of the link. This

not only resulted in unwanted additional control overhead, but also did not improve the

performance of the protocol significantly. The strength of active links can anyway be

assessed through the traffic generated (both data and control) by the nodes. The routing

protocol need not be aware of the strength of the idle links and hence sending HELLO

packets to probe the strength of idle links was a waste of CPU and bandwidth.

4.2.1 MAC layer Implementation

The recv() function in the MAC layer receives any frames from the wireless physical

layer destined to that particular node or any upper layer packets which are destined to

other nodes. By examining only the incoming MAC frame headers, the power level of

incoming packets can be extracted. Since the table with node-link lifetime information

 29

must be accessible to both the MAC layer and the AODV, it was decided to create the

table while constructing the Node object itself. Based on the power level of any packet

received at the MAC layer, the radial distance d between the receiving node and the

sending node is computed using the relationship between transmitted signal power (Pt)

and received signal power (Pr) in a two-ray reflection model as described in Chapter 3.

This value of d is fed to the prediction algorithm, which predicts the time of link

breakage. The table is now populated (at the MAC layer) with the sending node’s IP and

MAC address, along with predicted link breakage time. Note that the MAC layer is

suitably modified to examine the IP header (for the IP address) in the incoming frames to

populate the table.

Every time a packet is received, the status flag of the link is marked as ‘ACTIVE’ . The

status flag of a link is marked ‘ IDLE’ if it does not receive any packet for max(4*T_avg,

IDLE_PERIOD (15)) seconds. Each entry in the table contains information about a

neighboring node that has recently sent a packet to the node under consideration. The

direction of movement of the nodes is ascertained from trend seen in power levels of

packets – if the power levels of packets keeps increasing, the direction flag corresponding

to that particular sending node is marked as moving INWARD; if the power levels of

packets remain almost constant, then the direction flag is marked STATIC and if the

power levels of packets keep decreasing, then the sending node is marked as moving

OUTWARD. The current implementation of ns-2 has no error model to introduce fading

in power level. If such a model is implemented in the future, the power level of packets

may vary widely for the same value of d, which may lead to wrong conclusions about a

 30

node’s direction. To avoid such a possibility, the signal strengths of the packets from a

particular node are monitored over MIN_SAMPLES (4) packets, and a conclusion about

a node’s direction is then reached. In case of a tie, the current direction remains

unchanged, and the direction flag is changed only after conclusive evidence is available.

Note that the MIN_SAMPLES parameter can be modified for desired confidence levels

of the decision reached.

4.2.2 AODV layer Implementation

At the AODV layer at each node, each link connecting neighbor nodes is periodically

(once every 0.5 seconds) monitored for possible breakage in the near future. Typically,

only ACTIVE links connecting nodes that are moving OUTWARD are of particular

interest, because they are considered to be susceptible candidates for breakage.

According to the ns-2 implementation, an AODV route may be in any one of the three

states:

• UP (route still exists; packets forwarded only if route is in this state)

• UNDER_REPAIR (route is being locally repaired)

• DOWN (route is broken; used mainly to flush routes out of the routing table)

Routes in EAODV, in addition to the above states, could be in a fourth state

PROACTIVE_REPAIR. This state indicates that packets can be forwarded using this

route, but the route is currently under proactive repair.

4.2.2.1 Active Routes in AODV

A link that is about to break will render all the routes that use this link as invalid. But it is

not necessary to proactively re-discover all routes that make use of the broken link;

 31

instead routes are proactively re-discovered only for active routes. Active routes, by

definition, are routes that have an active flow of traffic associated with it. An

implementation-specific definition for an active route can be given as follows:

• If there is a packet in the interface queue waiting to be routed using a particular

route, then that route is considered as an active route

• Otherwise, if the time since the last packet (t_pkt) exceeds T_PKT_DEV_MAX

(2.0) times the average packet inter-arrival time (t_avg), the route is deemed as an

inactive route

The values for t_avg are computed as follows:

t_ratio = t_pkt / t_avg

 0.5 * t_pkt + 0.5* t_avg, (1/DEV_MAX) < t_ratio < DEV_MAX

t_avg =

 t_pkt, otherwise

This algorithm adjusts t_avg based on variations in traffic flow and it views any

fluctuations in packet inter-arrival times with caution before making sweeping changes to

the value of t_avg. This is similar to the smoothing function in the prediction algorithm

seen in chapter 3. Note that this algorithm is purely heuristic. DEV_MAX (4.0) and

T_PKT_DEV_MAX are parameters, which can be fine-tuned for better performance.

One may also compare t_pkt against a constant value (like the

ACTIVE_ROUTE_LIFETIME parameter in AODV) to determine active routes.

 32

4.2.2.2 Proactive Route Discovery

If a link is predicted to break within the next BREAK_THRESHOLD (0.15) seconds, but

has at least MIN_THRESHOLD (0.03) seconds left, then EAODV switches over to

proactive route maintenance mode. This includes initiating a local route repair

mechanism for all active routes using the neighbor in question as the next-hop, if the

upstream node is closer to the destination than to the source. Otherwise, link breakage is

allowed to happen, and normal AODV route error handling mechanisms take over. The

state of the routes that are subject to proactive local repair is set to

PROACTIVE_REPAIR. The routes thus discovered are cached in the routing entries for

those particular destinations and have an expiry time of ACTIVE_ROUTE_TIMEOUT

(10) seconds. During proactive route discovery, the RREP that comes over the soon-to-

be-broken link is discarded to avoid caching the same unstable route, to replace which is

the whole purpose of this proactive RREQ. In case of multiple RREPs, the selection

criteria for a route are the same as that for a route discovered during normal AODV route

discovery mechanism. In general, the route discovered during proactive route discovery

can be expected to be the second best in terms of smallest hop count.

4.2.2.3 Replacing a ‘broken’ route

If indeed a link ‘breaks’ before the cached route expires, the existing routing table entries

that make use of the broken link are replaced with the cached routes. In the event that the

link ‘breaks’ in the absence of cached route(s), normal AODV route error handling

procedures for those route(s) are initiated. The flowchart in Fig 4.1 best describes the

 33

flow of control between existing AODV route maintenance and the new proactive route

maintenance procedures. Link breakage is determined in either of the following ways:

• During each monitoring interval (0.5 seconds), each link is checked for tbreak. If,

for any link, if tbreak has elapsed, then the link is assumed to be broken and routes

are replaced as described above. This method expects a great deal of confidence

to be placed in the prediction algorithm and its success depends on the accuracy

of the prediction algorithm.

• If tbreak is predicted (erroneously) to be later than the actual link breakage time, the

link breakage can be discovered using LLACKS, if attempts were made to route a

packet over the broken link. In such a case, the unexpired route in the route cache,

if present, is used to replace the broken route. Otherwise, a new route discovery is

initiated. This method of determining link breakage may be needed mainly if the

link has been idle for a long time since the last predicted value of tbreak. Generally,

this method is quite time consuming, because the link layer can determine that a

link is broken only after a series of retransmissions that are initiated when

LLACKS are not received from the node at the other end of the link.

4.3 Discussion

If tbreak is predicted to be earlier than the actual link breakage time (by more than

ACTIVE_ROUTE_TIMEOUT seconds), the detrimental effect of proactive route

discovery is two-fold - (1) the proactively discovered routes and all the resources utilized

to discover the routes will go to waste because the routes in the cache will expire and can

no longer be used (2) Mean packet delay will be increased because LLACKS will be

 34

employed to detect link breakage, and rediscovery of routes will be necessary. This effect

will be very pronounced in light load conditions, when the prediction algorithm will not

perform as well as expected.

Figure 4.1 Interaction between EAODV and AODV route maintenance

 35

Chapter 5 Evaluation

5.1 Introduction

This chapter discusses simulation experiments comparing performance metrics of AODV

and EAODV. All simulations were run using the NS-2 simulator [17]. Numerous

simulations were chosen to illustrate the performance advantage gained in using EAODV

over AODV. The simulator parameters were varied in two dimensions: (1) variation in

mobility patterns (2) variation in data traffic. Multiple simulations were run for identical

simulation scenarios to obtain results with confidence intervals, which served to increase

the credibility of the results.

5.2 Simulator Choice

Among NS-2, OPNET and Glomosim, the NS-2 simulator was chosen as the tool for our

ad hoc wireless simulations. NS-2 scored over the other simulators mainly because of

three reasons:

• NS-2 is the most widely used simulator for ad hoc wireless simulations. It is an

open source, freely downloadable piece of software, which runs on Linux

platform.

• NS-2 is easily extensible; any extensions to existing ad hoc routing protocols can

be implemented with ease.

• Since most of the currently published results for MANETs have used NS-2 for

simulations, it made sense to use NS-2 for our simulations too, for fair

comparison.

 36

5.2.1 NS-2 basics

The Network Simulator (NS-2) is a discrete event simulator developed by the University

of California at Berkeley and the VINT project [18]. It provides substantial support for

simulation of TCP, routing, and multicast protocols over wired and wireless (local and

satellite) networks. The Monarch research group at Carnegie-Mellon University

developed support for simulation of multi-hop wireless networks complete with physical,

data link, and medium access control (MAC) layer models on NS-2. It provides tools for

generating data traffic and node mobility scenario patterns for the simulation. Also, four

ad hoc network routing protocols (AODV, DSDV, DSR and TORA) have been

implemented. NS-2 provides a split-programming model. The simulation kernel is

implemented using C++, while the Tcl scripting language is used to express the

definition, configuration and the control of the simulation. This split-programming

approach has proven benefits over conventional programming methods. Also, NS-2 can

produce a detailed trace file and an animation file for each ad hoc network simulation that

is very convenient for analyzing the routing behavior. The disadvantage of NS-2 is that it

is a large system with a relatively steep initial learning curve.

In NS-2, the Distributed Coordination Function (DCF) mode of IEEE 802.11 for wireless

LANs is used as the MAC layer protocol. The radio model uses characteristics similar to

a commercial radio interface, Lucent’s WaveLAN [19]. WaveLAN is modeled as a

shared-media radio with nominal bit rate of 2Mb/s and a nominal radio range of 250

meters. The signal propagation model combines both a free space propagation model and

a two-ray ground reflection model.

 37

A send buffer of 64 packets is maintained for the AODV and DSR protocols. It contains

all data packets waiting for a route. Packets are dropped if they wait in the send buffer for

more than 30 seconds. All the packets (data and routing) sent by the routing layer are

queued at the interface queue until the MAC layer can transmit them. The interface queue

is a priority queue with a maximum size of 50 packets. The routing packets have higher

priority than data packets. Here is a summary for the implementation of wireless

networks in NS-2:

a) Mac Layer: IEEE 802.11

b) Mobile nodes for MANET simulations

c) Address Resolution Protocol (ARP)

d) Ad hoc routing protocols: DSDV, DSR, TORA, AODV

e) Radio Propagation Model

• Friss-space attenuation at near distances

• Two-ray ground at far distances

f) Antenna: an omni-directional antenna having unity gain

5.3 Per formance Metr ics

Using NS-2 simulator, numerous simulations were run both with the AODV and EAODV

to compare performance metrics of both versions of the protocol. The LLACKS-enabled

version of the AODV implementation in NS-2 simulator was used. The performance

metrics under consideration are:

• Mean end-to-end packet latency (e2e)

 38

End-to-end packet latency is defined as the time elapsed from the moment a packet is

generated by the data agent at the sending node, to the time the packet is received at the

corresponding agent at the receiving node.

• Control bits transmitted per Data bit transmitted (c.p.d)

Also called control overhead fraction, this is the ratio of total control overhead measured

in bits (Route Request, Route Reply and Route Error) to the total data bits transmitted

successfully.

• Packet delivery ratio (p.d.r)

Packet delivery ratio is the ratio of total number of data packets that were delivered

successfully to intended destinations to the total number of data packets generated.

Packets may not be delivered to the destination mainly because of one of the following

reasons: packet collisions in 802.11 layer, network partitions (cluster of independent

networks within a network in a chosen simulation area), routing loop and interface /ARP

queue drop

• Throughput (tp)

The throughput at any layer in the protocol stack is the number of packets delivered per

unit time at that layer.

• Average number of hops traversed per packet (hops)

This is the average number of hops traversed by all successfully delivered packets.

5.4 Simulation Details

The simulation experiments can be classified broadly as CBR (UDP) based simulations

and TCP based simulations. The routing protocols were tested with both CBR and TCP

traffic to get a more complete picture of their performances. Both the CBR and TCP

 39

based simulations were run with two mobility models, the Random Waypoint (RW)

Model and the Manhattan Grid (MG) model [20], with slightly different simulation

parameters for each model. The traffic scenarios were generated using the java-based

“BonnMobility” mobility generation tool [21].

Each simulation set consisted of 50 independent simulation runs under similar (not

identical) conditions i.e. using different random seed values. But these 50 independent

runs were executed under exactly identical conditions (same seed values) for both

protocols. For example, the conditions for nth simulation run for any simulation set for

AODV were exactly the same as the nth simulation run for EAODV, but slightly different

for n+1th simulation run (like using a different random seed to generate the mobility and

communication pattern for the same simulation parameters) for AODV (EAODV). This

allowed interpretation of simulation results with a 90% confidence interval, and also

provided a platform for fair comparison between the protocols.

5.4.1 Simulations with UDP traffic

With CBR traffic, performances of AODV and EAODV were compared across two

traffic models, the Random Waypoint Model and Manhattan Grid Model. Only e2e, c.p.d,

p.d.r and hops were considered as performance metrics for CBR traffic.

5.4.1.1 Simulations with Random Waypoint Model

The simulations using RW model were run in a 1500m by 1500m area with 50 nodes

under varying conditions of mobility and load. The communication model consisted of 20

 40

CBR connections, with a packet size of 512 bytes for each set of simulations. All

statistics were based upon 40,000 data packets.

Variation in mobility: The RW model has two degrees of mobility – maximum velocity

and pause time. Our simulations were conducted by varying both maximum velocity and

pause time.

• Maximum velocity varied as 1, 5, 10, 15, 20 m/s

• Pause time varied as 0, 250, 500, 1000, 1500, 2000 seconds

For the RW mobility model, the default values for maximum velocity and pause time

were 10 m/s and 0 seconds respectively.

Variation in communication pattern: For simulations with the RW model, Mean Packet

inter-arrival time was varied as 0.25, 0.5, 1.0, 2.0 and 4.0 seconds (corresponding to

simulation durations of 700, 1000, 2000, 4000, 8000 seconds). The default value for

mean packet inter-arrival time was 1.0 seconds.

Using the statistical analyzer tool in the BonnMotion mobility model generator, the

mobility pattern files were analyzed for the following four parameters (table 5.4.1.1):

• Average node degree: This parameter specifies the average number of nodes each

node is connected to over the entire duration of the simulation.

• Average number of partitions: This parameter is a measure of the average number

of partitions in the network over the entire duration of the simulation. A partition

number of 1.0 means that the network is connected at all times.

• Probability of separation: This gives the probability of two randomly chosen

nodes not being within a connected component at any chosen point in time.

• Average link duration: This gives the average lifetime of a link

 41

Table 5.4.1.1 Statistical Parameter values for var ious RW Mobility Patterns

Parameters

Pause time

(seconds)

Velocity

(m/s)

Average node

degree

Average no.

Partitions

Probability of

separation

Average link

duration

(seconds)

1 5.60 3.20 0.157 379.83

5 5.52 3.28 0.165 137.41

10 5.53 3.29 0.171 82.23

15 5.63 3.23 0.163 61.04

0

20 5.60 3.25 0.165 48.68

250 4.76 4.23 0.263 104.82

500 4.44 4.55 0.318 128.71

750 4.21 4.65 0.363 149.30

1000 4.17 4.85 0.374 167.45

1500 3.99 4.86 0.409 241.43

2000

10

3.89 5.20 0.445 220.49

It can be seen that due to the low node density (nodes per square meter) in the RW

simulation model, the average number of partitions and probability of separation values

are quite high.

5.4.1.1.1 Simulation Results

Figure 5.4.1.1 to 5.4.1.3 show the variation of e2e for as functions of various simulation

parameters. Bars around each point indicate 90% confidence interval. It can be clearly

seen that EAODV offers superior e2e performance compared to AODV. The reduction in

mean packet latency is mainly due to the proactive behavior induced in EAODV through

 42

cross-layer interactions. Note that the success of proactivity in EAODV mainly depends

on the accuracy in predictions of the prediction algorithm.

As seen in Figure 5.4.1.1, EAODV offers lesser e2e delay than AODV with increase in

maximum node velocity. For the same communication pattern, an increase in maximum

velocity will increase the rate of change of topology, which will reduce the average

lifetime of a link. This in turn will increase the number of RREQs, which will increase

the control data (and hence the network traffic) transmitted. An increase in network

traffic implies an increase in the rate of packets (samples) fed to the link-layer prediction

algorithm, which increases the accuracy of link breakage predictions. Another fall out of

the increased network control traffic (high priority) is the increased queuing delay of data

(low-priority) packets. Hence, as Figure 5.4.1.1 shows, an increase in velocity will

increase the e2e delay of packets.

The results from Figure 5.4.1.2 show that EAODV outperforms AODV in terms of e2e as

pause time is varied. As explained earlier, the better results for e2e offered by EAODV as

compared to AODV can be attributed to the proactive route discovery mechanism in

EAODV, which reduces the delay of route discovery (and hence e2e) at the instant of a

link breakage.

 43

End-to-End delay vs max velocity
(Random Waypoint Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 5 10 15 20

max velocity (m/s)

e2
e

(s
ec

o
n

d
s)

AODV

EAODV

Figure 5.4.1.1 e2e vs Max Velocity (RW model, CBR traffic)

End-to-End delay vs pause time
(Random Waypoint Model)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 250 500 1000 1500 2000

pause time (seconds)

e2
e

d
el

ay
 (

se
co

n
d

s)

AODV

EAODV

Figure 5.4.1.2 e2e vs Pause Time (RW model, CBR traffic)

 44

End-to-End delay vs mean packet interarrival time
(Random Waypoint Model)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.1 0.25 0.5 1 2

mean packet interarrival time (seconds)

e2
e

(s
ec

o
n

d
s)

AODV

EAODV

Figure 5.4.1.3 e2e vs Mean Packet Inter -ar r ival time (RW model, CBR traffic)

But the surprising aspect of Figure 5.4.1.2 is the trend seen in the curves. The e2e value is

lowest for a pause time of 0 seconds (which signifies least network stability), highest for

a pause time of 500 seconds, and starts decreasing for higher values of pause times (or

higher stability). This strange behavior could be attributed to the following reason: the

degree of network partitioning in the mobility patterns chosen for the RW model is quite

high because of the large simulation area chosen. Hence, higher mobility enables better

connectivity. But higher mobility may be attributed to either increasing velocity or

decreasing pause time.

To have a clearer picture, let us consider the curves for p.d.r (Figure 5.4.1.4 – 5.4.1.5).

Though e2e may be influenced by both network traffic and delay in route discovery, p.d.r

is mainly influenced by availability of routes only. Figure 5.4.1.4 shows that the p.d.r is

 45

almost constant with respect to variation in velocity. But Figure 5.4.1.5 shows that for

any given velocity, p.d.r decreases for increasing pause times – i.e. for any given

velocity, the degree of network partitioning and probability of separation increases with

increasing pause times (Table 5.4.1.1). When nodes move with higher velocities, they

break and make links at a faster rate, while at slower velocities, though the rate of making

links is lower, the rate of breaking links is lower as well. Hence a balance is struck

between making and breaking links at all velocities. But for any given velocity, for

increasing pause times, it takes longer for nodes to come closer to one another to make

new links. As a result, though the average link lifetime increases (Table 5.4.1.1) due to

prolonged immobility, the network remains partitioned for longer periods of time and

hence the p.d.r decreases. In short, as pause-time increases, inter-partition connectivity

decreases and intra-partition connectivity increases. In retrospection, it seems to be a bad

idea to have chosen a mobility pattern with a high degree of network partitions, because it

introduces various complexities in comparing two competing protocols. That is precisely

why the simulation area for MG model was reduced (see section 5.4.1.2).

In Figure 5.4.1.2, the e2e increases up to a pause time of 500 seconds and then decreases.

Up to 500 seconds, the time taken to deliver a packet increases as explained above. Some

packets, even if they are delayed for a long time, may be delivered eventually. But

beyond 500 seconds, packets are either delivered quickly (longer link lifetimes) or are

timed out and are dropped (higher network partitions). Hence the mean packet delay

decreases. This argument is corroborated from the p.d.r curve (Figure 5.4.1.5), which

shows p.d.r as a monotonically decreasing function of increasing pause times. Figure

5.4.1.3 is self-explanatory. As the packet interarrival time increases, queuing delay of

 46

data packets decreases, and hence the trend shown in Figure 5.4.1.3. Again EAODV

offers better e2e performance than AODV for the same reasons given for Figure 5.4.1.2.

As seen in Figure 5.4.1.4 and 5.4.1.5, AODV offers slightly better p.d.r performance than

EAODV. This is because the prediction algorithm is not 100% accurate. It either results

in proactivity too late or too soon. If proactivity is too late, then an attempt is made to

route packets over a broken link, which results in packets being lost. If proactivity occurs

too soon, then unwanted route discoveries are made, delaying some packets, which might

get timed-out eventually. Comparing e2e and p.d.r curves for AODV and EAODV, it is

clear that in EAODV, packets either get delivered quicker than AODV (if proactivity

occurs at an appropriate time) or are lost (if proactivity is unwanted).

Packet Delivery Ratio vs max veloctiy
(Random Waypoint Model)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 5 10 15 20

max velocity (m/s)

p
.d

.r AODV

EAODV

Figure 5.4.1.4 p.d.r vs Max Velocity (RW model, CBR traffic)

 47

Packet Delivery Ratio vs pause time
(Random Waypoint Model)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 250 500 1000 1500 2000

pause time (seconds)

p
.d

.r AODV

EAODV

Figure 5.4.1.5 p.d.r vs Pause Time (RW model, CBR traffic)

Packet Delivery Ratio vs mean packet interarrival time
(Random Waypoint Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.25 0.5 1 2

mean packet interarrival time (seconds)

p
.d

.r AODV

EAODV

Figure 5.4.1.6 p.d.r vs Mean Packet Inter -ar r ival time (RW model, CBR traffic)

 48

From Figure 5.4.1.6, it can be seen that EAODV performs almost as well as AODV in

terms of p.d.r for variation in communication pattern alone. Even the e2e performance of

EAODV is only marginally better than AODV for variation in communication pattern.

This is because, with variation only in communication pattern, the amount of control data

generated in EAODV is not much different from AODV. The ratio of control packets to

data packets under frequent link breakage conditions is much higher than the same ratio

under more stable conditions. As seen from Figure 5.4.1.6, we do not expect this ratio to

change drastically with variation in communication pattern under similar network

topological conditions, because at higher packet generation rates, the ratio of packets

delivered reduces. This is mainly because of collisions in the 802.11 MAC layer at higher

packet generation rates. The collisions occur because of the relatively low capacity (2

Mbps) of the wireless links and relatively bigger packet sizes (512 bytes). At higher

packet generation rates, one can expect the p.d.r to improve for smaller packet sizes. As

the success of the prediction algorithm (and the success of proactive route maintenance)

depends mainly on the rate of both data and control packets fed to the algorithm, rate of

control packets generated greatly influences the behavior of the prediction algorithm in

this case. Hence, under identical network conditions, the rate of data packets generated

(in our case), does not influence the behavior of the prediction algorithm in any beneficial

way.

Figures 5.4.1.7 to 5.4.1.9 show the variation in c.p.d with respect to varying conditions of

mobility and communication pattern. AODV seems to slightly outperform EAODV with

respect to c.p.d. The increased c.p.d in EAODV can be attributed to the unwanted

 49

proactive route discoveries in EAODV. As argued earlier, Figure 5.4.1.9 shows that the

change in communication pattern seems to do little to separate AODV and EAODV.

control bits/data bit vs max velocity
(Random Waypoint Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 5 10 15 20

max velocity (m/s)

ct
rl

 b
it

s/
d

at
a

b
it

AODV

EAODV

Figure 5.4.1.7 c.p.d vs Max Velocity (RW model, CBR traffic)

control bits/data bit vs pause time
(Random Waypoint Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 250 500 1000 1500 2000

pause time (seconds)

ct
rl

 b
it

s
/ d

at
a

b
it

AODV

EAODV

Figure 5.4.1.8 c.p.d vs Pause Time (RW model, CBR traffic)

 50

control bits/data bit vs mean packet interarrival time
(Random Waypoint Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.25 0.5 1 2

mean packet interarrival time (seconds)

ct
rl

 b
it

s/
d

at
a

b
it

AODV

EAODV

Figure 5.4.1.9 c.p.d vs Mean Packet Inter -ar r ival time (RW model, CBR traffic)

For the trend of c.p.d (for both AODV & EAODV) seen in Figure 5.4.1.7, it can be

intuitively argued that as the rate of topological changes increases, so will the number of

control bits per data bit. Figure 5.4.1.7 seems to justify this argument. Figure 5.4.1.8 is

slightly more complex - though the increase in “mobility” or increase in rate of

topological changes demands more control data to be transmitted in the network, many

packets in the IFQUEUE that may potentially trigger route discoveries (or control data)

are lost due to time outs for lack of replies to route discoveries (due to high degree of

network partitioning, as discussed for e2e). Hence the number of control packets is

reduced along with the number of data packets to be transmitted. Hence the c.p.d values

remain relatively unchanged with varying pause times.

 51

Figure 5.4.1.9 is quite self-explanatory. For the duration of the lifetime of a route, the rate

of packets delivered is higher in case of a higher source generation rate i.e. for the same

amount of control data, a higher number of data packets can be delivered, which reduces

c.p.d at higher generation rates. But the c.p.d and generation rate are not linearly related

because, at higher generation rates, the p.d.r is lower due to collisions at the MAC layer,

which serves to increase the c.p.d. For example, one might expect to see a 20-fold

increase in c.p.d for an increase in mean packet inter-arrival time from 0.1 seconds to 2

seconds (20 times lesser packets generated). But as the p.d.r curves would indicate, the

number of packets delivered in case of 0.1 second inter-arrival time is only about 4 times

the number of packets delivered in case of a 2 second inter-arrival time; the rest of the

generated packets are mostly lost through MAC layer collisions which is invisible to the

AODV layer. Hence, we can expect the c.p.d to also be only approximately 4 times

higher in case of a 2 second inter-arrival time when compared to the 0.1 second case,

which Figure 5.4.1.9 seems to confirm as being true.

Figures 5.4.1.10 to 5.4.1.12 show the variation in the average number of hops traversed

per successfully delivered packet as functions of variations in mobility and load. These

figures seem to indicate that AODV offers routes with lesser number of hops to packets

than EAODV. This is because AODV routes packets using the best available route (in

terms of hop count) whereas EAODV routes packets using the best available route only

while a reactively discovered route exists. Once the reactively discovered route breaks,

the proactively discovered route is used, which may not be the best route in terms of hop

count. It is important to note that in spite of the increase in hop count in EAODV, a

significant reduction in end-to-end packet delay is achieved.

 52

Average number of hops vs max velocity
(Random Waypoint Model)

3

3.5

4

4.5

5

5.5

1 5 10 15 20

max velocity (m/s)

A
ve

ra
g

e
n

u
m

b
er

 o
f

h
o

p
s

AODV

EAODV

Figure 5.4.1.10 hops vs Max Velocity (RW model, CBR traffic)

Average number of hops vs mean packet interarrival time
(Random Waypoint Model)

3

3.5

4

4.5

5

5.5

0.1 0.25 0.5 1 2

mean packet interarrival time (seconds)

A
ve

ra
g

e
n

u
m

b
er

 o
f

h
o

p
s

AODV

EAODV

Figure 5.4.1.12 hops vs Mean Packet Inter -ar r ival time (RW model, CBR traffic)

 53

The trend seen in Figure 5.4.1.10 seems to indicate that in both protocols, the average

number of hops is relatively immune to variation in velocity. When Figure 5.4.1.11 is

studied in tandem with Figure 5.4.1.5, it is clear that at higher pause times, as a result of

increased network partitioning and lesser degree of node connectivity (Table 5.4.1.1),

very limited routes exist and that too with relatively higher hop counts. Figure 5.4.1.12 is

consistent with our explanation so far of the effect of varying the communication pattern

– at higher source rates, higher number of packets are transmitted using any existing

route. But at higher source rates, the probability of packet collisions at the MAC layer

increases with increasing hop count. Hence, at higher source rates, packets that use routes

with lower hop-count have higher probability of getting delivered and thus we have a

lower hop count at higher source rates and a relatively higher hop count at lower source

rates.

Another point to note is that for e2e and hops, the confidence intervals show clear

separation between EAODV and AODV curves, while for p.d.r and c.p.d, the confidence

intervals of both protocols overlap. This not only strengthens the claim of relatively

superior e2e performance offered by EAODV over AODV, but also slightly weakens the

conclusions drawn about worse p.d.r and c.p.d performances in EAODV when compared

to AODV.

5.4.1.2 Simulation parameters for Manhattan Gr id Model:

The simulations using MG model were run in a 1000m by 1000m area with 50 nodes

under varying conditions of mobility only. The simulation area was reduced (when

compared to the RW model) to reduce the average number of partitions and probability of

 54

separation. We chose to conduct experiments by varying only mobility because due to the

reduced simulation area, the average node degree increased (see Table 5.4.1.2) which

resulted in severe MAC layer collisions at lower packet interarrival times. All statistics

were based upon 40,000 data packets.

Variation in mobility: The MG model has three degrees of mobility – maximum velocity,

pause probability and turn probability. Our simulations were conducted by varying pause

probabilities and turn probabilities.

• Pause probability varied as 0, 0.25, 0.5, 0.75, 1.0

• Turn probability varied as 0, 0.25, 0.5, 0.75, 1.0

Maximum velocity and pause time were not varied since simulation experiments were

already conducted by varying these parameters in the RW model itself. The MG model

was mainly chosen because it offered additional degrees of freedom to vary mobility. The

default values for pause probability and turn probability were chosen as 0 and 0.25

respectively. The maximum velocity was chosen as 10 m/s and the default pause time

was 120 seconds. The communication pattern was the same default communication

pattern used in the RW model. Table 5.4.1.2 gives the average values of the statistical

parameters for each of the MG-mobility pattern used in the simulation experiment. It can

be seen that due to increased nodal density, the partition degree and probability of

separation values for MG mobility models are much lesser than corresponding values in

the RW mobility models.

 55

Table 5.4.1.2 Statistical Parameter values for var ious MG Mobility Patterns

Parameters

Pause

Probability

Turn

Probability

Average node

degree

Average no.

Partitions

Probability of

separation

Average link

duration

(seconds)

0 50 1 0 �

0.25 6.95 1.36 0.041 37.06

0.5 7.39 1.29 0.028 36.95

0.75 7.63 1.30 0.026 36.85

0

1.0 8.44 1.16 0.014 36.01

0.25 9.34 1.49 0.035 417.77

0.5 17.63 1.03 0.001 373.58

0.75 26.422 1 0 277.56

1.0

0.25

28.41 1 0 262.69

5.4.1.2.1 Simulation Results

As seen from the combination of the four network statistical parameters in Table 5.4.1.2,

the network is very stable for a turn probability of 0 followed by turn probabilities of 1.0,

0.75, 0.5 and 0.25 in decreasing order of stability (increasing order of mobility). From

Table 5.4.1.2, it can be inferred that a pause probability of 0 represents maximum

mobility, followed by pause probabilities of 0.25, 0.5, 0.75 and 1.0 in decreasing order of

mobility.

 56

End-to-End delay vs turn probability
(Manhattan Grid Model)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.25 0.5 0.75 1

turn probability

e2
e

(s
ec

o
n

d
s)

AODV

EAODV

Figure 5.4.1.13 e2e vs turn probability (MG model, CBR traffic)

Figure 5.4.1.13 and 5.4.1.14 show the variation of e2e as a function of turn and pause

probabilities respectively. Again, it can be seen that in terms of e2e, EAODV offers

mostly better or at least equal performance when compared to AODV. As explained

earlier, the reduction in e2e in EAODV is mainly due to the availability of proactively

discovered routes in the event of a link breakage. From Figure 5.4.1.13, it can be seen

that EAODV and AODV perform alike with respect to e2e for a turn probability of 0. For

other values of turn probabilities, since the network generates higher control load as a

result of frequent changes in the network, EAODV offers better e2e performance than

AODV.

Similarly, from Figure 5.4.1.14, it could be seen that for variation in pause probabilities,

EAODV offers superior e2e performance in the maximum mobility scenario (pause

 57

probability of 0), while the e2e performance of EAODV and AODV at lesser mobility

scenarios becomes more or less indistinguishable. The reason is simple: higher mobility

implies higher network traffic generated, which in turn improves the performance of the

prediction algorithm, while lesser mobility reduces network traffic, which degrades the

performance of the prediction algorithm. The e2e values increase for increasing mobility

as a result of queuing delay incurred in the higher mobility cases due to increase in

generation of control traffic.

End-to-End delay vs pause probability
(Manhattan Grid Model)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.25 0.5 0.75 1

pause probability

e2
e

(s
ec

o
n

d
s)

AODV

EAODV

Figure 5.4.1.14 e2e vs pause probability (MG model, CBR traffic)

Figure 5.4.1.15 and 5.4.1.16 show the variation in p.d.r as a function of turn and pause

probabilities respectively. As with the RW model, AODV offers slightly superior p.d.r

performance than EAODV for the reasons explained while discussing p.d.r results for

RW model. Also, the trend in p.d.r can be explained easily; the p.d.r drops as the number

of network partitions increases (as seen from Table 5.4.1.2).

 58

Packet Delivery Ratio vs turn probability
(Manhattan Grid Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1

turn probability

p
.d

.r AODV

EAODV

Figure 5.4.1.15 p.d.r vs turn probability (MG model, CBR traffic)

Figure 5.4.1.17 and 5.4.1.18 show the variation of c.p.d as functions of turn and pause

probabilities respectively. Again, for the same reasons explained in the RW model,

AODV offers slightly better c.p.d performance than EAODV. The trend seen in curves in

Figure 5.4.1.17 and 5.4.1.18 can be explained as follows: the c.p.d increases with

increasing degree of mobility (determined from network statistics parameters in Table

5.4.1.2) as at higher rates of mobility (less stable network conditions), more control

traffic is generated to deliver comparable or lesser amount of data traffic when compared

to data traffic at lesser mobility rates (see p.d.r curves).

Figure 5.4.1.19 and 5.4.1.20 show the variation of hops as a function of turn and pause

probabilities respectively. Again, as with the RW mobility model, AODV supplies routes

with lesser number of hops than EAODV does. The reason for this behavior has already

been explained during analysis of results for hops for the RW model. The trend of curves

 59

seen in Figure 5.4.1.19 and 5.4.1.20 is consistent with our explanation that the number of

hops decreases as the degree of mobility of nodes in the network decreases.

Packet Delivery Ratio vs pause probability
(Manhattan Grid Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.25 0.5 0.75 1

pause probability

p
.d

.r AODV

EAODV

Figure 5.4.1.16 p.d.r vs pause probability (MG model, CBR traffic)

control bits/data bit vs turn probability
(Manhattan Grid Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.25 0.5 0.75 1

turn probability

ct
rl

 b
it

s/
d

at
a

b
it

AODV

EAODV

Figure 5.4.1.17 c.p.d vs turn probability (MG model, CBR traffic)

 60

control bits/data bit vs pause probability
(Manhattan Grid Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.25 0.5 0.75 1

pause probability

ct
rl

 b
it

s/
d

at
a

b
it

AODV

EAODV

Figure 5.4.1.18 c.p.d vs pause probability (MG model, CBR traffic)

Average number of hops vs turn probability
(Manhattan Grid Model)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.25 0.5 0.75 1

turn probability

A
ve

ra
g

e
n

u
m

b
er

 o
f

h
o

p
s

AODV

EAODV

Figure 5.4.1.19 hops vs turn probability (MG model, CBR traffic)

 61

Average number of hops vs pause probability
(Manhattan Grid Model)

2

2.5

3

3.5

4

4.5

5

0 0.25 0.5 0.75 1

pause probability

A
ve

ra
g

e
n

u
m

b
er

 o
f

h
o

p
s

AODV

EAODV

Figure 5.4.1.20 hops vs pause probability (MG model, CBR traffic)

From the results of simulations with RW and MG model for CBR traffic, it can be

concluded that EAODV is beneficial mainly when the degree of mobility is quite high.

When compared to AODV, the price paid by EAODV at higher mobility is slightly

higher control overhead and slightly lesser packet delivery ratio caused due to

inappropriate proactivity. EAODV does not seem to be really useful at stable network

conditions, because at best, it performs only as well as AODV.

5.4.2 Simulations with TCP traffic

As with CBR traffic, performances of AODV and EAODV with TCP traffic were

compared across two traffic models, the Random Waypoint Model and Manhattan Grid

Model. Only c.p.d, tp, e2e and hops were considered as performance metrics for TCP

traffic. P.d.r was not chosen as a performance metric because TCP guarantees reliable

 62

delivery and the p.d.r values were expected to be indistinguishable for TCP over AODV

and EAODV.

5.4.2.1 Simulations with Random Waypoint Model

The simulations using RW model were run in a 1500m by 1500m area with 50 nodes

under varying conditions of mobility only. The communication model consisted of 20

TCP connections, with a packet size of 512 bytes for each set of simulations. Each

connection was simulated as a FTP transfer of a very large file, so that TCP traffic was

continuously generated through out the entire duration of simulation. TCP-Tahoe was the

flavor of TCP used. All statistics were based upon data packets collected over 1000

simulation seconds.

Variation in mobility: The RW model has two degrees of mobility – maximum velocity

and pause time. Our simulations were conducted by varying both maximum velocity and

pause time.

• Maximum velocity varied as 1, 5, 10, 15, 20 m/s

• Pause time varied as 0, 250, 500, 750, 1000 seconds

For the RW mobility model, the default values for maximum velocity and pause time

were 10 m/s and 0 seconds respectively. Note that the mobility scenario files used for

TCP simulations and CBR simulations were the same.

5.4.2.1.1 Simulation Results

Figures 5.4.2.1 and 5.4.2.2 show the variation of c.p.d with respect to variation in

maximum velocity and pause time respectively. As seen from these plots, it is clear that

EAODV offers superior c.p.d performance compared to AODV. The reason for decrease

 63

in c.p.d in EAODV can be attributed to the excellent performance of the prediction

algorithm. With TCP traffic, the number of MAC frames carrying IP-encapsulated TCP

segments is comparable to the number of control packets generated, and hence the

prediction algorithm has the luxury of predicting link breakage time with the help of a

large number of packets. As a result, with EAODV, the number of link breaks in active

routes is reduced (by effective preemptive switching of active routes) when compared to

the number of link breaks in AODV, which reduces the control traffic generated. Figures

5.4.2.3 and 5.4.2.4 show the variation of TCP throughput as functions of maximum

velocity and pause time respectively. These curves indicate that the throughputs achieved

in EAODV and AODV are nearly the same. Hence, under conditions of comparable

throughput, EAODV offers lesser c.p.d than AODV.

The trend seen in the Figures 5.4.2.1 can be explained as follows: higher velocity implies

higher mobility, which not only increases the network traffic generated, but also

decreases the throughput values (Figure 5.4.2.3). The net result of these effects is the

increase in c.p.d for increasing velocities. To explain the trend in Figure 5.4.2.2, consider

the following: it can be seen from Table 5.4.1.1 that higher values of pause times

represent lesser mobility and longer link lifetimes. Lesser mobility and longer link

lifetimes enable that TCP connection to generate bursts at a higher rate for a longer

duration. But at higher pause time values, the degree of network partition also increases.

As a result, in some connections that have the sources and destinations in different

partitions, there are frequent TCP retransmissions. These retransmissions reduce the

source TCP’s window size to the minimum value, and packets are generated at a very

 64

slow rate until the partitions merge. Since TCP packets in such connections are generated

at a very low rate, the rate of control traffic generated is also very small for the duration

of the partition (Please remember that RREQs are generated only when there are

outstanding packets in the AODV queue for a particular destination). Also, as seen from

Figure 5.4.2.4, the throughput at higher pause times tends to be higher, which further

decreases the control traffic to data traffic ratio. Hence, the c.p.d decreases for increasing

pause times.

The reason for the trend seen in Figure 5.4.2.3 is simple: higher velocity implies higher

mobility, and frequent link breaks. These link breaks reduce the average window size of

TCP, which reduces the throughput. Thus at higher velocities, throughput is reduced. As

seen from Figure 5.4.2.4, the throughput tends to be higher at higher pause times. At

higher pause times, though the degree of partition is higher, the higher throughput

achieved in connections that span stable links offsets the lower throughput in

“connections” spanning partitions, whereas at lower pause times, the increased mobility

of nodes reduces the throughput. This explains the trend in the throughput curves.

Figures 5.4.2.5 and 5.4.2.6 show the variation of e2e as a function of maximum velocity

and pause time. The separation between e2e performances in EAODV and AODV is

quite unclear because the confidence intervals overlap, although from the curves, one can

conclude with lesser confidence that EAODV gives better e2e performance than AODV.

Figure 5.4.2.5 shows that e2e decreases with increasing velocities. This is because with

increasing velocities, routes are broken quickly and also made quickly, while at lower

velocities, routes are broken slowly and also made slowly. At lower velocities, once the

 65

route is broken, retransmissions may occur because the delay in forming a new route is

higher. The decrease in delay due to higher rate of bursts possible at lower velocities is

offset by the increase in delay due to retransmissions as a result of broken links and

increase in queuing delay due to congestion (and possible retransmission) at higher

source rates. The effect of increased queuing delay due to increased network traffic due

to numerous route discoveries at higher velocities is lesser than the effect of increased

delay due to congestions and retransmissions in the lower velocity case, and hence e2e

decreases with increasing velocities. As shown in Figure 5.4.2.6, e2e first decreases with

increasing pause times, since increasing pause times represent decreasing mobility. But

beyond a pause time of 500 seconds, the e2e starts increasing because the decrease in

delay due to decreased mobility is offset by an increase in delay due to retransmissions,

which is more pronounced when the network is highly partitioned.

control bits/ data bit vs max velocity
(Random Waypoint Model)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 5 10 15 20

max velocity (m/s)

ct
rl

 b
it

s/
d

at
a

b
it

AODV

EAODV

Figure 5.4.2.1 c.p.d vs Max Velocity (RW model, TCP traffic)

 66

control bits/ data bit vs pause time
(Random Waypoint Model)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 250 500 750 1000

pause time (seconds)

ct
rl

 b
it

s/
d

at
a

b
it

AODV

EAODV

Figure 5.4.2.2 c.p.d vs Pause time (RW model, TCP traffic)

Throughput vs max velocity
(Random Waypoint Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 5 10 15 20

max velocity (m/s)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

AODV

EAODV

Figure 5.4.2.3 Throughput vs Max Velocity (RW model, TCP traffic)

 67

Throughput vs pause time
(Random Waypoint Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 250 500 750 1000

pause time (seconds)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

AODV

EAODV

Figure 5.4.2.4 Throughput vs Pause time (RW model, TCP traffic)

End-to-End delay vs max velocity
(Random Waypoint Model)

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

1 5 10 15 20

max velocity (m/s)

e2
e

d
el

ay
 (

se
co

n
d

s)

AODV

EAODV

Figure 5.4.2.5 e2e vs Max Velocity (RW model, TCP traffic)

 68

End-to-End delay vs pause time
(Random Waypoint Model)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 250 500 750 1000

pause time (seconds)

e2
e

d
el

ay
 (

se
co

n
d

s)

AODV

EAODV

Figure 5.4.2.6 e2e vs Pause time (RW model, TCP traffic)

Average number of hops vs max velocity
(Random Waypoint Model)

0

0.5

1

1.5

2

2.5

3

1 5 10 15 20

max velocity (m/s)

A
ve

ra
g

e
n

u
m

b
er

 o
f

h
o

p
s

AODV

EAODV

Figure 5.4.2.7 hops vs Max Velocity (RW model, TCP traffic)

 69

Average number of hops vs pause time
(Random Waypoint Model)

0

0.5

1

1.5

2

2.5

3

0 250 500 750 1000

pause time (seconds)

A
ve

ra
g

e
n

u
m

b
er

 o
f

h
o

p
s

AODV

EAODV

Figure 5.4.2.8 hops vs Pause time (RW model, TCP traffic)

As seen from Figures 5.4.2.7 and 5.4.2.8, the average number of hops traversed per

delivered packet in both AODV and EAODV is almost the same. Moreover, the number

of hops seems relatively oblivious to the variation in maximum velocity or pause time.

Please keep in mind that the hop count obtained with CBR traffic is a true measure of the

average hop count of all active routes in the simulation, as the traffic source is

independent of the network condition, while the hop count obtained with TCP traffic is

not. This is because, in the absence of congestion, the rate of TCP transmissions is very

sensitive to the number of hops, because the rate depends on the mean round trip time

(rtt) of each connection, which is largely dependant on the number of hops. Hence at

lower hop counts, TCP transmits at a very high rate, while the rate rapidly drops at higher

hop counts. Thus, the average hop count in TCP tends to be similar for all simulations

just as the average hop count across all CBR simulations are comparable. Since TCP

 70

operates as a feedback system, TCP has a lower average hop count than the average hop

count with CBR traffic for the same mobility scenario.

5.4.2.2 Simulation parameters for Manhattan Gr id Model:

The simulations using MG model were run in a 1000m by 1000m area with 50 nodes

under varying conditions of mobility only. All statistics were based upon data packets

collected over 1000 simulation seconds

Variation in mobility: The MG model has three degrees of mobility – maximum velocity,

pause probability and turn probability. Our simulations were conducted by varying pause

probabilities and turn probabilities.

• Pause probability varied as 0, 0.25, 0.5, 0.75, 1.0

• Turn probability varied as 0, 0.25, 0.5, 0.75, 1.0

The default values for pause probability and turn probability were chosen as 0 and 0.25

respectively. The maximum velocity was chosen as 10 m/s and the default pause time

was 120 seconds. The communication pattern was the same communication pattern used

in the RW model.

5.4.2.2.1 Simulation Results

Figures 5.4.2.9 and 5.4.2.10 show the variation of c.p.d as functions of turn and pause

probabilities respectively, while Figures 5.4.2.11 and 5.4.2.12 plot the variation of TCP

throughput as functions of turn and pause probabilities respectively. Figures 5.4.2.13 and

5.4.2.14 depict the variation of e2e with variations in turn and pause probabilities

respectively, while Figures 5.4.2.15 and 5.4.2.16 show the variation of average number of

hops as functions of turn and pause probabilities respectively.

 71

From Figures 5.4.2.9 and 5.4.2.10, it can be seen that EAODV seems to offer better c.p.d

performance than AODV in most cases. For variation in turn probability, the effect of

reduction in number of link breaks (and subsequent reduction in control traffic generated)

on c.p.d in EAODV offsets the effect of reduced throughput (Figure 5.4.2.11) on c.p.d

due to EAODV using routes with higher hop counts than AODV, resulting in lesser c.p.d

in EAODV than in AODV. The trend seen in c.p.d for varying values of turn probabilities

is quite similar to the trend seen with CBR traffic. For variation in pause probability, the

c.p.d in EAODV decreases when compared to AODV, as the reduction in number of link

breaks in EAODV reduces the control data generated for comparable throughputs in

EAODV and AODV (Figure 5.4.2.12). The trend seen in Figure 5.4.2.10 is consistent

with our earlier explanation for reduction in c.p.d for increasing pause probabilities.

As seen from Figures 5.4.2.13 - 5.4.2.14 and Figures 5.4.2.15 – 5.4.2.16, the e2e and

average number of hop behavior of both EAODV and AODV are almost

indistinguishable. The e2e values are almost the same in both EAODV and AODV

because only a small fraction of packets out of the total delivered packets in EAODV

benefit from the reduction in delay due to proactive route discovery, and hence their

effect on the resultant e2e value is negligible. The trends as seen in Figures 5.4.2.11 –

5.4.2.16 are quite surprising. In all of these curves, for the simulation parameters

corresponding to the most stable network, throughput and e2e exhibit worst performance,

while the hops corresponding to these parameters exhibit best performance.

 72

In these cases of maximum network stability, though control traffic is greatly reduced,

the average number of neighboring nodes is very high (Table 5.4.1.2). This increases the

degree of contention in the wireless physical channel because the simulation model uses

only a single channel (frequency) for communication between nodes. This in turn

increases the probability of collision of the control (RTS/CTS/ACK) packets at the MAC

802.11 (CSMA/CA) layer. Hence, higher the average node degree, higher is the collision

probability. The collisions require the transmitting nodes to perform an exponential back-

off, which greatly reduces link utilization and effective bandwidth. Hence, in such highly

inter-connected networks, the e2e and tp performances experience degradation.

control bits/ data bit vs turn probability
(Manhattan Grid Model)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.25 0.5 0.75 1

turn probability

ct
rl

 b
it

s/
d

at
a

b
it

AODV

EAODV

Figure 5.4.2.9 c.p.d vs turn probability (MG model, TCP traffic)

 73

control bits/ data bit vs pause probability
(Manhattan Grid Model)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 0.25 0.5 0.75 1

pause probability

ct
rl

 b
it

s/
d

at
a

b
it

AODV

EAODV

Figure 5.4.2.10 c.p.d vs pause probability (MG model, TCP traffic)

Throughput vs turn probability
(Manhattan Grid Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.25 0.5 0.75 1

turn probability

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

AODV

EAODV

Figure 5.4.2.11 Throughput vs turn probability (MG model, TCP traffic)

 74

Throughput vs pause probability
(Manhattan Grid Model)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.25 0.5 0.75 1

pause probability

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

AODV

EAODV

Figure 5.4.2.12 Throughput vs pause probability (MG model, TCP traffic)

End-to-End Delay vs turn probability
(Manhattan Grid Model)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.25 0.5 0.75 1

turn probability

e2
e

d
el

ay
 (

se
co

n
d

s)

AODV

EAODV

Figure 5.4.2.13 e2e vs turn probability (MG model, TCP traffic)

 75

End-to-End Delay vs pause probability

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.25 0.5 0.75 1

pause probability

e2
e

d
el

ay
 (

se
co

n
d

s)

AODV

EAODV

Figure 5.4.2.14 e2e vs pause probability (MG model, TCP traffic)

Average number of hops vs turn probability
(Manhattan Grid Model)

0

0.5

1

1.5

2

2.5

3

0 0.25 0.5 0.75 1

turn probability

A
ve

ra
g

e
n

u
m

b
er

 o
f

h
o

p
s

AODV

EAODV

Figure 5.4.2.15 hops vs turn probability (MG model, TCP traffic)

 76

Average number of hops vs pause probability
(Manhattan Grid Model)

0

0.5

1

1.5

2

2.5

3

0 0.25 0.5 0.75 1

pause probability

A
ve

ra
g

e
n

u
m

b
er

 o
f

h
o

p
s

AODV

EAODV

Figure 5.4.2.16 hops vs pause probability (MG model, TCP traffic)

From the simulation results with TCP traffic, it can be concluded that:

• EAODV offers slightly better c.p.d performance than AODV in most cases

• EAODV offers slightly better e2e performance than AODV in networks that are

not very stable; the e2e in EAODV is almost indistinguishable from e2e in AODV

for stable networks

• EAODV offers comparable throughput performance with AODV in most cases

• The hops in both AODV and EAODV are comparable in most cases.

• In both EAODV and AODV, the network experiences maximum congestion when

the network is most stable. The congestion can be alleviated if link rates are

increased.

 77

5.4.3 Compar ison of CBR and TCP results

A comparison of CBR and TCP simulation results yields interesting conclusions. The

c.p.d in case of TCP is much lesser than the c.p.d in CBR. The reasons are two-fold: (1)

In the absence of congestion, TCP generates maximum traffic over stable links, and

reduces traffic burst rate over less stable links, while CBR generates traffic independent

of the state of the links, thus increasing the control traffic overhead (2) Since c.p.d is

calculated over the number of packets delivered, TCP has lesser c.p.d than CBR – TCP

guarantees reliable delivery, while CBR is unreliable delivery and hence in CBR the

fraction of packets delivered is almost always lesser than in TCP. For identical mobility

scenarios, TCP has lesser e2e than UDP. The rate control mechanism in TCP-Tahoe

forces TCP to generate higher rates of bursty traffic when the average rtt is lower, thus

generating a large number of packets at very low end-to-end delay and very less packets

at higher end-to-end delay, which leads to lower e2e value. CBR, on the other hand, does

not have any rate control mechanism, and hence generates packets evenly under all

conditions and has a higher e2e value.

The most interesting observation is the hops behavior in both TCP and CBR traffic. As

explained earlier, due to the rate limiting property of TCP-Tahoe, TCP generates higher

rates of bursts when the hop count is lesser and at lesser rates of bursts at higher hop

counts, while CBR, as explained above, has no feedback mechanism, and always

generates packets at an even rate (evidence for this claim is presented in Figures 5.4.3.1

and 5.4.3.2, and discussed later). In the absence of congestion, the rtt increases linearly

with the number of hops. This leads to an overall smaller hop count. The fallout of this

 78

rate limiting property in TCP is that whenever a link breaks, the delay experienced by a

TCP packet for route discovery before delivery will increase the rtt of the connection

(and maybe cause some timeouts and retransmissions). TCP misinterprets this increase in

rtt (and retransmissions) as congestion, and multiplicatively decreases its window size.

Even if the rtt value falls subsequently, the window size is only increased additively. This

behavior can cause potential damage to TCP throughput. If TCP can distinguish between

increase in rtt due to link breakage and real network congestion, and act accordingly, the

throughput can be increased. Even if TCP is enabled to distinguish between reasons for

increase in rtt, TCP still needs reduction in window size during link breakages, because

link breakages can cause queue build-up at the various nodes, and if TCP continues to

transmit at the same rate, there is scope for congestion to occur. TCP can additively

decrease window size during times of link breakage, and multiplicatively decrease during

congestion, to improve throughput.

Figures 5.4.3.1 and 5.4.3.2 show the number of TCP and CBR packets received by a

tagged node at each instant of time (with a one second granularity) for each hop count

value under identical mobility conditions. The simulations were run separately for default

TCP and CBR communication patterns using the AODV protocol with the same mobility

pattern file. The mobility pattern was chosen to represent maximum mobility (RW model,

maximum velocity of 20 m/s and pause time of 0 second), so that the behavior of the

transport layer protocols (read UDP and TCP) is best studied under extremely transient

network conditions. Also, the number of received packets in the tagged node is monitored

 79

(instead of the generated packets) because the received packets best characterize the

overall behavior of the various sources for varying network conditions.

Number of TCP packets received (tagged node)vs time

0

20

40

60

80

100

120

140

0 80 160 240 320 400 480 560 640 720 800 880 960

time (seconds)

N
u

m
b

er
 o

f
p

ac
ke

ts
 r

ec
ei

ve
d

1

2

3

4

5

6

7

8

9

10

Figure 5.4.3.1 Number of TCP packets vs Time

Number of CBR packets received (tagged node)vs time

0

2

4

6

8

10

12

14

16

18

0 80 160 240 320 400 480 560 640 720 800 880 960

time (seconds)

N
u

m
b

er
 o

f
 p

ac
ke

ts
 r

ec
ei

ve
d

1

2

3

4

5

6

7

8

9

10

Figure 5.4.3.2 Number of CBR packets vs Time

 80

In Figures 5.4.3.1 and 5.4.3.2, each entry in the legend is the hop count value. Comparing

Figures 5.4.3.1 and 5.4.3.2, TCP generates high rates of bursts at smaller hop counts, and

smaller rates of bursts at higher hop counts. The sizes of the bursts in TCP have a

correlation with the hop count.

5.5 Conclusions

From the simulations conducted, the following conclusions can be drawn:

• For CBR traffic, EAODV is more beneficial at higher mobility scenarios

• For TCP traffic, EAODV performs slightly better than AODV in most cases

• For TCP traffic, in both EAODV and AODV, the network experiences maximum

congestion when the average node degree is the highest.

• For TCP running over Ad hoc networks, slight modifications in TCP may be

required to increase TCP throughput

 81

Chapter 6 Conclusions and Future work

This chapter summarizes the total research work done so far and the conclusions drawn

from the results obtained. We also briefly discuss the potential for future research work.

6.1 Summary of work done

• Developed a prediction algorithm to predict link breakage time from signal

strength information extracted from a packet received on that particular logical

link

• Implemented the prediction algorithm in the ns-2 simulator at the 802.11 wireless

MAC layer

• Derived EAODV from AODV by suitably modifying AODV to enable cross-

layer interactions with the MAC layer

• Characterized the behavior of EAODV with CBR traffic, and compared

performances of EAODV and AODV with CBR traffic sources

• Characterized behavior of EAODV with TCP traffic, and compared performances

of EAODV and AODV with TCP traffic sources

6.2 Conclusions

From the results of simulation experiments, the following conclusions can be drawn:

• For CBR traffic, EAODV is more beneficial at higher mobility scenarios. In

higher mobility scenarios, EAODV experiences a slightly higher control overhead

and slightly lesser packet delivery ratio than AODV. But the improvement in

 82

mean packet end-to-end delay in EAODV outweighs the potential disadvantages

of using EAODV.

• For TCP traffic, EAODV performs slightly better than AODV in most cases.

EAODV always seems to offer slightly better performance in terms of end-to-end

packet delay and control overhead when compared to AODV. In some cases, the

throughput of EAODV slightly drops when compared to AODV. Overall, when

compared to AODV, EAODV does not offer any significant benefits for TCP

traffic

• For TCP traffic, in both EAODV and AODV, the network seems to experience

maximum congestion when the network is most stable.

• For TCP running over Ad hoc networks, slight modifications in TCP may be

required to increase TCP throughput. The above observations about TCP

performance highlight the need for cross-layer interaction schemes in ad hoc

routing.

6.3 Future Work

• One avenue for future research is to test EAODV by introducing effects of fading

in the ns2 packet corruption model, which will test the prediction algorithm more

rigorously for the effects of transients.

• The suitability of EAODV for real-time traffic needs to be further studied by

testing it with smaller sized CBR packets at a higher packet rate.

• The behavior of TCP over ad hoc network routing protocols should be an area of

interesting research. From the results of the simulations, it can be seen that TCP

exhibits several intriguing properties over ad hoc networks. The reasons for these

 83

behaviors are not fully explained. Further research is required to understand fully

TCP’s behavior over ad hoc networks.

• The need to shield TCP from effects of rapidly changing network topologies is

definitely felt at this point. One way of achieving this is through cross-layer

interactions between various protocol layers. Further study in this direction will

be very useful.

 84

References

[1] Joseph Macker and Scott Corson, IETF Mobile Ad Hoc Networks (MANET) Charter,

http://www.ietf.org/html.charters/manet-charter.html.

[2] Charles E. Perkins, Pravin Bhagwat, “Highly Dynamic Destination-Sequenced

Distance-Vector Routing (DSDV) for Mobile Computers.” Proceedings of the

Conference on Communications Architectures, Protocols and Applications, pages 234-

244, London, England, August 1994.

[3] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, a. Qayyum et L. Viennot

“Optimized Link State Routing Protocol” , IEEE INMIC Pakistan 2001.

[4] Johnson, D. and Maltz, D. (1996). "Dynamic source routing in ad hoc wireless

networks," in Mobile Computing (ed.T. Imielinski and H. Korth), Kluwer Academic

Publishers, Dordrecht, The Netherlands.

[5] C.Perkins, E.Royer and S.Das “Ad hoc On-Demand Distance Vector (AODV)

Routing” , Mobile Ad Hoc Networking Working Group, IETF Internet Draft, June 2002

http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-12.txt

[6] Z.J. Haas and M.R. Pearlman, "The Zone Routing Protocol (ZRP) for Ad Hoc

Networks," Internet Draft, draft-ietf-manet-zone-zrp-02.txt, June 1999

[7] Qin, L., “Pro-active Route Maintenance in DSR”, M. Sc. Thesis, School of

Computer Science, Carleton University, August 2001.

[8] David A. Maltz, Josh Broch, Jorjeta Jetcheva and David B. Johnson, “The Effects of

On-Demand Behavior in Routing Protocols for Multihop Wireless Ad Hoc Networks” ,

IEEE Journal on Selected Areas in Communications Special Issue on Mobile and

Wireless Networks, pages 1439-1453, August 1999.

 85

[9] Vincent D. Park and M. Scott Corson, “A Performance Comparison of the

Temporally-Ordered Routing Algorithm and Ideal Link-State Routing” , Proceedings of

IEEE Symposium on Computers and Communication ‘98, pages 592-598, Athens,

Greece, June 1998.

[10] SSA: R. Dube, C.D. Rais, K.-Y. Wang, and S.K. Tripathi, “Signal Stability-Based

Adaptive Routing (SSA) for Ad Hoc Mobile Networks” , IEEE Personal

Communications, vol. 4, no. 1, Feb. 1997, pp. 36-45.

[11] Elizabeth M. Royer and C.-K. Toh, “A Review of Current Routing Protocols for Ad-

Hoc Mobile Wireless Networks” , IEEE Personal Communications Magazine, pages 46-

55, April 1999.

[12] Samir R. Das, Charles E. Perkins and Elizabeth M. Royer, “Performance

Comparison of Two On-demand Routing Protocols for Ad Hoc Networks” , Proceedings

of the IEEE Conference on Computer Communications, pages 3-12, Tel Aviv, Israel,

March 2000.

[13] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu and Jorjeta Jetcheva,

“A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing

Protocols” , Proceedings of the Fourth Annual ACM/IEEE International Conference on

Mobile Computing and Networking, pages 85-97, Dallas, TX, October 1998.

[14] Daehyoung Hong and Stephen Rappaport, “Traffic Models and Performance

Analysis for Cellular Mobile Radio Telephone Systems with Prioritized and Non-

Prioritized Handoff Procedures” , IEEE Transactions on Vehicular Technology, Vol. VT-

35, No.3, pages 77-92, August 1986.

 86

[15] He Dajing, Jiang Shengming and Rao Jianqiang, “A Link Availability Prediction

Model for Wireless Ad Hoc Networks” , Proceedings of the International Workshop on

Wireless Networks and Mobile Computing, D7-D11, Taipei, Taiwan, April 2000.

[16] B. Narendran, P. Agrawal and D. K. Anvekar, “Minimizing Cellular Handover

Failures without Channel Utilization Loss” , Proceedings of IEEE Global

Communications Conference, pages 1679-1685, vol. 3, December 1994.

[17] The Network Simulator - ns-2 http://www.isi.edu/nsnam/ns/

[18] Kevin Fall and Kannan Varahan, editors. NS Notes and Documentation. The VINT

Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC, November 1997.

[19] Bruce Tuch, “Development of WaveLAN, an ISM Band Wireless LAN”, AT&T

Technical Journal, 72(4), pages 27-33, July/August 1993.

[20] “Selection Procedures for the Choice of Radio Transmission Technologies

of the UMTS” (TS30.03 v3.2.0). TS 30.03 3GPP, April 1998.

[21] C.D. Waal “BonnMotion - a mobility scenario generation and analysis tool” ,

Institute of Computer Science IV, University of Bonn http://www.cs.uni-

bonn.de/IV/BonnMotion/

 87

Appendix

In this appendix, the codes added to the appropriate files in the ns-2 simulator software

are listed (along with the file names).

node.h

#def i ne CROSS_LAYER

#i f def CROSS_LAYER
#def i ne V_MAX 40. 0 / / maxi mum vel oci t y of t he nodes
#def i ne V_MI N 1. 0 / / mi ni mum vel oci t y of nodes
#def i ne D_MAX 250. 0 / / t r ansmi ssi on r ange i n met er s
#def i ne CONSTANT 1. 5 / / gr oupi ng r emai ni ng t er ms i n t wo- r ay pr opogat i on model
#def i ne CURRENT_TI ME Schedul er : : i nst ance() . c l ock()
#def i ne MAX_TI ME 50. 0 / / max t i me of consi der at i on of t he st at e of a l i nk i n seconds
#def i ne I DLE_TI ME 15. 0 / / max t i me el apsed af t er whi ch l i nk i s consi der ed i dl e
#def i ne T_DEV_MAX 4. 0 / / max per mi ssi bl e devi at i on i n t i me i nt er val bet ween sampl es
#def i ne V_DEV_MAX 2. 0 / / max per mi ssi bl e devi at i on i n vel oci t y
#def i ne MI N_SAMPLES 4 / / mi ni mum number of sampl es t o base our est i mat i on upon
#def i ne MaX(a, b) ((a) > (b) ? (a) : (b))
#def i ne Mi N(a, b) ((a) < (b) ? (a) : (b))
c l ass l i nkl i f eEnt r y {

 publ i c:

 enum l i nkst at us { ACTI VE_LI NK, I DLE_LI NK, USELESS_LI NK} ;
/ / enum t o hol d st at e of l i nk
 enum movement { I NWARD, STATI C, OUTWARD} ; / / enum f or di r ect i on of
movement

 l i nkl i f eEnt r y() ;
 l i nkl i f eEnt r y(u_i nt 32_t , u_i nt 32_t) ;
 / / l i nk_l i f e_ent r y(u_char) ;
 ~l i nkl i f eEnt r y() { ; }

 u_i nt 32_t get _da() { r et ur n da; } / / r et ur n
dest i nat i on mac addr ess
 doubl e get _expi r e_t i me() { r et ur n expi r e_t i me; } / / r et ur n expi r e
t i me of l i nk
 doubl e get _t i mest amp() { r et ur n t i mest amp; } / / r et ur n
t i mest amp of l ast updat i on
 doubl e get _act i ve_t i mest amp() { r et ur n act i ve_t i mest amp; } / / r et ur n act i ve
t i mest amp
 nsaddr _t get i d() { r et ur n i d; } / / get dest i nat i on
node addr ess
 l i nkst at us get _l i nk_st at us() { r et ur n st at us; } / / r et ur n l i nk
st at us
 movement get _di r ect i on() { r et ur n di r ect i on; } / / get t he
di r ect i on i n whi ch t he node i s movi ng
 bool get _st at us_f l ag() { r et ur n st at us_f l ag; } / / get st at us_f l ag
 voi d updat e_expi r e_t i me(Packet *) ; / / comput e expi r e
t i me f r om al gor i t hm
 voi d updat e_l i nk_st at us() ; / / updat e t he
st at us of t he l i nk
 voi d updat e_di r ect i on() ; / / updat e
di r ect i on of movement
 voi d r eset _df () ; / / r eset al l
di r ect i on count er s

 i nt mac_compar e(u_i nt 32_t) ;

 88

 i nt i d_compar e(nsaddr _t) ;

 voi d set _st at us_f l ag(bool st at _f l ag) { st at us_f l ag = st at _f l ag; }
 voi d r eset _al gor i t hm() ;
 voi d dump() ; / / dump al l
i mpor t ant val ues t o scr een
/ / voi d set _max_vel o(doubl e mv) { maxvel o_ = mv; } / / set max
vel oci t y f r om t cl scr i pt

 LI ST_ENTRY(l i nkl i f eEnt r y) l l e_l i nk;

 pr i vat e:
 u_i nt 32_t da; / / ot her node' s mac addr ess
 u_i nt 32_t sa; / / t hi s node' s mac addr ess
 nsaddr _t i d; / / f or war di ng node' s i p addr ess (i d)

 i nt di r ect i on_f l ag[3] ; / / # of sampl es
i ndi cat i ng di r ect i on changes! !
 i nt no_sampl es; / / no of sampl es
 doubl e expi r e_t i me; / / pr edi ct ed t i me when
l i nk wi l l br eak
 doubl e t i mest amp; / / t i me of updat i on

 bool st at us_f l ag; / / f l ag t o set st at us as
act i ve
 doubl e act i ve_t i mest amp; / / t i mest amp when l i nk was
l ast act i ve

 doubl e v; / / i nst ant aneous est i mat ed
vel oci t y
 doubl e V_avg; / / est i mat ed aver aged
vel oci t y
 doubl e d; / / est i mat ed di st ance f r om
cur r ent node
 doubl e d_pr ev; / / est i mat ed pr evi ous
di st ance f r om cur r ent node
 doubl e al pha; / / conf i dence i ndex
 doubl e t _br eak; / / es t i mat e r esi dual l i nk-
l i f et i me
 doubl e t _br eak_pr ev; / / l ast known val ue of
t _br eak
 doubl e T_avg; / / wei ght ed aver age of
sampl i ng i nt er val s
 doubl e num; / / numer at or of mean
squar ed er r or
 doubl e denom; / / denomi nat or of mean
squar ed er r or
 doubl e nmse; / / nmse val ue
 l i nkst at us st at us; / / st at us of l i nk
 movement di r ect i on; / / di r ect i on of movement
/ / doubl e maxvel o_;
/ *
 * Now t he pr edi ct or f unct i on
 * * /
 doubl e r esi dual _l i f e_t i me() ;

} ;

LI ST_HEAD(r l l _t abl e, l i nkl i f eEnt r y) ;

#endi f / / CROSS_LAYER

node.cc

Node: : ~Node()

 89

{
#i f def CROSS_LAYER
 l i nkl i f eEnt r y * l l e ;
 whi l e((l l e = r l l _head. l h_f i r st)) {
 LI ST_REMOVE(l l e, l l e_l i nk) ;
 del et e l l e;
 }

#endi f
 LI ST_REMOVE(t hi s, ent r y) ;
}
#i f def CROSS_LAYER

voi d
l i nkl i f eEnt r y: : r eset _al gor i t hm() {

 expi r e_t i me = 0. 0;
 t i mest amp = 0. 0;

 act i ve_t i mest amp = CURRENT_TI ME;
 st at us_f l ag = t r ue;
 v = V_MI N;
 V_avg = V_MI N;
 d = 0. 0;
 d_pr ev = D_MAX;
 al pha = 0. 0;
 t _br eak = 0. 0;
 T_avg = 0. 0;
 di r ect i on = I NWARD;
 st at us = USELESS_LI NK;
 t _br eak_pr ev = 0. 0;
 no_sampl es = 0;
 r eset _df () ;
}

l i nkl i f eEnt r y: : l i nkl i f eEnt r y() {
 r eset _al gor i t hm() ;
 num = 0. 0;
 denom = 1. 0;
 nmse = 0. 0;
}

l i nkl i f eEnt r y: : l i nkl i f eEnt r y(u_i nt 32_t my_addy, u_i nt 32_t addy) {
 sa = my_addy;
 da = addy;
 r eset _al gor i t hm() ;
 num = 0. 0;
 denom = 1. 0;
 nmse = 0. 0;
}

voi d
l i nkl i f eEnt r y: : updat e_expi r e_t i me(Packet * p) {

 Node * node = (Node*) (p- >t xi nf o_. get Node()) ;
 i d= node- >nodei d() ; / / updat e f or war di ng node i d, i ncase t he i p addr ess changes,
whi l e mac r emai ns t he same! !
 d = pow((p- >t xi nf o_. get TxPr () / p- >t xi nf o_. RxPr) , 0. 25) * CONSTANT; / / est i mat e
di st ance
 i f (st at us_f l ag == t r ue) {
 no_sampl es++;
 act i ve_t i mest amp = CURRENT_TI ME;
 }
 expi r e_t i me = CURRENT_TI ME + r esi dual _l i f e_t i me() ; / / set expi r at i on t i me

}
doubl e

l i nkl i f eEnt r y: : r esi dual _l i f e_t i me() {
 f l oat epsi l on = 0. 01;

 90

 doubl e del t a_T = 0. 0 , t _wt = 1. 0, v_wt = 1. 0, t _r at i o, v_r at i o;

/ / Cal cul at e T_avg
 i f (t i mest amp == 0. 0) { / / f i r st sampl e
 t i mest amp = CURRENT_TI ME;
 }

 del t a_T = CURRENT_TI ME - t i mest amp; / / cal cul at e del t a_T

 i f (T_avg == 0. 0) / / f i r st sampl e
or al gor i t hm r eset
 T_avg = del t a_T;

 i f (del t a_T > 0. 0) {
 v = f abs((d - d_pr ev) / (del t a_T)) ;

 asser t (T_avg > 0. 0) ; / / Make sur e no di v i s i on by zer o

 t _r at i o = del t a_T/ T_avg; / / get a posi t i ve val ue f or r at i o

 t _r at i o = t _r at i o > 1. 0 ? t _r at i o : (1. 0/ t _r at i o) ; / / nor mal i ze r at i o t o >
1
 t _r at i o = t _r at i o < T_DEV_MAX ? t _r at i o : T_DEV_MAX; / / l i mi t
max t _r at i o t o max devi at i on al l owed i n ' t '
 t _wt = t _r at i o/ T_DEV_MAX; / / f i nd
t _wt f r om (1/ max_dev) t o 1

 i f (V_avg > 0. 0)
 v_r at i o = v/ V_avg; / / f i nd devi at i on of v f r om V_avg

 v_r at i o = v_r at i o > 1. 0 ? v_r at i o : (1. 0/ v_r at i o) ; / / nor mal i ze r at i o t o
> 1
 v_r at i o = v_r at i o < V_DEV_MAX ? v_r at i o : V_DEV_MAX; / / l i mi t max v_r at i o
t o max devi at i on al l owed i n v
 v_wt = t _wt * (v_r at i o/ V_DEV_MAX) ; / / f i nd v_wt ! !

 }

/
 / / MAI N PART OF THE ALGORI THM
/

 T_avg = t _wt * del t a_T + (1 - t _wt) * T_avg; / / cal cul at e T_avg
 T_avg = T_avg < MAX_TI ME ? T_avg : MAX_TI ME; / / l i mi t maxi mum aver age
t i me t o TI ME_USELESS

 V_avg = v_wt * v + (1 - v_wt) * V_avg; / / cal cul at e V_avg
 V_avg = V_avg < maxvel o_ ? V_avg : maxvel o_; / / l i mi t maxi mum
vel oci t y t o V_MAX

/
/
 t _br eak_pr ev = t _br eak;

 i f (V_avg > 0. 0) {
 t _br eak = (D_MAX - d) / V_avg; / / cal cul at e t _br eak
 t _br eak = t _br eak < MAX_TI ME ? t _br eak : MAX_TI ME; / / f i x upper l i mi t on
t _br eak
 }
 el se
 t _br eak = MAX_TI ME; / / set max t i me of i nt er est i n t he st at e of
t he l i nk
 i f (denom > 0. 0)
 i f (nmse ! = num/ denom) {
 nmse = num/ denom;
 dump() ;

 91

 }

/ / set di r ect i on of movement of mobi l e node

 i f (d > d_pr ev)
 di r ect i on_f l ag[OUTWARD] ++;
 el se i f (d < d_pr ev)
 di r ect i on_f l ag[I NWARD] ++;
 el se i f (d == d_pr ev)
 di r ect i on_f l ag[STATI C] ++;

 d_pr ev = d;
 t i mest amp = CURRENT_TI ME;

 r et ur n t _br eak;
} ;

i nt
l i nkl i f eEnt r y: : mac_compar e(u_i nt 32_t addy) {

 i f (addy ! = da)
 r et ur n 0;
 r et ur n 1;
}

voi d
l i nkl i f eEnt r y: : dump() {

/ / pr i nt f (" \ n %f : sr c = %u dst = %u d = %f d_pr ev = %f v = %f V_avg = %f t _br eak =
%f di r =%d l i nk=%d" , CURRENT_TI ME, sa, da, d, d_pr ev, v, V_avg, t _br eak, di r ect i on, st at us) ;
 i f (sa == 18)
 cout <<" \ n " <<CURRENT_TI ME<<" : sr c = " <<sa<<" dst =" <<da<<" d = " <<d<<" d_pr ev =
" <<d_pr ev<<" v = " <<v<<" V_avg = " <<V_avg<<" t _br eak = " <<t _br eak<<" di r = " <<di r ect i on<<"
l i nk=" <<st at us;
}

voi d
l i nkl i f eEnt r y: : updat e_l i nk_st at us() {
 doubl e t i me_el apsed = CURRENT_TI ME - act i ve_t i mest amp;
 / / cout <<" \ nt i me el apsed = " << t i me_el apsed << " max of " << MAX_TI ME << " , " <<
(5* T_avg) << " i s " << MaX(MAX_TI ME, 5* T_avg) ;

 i f (t i me_el apsed >= MaX(MAX_TI ME, 10* T_avg)) {
 st at us = USELESS_LI NK;
 / / cout <<" f r om l l e updat e_l i nk_st at us: " ;
 r eset _al gor i t hm() ;
 no_sampl es = 0;
 } el se i f (t i me_el apsed >= MaX(I DLE_TI ME, 4* T_avg)) { / / we say l i nk i s i dl e i f
mor e t han 4 expect ed val ues of i nt er - packet ar r i val t i me i nt er val s have passes si nce t he
ar r i val of t he l ast packet
 st at us = I DLE_LI NK;
 no_sampl es = 0;
 } el se i f (no_sampl es > MI N_SAMPLES) {
 st at us = ACTI VE_LI NK;
 no_sampl es = 0;
 }
}

voi d
l i nkl i f eEnt r y: : updat e_di r ect i on() {

 i f ((di r ect i on_f l ag[I NWARD] > di r ect i on_f l ag[OUTWARD]) && (di r ect i on_f l ag[I NWARD]
> di r ect i on_f l ag[STATI C])) { / / di r ect i on i s I NWARD
 di r ect i on = I NWARD;
 r eset _df () ;
 } el se i f ((di r ect i on_f l ag[STATI C] > di r ect i on_f l ag[I NWARD]) &&
(di r ect i on_f l ag[STATI C] > di r ect i on_f l ag[OUTWARD])) { / / di r ect i on i s STATI C

 92

 di r ect i on = STATI C;
 r eset _df () ;
 } el se i f ((di r ect i on_f l ag[OUTWARD] > di r ect i on_f l ag[I NWARD]) &&
(di r ect i on_f l ag[OUTWARD] > di r ect i on_f l ag[STATI C])) { / / di r ect i on i s OUTWARD
 di r ect i on = OUTWARD;
 r eset _df () ;
 }
}

voi d
l i nkl i f eEnt r y: : r eset _df () { / / r eset al l di r ect i on count s
 di r ect i on_f l ag[I NWARD] = 0;
 di r ect i on_f l ag[STATI C] = 0;
 di r ect i on_f l ag[OUTWARD] = 0;
}

#endi f

mac-802_11.h

cl ass Mac802_11 : publ i c Mac {
 f r i end cl ass Def er Ti mer ;
 f r i end cl ass Backof f Ti mer ;
 f r i end cl ass I FTi mer ;
 f r i end cl ass NavTi mer ;
 f r i end cl ass RxTi mer ;
 f r i end cl ass TxTi mer ;
publ i c:
 Mac802_11(PHY_MI B* p, MAC_MI B * m) ;
 voi d r ecv(Packet * p, Handl er * h) ;
 i nl i ne i nt hdr _dst (char * hdr , i nt dst = - 2) ;
 i nl i ne i nt hdr _sr c(char * hdr , i nt sr c = - 2) ;
 i nl i ne i nt hdr _t ype(char * hdr , u_i nt 16_t t ype = 0) ;

#i f def CROSS_LAYER
 r l l _t abl e * r l l _head;
#endi f

pr ot ect ed:
 voi d backof f Handl er (voi d) ;
 voi d def er Handl er (voi d) ;
 - - - -
 - - - -
 - - - -

pr i vat e:
 i nt command(i nt ar gc, const char * const * ar gv) ;

 / *
 * Cal l ed by t he t i mer s.
 * /
 - - - - - - -
 - - - - - - -
 - - - - - - -
#i f def CROSS_LAYER
 l i nkl i f eEnt r y* l l e_l ookup(u_i nt 32_t) ;
 voi d l l e_i nser t (u_i nt 32_t) ;
 voi d l l e_r emove(u_i nt 32_t) ;
 voi d cal cul at e_r l l (bool) ;
#endi f

mac-802_11.cc

voi d
Mac802_11: : r ecv_t i mer ()
{
 u_i nt 32_t sr c;

 93

 hdr _cmn * ch = HDR_CMN(pkt Rx_) ;
 hdr _mac802_11 * mh = HDR_MAC802_11(pkt Rx_) ;
 u_i nt 32_t dst = ETHER_ADDR(mh- >dh_da) ;

#i f def CROSS_LAYER
 / / pr i nt f (" \ n\ nt i me = %f mac sour ce = %u mac dst = %u my- mac =
%u" , CURRENT_TI ME, ETHER_ADDR(mh- >dh_sa) , dst , i ndex_) ;

i f (r l l _head == 0) {
 r l l _head = &(net i f _- >node() - >r l l _head) ;
 / / LI ST_I NI T(r l l _head) ;
}
#endi f

 - - - - -
 - - - - -
 swi t ch(t ype) {

 case MAC_Type_Management :
 di scar d(pkt Rx_, DROP_MAC_PACKET_ERROR) ;
 got o done;
 br eak;

 case MAC_Type_Cont r ol :
 swi t ch(subt ype) {
 case MAC_Subt ype_RTS:
 r ecvRTS(pkt Rx_) ;
#i f def CROSS_LAYER
 cal cul at e_r l l (t r ue) ;
#endi f
 br eak;
 case MAC_Subt ype_CTS:
 r ecvCTS(pkt Rx_) ;
#i f def CROSS_LAYER
 cal cul at e_r l l (t r ue) ;
#endi f
 br eak;
 case MAC_Subt ype_ACK:
 r ecvACK(pkt Rx_) ;
#i f def CROSS_LAYER
 cal cul at e_r l l (t r ue) ;
#endi f
 br eak;
 def aul t :
 f pr i nt f (st der r , " r ecvTi mer 1: I nval i d MAC Cont r ol Subt ype %x\ n" ,
 subt ype) ;
 exi t (1) ;
 }
 br eak;
 case MAC_Type_Dat a:
 swi t ch(subt ype) {
 case MAC_Subt ype_Dat a:
 r ecvDATA(pkt Rx_) ;
#i f def CROSS_LAYER
 cal cul at e_r l l (t r ue) ;
#endi f
 br eak;
 def aul t :
 f pr i nt f (st der r , " r ecv_t i mer 2: I nval i d MAC Dat a Subt ype %x\ n" ,
 subt ype) ;
 exi t (1) ;
 }
 br eak;
 def aul t :
 f pr i nt f (st der r , " r ecv_t i mer 3: I nval i d MAC Type %x\ n" , subt ype) ;
 exi t (1) ;
 }
 done:

 pkt Rx_ = 0;

 94

 r x_r esume() ;
}

aodv.h

#i f def CROSS_LAYER
cl ass l i nkl i f eEnt r y;
st r uct t r af f i c_hi st or y;
#endi f

#i f def CROSS_LAYER
#def i ne BREAK_THRESHOLD 0. 15 / / 150ms secs l ef t f or l i nk t o br eak
#def i ne MI N_REPAI R_TI ME 2 * NODE_TRAVERSAL_TI ME / / 60 msecs l ef t f or l i nk t o br eak
#def i ne CROSS_LAYER_PA_ROUTE
#endi f

/ *
 The Rout i ng Agent
* /
c l ass AODV: publ i c Agent {

 - - - - - - - - - - - -
 - - - - - - - - - - - -
 - - - - - - - - - - - -
publ i c:
#i f def CROSS_LAYER
 r l l _t abl e * r l l _head;
#endi f

pr ot ect ed:
#i f def CROSS_LAYER
 voi d sendRequest (nsaddr _t dst , i nt = 0
#i f def CROSS_LAYER_PRI ORI TY
 , bool = f al se
#endi f
) ;

#el se
 voi d sendRequest (nsaddr _t dst) ;
#endi f

#i f def CROSS_LAYER
 voi d updat e_expi r e_t i me() ; / / updat e expi r e t i mes (bot h nei ghbor and
r out e)

pr i vat e:
 voi d updat e_r t _expi r e_t i me(nsaddr _t , doubl e) ; / / updat e r out e expi r e
t i me f r om r ecei ved packet
 nsaddr _t get _sendi ng_node_i d(Packet *) ; / / get sendi ng node' s i p addr ess
 l i nkl i f eEnt r y* l l e_l ookup(nsaddr _t) ; / / get appr opr i at e ent r y f r om l i nk
expi r at i on t abl e
 voi d r epai r _or _r er r (nsaddr _t) ; / / det er mi ne i f l ocal r epai r or Rout e
Er r or
 voi d l ocal _r t _r epai r (aodv_r t _ent r y*) ; / / over l oaded f unct i on, t o do
pr oact i ve r out e r epai r
 voi d handl e_l i nk_f ai l ur e (aodv_r t _ent r y* * , i nt) ; / / over l oaded f unct i on t o send
pr oact i ve RERR of r out es t hat have not been l ocal l y r epai r ed
 voi d sendHel l o(nsaddr _t) ; / / over l oaded f unct i on t o send
UNI CAST HELLO packet s
#endi f

aodv.cc

AODV: : AODV(nsaddr _t i d) : Agent (PT_AODV) ,
 bt i mer (t hi s) , ht i mer (t hi s) , nt i mer (t hi s) ,

 95

 r t i mer (t hi s) , l r t i mer (t hi s) , r queue() {

 i ndex = i d;
 seqno = 2;
 bi d = 1;

 LI ST_I NI T(&nbhead) ;
 LI ST_I NI T(&bi head) ;
#i f def CROSS_LAYER
 r l l _head = &(Node: : get _node_by_addr ess(i ndex) - >r l l _head) ;
#endi f
 l ogt ar get = 0;
 i f queue = 0;
}

voi d
AODV: : l ocal _r t _r epai r (aodv_r t _ent r y * r t , Packet * p) {

#i f def DEBUG
 f pr i nt f (st der r , " %s: Dst - %d\ n" , __FUNCTI ON__, r t - >r t _dst) ;
#endi f
 / / Buf f er t he packet
 r queue. enque(p) ;

 / / mar k t he r out e as under r epai r
 r t - >r t _f l ags = RTF_I N_REPAI R;
#i f def CROSS_LAYER
 st r uct hdr _cmn * ch = HDR_CMN(p) ;
 i nt t t l =max(r t - >r t _hops, (1+ ch- >num_f or war ds()) / 2) + LOCAL_ADD_TTL; / / Dr af t 13
i mpl ement at i on
/ / f pr i nt f (st der r , " \ n %f I n l ocal r t r epai r : r t - >r t _hops = %d ch- >num_f or war ds = %d,
comput ed t t l = %d" , CURRENT_TI ME, r t - >r t _hops, ch- >num_f or war ds() , t t l) ;

 sendRequest (r t - >r t _dst , t t l) ;
#el se
 sendRequest (r t - >r t _dst) ;
#endi f

 / / set up a t i mer i nt er r upt
 Schedul er : : i nst ance() . schedul e(&l r t i mer , p- >copy() , r t - >r t _r eq_t i meout) ;
}

voi d
AODV: : r t _r esol ve(Packet * p) {
st r uct hdr _cmn * ch = HDR_CMN(p) ;
st r uct hdr _i p * i h = HDR_I P(p) ;
aodv_r t _ent r y * r t ;

 / *
 * Set t he t r ansmi t f ai l ur e cal l back. That
 * won' t change.
 * /
 ch- >xmi t _f ai l ur e_ = aodv_r t _f ai l ed_cal l back;
 ch- >xmi t _f ai l ur e_dat a_ = (voi d*) t hi s;
 r t = r t abl e. r t _l ookup(i h- >daddr ()) ;
 i f (r t == 0) {
 r t = r t abl e. r t _add(i h- >daddr ()) ;
 }

 / *
 * I f t he r out e i s up or r out e i s under pr oact i ve r epai r , f or war d t he packet
 * /
#i f def CROSS_LAYER
 i f (r t - >r t _f l ags == RTF_UP | | r t - >r t _f l ags == RTF_PA_REPAI R) {
#el se
 i f (r t - >r t _f l ags == RTF_UP) {
#endi f

 96

 - - - - - - - - - - - - -
 - - - - - - - - - - - - -
 - - - - - - - - - - - - -

}

voi d
AODV: : r t _pur ge() {
aodv_r t _ent r y * r t , * r t n;
doubl e now = CURRENT_TI ME;
doubl e del ay = 0. 0;
Packet * p;

#i f def CROSS_LAYER
updat e_expi r e_t i me() ; / / updat e r out e and nei ghbor t i mer s
#endi f

 f or (r t = r t abl e. head() ; r t ; r t = r t n) { / / f or each r t ent r y
 r t n = r t - >r t _l i nk. l e_next ;

#i f def CROSS_LAYER
l i nkl i f eEnt r y * l l e = l l e_l ookup(r t - >r t _next hop) ;

/ / asser t (l l e) ;

i f ((r t - >r t _f l ags == RTF_UP | | r t - >r t _f l ags == RTF_PA_REPAI R) && (l l e && l l e-
>get _di r ect i on() == l i nkl i f eEnt r y: : OUTWARD && l l e- >get _expi r e_t i me() < now)) {
#el se
 i f ((r t - >r t _f l ags == RTF_UP) && (r t - >r t _expi r e < now)) {
#endi f

 - - - - - - - - - - - - - - - - - - -
 - - - - - - - - - - - - - - - - - - -
 - - - - - - - - - - - - - - - - - - -
#i f def CROSS_LAYER
 el se i f (r t - >r t _f l ags == RTF_UP | | r t - >r t _f l ags == RTF_PA_REPAI R) {
#el se
 el se i f (r t - >r t _f l ags == RTF_UP) {
#endi f
 / / I f t he r out e i s not expi r ed,
 / / and t her e ar e packet s i n t he sendbuf f er wai t i ng,
 / / f or war d t hem. Thi s shoul d not be needed, but t hi s ext r a
 / / check does no har m.
 asser t (r t - >r t _hops ! = I NFI NI TY2) ;
 whi l e((p = r queue. deque(r t - >r t _dst))) {
 f or war d (r t , p, del ay) ;
 del ay += ARP_DELAY;
 }
 }
 el se i f (r queue. f i nd(r t - >r t _dst))
 / / I f t he r out e i s down and
 / / i f t her e i s a packet f or t hi s dest i nat i on wai t i ng i n
 / / t he sendbuf f er , t hen send out r out e r equest . sendRequest
 / / wi l l check whet her i t i s t i me t o r eal l y send out r equest
 / / or not .
 / / Thi s may not be cr uci al t o do i t her e, as each gener at ed
 / / packet wi l l do a sendRequest anyway.

 sendRequest (r t - >r t _dst) ;
 }

 - - - - - - - - - - - - - - -
 - - - - - - - - - - - - - - -
 }

voi d
AODV: : r ecvRequest (Packet * p) {

 97

st r uct hdr _i p * i h = HDR_I P(p) ;
st r uct hdr _aodv_r equest * r q = HDR_AODV_REQUEST(p) ;
aodv_r t _ent r y * r t ;

 / *
 * Dr op i f :
 * - I ' m t he sour ce
 * - I r ecent l y hear d t hi s r equest .
 * /

 -
 -
 -

 / * Fi nd out whet her any buf f er ed packet can benef i t f r om t he

#i f def CROSS_LAYER
 i f (r t 0 && (r t 0- >r t _f l ags == RTF_UP | | r t 0- >r t _f l ags == RTF_PA_REPAI R)) {
#el se
 i f (r t 0 && (r t 0- >r t _f l ags == RTF_UP)) {
#endi f
 asser t (r t 0- >r t _hops ! = I NFI NI TY2) ;
 f or war d(r t 0, buf f er ed_pkt , NO_DELAY) ;
 }
 }
 }
 / / End f or put t i ng r ever se r out e i n r t t abl e

 -
 -
 -

f or war d((aodv_r t _ent r y*) 0, p, DELAY) ;
 }
}

voi d
AODV: : f or war d(aodv_r t _ent r y * r t , Packet * p, doubl e del ay) {
st r uct hdr _cmn * ch = HDR_CMN(p) ;
st r uct hdr _i p * i h = HDR_I P(p) ;

 i f (i h- >t t l _ == 0) {

#i f def DEBUG
 f pr i nt f (st der r , " %s: cal l i ng dr op() \ n" , __PRETTY_FUNCTI ON__) ;
#endi f / / DEBUG

 dr op(p, DROP_RTR_TTL) ;
 r et ur n;
 }

 i f (r t) {

#i f def CROSS_LAYER

t r af f i c_hi st or y * t h = r t - >t h_l ookup(i h- >saddr ()) ;
i f (! t h)
 t h = r t - >t h_add(i h- >saddr ()) ;

doubl e t _el apsed = CURRENT_TI ME - t h- >t h_t i mest amp;

i f (t _el apsed > 4 * t h- >t h_t avg | | t _el apsed < 0. 25 * t h- >t h_t avg)
 t h- >t h_t avg = t _el apsed;
el se
 t h- >t h_t avg = 0. 5 * t h- >t h_t avg + 0. 5 * t _el apsed;

t h- >t h_t i mest amp = CURRENT_TI ME;
t h- >t h_hops = ch- >num_f or war ds() ;

 asser t (r t - >r t _f l ags == RTF_UP | | r t - >r t _f l ags == RTF_PA_REPAI R) ;

 98

 l i nkl i f eEnt r y * l l e = l l e_l ookup(r t - >r t _next hop) ;
 i f (l l e) {
 doubl e exp_t i me = l l e- >get _expi r e_t i me() ;
 }
#endi f
 -
 -
}

voi d
AODV: : sendRequest (nsaddr _t dst
#i f def CROSS_LAYER
, i nt num_hops / / t o al l ow speci f i y i ng t he t t l val ue f or t he packet
#endi f
) {

 -
 -
#i f def CROSS_LAYER
 i f (r t - >r t _f l ags ! = RTF_PA_REPAI R) / / dont expi r e r out e when r out e i s pr oact i vel y
r epai r ed
 r t - >r t _expi r e = 0;
#el se
 r t - >r t _expi r e = 0;
#endi f

 -
 -

}

voi d
AODV: : sendRepl y(nsaddr _t i pdst , u_i nt 32_t hop_count , nsaddr _t r pdst ,
 u_i nt 32_t r pseq, u_i nt 32_t l i f et i me, doubl e t i mest amp
#i f def CROSS_LAYER_PRI ORI TY
 , bool pr oact i ve
#endi f
) {
Packet * p = Packet : : al l oc() ;
st r uct hdr _cmn * ch = HDR_CMN(p) ;
st r uct hdr _i p * i h = HDR_I P(p) ;
st r uct hdr _aodv_r epl y * r p = HDR_AODV_REPLY(p) ;
aodv_r t _ent r y * r t = r t abl e. r t _l ookup(i pdst) ;

#i f def DEBUG
f pr i nt f (st der r , " sendi ng Repl y f r om %d at %. 2f \ n" , i ndex, Schedul er : : i nst ance() . c l ock()) ;
#endi f / / DEBUG
 asser t (r t) ;

 r p- >r p_t ype = AODVTYPE_RREP;
 / / r p- >r p_f l ags = 0x00;
 r p- >r p_hop_count = hop_count ;
 r p- >r p_dst = r pdst ;
 r p- >r p_dst _seqno = r pseq;
 r p- >r p_sr c = i pdst ; / / changed by Pr adeep f r om i ndex t o i pdst - v i ol at es dr af t V- 11
 r p- >r p_l i f et i me = l i f et i me;
 r p- >r p_t i mest amp = t i mest amp;

#i f def CROSS_LAYER
 l i nkl i f eEnt r y * l l e = l l e_l ookup(r t - >r t _next hop) ;
/ / asser t (l l e) ;
i f (l l e) {
 doubl e exp_t i me = l l e- >get _expi r e_t i me() - CURRENT_TI ME;
 r p- >r p_r t _l i f et i me = CURRENT_TI ME + exp_t i me;
}
#endi f

ch- >pt ype() = PT_AODV;
 ch- >si ze() = I P_HDR_LEN + r p- >si ze() ;
 ch- >i f ace() = - 2;

 99

 ch- >er r or () = 0;
 ch- >addr _t ype() = NS_AF_I NET;
 ch- >next _hop_ = r t - >r t _next hop;
 ch- >pr ev_hop_ = i ndex; / / AODV hack
 ch- >di r ect i on() = hdr _cmn: : DOWN;

 i h- >saddr () = i ndex;
 i h- >daddr () = i pdst ;
 i h- >spor t () = RT_PORT;
 i h- >dpor t () = RT_PORT;
 i h- >t t l _ = NETWORK_DI AMETER;

 Schedul er : : i nst ance() . schedul e(t ar get _, p, 0.) ;

}

voi d
AODV: : r ecvHel l o(Packet * p) {
/ / st r uct hdr _i p * i h = HDR_I P(p) ;
/ *
st r uct hdr _aodv_r epl y * r p = HDR_AODV_REPLY(p) ;
AODV_Nei ghbor * nb;

 nb = nb_l ookup(r p- >r p_dst) ;
 i f (nb == 0) {
 nb_i nser t (r p- >r p_dst) ;
 }
 el se {
#i f def CROSS_LAYER
l i nkl i f eEnt r y * l l e = l l e_l ookup(r p- >r p_dst) ;
i f (l l e) {
 doubl e exp_t i me = l l e- >get _expi r e_t i me() - CURRENT_TI ME;

 i f (l l e- >get _di r ect i on() ! = l i nkl i f eEnt r y: : OUTWARD)
 exp_t i me = max(exp_t i me, 2 * BREAK_THRESHOLD) ;

 nb- >nb_expi r e = CURRENT_TI ME + exp_t i me;
}
el se
#endi f
 nb- >nb_expi r e = CURRENT_TI ME +
 (1. 5 * ALLOWED_HELLO_LOSS * HELLO_I NTERVAL) ;
 }

 Packet : : f r ee(p) ;
 * /
}

#i f def CROSS_LAYER

voi d
AODV: : updat e_expi r e_t i me () {

l i nkl i f eEnt r y * l l e = r l l _head- >l h_f i r st ; / / get l i nkl i f eEnt r y t abl e head

f or (; l l e; l l e = l l e- >l l e_l i nk. l e_next) {
 nsaddr _t sn_i d = l l e- >get i d() ;

 i f (l l e) { / / onl y i f our l i nkl i f eEnt r y t abl e / nei ghbor t abl e has an
appr opr i at e ent r y

 doubl e expi r e_i n = l l e- >get _expi r e_t i me() - CURRENT_TI ME;

 l l e- >updat e_l i nk_st at us() ;
 l l e- >updat e_di r ect i on() ;
 i f (expi r e_i n > 0. 0) { / / l i nk i s st i l l al i ve or not f i r st sampl e

 100

 i f (l l e- >get _di r ect i on() == l i nkl i f eEnt r y: : OUTWARD) { / / onl y i f t he node
i s movi ng away f r om us

 / * i f t her e i s j ust enough t i me t o i ni t i at e pr oact i ve r out e
di scover y/ l ocal r epai r , but mor e t i me t han t hat woul d nor mal l y t ake f or
 * t he pr ocess of r out e di scover y/ l ocal r epai r
 * /

 swi t ch(l l e- >get _l i nk_st at us()) {

 case l i nkl i f eEnt r y: : ACTI VE_LI NK : / / act i ve l i nk
abt t o br eak, so f i nd al t er nat e r out e
 r epai r _or _r er r (sn_i d) ;
 br eak;

 case l i nkl i f eEnt r y: : I DLE_LI NK : / / i dl e l i nk
abt t o br eak, so send HELLO now or i f
 HELLO has al r eady been sent , do
l ocal r epai r / r out e di scover y
 br eak;

 case l i nkl i f eEnt r y: : USELESS_LI NK :
/ / we no l onger car e abt t he st at e of t he l i nk
 / / dont bot her
 br eak;

 def aul t :
/ / dont car e agai n
 br eak;
 } / / swi t ch- case

 } / / i f - el se di r ect i on of movement

 } / / i f expi r y > 0. 0
 el se { / / l i nk al r eady br oken! !
 / / r emove t hi s node f r om t he l l e t abl e - r t _pur ge & nb_pur ge wi l l t ake car e of
pur gi ng t he node out of t he r out i ng and nei ghbor t abl es

 LI ST_REMOVE(l l e, l l e_l i nk) ;
 del et e l l e;

 } / / i f - el se - expi r y > 0. 0
 } / / i f l l e & nb
 } / / f or l oop
}

voi d
AODV: : updat e_r t _expi r e_t i me (nsaddr _t i d, doubl e expi r e_t i me) {
aodv_r t _ent r y * r t , * r t n;

 f or (r t = r t abl e. head() ; r t ; r t = r t n) { / / f or each r t ent r y
 r t n = r t - >r t _l i nk. l e_next ;
 i f (r t - >r t _next hop == i d)
 r t - >r t _expi r e = mi n(expi r e_t i me,
(CURRENT_TI ME+ACTI VE_ROUTE_TI MEOUT)) ; / / f i nd out t he next hops t hat mat ch " i d" and updat e
t he expi r e t i me
 }
}

l i nkl i f eEnt r y*
AODV: : l l e_l ookup(nsaddr _t i d) {

l i nkl i f eEnt r y * l l e = r l l _head- >l h_f i r st ;

 f or (; l l e; l l e = l l e- >l l e_l i nk. l e_next) {
 i f (l l e- >i d_compar e(i d))

 101

 br eak;
 }
 r et ur n l l e;
}

nsaddr _t
AODV: : get _sendi ng_node_i d (Packet * p) {
Node * node = (Node*) p- >t xi nf o_. get Node() ;
r et ur n (node- >nodei d()) ;
}

voi d
AODV: : r epai r _or _r er r (nsaddr _t next hop) {
aodv_r t _ent r y * r t , * r t n, * r er r _l i st [50] ;
i nt no_r er r = 0;
i nt no_l r r = 0, hops = - 1; ;
f or (r t = r t abl e. head() ; r t ; r t = r t n) { / / f or each r t ent r y
 r t n = r t - >r t _l i nk. l e_next ;

 i f (r t - >r t _next hop == next hop) { / / ent r y i n r out i ng t abl e whi ch uses " next hop" f or
f or war di ng; we need t o r epai r / r er r t hi s l i nk
 i f (r t - >r t _f l ags == RTF_UP) { / / make sur e t hat t he r out e i s not bei ng r epai r ed
al r eady

 l i nkl i f eEnt r y * l l e = l l e_l ookup(next hop) ;
 doubl e exp_i n = l l e- >get _expi r e_t i me() - CURRENT_TI ME;
 i f (r t - >t h_r out e_act i ve() == t r ue) { / / i f r out e i s act i ve
 hops = r t - >t h_act i ve_hopcount () ;

 i f (r t - >r t _hops < hops | | (hops == 0)) { / / do l ocal r epai r , i f
t hi s node i s c l oser t o dst or i f t hi s i s t he or i gi nat or node! !
 i nt num_hops = max(r t - >r t _hops, ((hops+1) / 2)) +
LOCAL_ADD_TTL;

 doubl e max_bound = 0. 15;
 doubl e mi n_bound = 0. 03;
 i f (exp_i n < max_bound && exp_i n > mi n_bound && r t -
>pa_r t _expi r e <= CURRENT_TI ME) {
 l ocal _r t _r epai r (r t) ;
 }
 }
 }
 el se{
 }
 } / / t o see i f t he st at us of l i nk i s up

 } / / t o deci de i f t he next hop i s t he node under consi der at i on
} / / f or l oop

}

voi d
AODV: : l ocal _r t _r epai r (aodv_r t _ent r y * r t) {
 / / cr eat e a dummy packet
Packet * p = Packet : : al l oc() ;
st r uct hdr _i p * i h = HDR_I P(p) ;

i h- >daddr () = r t - >r t _dst ; / / copy dest addr t o packet ' s dest addr ; t hi s i s r equi r ed
because t he packet wi l l be used i n Local Repai r Ti mer - handl i ng f unct i on
i h- >t t l _ = 0; / / make sur e t hat t he packet i s never f or war ded out si de, even i f by
chance i t l eaves t he node
 / / mar k t he r out e as under r epai r
 r t - >r t _f l ags = RTF_PA_REPAI R;

i nt num_hops = max(r t - >r t _hops, (i nt) (0. 5 * r t - >t h_act i ve_hopcount ())) +
LOCAL_ADD_TTL;

 sendRequest (r t - >r t _dst , num_hops) ;

 102

 / / set up a t i mer i nt er r upt

 Schedul er : : i nst ance() . schedul e(&l r t i mer , p, r t - >r t _r eq_t i meout) ;

}

voi d
AODV: : handl e_l i nk_f ai l ur e (aodv_r t _ent r y * * l i st , i nt no_r er r) {
aodv_r t _ent r y * r t ;
Packet * r er r = Packet : : al l oc() ; st r uct hdr _aodv_er r or * r e = HDR_AODV_ERROR(r er r) ;

 r e- >Dest Count = 0;
 f or (i nt i = 0; i <no_r er r ; i ++) { / / f or each r t ent r y
 r t = l i st [i] ;
 i f ((r t - >r t _hops ! = I NFI NI TY2)) {
 asser t (r t - >r t _f l ags == RTF_UP) ;
 asser t ((r t - >r t _seqno%2) == 0) ;
 r t - >r t _seqno++;
 r e- >unr eachabl e_dst [r e- >Dest Count] = r t - >r t _dst ;
 r e- >unr eachabl e_dst _seqno[r e- >Dest Count] = r t - >r t _seqno;

 r e- >Dest Count += 1;
 r t _down(r t) ;
 }
 / / r emove t he l ost nei ghbor f r om al l t he pr ecur sor l i st s
 r t - >pc_del et e(r t - >r t _next hop) ;
 }

 i f (r e- >Dest Count > 0) {

 sendEr r or (r er r , f al se) ;
 }
 el se {
 Packet : : f r ee(r er r) ;
 }

}

aodv_rtable.h

#i f def CROSS_LAYER
st r uct t r af f i c_hi st or y{
 nsaddr _t t h_sr c;
 doubl e t h_t i mest amp;
 u_i nt 16_t t h_hops;
 doubl e t h_t avg;
 LI ST_ENTRY(t r af f i c_hi st or y) t h_l i nk;
} ;
LI ST_HEAD(t h_t abl e, t r af f i c_hi st or y) ;
#endi f

c l ass aodv_r t _ent r y {
 f r i end cl ass aodv_r t abl e;
 f r i end cl ass AODV;
 f r i end cl ass Local Repai r Ti mer ;

 - - - - - - - - - - - - - - - -
 - - - - - - - - - - - - - - - -

pr ot ect ed:
#i f def CROSS_LAYER
#def i ne RTF_PA_REPAI R 3
#def i ne ACTI VE_ROUTE_TI MEOUT 10
 t h_t abl e t h_head; / / t r af f i c hi st or y t abl e
 publ i c:
 t r af f i c_hi st or y* t h_add(nsaddr _t) ; / / add an ent r y

 103

 t r af f i c_hi st or y* t h_l ookup(nsaddr _t) ; / / l ookup an ent r y
 t r af f i c_hi st or y* t h_del et e(nsaddr _t) ; / / del et e an ent r y
 bool t h_r out e_act i ve() ; / / i s t he r out e act i ve??
 u_i nt 16_t t h_act i ve_hopcount () ; / / l east hopcount of al l act i ve r out es
 pr ot ect ed:
#endi f

 - - - - - - - - - - - - - - - -
 - - - - - - - - - - - - - - - -
}

aodv_rtable.cc

aodv_r t _ent r y: : aodv_r t _ent r y()
{
i nt i ;

 - - - - - - - - - - - - - - - -
 - - - - - - - - - - - - - - - -
#i f def CROSS_LAYER
 LI ST_I NI T(&t h_head) ;
#endi f
}

aodv_r t _ent r y: : ~aodv_r t _ent r y()
{
 - - - - - - - - - - - - - - -
 - - - - - - - - - - - - - - -

#i f def CROSS_LAYER
 t r af f i c_hi st or y* t h ;
 whi l e((t h = t h_head. l h_f i r st)) {
 LI ST_REMOVE(t h, t h_l i nk) ;
 del et e t h;
 }
#endi f

}

#i f def CROSS_LAYER

t r af f i c_hi st or y*
aodv_r t _ent r y: : t h_add(nsaddr _t i d) {
t r af f i c_hi st or y * t h;

asser t (t h_l ookup(i d) == 0) ;
t h = new t r af f i c_hi st or y;
asser t (t h) ;
t h- >t h_sr c = i d;
t h- >t h_t i mest amp = CURRENT_TI ME;
t h- >t h_t avg = 0. 0;
t h- >t h_hops = 0;

LI ST_I NSERT_HEAD(&t h_head, t h, t h_l i nk) ;
r et ur n t h;
}

t r af f i c_hi st or y*
aodv_r t _ent r y: : t h_l ookup(nsaddr _t i d) {

t r af f i c_hi st or y* t h = t h_head. l h_f i r st ;

 f or (; t h; t h=t h- >t h_l i nk. l e_next) {
 i f (t h- >t h_sr c == i d)
 br eak;
 }
 r et ur n t h;
}

 104

bool
aodv_r t _ent r y: : t h_r out e_act i ve() {
t r af f i c_hi st or y* t h = t h_head. l h_f i r st ;
doubl e now = CURRENT_TI ME;

f or (; t h ; t h = t h- >t h_l i nk. l e_next) {
 i f ((now - t h- >t h_t i mest amp) < (1. 5 * t h- >t h_t avg))
 r et ur n t r ue;
}
r et ur n f al se;
}

u_i nt 16_t
aodv_r t _ent r y: : t h_act i ve_hopcount () {
t r af f i c_hi st or y* t h = t h_head. l h_f i r st ;
doubl e now = CURRENT_TI ME;
u_i nt 16_t hops = 0;

f or (; t h; t h=t h- >t h_l i nk. l e_next) {
 i f ((now - t h- >t h_t i mest amp) < (1. 5 * t h- >t h_t avg)) {

 / * choose t he smal l est val ue of hops among al l act i ve r out es * /

 i f (hops == 0)
 hops = t h- >t h_hops;
 el se
 hops = hops < t h- >t h_hops ? hops : t h- >t h_hops;
 }

 }

r et ur n hops;
}

/ / t r af f i c_hi st or y*
/ / aodv_r t _ent r y: : t h_del et e(nsaddr _t i d) {
/ /
#endi f

