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Abstract 

 
This thesis aims to modify an existing mobile ad-hoc network (MANET) reactive routing 

protocol (AODV) into a hybrid protocol by introducing adaptive, proactive behavior to 

improve its performance. Under our proposed scheme, route maintenance decisions are 

based on predicted values of 'link-breakage times' (when the next-hop node will move out 

of transmission range) obtained from a series of position/velocity estimates of the next-

hop node. These estimates are based on the power level of the received MAC frames. If a 

link is about to break, proactive discovery of new routes to all destinations using the next-

hop node depends on the history of traffic to that destination. We simulated (using the 

ns2 simulator) numerous test conditions using CBR and TCP traffic and compared 

performance metrics for the original and modified versions of the protocol.  We were 

able to achieve (1) a significant reduction in mean packet latency for CBR traffic and (2) 

a reduction in control overhead in TCP traffic, while incurring other small penalties for 

both types of traffic. Also, a comparison of some performance metrics for TCP and CBR 

traffic led us to conclude that slight modifications in TCP can lead to its improved 

performance over MANETs. 
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Chapter 1 Introduction 

Recent advances in wireless communication technologies and availability of less 

expensive computer processing power have led to a surge in interest in mobile computing 

and its applications. A "mobile ad hoc network" (MANET) is an autonomous system of 

mobile routers (and associated hosts) connected by wireless links - the union of which 

forms an arbitrary graph. The routers are free to move randomly and organize themselves 

arbitrarily; thus, the network’s wireless topology may change rapidly and unpredictably. 

Such a network may operate in a standalone fashion, or may be connected to the larger 

Internet [1]. Applications of MANETs are aplenty - some examples include military use 

in battle fields, where a centralized command center is not only infeasible but also 

undesirable; and disaster management scenarios, where communication between various 

rescue teams is required in the absence of any existing communication infrastructure. 

 

A key challenge in MANETs is to devise efficient methods to ensure route availability 

while incurring minimal control overhead. MANET routing protocols are of two kinds: 

proactive (table-driven) and reactive (on-demand). Proactive protocols always have 

routes to any destination in the network, while reactive protocols need to discover routes 

as needed. Proactive protocols suffer from excessive control overhead associated with 

maintaining routes to destinations even when not required, while reactive protocols 

experience higher end-to-end packet delays when compared to proactive protocols. 

Examples of proactive protocols are Destination Sequenced Distance Vector (DSDV) [2] 

and Optimized Link State Routing (OLSR) [3] while some examples of reactive protocols 

include Dynamic Source Routing (DSR) [4], Ad hoc On-demand Distance Vector 
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(AODV) routing [5] etc. A third class of protocols, Hybrid Protocols, imbibes the 

qualities of both proactive and reactive protocols. One example of a hybrid protocol is the 

Zone Routing Protocol (ZRP) [6].  

 

1.1 Motivation 

Ideally, a routing protocol that produces routing overhead comparable to a reactive 

protocol and offers end-to-end packet delays comparable to a proactive protocol is 

desired. End-to-end packet latency is an important consideration in real time applications 

like voice, video etc, which are time critical. In the near future, one can expect a 

significant amount of multimedia traffic in ad hoc networks. Conventional ad hoc 

protocols are not capable of handling real time traffic. The work described here is an 

attempt to design a routing protocol that offers lesser end-to-end packet delays for real-

time traffic and lesser control overhead for TCP traffic. This can only be achieved by 

tapping link state information, which is generally ignored in conventional ad hoc routing 

protocols. Existing hybrid protocols do not make use of link state information, and hence 

do not offer a great performance advantage over existing reactive or proactive protocols; 

each protocol performs better in certain scenarios. 

 

1.2 Research Overview 

The scope of this research is to provide extensions to an existing reactive ad hoc routing 

protocol (AODV) in the form of cross-layer interaction capabilities along with a 

prediction algorithm to predict link breakage times. Further, the reactive protocol is 
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modified into an adaptive, hybrid protocol by suitably modifying the route maintenance 

procedure in AODV to introduce selective proactivity. We call the resulting protocol 

Enhanced AODV (EAODV). The following presents a summary of the total work done: 

 

1. Developed a prediction algorithm to predict link breakage time from signal 

strength information extracted from a packet received on that particular logical 

link  

2. At the MAC layer, introduced a table of link-to-neighbor breakage times of 

logical links associated with the particular mobile node, and provided an interface 

for upper layers to access this table 

3. Provided methods to assess the state of any link as ACTIVE or IDLE 

4. At the AODV layer, provided methods to assess the state of each route as 

ACTIVE or IDLE 

5. Through the interface provided at the MAC layer, used the available link state 

information to make intelligent, proactive AODV route maintenance decisions for 

ACTIVE routes only. 

6. Implemented the above enhancements to AODV and 802.11 MAC in the ns-2 

simulator and ran simulations for thorough performance evaluation studies to 

compare AODV and Enhanced AODV (EAODV) 

7. For CBR traffic, achieved a significant reduction in mean end-to-end packet 

latency at a small cost in the form of a marginal increase in control overhead and 

a marginal decrease in packet delivery ratio 
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8. For TCP traffic, achieved a significant reduction in percentage routing control 

overhead at a small cost in the form of a marginal reduction in TCP throughput. 

9. Realized the need for modifications to TCP to increase TCP throughput in ad hoc 

networks. 

 

1.3 Organization of Thesis 

This thesis is organized as follows: Chapter (2) is an introduction to mobile ad hoc 

networks and some of the existing reactive, proactive and hybrid protocols. Some results 

from published works are discussed as well. Chapter (3) presents the prediction algorithm 

in detail. Chapter (4) gives a brief introduction to the network simulator (ns-2) and deals 

with implementation details of the prediction algorithm and cross-layer capabilities. 

Chapter (5) details the performance metrics chosen, simulation scenarios and results of 

simulations. Chapter (6) discusses conclusions drawn from simulation experiments and 

scope for future work. 
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Chapter 2 Background 

2.1 Introduction 

A Mobile Ad Hoc Network generally does not have any infrastructure and each mobile 

host also acts as a router. Communication between various hosts takes place through 

wireless links. Direct communication can take place between hosts that are within the 

communication range of the antennas of the respective hosts; otherwise, communication 

is achieved through multi-hop routing. Figure 2.1 represents a MANET of 3 nodes. Node 

2 can communicate directly with Node 1 and Node 3. But any communication between 

Nodes 1 and 3 must be routed through Node 2.  

  

     

 

    

 

     Figure 2-1 A Manet of 3 Nodes 

 

A major part of this chapter is based on [7]. The following are the salient features of 

MANETs: 

• Dynamic Topologies: All nodes in the MANET generally move with varying 

velocities, and hence the network topology changes dynamically. Frequent link 

breaks are quite common. New nodes may join the network or existing nodes can 

leave the network. The dynamic changes in the network topology pose the biggest 

challenge to routing in Ad Hoc Networks. 

   1    2    3 
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• Asymmetrical Communication: Each node in the Ad Hoc Network may have 

antennas of different characteristics, and hence symmetrical, bi-directional 

communication over the same link is not always possible. In some cases, only 

unidirectional communication is possible.  

• Bandwidth limitations: Since the nodes communicate via wireless links, the 

realized throughput in these networks when compared to a wired network of 

similar size is quite small. The relatively lower capacity of the wireless links does 

not facilitate transmission of delay-constrained traffic (real-time or multimedia 

traffic). Moreover, the wireless links are quite error-prone, which may further 

degrade throughput due to upper layer retransmissions, etc. 

• Energy limitations: The nodes in the MANET are generally battery operated. 

Hence, energy conservation techniques and energy-aware routing in MANETs 

become necessary. 

Existing routing protocols in wired networks (both link state and distance vector) are not 

suitable for MANETs. These routing protocols distribute topological information across 

the network to update other nodes of topological changes. This mechanism is not suitable 

in MANETs, because there are frequent topological changes as the nodes move randomly 

causing frequent link breakages.  

2.2 Routing Protocols for  MANETs 

The existing routing protocols in MANETs can be classified into two categories: (1) 

Table-driven routing protocols, and (2) On-demand routing protocols. Fig 2.2 shows the 

classification along with some examples of existing MANET protocols. 
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Figure 2.2 Classification of MANET Routing Protocols 

2.2.1 Table Dr iven or  Proactive Protocols 

Table-driven protocols (proactive protocols) generate frequent updates of network 

topology information to maintain a consistent view of the network at all nodes. These 

nodes are required to maintain tables containing topology information, so that any node 

wishing to communicate with any other node may do so by computing a route to the 

destination node from the table. It is fairly expensive in terms of table size and control 

overhead to maintain a table of topological information of all nodes. The chief 

disadvantage of this method is that the nodes may be maintaining topological information 

about nodes with which it may never communicate.  

2.2.1.1 Destination Sequenced Distance Vector  Routing 

Destination-Sequenced Distance-Vector (DSDV) Routing is based on the classical 

Bellman-Ford routing scheme. DSDV, unlike traditional distance vector protocols, 

guarantees loop-freedom by tagging each route table entry with a sequence number to 

order the routing information. Each node maintains a routing table with all available 
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destinations along with information like next hop, the number of hops to reach to the 

destination, sequence number of the destination originated by the destination node, etc. 

DSDV uses both periodic and triggered routing updates to maintain table consistency. 

Triggered routing updates are used when network topology changes are detected , so that 

routing information is propagated as quickly as possible. Routing table updates can be of 

two types - "full dump" and “ incremental” . “Full dump” packets carry all available 

routing information and may require multiple network protocol data units (NPDU); 

“ incremental”  packets carry only information changed since the last full dump and should 

fit in one NPDU in order to decrease the amount of traffic generated.  

 

Mobile nodes cause broken links when they move from place to place. When a link to the 

next hop is broken, any route through that next hop is immediately assigned an infinity 

metric and an updated sequence number. This is the only situation when any mobile node 

other than the destination node assigns the sequence number. Sequence numbers assigned 

by the origination nodes are even numbers, and sequence numbers assigned to indicate 

infinity metrics are odd numbers. When a node receives an infinity metric, and it has an 

equal or later sequence number with a finite metric, it triggers a route update broadcast, 

and the route with infinity metric will be quickly replaced by the new route. When a 

mobile node receives a new route update packet, it compares it to the information already 

available in the table and the table is updated based on the following criteria: 

• If the received sequence number is greater, then the information in the table is 

replaced with the information in the update packet  
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• Otherwise, the table is updated if the sequence numbers are the same and the 

metric in the update packet is better. 

The metrics for newly received routes are each incremented by one hop since incoming 

packets will require one more hop to reach the destination. In an environment where 

many independent nodes transmit routing tables asynchronously, some fluctuations could 

develop. DSDV also uses settling time to prevent fluctuations of routing table updates. 

The settling time is used to decide how long to wait before advertising new routes. The 

DSDV protocol guarantees loop-free paths to each destination and detects routes very 

close to optimal. It requires nodes to periodically transmit routing update packets. These 

update packets are broadcast throughout the network. When the number of nodes in the 

network grows, the size of the routing tables and the bandwidth required to update them 

also grows, which could cause excessive communication overhead. This overhead is 

nearly constant with respect to mobility rate. 

2.2.2 On-Demand or Reactive Protocols  

Reactive protocols discover routes only as needed. When a node wishes to communicate 

with another node, it checks with its existing information for a valid route to the 

destination. If one exists, the node uses that route for communication with the destination 

node. If not, the source node initiates a route request procedure, to which either the 

destination node or one of the intermediate nodes sends a reply back to the source node 

with a valid route. A soft state is maintained for each of these routes – if the routes are 

not used for some period of time, the routes are considered to be no longer needed and 

are removed from the routing table; if a route is used before it expires, then the lifetime of 

the route is extended. 
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2.2.2.1 Dynamic Source Routing 

Dynamic Source Routing (DSR), as the name suggests, is based on the concept of source 

routing. There are no periodic routing advertisements; instead, routes are dynamically 

determined based on cached information or on the result of a route discovery process. In 

source routing, the sender of the packet specifies the complete sequence of the nodes that 

the packet has to take. The sender explicitly lists this route in the packet’s header, 

identifying each forwarding “hop”  by the address of the next node to which the packet 

must be sent on its way to the destination host. A key advantage of source routing is that 

intermediate hops do not need to maintain routing information in order to route the packet 

they receive, since the packets themselves already contain all the necessary routing 

information.  

 

Unlike conventional routing protocols, the DSR protocol does not periodically transmit 

route advertisements, thereby reducing control overhead, particularly during periods 

when little or no significant host movement is taking place. The DSR protocol consists of 

two mechanisms: Route Discovery and Route Maintenance. When a mobile node wants 

to send a packet to some destination, it first consults its route cache for a non-expired 

route. If the node does not have such a route, it will initiate route discovery by 

broadcasting a route request (RREQ) packet, which contains the addresses of the source 

node and the destination, and a unique sequence number “ request id” , which is set by the 

source node. Each node in the network maintains a list of (source address, request id) pair 

that it has recently received from any host in order to detect duplicate route requests 

received. 
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On receiving a RREQ, a node checks to see if it has already received a request with the 

same (source address, request id) pair (duplicate RREQ). In such an event, or if the node 

sees its own address already recorded in the request (routing loop), it discards the copy 

and does not process it further. Otherwise, it appends its own address to the route record 

in the route request packet and re-broadcasts the query to its neighbors. When the request 

packet reaches the destination, the destination node then sends a route reply packet to the 

source with a copy of the route. If a node can complete the query from its route cache, it 

may unicast a route reply (RREP) packet to the source without propagating the query 

packet further. Furthermore, any node participating in route discovery can learn routes 

from passing data packets and gather this routing information into its route cache. Figure 

2.3 (from [7]) is an example of the creation of a route record in DSR.  

 

Figure 2.3 Route Discovery process in DSR 

Route Maintenance is used to detect if the network topology has changed such that the 

route in the node’s route cache is no longer valid. Each node along the route, when 

transmitting the packet to the next hop, is responsible for detecting if its link to the next 

hop has broken. Many wireless MAC protocols, such as IEEE 802.11, retransmit each 

packet until a link-layer acknowledgement is received, or until a maximum number of 
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retransmission attempts have been made. Alternatively, DSR may make use of a passive 

acknowledgement. When the retransmission and acknowledgement mechanism detects 

that the link is broken, the detecting node unicasts a Route Error packet (RERR) to the 

source of the packet. Every hop en-route to the source that received or overheard the 

RERR removes the broken link from any route caches and truncates all routes that 

contain this hop. The source can then attempt to use any other route to the destination that 

is already in its route cache, or can invoke Route Discovery again to find a new route.  

 

There are several optimization options for the DSR protocol to reduce the latency and 

control message overhead [8]: 

•  Non-propagating Route Requests: When performing Route Request, nodes first 

send a RREQ with the maximum propagation limit (hop limit) set to one, 

prohibiting their neighbors from re-broadcasting it. 

• Gratuitous Route Replies: If a node overhears a packet that is not destined to it, 

but that has its address listed in the list of hops, the node knows that the packet 

could bypass the unprocessed hop preceding it in the source route. The node then 

sends a gratuitous RREP message to the packet’s source, giving it the shorter 

route without these hops. 

•  Salvaging: When an intermediate node forwarding a packet finds that the next 

hop of the packet is broken, it checks its route cache for another route to the same 

destination. If a route exists, the node replaces the broken source route on the 

packet’s header with the route from its cache and retransmits the packet, and 

returns a RERR to the source of the data packet. 



 13

• Gratuitous RERR: When a source node receives a RERR message, it will 

piggyback this bad link on its next RREQ message. In this way, stale information 

in the route caches around this source node will not generate RREP that contain 

the same bad link. 

 

The DSR protocol is intended for networks in which the mobile nodes move at a 

moderate speed with respect to packet transmission latency. An advantage of DSR over 

some on-demand protocols is that DSR does not use periodic routing advertisements, 

thereby saving bandwidth and reducing power consumption. On the other hand, as the 

network becomes larger, control packets and data packets also become larger because 

they need to carry addresses for every node in the path. Also, aggressive use of route 

cache and the absence of any mechanism to expire stale routes will cause poor delay and 

throughput performance in more stressful situations [9]. 

2.2.2.2 Ad-hoc On-Demand Distance Vector  Routing (AODV) 

Ad-hoc On-Demand Distance Vector Routing (AODV) is essentially a combination of 

both DSR and DSDV. It borrows the conception of sequence numbers from DSDV, plus 

the use of the on-demand mechanism of route discovery and route maintenance from 

DSR. It is called a “pure on-demand route acquisition system”; nodes that do not lie on 

active paths neither maintain any routing information nor participate in any periodic 

routing table exchanges. It is loop-free, self-starting, and scales to a large number of 

mobile nodes. 
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When a source node needs to send a packet to a destination node for which it has no 

routing information in its table, the Route Discovery process is initiated. The source node 

broadcasts a route request (RREQ) to its neighbors. Each node that forwards the RREQ 

packet creates a reverse route for itself back to source node. Every node maintains two 

separate counters: a node sequence number and a broadcast id. Broadcast id is 

incremented when the source issues a new RREQ. Together with the source's address, it 

uniquely identifies a RREQ. In addition to the source node's IP address, current sequence 

number and broadcast ID, the RREQ also contains the most recent sequence number for 

the destination which the source node is aware of.  

 

A node receiving the RREQ may unicast a route reply (RREP) to the source if it is either 

the destination or if it has a route to the destination with corresponding sequence number 

greater than or equal to that contained in the RREQ. Otherwise, it re-broadcasts the 

RREQ. Each node that participates in forwarding a RREP packet back to the source of 

RREQ creates a forward route to the source node. Each node remembers only the next 

hop unlike source routing which keeps track of the entire route. Nodes keep track of the 

RREQ’s source IP address and broadcast ID. If they receive a RREQ packet that they 

have already processed, they discard the RREQ and do not forward it. 

 

As the RREP propagates back to the source, nodes set up forward pointers to the 

destination. Once the source node receives the RREP, it may begin to forward data 

packets to the destination. At any time a node receives a RREP (for any existing 

destination in its routing table) containing a greater sequence number or the same 
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sequence number with a smaller hop count, it may update its routing information for that 

destination and begin using the better route. 

 

Routes are maintained as follows: If an upstream node in an active route senses a break in 

the active route, it can reinitiate the route discovery procedure to establish a new route to 

the destination (local route repair) or it can propagate an unsolicited RERR with a fresh 

sequence number and infinity hop count to all active upstream neighbors. Those nodes 

subsequently relay that message to their active neighbors. This process continues until all 

active source nodes are notified. Upon receiving notification of a broken link, source 

nodes can restart the discovery process if they still require the destination. Link failure 

can be detected by using Hello messages or by using link-layer acknowledgements 

(LLACKS). 

 

The main benefit of AODV over DSR is that the source route does not need to be 

included with each packet, which results in a reduction of routing protocol overhead. 

Because the RREP is forwarded along the path established by the RREQ, AODV requires 

bidirectional links. 

2.2.2.3 Signal Stability-Based Adaptive Routing (SSA) 

Signal Stability-Based Adaptive Routing [10] performs on-demand route discovery by 

selecting longer-lived routes based on signal strength and location. Selecting the most 

stable links leads to less route maintenance. Functionally, the SSA protocol consists of 

two protocols, the Forwarding Protocol (FP) and the Dynamic Routing Protocol (DRP), 

which utilize the extended device driver interface. This interface is responsible for 
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making available to routing protocols the signal strength information from the device. 

DRP maintains the routing table by interacting with the DRP on other mobile nodes. FP 

performs the actual routing table lookup to forward a packet onto the next hop. Two 

tables are maintained in the SSA protocol: the Signal Stability Table (SST) and the 

Routing Table (RT). Every node sends out a link layer beacon to its neighbors once every 

time quantum. Each node classifies its neighbors as strongly connected (SC) or weakly 

connected (WC) by comparing the received beacon signals strength with a threshold, 

which are recorded in the SST. Only SC nodes in the SST have an entry in RT, which 

stores destination and next hop pairs for each known route.  

 

When a source wants to send a packet to the destination, if there is no entry for the 

destination in the RT, the FP initiates a route search to find a route to the destination by 

sending a route search packet. When a node receives the query packet, it propagates the 

packet further only if the query packet is received over a strong link and the node has not 

seen this query before (to prevent looping). A query packet that is received over a weak 

link is dropped. When a query reaches the destination, it contains the address of each 

intermediate node. The destination selects the route recorded in the first received query 

packet since it probably was received via the shortest path, and then it sends a reply 

packet back to the source along the selected route. Each intermediate node along the path 

includes the new (destination, next hop) pair in its RT based on the route contained in the 

reply packet. If there is no route that consists of strong links, the query packet may never 

reach the destination. When the source does not receive a reply after some timeout 
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period, it must decide whether it wants to find any route that has strong links or wait and 

try to find a strong route at a later time. 

 

When a host moves out of range of its neighbors or shuts down, the neighbors will 

recognize that the node is not reachable because they no longer receive beacons from that 

node. The DRP will modify the SST and RT to reflect the changes. The node detecting 

the failure sends an error packet to the source. The source FP will send a message to erase 

the invalid route, and will also initiate a new route discovery to find an available route. 

The advantage of SSA arises from the buffer zone effect. If an SC link is chosen as part 

of a route, it will have to become WC before breaking, therefore the entire route has a 

longer life; this in turn reduces the number of route reconstruction required. One of the 

drawbacks of SSA is that, unlike in AODV and DSR, intermediate nodes cannot reply to 

route requests sent towards the destination. This results in potentially long delays before a 

route can be discovered. SSA also results in routes with slightly higher hop counts than 

optimal routing because of limiting links to strong links.  

2.3 Discussion of Table-Dr iven vs. On-Demand Routing Protocols 

As discussed earlier, table-driven routing relies on a routing table update mechanism that 

involves the constant propagation of routing information, which incurs substantial 

signaling traffic and power consumption. Since both bandwidth and battery power are 

scare resources in mobile computers, this becomes a serious limitation. In on-demand 

routing, when a route to a new destination is needed, it will have to wait until a route is 

discovered, but in table-driven protocols, a route to every node is always available. Table 

2.1 [11] lists some basic differences between the two classes of protocols.  
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Table 2.1 On-demand vs. Table-dr iven routing protocols 

Parameters On-demand routing protocols Table-dr iven routing protocols 

Availability of routing 

information 
Available as required Always available 

Periodic route updates Not required Required 

Dealing with Link 

breakage 
Use route discovery 

Propagate information to neighbors to 

maintain consistent routing table  

Routing overhead Increases with mobility of nodes 
Independent of traffic and mostly 

greater than On-demand protocols 

 

Simulation results for some existing ad hoc routing protocols (AODV, DSDV, DSR, 

TORA) found in numerous papers [11] [12] [13] have concluded that AODV and DSR 

are two ad hoc routing protocols with overall better performance in terms of three 

metrics: packet delivery ratio, routing overhead and path optimality. In the situation with 

smaller number of nodes and lower load and/or mobility, DSR outperforms AODV; 

otherwise, AODV outperforms DSR. Because DSR places a source route header in each 

packet, DSR becomes more expensive than AODV in larger network topologies and/or at 

higher load except at higher rates of mobility. In short, DSR is well suited to low 

mobility, low load scenarios, while AODV is better suited to higher mobility scenarios. 
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Chapter 3 L ink L ifetime Prediction Algor ithm 

3.1 Introduction 

Conventional ad hoc routing protocols do not generally make use of any link-state 

information that is available, except when using LLACKS to determine whether the link 

is broken. Most on-demand protocols refresh their routing cache/tables based on the 

frequency of usage by traffic routed by the nodes. It can be intuitively argued that the on-

demand routing protocols can schedule route maintenance procedures with information 

on the state of the links (for example, strong link, weak link etc.). If the routing protocol 

can sense an impending link breakage in one of links, then it can suitably initiate route 

discovery procedures. The benefits are two-fold if the route discovery is proactive: (1) 

Packets already in the queue will not be delayed by the route discovery procedure in case 

of a link breakage (2) Link breakage can be sensed even without using LLACKS, which 

reduces packet delay further in the event of a link breakage. This chapter presents a new 

algorithm that predicts the lifetime of a link based on the signal strength information 

present in the MAC layer frames. 

3.2 Radio Propagation Model 

Two radio propagation models that were considered for the algorithm are: the Friis Free 

Space Attenuation model and the Two-Ray Ground Reflection model. At near distances, 

the Friis free space attenuation model holds true, where the received signal strength is 

inversely proportional to the square of the distance (d) between the transmitting antenna 

and the observing point (d2),  while at far distances the received signal strength varies in 

accordance with the Two-Ray Ground propagation model (inversely proportional to d4). 



 20

For distances less than the cross-over point, which is also called the reference point, the 

Friis model is used, and beyond the cross-over point the Two-Ray model is used. In our 

simulation model, for the parameters used, the cross-over point is computed is as 86.14 

meters (corresponding to a signal power of 2.59 x 10-8 W at the receiver). Since the 

transmission ranges of all antennas are assumed to be identical (250 meters), it was 

decided to use the Two-Ray propagation model to compute d to feed to the prediction 

algorithm. The Two-Ray Ground Reflection model equation is as follows: 

4
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where: Pr is the received signal power 

 Pt is the transmitted signal power 

 Gt is the transmitter antenna gain (1.0 for all antennas) 

 Gr is the receiver antenna gain (1.0 for all antennas) 

 ht  is the transmitter antenna height (1.5 m for all antennas) 

 hr  is the receiver antenna height (1.5 m for all antennas) 

 

It is assumed that Pt is a constant. Also, in our wireless ad hoc network simulations, a 

directional antenna is used. Further, it can be assumed that the ground is flat to remove 

dependence of h and d values on the geography of the simulation area. So equation (1) 

can be simplified under the conditions of ad hoc wireless network simulation to: 
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This equation means the signal power at receiver node has relation (1/d4) with the signal 

power at the transmitter node. 

3.3 Prediction algor ithms  

The distance (d) between a transmitting antenna and an observing point can be easily 

computed if the received signal strength (Pr) and the respective radio propagation model 

are known. Note that the radio propagation model is assumed to be a free-space 

propagation model [14], where the received strength depends solely on d. There are 

basically two ways to predict the connectivity between two neighboring nodes. The first 

method assumes knowledge of motion parameters of two neighbors (e.g. speed, direction, 

and transmission range), from which the duration of connectivity of these two mobile 

nodes can be determined. The motion parameters can be obtained from sources such as a 

Global Positioning system (GPS). A simple calculation model is [15]: suppose from time 

t0 to t, node A and node B do not change their speeds and directions, which means that 

velocity vectors vA and vB and the angle between them θ in Figure 3.1 are constants with 

time t (l and m are assumed to be known).  

The distance (d) between the two nodes, which is a function of t, can be computed using 

the cosine formula:  
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By setting d to the transmission range of the transmitting antenna, the time of link 

breakage (tbreak) can be computed.  
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Figure 3.1 Schematic for  simple prediction model using GPS 

The second method to predict tbreak uses received signal power measurements. This 

method has been proposed in [16] and assumes that the sender power level is constant. 

Received signal power samples are measured from packets received from a mobile 

node’s neighbor. From this information it is possible to compute the distance of 

separation between the two nodes, and also one can predict when the nodes will move out 

of transmission range of each other. Details are provided in the next section. 

3.3.1 Details of Prediction algor ithm 

Our algorithm estimates the velocity of the neighbor node based on the radial distance 

that the node has traveled and the time elapsed since the last observation. The estimate is 

derived from the change in signal strength of the received MAC frames. From the 

computed value of velocity, the algorithm conservatively estimates the time when the 

neighbor would move out of transmission range. We did not follow any formal procedure 
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to arrive at this prediction algorithm; rather this algorithm is very heuristic in nature. The 

details of the algorithm are as follows. 

Let V be the (scalar) estimated velocity of the mobile node averaged over time, and v be 

the (scalar) estimated instantaneous velocity of the node. Let dmax be the transmission 

range of the node antenna and d the (scalar) estimated distance from the source node to 

the node under consideration at time of observation. Let tbreak be the predicted value of 

link lifetime. Known values for the algorithm are: transmitted signal power (Pt), received 

signal power (Pr), previous estimate of velocity of node (Vprev), previous estimate of 

distance between the two nodes (dprev), time of last observation (tprev), and the maximum 

node velocity (Vmax). We always assume the transmitting node is moving radially away 

from the receiving node with velocity V. Also, d is estimated from Pr assuming a two-ray 

ground reflection model for signal propagation.  

Let V = Vprev = 0.0 m/s and dprev = 0.0 m for algorithm initialization. Let t be the time of 

current observation and w be the weight assigned to v while calculating V. 

 

1. v =  
prev

prev

tt

dd

−
−

      

 

The absolute value of d-dprev is taken to get an ultra-conservative estimate of tbreak - the 

node under observation is assumed to be moving away even when it is moving 

towards the observing node. This represents the worst case scenario where the node 

under observation reverses its direction (and moves with a velocity no greater than V) 

immediately after an observation instant and there are no further observations until 

the node moves out of the transmission range of the observing node. 
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2. V =  (w) *  v + (1-w) *  V    

 

The weight (w) is assigned based on time since last sample. In earlier versions of our 

prediction algorithm, the weight w was set to a value of 0.5. But since the samples are 

not available periodically, we realized that we could not attach equal weights to the 

average and instantaneous velocities. Hence, it was decided to assign weights based 

on time between samples. A running average of T_avg (mean interval of samples) is 

maintained. T_avg is computed as a weighted sum of the previous value of T_avg and 

the interval between the current sample and previous sample (t–tprev). The weight (wt) 

assigned depends on the extent of deviation of the time interval from T_avg (with 

maximum allowable deviation T_DEV_MAX as 4.0). Higher deviation places higher 

weight on instantaneous value. This is to ensure that the protocol adapts itself quickly 

to changes and, at the same time, has a smoothing function in case of transients. A 

similar smoothing function, which is indirectly a function of wt, is applied to V, with 

maximum allowable deviation V_DEV_MAX as 4.0. The reasoning is that after a 

long time interval between two samples, the average velocity V is no longer truly 

reflective of the actual velocity of the node. 

T_avg     =        wt *  (t-tprev) + (1- wt) *  T_avg 

 

        (t–tprev)/T_avg,    if ( t–tprev) < T_avg  

       t_ratio  =            

       T_avg/ (t–tprev),   if ( t–tprev) >T_avg  
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       t_ratio/T_DEV_MAX,  if t_ratio < T_DEV_MAX   

       wt         =          

                        1.0,    if t_ratio >= T_DEV_MAX 

 

 

        v/V_avg,     if v < V_avg  and  V_avg >0 

       v_ratio =          

                               V_avg/v,    if v >V_avg  

 

                  v_ratio/V_DEV_MAX,  if v_ratio < V_DEV_MAX  

        w  =  wt*         

                       1.0,     if v_ratio >= V_DEV_MAX 

               

3. 



 −

=
V

dd
tbreak

max  seconds 

4. Vprev = V; dprev = d 

 

The algorithm is re-initiated if there is no activity between the two nodes for 

TIME_USELESS (50) seconds.  

3.4 Discussion 

The predicted value of tbreak can be used by any on-demand ad hoc routing protocol to 

intelligently schedule route maintenance procedures. Unfortunately, the prediction 
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algorithm cannot be very accurate because the nodes keep changing their speed and 

direction randomly. The accuracy of the prediction algorithm increases as the rate of the 

number of packets received increases. The prediction algorithm may make “ false 

predictions”  which mostly happens in high mobility scenarios, with low traffic load. 

These false predictions will cause overhead, and can be reduced when the 

implementation parameters are optimized. When the prediction is made closer to the 

actual link breakage, the more accurately it can be made, but the improvement in 

accuracy is not significant. 
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Chapter 4 Protocol Design and Implementation 

4.1 Protocol choice 

Comparing the features of on-demand and table-driven protocols, it was felt that reactive 

protocols offered more scope for improvement and, in general, offered better 

performance than their proactive counterparts. Among on-demand protocols, DSR and 

AODV were considered. Considering the relative merits and demerits of AODV and 

DSR (as discussed in chapter 2) and given the relative ease of implementation of 

enhancements in AODV as compared to DSR, AODV was chosen over DSR as the 

routing protocol to be modified. 

4.1.1 Hybr id Protocol 

A hybrid protocol can be constructed in at least one of the following ways:  

1) Introduce proactivity in a reactive protocol 

2) Introduce reactivity in a proactive protocol 

In method (1), one can expect reduction in end-to-end packet latency, while in (2) one 

can expect reduction in control overhead. Hence, method (1) is followed to construct the 

hybrid version the routing protocol – Enhanced AODV (EAODV). In method (1), 

information regarding the state of the underlying wireless link is needed before initiating 

a proactive route discovery. Hence, a common interface for cross-layer interaction 

between the MAC and IP (AODV) layers has to be devised to make available the state of 

the underlying link to the IP (AODV) layer. This information, along with the prediction 

algorithm to predict the residual lifetime of the wireless link and flow of traffic across the 

link, is a key component to achieve judicious proactivity in EAODV. 
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4.2 Protocol Implementation Details 

The prediction algorithm and EAODV were implemented in the ns-2 simulator [16]. The 

ns-2 version used for simulation purposes is 2.1b9a. The wireless MAC standard 

implemented in this version of ns-2 is the 802.11 standard. In ns-2, a packet is the unit of 

communication; it encapsulates a MAC frame, an IP datagram, a transport layer segment 

(e.g TCP segment) etc. Each layer receives the packet as a whole. The required data is 

then extracted from the packet through layer-specific routines. Hence, in the rest of this 

thesis, the term packet is used interchangeably with a frame, a datagram or a segment in 

the appropriate layers.  

 

In our initial design of EAODV, we considered refreshing the prediction algorithm by 

proactively sending HELLO packets on idle links to probe the strength of the link. This 

not only resulted in unwanted additional control overhead, but also did not improve the 

performance of the protocol significantly. The strength of active links can anyway be 

assessed through the traffic generated (both data and control) by the nodes. The routing 

protocol need not be aware of the strength of the idle links and hence sending HELLO 

packets to probe the strength of idle links was a waste of CPU and bandwidth. 

4.2.1 MAC layer  Implementation 

The recv() function in the MAC layer receives any frames from the wireless physical 

layer destined to that particular node or any upper layer packets which are destined to 

other nodes. By examining only the incoming MAC frame headers, the power level of 

incoming packets can be extracted. Since the table with node-link lifetime information 
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must be accessible to both the MAC layer and the AODV, it was decided to create the 

table while constructing the Node object itself. Based on the power level of any packet 

received at the MAC layer, the radial distance d between the receiving node and the 

sending node is computed using the relationship between transmitted signal power (Pt) 

and received signal power (Pr) in a two-ray reflection model as described in Chapter 3. 

This value of d is fed to the prediction algorithm, which predicts the time of link 

breakage. The table is now populated (at the MAC layer) with the sending node’s IP and 

MAC address, along with predicted link breakage time. Note that the MAC layer is 

suitably modified to examine the IP header (for the IP address) in the incoming frames to 

populate the table.  

 

Every time a packet is received, the status flag of the link is marked as ‘ACTIVE’ . The 

status flag of a link is marked ‘ IDLE’  if it does not receive any packet for max(4*T_avg, 

IDLE_PERIOD (15) ) seconds. Each entry in the table contains information about a 

neighboring node that has recently sent a packet to the node under consideration. The 

direction of movement of the nodes is ascertained from trend seen in power levels of 

packets – if the power levels of packets keeps increasing, the direction flag corresponding 

to that particular sending node is marked as moving INWARD; if the power levels of 

packets remain almost constant, then the direction flag is marked STATIC and if the 

power levels of packets keep decreasing, then the sending node is marked as moving 

OUTWARD.  The current implementation of ns-2 has no error model to introduce fading 

in power level. If such a model is implemented in the future, the power level of packets 

may vary widely for the same value of d, which may lead to wrong conclusions about a 
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node’s direction. To avoid such a possibility, the signal strengths of the packets from a 

particular node are monitored over MIN_SAMPLES (4) packets, and a conclusion about 

a node’s direction is then reached. In case of a tie, the current direction remains 

unchanged, and the direction flag is changed only after conclusive evidence is available. 

Note that the MIN_SAMPLES parameter can be modified for desired confidence levels 

of the decision reached. 

4.2.2 AODV layer  Implementation 

At the AODV layer at each node, each link connecting neighbor nodes is periodically 

(once every 0.5 seconds) monitored for possible breakage in the near future. Typically, 

only ACTIVE links connecting nodes that are moving OUTWARD are of particular 

interest, because they are considered to be susceptible candidates for breakage. 

According to the ns-2 implementation, an AODV route may be in any one of the three 

states: 

• UP (route still exists; packets forwarded only if route is in this state) 

• UNDER_REPAIR (route is being locally repaired) 

• DOWN (route is broken; used mainly to flush routes out of the routing table) 

Routes in EAODV, in addition to the above states, could be in a fourth state 

PROACTIVE_REPAIR. This state indicates that packets can be forwarded using this 

route, but the route is currently under proactive repair. 

4.2.2.1 Active Routes in AODV 

A link that is about to break will render all the routes that use this link as invalid. But it is 

not necessary to proactively re-discover all routes that make use of the broken link; 
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instead routes are proactively re-discovered only for active routes. Active routes, by 

definition, are routes that have an active flow of traffic associated with it. An 

implementation-specific definition for an active route can be given as follows:  

• If there is a packet in the interface queue waiting to be routed using a particular 

route, then that route is considered as an active route 

• Otherwise, if the time since the last packet (t_pkt) exceeds T_PKT_DEV_MAX 

(2.0) times the average packet inter-arrival time (t_avg), the route is deemed as an 

inactive route 

The values for t_avg are computed as follows: 

t_ratio   =  t_pkt / t_avg 

   0.5 *  t_pkt + 0.5* t_avg,      (1/DEV_MAX) < t_ratio < DEV_MAX 

t_avg    =   

   t_pkt,     otherwise 

 

This algorithm adjusts t_avg based on variations in traffic flow and it views any 

fluctuations in packet inter-arrival times with caution before making sweeping changes to 

the value of t_avg. This is similar to the smoothing function in the prediction algorithm 

seen in chapter 3. Note that this algorithm is purely heuristic. DEV_MAX (4.0) and 

T_PKT_DEV_MAX are parameters, which can be fine-tuned for better performance. 

One may also compare t_pkt against a constant value (like the 

ACTIVE_ROUTE_LIFETIME parameter in AODV) to determine active routes. 
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4.2.2.2 Proactive Route Discovery 

If a link is predicted to break within the next BREAK_THRESHOLD (0.15) seconds, but 

has at least MIN_THRESHOLD (0.03) seconds left, then EAODV switches over to 

proactive route maintenance mode. This includes initiating a local route repair 

mechanism for all active routes using the neighbor in question as the next-hop, if the 

upstream node is closer to the destination than to the source. Otherwise, link breakage is 

allowed to happen, and normal AODV route error handling mechanisms take over. The 

state of the routes that are subject to proactive local repair is set to 

PROACTIVE_REPAIR. The routes thus discovered are cached in the routing entries for 

those particular destinations and have an expiry time of ACTIVE_ROUTE_TIMEOUT 

(10) seconds. During proactive route discovery, the RREP that comes over the soon-to-

be-broken link is discarded to avoid caching the same unstable route, to replace which is 

the whole purpose of this proactive RREQ. In case of multiple RREPs, the selection 

criteria for a route are the same as that for a route discovered during normal AODV route 

discovery mechanism.  In general, the route discovered during proactive route discovery 

can be expected to be the second best in terms of smallest hop count. 

4.2.2.3 Replacing a ‘broken’  route 

If indeed a link ‘breaks’  before the cached route expires, the existing routing table entries 

that make use of the broken link are replaced with the cached routes. In the event that the 

link ‘breaks’  in the absence of cached route(s), normal AODV route error handling 

procedures for those route(s) are initiated.  The flowchart in Fig 4.1 best describes the 
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flow of control between existing AODV route maintenance and the new proactive route 

maintenance procedures. Link breakage is determined in either of the following ways: 

• During each monitoring interval (0.5 seconds), each link is checked for tbreak. If, 

for any link, if tbreak has elapsed, then the link is assumed to be broken and routes 

are replaced as described above. This method expects a great deal of confidence 

to be placed in the prediction algorithm and its success depends on the accuracy 

of the prediction algorithm.  

• If tbreak is predicted (erroneously) to be later than the actual link breakage time, the 

link breakage can be discovered using LLACKS, if attempts were made to route a 

packet over the broken link. In such a case, the unexpired route in the route cache, 

if present, is used to replace the broken route. Otherwise, a new route discovery is 

initiated. This method of determining link breakage may be needed mainly if the 

link has been idle for a long time since the last predicted value of tbreak. Generally, 

this method is quite time consuming, because the link layer can determine that a 

link is broken only after a series of retransmissions that are initiated when 

LLACKS are not received from the node at the other end of the link.  

 

4.3 Discussion 

If tbreak is predicted to be earlier than the actual link breakage time (by more than 

ACTIVE_ROUTE_TIMEOUT seconds), the detrimental effect of proactive route 

discovery is two-fold - (1) the proactively discovered routes and all the resources utilized 

to discover the routes will go to waste because the routes in the cache will expire and can 

no longer be used (2) Mean packet delay will be increased because LLACKS will be 
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employed to detect link breakage, and rediscovery of routes will be necessary. This effect 

will be very pronounced in light load conditions, when the prediction algorithm will not 

perform as well as expected.  

 

 

Figure 4.1 Interaction between EAODV and AODV route maintenance 
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Chapter 5 Evaluation 

5.1 Introduction 

This chapter discusses simulation experiments comparing performance metrics of AODV 

and EAODV. All simulations were run using the NS-2 simulator [17]. Numerous 

simulations were chosen to illustrate the performance advantage gained in using EAODV 

over AODV. The simulator parameters were varied in two dimensions: (1) variation in 

mobility patterns (2) variation in data traffic. Multiple simulations were run for identical 

simulation scenarios to obtain results with confidence intervals, which served to increase 

the credibility of the results. 

5.2 Simulator  Choice 

Among NS-2, OPNET and Glomosim, the NS-2 simulator was chosen as the tool for our 

ad hoc wireless simulations.  NS-2 scored over the other simulators mainly because of 

three reasons: 

• NS-2 is the most widely used simulator for ad hoc wireless simulations. It is an 

open source, freely downloadable piece of software, which runs on Linux 

platform.  

• NS-2 is easily extensible; any extensions to existing ad hoc routing protocols can 

be implemented with ease. 

• Since most of the currently published results for MANETs have used NS-2 for 

simulations, it made sense to use NS-2 for our simulations too, for fair 

comparison.  



 36

5.2.1 NS-2 basics 

The Network Simulator (NS-2) is a discrete event simulator developed by the University 

of California at Berkeley and the VINT project [18]. It provides substantial support for 

simulation of TCP, routing, and multicast protocols over wired and wireless (local and 

satellite) networks. The Monarch research group at Carnegie-Mellon University 

developed support for simulation of multi-hop wireless networks complete with physical, 

data link, and medium access control (MAC) layer models on NS-2. It provides tools for 

generating data traffic and node mobility scenario patterns for the simulation. Also, four 

ad hoc network routing protocols (AODV, DSDV, DSR and TORA) have been 

implemented. NS-2 provides a split-programming model. The simulation kernel is 

implemented using C++, while the Tcl scripting language is used to express the 

definition, configuration and the control of the simulation. This split-programming 

approach has proven benefits over conventional programming methods. Also, NS-2 can 

produce a detailed trace file and an animation file for each ad hoc network simulation that 

is very convenient for analyzing the routing behavior. The disadvantage of NS-2 is that it 

is a large system with a relatively steep initial learning curve. 

 

In NS-2, the Distributed Coordination Function (DCF) mode of IEEE 802.11 for wireless 

LANs is used as the MAC layer protocol. The radio model uses characteristics similar to 

a commercial radio interface, Lucent’s WaveLAN [19]. WaveLAN is modeled as a 

shared-media radio with nominal bit rate of 2Mb/s and a nominal radio range of 250 

meters. The signal propagation model combines both a free space propagation model and 

a two-ray ground reflection model. 
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A send buffer of 64 packets is maintained for the AODV and DSR protocols. It contains 

all data packets waiting for a route. Packets are dropped if they wait in the send buffer for 

more than 30 seconds. All the packets (data and routing) sent by the routing layer are 

queued at the interface queue until the MAC layer can transmit them. The interface queue 

is a priority queue with a maximum size of 50 packets. The routing packets have higher 

priority than data packets. Here is a summary for the implementation of wireless 

networks in NS-2: 

a) Mac Layer: IEEE 802.11 

b) Mobile nodes for MANET simulations 

c) Address Resolution Protocol (ARP)  

d) Ad hoc routing protocols: DSDV, DSR, TORA, AODV 

e) Radio Propagation Model 

• Friss-space attenuation at near distances 

• Two-ray ground at far distances 

f) Antenna: an omni-directional antenna having unity gain 

5.3 Per formance Metr ics 

Using NS-2 simulator, numerous simulations were run both with the AODV and EAODV 

to compare performance metrics of both versions of the protocol. The LLACKS-enabled 

version of the AODV implementation in NS-2 simulator was used.  The performance 

metrics under consideration are: 

• Mean end-to-end packet latency (e2e) 
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End-to-end packet latency is defined as the time elapsed from the moment a packet is 

generated by the data agent at the sending node, to the time the packet is received at the 

corresponding agent at the receiving node. 

• Control bits transmitted per Data bit transmitted (c.p.d) 

Also called control overhead fraction, this is the ratio of total control overhead measured 

in bits (Route Request, Route Reply and Route Error) to the total data bits transmitted 

successfully. 

• Packet delivery ratio (p.d.r) 

Packet delivery ratio is the ratio of total number of data packets that were delivered 

successfully to intended destinations to the total number of data packets generated. 

Packets may not be delivered to the destination mainly because of one of the following 

reasons: packet collisions in 802.11 layer, network partitions (cluster of independent 

networks within a network in a chosen simulation area), routing loop and interface /ARP 

queue drop 

• Throughput (tp) 

The throughput at any layer in the protocol stack is the number of packets delivered per 

unit time at that layer. 

• Average number of hops traversed per packet (hops) 

This is the average number of hops traversed by all successfully delivered packets. 

5.4 Simulation Details 

The simulation experiments can be classified broadly as CBR (UDP) based simulations 

and TCP based simulations. The routing protocols were tested with both CBR and TCP 

traffic to get a more complete picture of their performances. Both the CBR and TCP 
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based simulations were run with two mobility models, the Random Waypoint (RW) 

Model and the Manhattan Grid (MG) model [20], with slightly different simulation 

parameters for each model. The traffic scenarios were generated using the java-based 

“BonnMobility”  mobility generation tool [21].  

 

Each simulation set consisted of 50 independent simulation runs under similar (not 

identical) conditions i.e. using different random seed values. But these 50 independent 

runs were executed under exactly identical conditions (same seed values) for both 

protocols. For example, the conditions for nth simulation run for any simulation set for 

AODV were exactly the same as the nth simulation run for EAODV, but slightly different 

for n+1th simulation run (like using a different random seed to generate the mobility and 

communication pattern for the same simulation parameters) for AODV (EAODV). This 

allowed interpretation of simulation results with a 90% confidence interval, and also 

provided a platform for fair comparison between the protocols.  

5.4.1 Simulations with UDP traffic 

With CBR traffic, performances of AODV and EAODV were compared across two 

traffic models, the Random Waypoint Model and Manhattan Grid Model. Only e2e, c.p.d, 

p.d.r and hops were considered as performance metrics for CBR traffic.  

5.4.1.1 Simulations with Random Waypoint Model 

The simulations using RW model were run in a 1500m by 1500m area with 50 nodes 

under varying conditions of mobility and load. The communication model consisted of 20 
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CBR connections, with a packet size of 512 bytes for each set of simulations. All 

statistics were based upon 40,000 data packets.  

Variation in mobility: The RW model has two degrees of mobility – maximum velocity 

and pause time. Our simulations were conducted by varying both maximum velocity and 

pause time. 

• Maximum velocity varied as 1, 5, 10, 15, 20 m/s 

• Pause time varied as 0, 250, 500, 1000, 1500, 2000 seconds 

For the RW mobility model, the default values for maximum velocity and pause time 

were 10 m/s and 0 seconds respectively. 

Variation in communication pattern: For simulations with the RW model, Mean Packet 

inter-arrival time was varied as 0.25, 0.5, 1.0, 2.0 and 4.0 seconds (corresponding to 

simulation durations of 700, 1000, 2000, 4000, 8000 seconds). The default value for 

mean packet inter-arrival time was 1.0 seconds. 

Using the statistical analyzer tool in the BonnMotion mobility model generator, the 

mobility pattern files were analyzed for the following four parameters (table 5.4.1.1):  

• Average node degree: This parameter specifies the average number of nodes each 

node is connected to over the entire duration of the simulation.  

• Average number of partitions: This parameter is a measure of the average number 

of partitions in the network over the entire duration of the simulation. A partition 

number of 1.0 means that the network is connected at all times. 

• Probability of separation: This gives the probability of two randomly chosen 

nodes not being within a connected component at any chosen point in time. 

• Average link duration: This gives the average lifetime of a link 
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Table 5.4.1.1 Statistical Parameter  values for  var ious RW Mobility Patterns 

Parameters 

Pause time 

(seconds) 

Velocity 

(m/s) 

Average node 

degree 

Average no. 

Partitions 

Probability of 

separation 

Average link 

duration 

(seconds) 

1 5.60 3.20 0.157 379.83 

5 5.52 3.28 0.165 137.41 

10 5.53 3.29 0.171 82.23 

15 5.63 3.23 0.163 61.04 

0 

20 5.60 3.25 0.165 48.68 

250 4.76 4.23 0.263 104.82 

500 4.44 4.55 0.318 128.71 

750 4.21 4.65 0.363 149.30 

1000 4.17 4.85 0.374 167.45 

1500 3.99 4.86 0.409 241.43 

2000 

10 

3.89 5.20 0.445 220.49 

  

It can be seen that due to the low node density (nodes per square meter) in the RW 

simulation model, the average number of partitions and probability of separation values 

are quite high. 

5.4.1.1.1 Simulation Results 
 
Figure 5.4.1.1 to 5.4.1.3 show the variation of e2e for as functions of various simulation 

parameters. Bars around each point indicate 90% confidence interval. It can be clearly 

seen that EAODV offers superior e2e performance compared to AODV. The reduction in 

mean packet latency is mainly due to the proactive behavior induced in EAODV through 
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cross-layer interactions. Note that the success of proactivity in EAODV mainly depends 

on the accuracy in predictions of the prediction algorithm.  

 

As seen in Figure 5.4.1.1, EAODV offers lesser e2e delay than AODV with increase in 

maximum node velocity. For the same communication pattern, an increase in maximum 

velocity will increase the rate of change of topology, which will reduce the average 

lifetime of a link. This in turn will increase the number of RREQs, which will increase 

the control data (and hence the network traffic) transmitted. An increase in network 

traffic implies an increase in the rate of packets (samples) fed to the link-layer prediction 

algorithm, which increases the accuracy of link breakage predictions. Another fall out of 

the increased network control traffic (high priority) is the increased queuing delay of data 

(low-priority) packets. Hence, as Figure 5.4.1.1 shows, an increase in velocity will 

increase the e2e delay of packets. 

 

The results from Figure 5.4.1.2 show that EAODV outperforms AODV in terms of e2e as 

pause time is varied. As explained earlier, the better results for e2e offered by EAODV as 

compared to AODV can be attributed to the proactive route discovery mechanism in 

EAODV, which reduces the delay of route discovery (and hence e2e) at the instant of a 

link breakage. 
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End-to-End delay vs max velocity
(Random Waypoint Model)
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Figure 5.4.1.1 e2e vs Max Velocity (RW model, CBR traffic) 

 

End-to-End delay vs pause time
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Figure 5.4.1.2 e2e vs Pause Time (RW model, CBR traffic) 
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End-to-End delay vs mean packet interarrival time
(Random Waypoint Model) 
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Figure 5.4.1.3 e2e vs Mean Packet Inter -ar r ival time (RW model, CBR traffic) 

 

But the surprising aspect of Figure 5.4.1.2 is the trend seen in the curves. The e2e value is 

lowest for a pause time of 0 seconds (which signifies least network stability), highest for 

a pause time of 500 seconds, and starts decreasing for higher values of pause times (or 

higher stability). This strange behavior could be attributed to the following reason: the 

degree of network partitioning in the mobility patterns chosen for the RW model is quite 

high because of the large simulation area chosen. Hence, higher mobility enables better 

connectivity. But higher mobility may be attributed to either increasing velocity or 

decreasing pause time.  

 

To have a clearer picture, let us consider the curves for p.d.r (Figure 5.4.1.4 – 5.4.1.5). 

Though e2e may be influenced by both network traffic and delay in route discovery, p.d.r 

is mainly influenced by availability of routes only. Figure 5.4.1.4 shows that the p.d.r is 
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almost constant with respect to variation in velocity. But Figure 5.4.1.5 shows that for 

any given velocity, p.d.r decreases for increasing pause times – i.e. for any given 

velocity, the degree of network partitioning and probability of separation increases with 

increasing pause times (Table 5.4.1.1). When nodes move with higher velocities, they 

break and make links at a faster rate, while at slower velocities, though the rate of making 

links is lower, the rate of breaking links is lower as well. Hence a balance is struck 

between making and breaking links at all velocities. But for any given velocity, for 

increasing pause times, it takes longer for nodes to come closer to one another to make 

new links. As a result, though the average link lifetime increases (Table 5.4.1.1) due to 

prolonged immobility, the network remains partitioned for longer periods of time and 

hence the p.d.r decreases. In short, as pause-time increases, inter-partition connectivity 

decreases and intra-partition connectivity increases. In retrospection, it seems to be a bad 

idea to have chosen a mobility pattern with a high degree of network partitions, because it 

introduces various complexities in comparing two competing protocols. That is precisely 

why the simulation area for MG model was reduced (see section 5.4.1.2). 

 

In Figure 5.4.1.2, the e2e increases up to a pause time of 500 seconds and then decreases. 

Up to 500 seconds, the time taken to deliver a packet increases as explained above. Some 

packets, even if they are delayed for a long time, may be delivered eventually. But 

beyond 500 seconds, packets are either delivered quickly (longer link lifetimes) or are 

timed out and are dropped (higher network partitions). Hence the mean packet delay 

decreases. This argument is corroborated from the p.d.r curve (Figure 5.4.1.5), which 

shows p.d.r as a monotonically decreasing function of increasing pause times. Figure 

5.4.1.3 is self-explanatory. As the packet interarrival time increases, queuing delay of 
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data packets decreases, and hence the trend shown in Figure 5.4.1.3. Again EAODV 

offers better e2e performance than AODV for the same reasons given for Figure 5.4.1.2. 

 

As seen in Figure 5.4.1.4 and 5.4.1.5, AODV offers slightly better p.d.r performance than 

EAODV. This is because the prediction algorithm is not 100% accurate. It either results 

in proactivity too late or too soon. If proactivity is too late, then an attempt is made to 

route packets over a broken link, which results in packets being lost. If proactivity occurs 

too soon, then unwanted route discoveries are made, delaying some packets, which might 

get timed-out eventually. Comparing e2e and p.d.r curves for AODV and EAODV, it is 

clear that in EAODV, packets either get delivered quicker than AODV (if proactivity 

occurs at an appropriate time) or are lost (if proactivity is unwanted). 
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Figure 5.4.1.4 p.d.r  vs Max Velocity (RW model, CBR traffic) 
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Packet Delivery Ratio vs pause time
(Random Waypoint Model)
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Figure 5.4.1.5 p.d.r  vs Pause Time (RW model, CBR traffic) 

Packet Delivery Ratio vs mean packet interarrival time
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Figure 5.4.1.6 p.d.r  vs Mean Packet Inter -ar r ival time (RW model, CBR traffic) 
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From Figure 5.4.1.6, it can be seen that EAODV performs almost as well as AODV in 

terms of p.d.r for variation in communication pattern alone. Even the e2e performance of 

EAODV is only marginally better than AODV for variation in communication pattern. 

This is because, with variation only in communication pattern, the amount of control data 

generated in EAODV is not much different from AODV. The ratio of control packets to 

data packets under frequent link breakage conditions is much higher than the same ratio 

under more stable conditions. As seen from Figure 5.4.1.6, we do not expect this ratio to 

change drastically with variation in communication pattern under similar network 

topological conditions, because at higher packet generation rates, the ratio of packets 

delivered reduces. This is mainly because of collisions in the 802.11 MAC layer at higher 

packet generation rates. The collisions occur because of the relatively low capacity (2 

Mbps) of the wireless links and relatively bigger packet sizes (512 bytes). At higher 

packet generation rates, one can expect the p.d.r to improve for smaller packet sizes. As 

the success of the prediction algorithm (and the success of proactive route maintenance) 

depends mainly on the rate of both data and control packets fed to the algorithm, rate of 

control packets generated greatly influences the behavior of the prediction algorithm in 

this case. Hence, under identical network conditions, the rate of data packets generated 

(in our case), does not influence the behavior of the prediction algorithm in any beneficial 

way.  

 

Figures 5.4.1.7 to 5.4.1.9 show the variation in c.p.d with respect to varying conditions of 

mobility and communication pattern. AODV seems to slightly outperform EAODV with 

respect to c.p.d. The increased c.p.d in EAODV can be attributed to the unwanted 
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proactive route discoveries in EAODV. As argued earlier, Figure 5.4.1.9 shows that the 

change in communication pattern seems to do little to separate AODV and EAODV.  

control bits/data bit vs max velocity
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Figure 5.4.1.7 c.p.d vs Max Velocity (RW model, CBR traffic) 

control bits/data bit vs pause time
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Figure 5.4.1.8 c.p.d vs Pause Time (RW model, CBR traffic) 
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control bits/data bit vs mean packet interarrival time
(Random Waypoint Model)
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Figure 5.4.1.9 c.p.d vs Mean Packet Inter -ar r ival time (RW model, CBR traffic) 

 
For the trend of c.p.d (for both AODV & EAODV) seen in Figure 5.4.1.7, it can be 

intuitively argued that as the rate of topological changes increases, so will the number of 

control bits per data bit. Figure 5.4.1.7 seems to justify this argument. Figure 5.4.1.8 is 

slightly more complex - though the increase in “mobility”  or increase in rate of 

topological changes demands more control data to be transmitted in the network, many 

packets in the IFQUEUE that may potentially trigger route discoveries (or control data) 

are lost due to time outs for lack of replies to route discoveries (due to high degree of 

network partitioning, as discussed for e2e). Hence the number of control packets is 

reduced along with the number of data packets to be transmitted. Hence the c.p.d values 

remain relatively unchanged with varying pause times.  
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Figure 5.4.1.9 is quite self-explanatory. For the duration of the lifetime of a route, the rate 

of packets delivered is higher in case of a higher source generation rate i.e. for the same 

amount of control data, a higher number of data packets can be delivered, which reduces 

c.p.d at higher generation rates. But the c.p.d and generation rate are not linearly related 

because, at higher generation rates, the p.d.r is lower due to collisions at the MAC layer, 

which serves to increase the c.p.d. For example, one might expect to see a 20-fold 

increase in c.p.d for an increase in mean packet inter-arrival time from 0.1 seconds to 2 

seconds (20 times lesser packets generated). But as the p.d.r curves would indicate, the 

number of packets delivered in case of 0.1 second inter-arrival time is only about 4 times 

the number of packets delivered in case of a 2 second inter-arrival time; the rest of the 

generated packets are mostly lost through MAC layer collisions which is invisible to the 

AODV layer.  Hence, we can expect the c.p.d to also be only approximately 4 times 

higher in case of a 2 second inter-arrival time when compared to the 0.1 second case, 

which Figure 5.4.1.9 seems to confirm as being true.  

 

Figures 5.4.1.10 to 5.4.1.12 show the variation in the average number of hops traversed 

per successfully delivered packet as functions of variations in mobility and load. These 

figures seem to indicate that AODV offers routes with lesser number of hops to packets 

than EAODV. This is because AODV routes packets using the best available route (in 

terms of hop count) whereas EAODV routes packets using the best available route only 

while a reactively discovered route exists. Once the reactively discovered route breaks, 

the proactively discovered route is used, which may not be the best route in terms of hop 

count. It is important to note that in spite of the increase in hop count in EAODV, a 

significant reduction in end-to-end packet delay is achieved. 
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Average number of hops vs max velocity
(Random Waypoint Model)
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Figure 5.4.1.10 hops vs Max Velocity (RW model, CBR traffic) 

 

Average number of hops vs mean packet interarrival time
(Random Waypoint Model) 

3

3.5

4

4.5

5

5.5

0.1 0.25 0.5 1 2

mean packet interarrival time (seconds)

A
ve

ra
g

e 
n

u
m

b
er

 o
f 

h
o

p
s

AODV

EAODV

 
Figure 5.4.1.12 hops vs Mean Packet Inter -ar r ival time (RW model, CBR traffic) 
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The trend seen in Figure 5.4.1.10 seems to indicate that in both protocols, the average 

number of hops is relatively immune to variation in velocity. When Figure 5.4.1.11 is 

studied in tandem with Figure 5.4.1.5, it is clear that at higher pause times, as a result of 

increased network partitioning and lesser degree of node connectivity (Table 5.4.1.1), 

very limited routes exist and that too with relatively higher hop counts. Figure 5.4.1.12 is  

consistent with our explanation so far of the effect of varying the communication pattern 

– at higher source rates, higher number of packets are transmitted using any existing 

route. But at higher source rates, the probability of packet collisions at the MAC layer 

increases with increasing hop count. Hence, at higher source rates, packets that use routes 

with lower hop-count have higher probability of getting delivered and thus we have a 

lower hop count at higher source rates and a relatively higher hop count at lower source 

rates. 

 

Another point to note is that for e2e and hops, the confidence intervals show clear 

separation between EAODV and AODV curves, while for p.d.r and c.p.d, the confidence 

intervals of both protocols overlap. This not only strengthens the claim of relatively 

superior e2e performance offered by EAODV over AODV, but also slightly weakens the 

conclusions drawn about worse p.d.r and c.p.d performances in EAODV when compared 

to AODV. 

5.4.1.2 Simulation parameters for  Manhattan Gr id Model: 

The simulations using MG model were run in a 1000m by 1000m area with 50 nodes 

under varying conditions of mobility only. The simulation area was reduced (when 

compared to the RW model) to reduce the average number of partitions and probability of 
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separation. We chose to conduct experiments by varying only mobility because due to the 

reduced simulation area, the average node degree increased (see Table 5.4.1.2) which 

resulted in severe MAC layer collisions at lower packet interarrival times. All statistics 

were based upon 40,000 data packets.  

Variation in mobility: The MG model has three degrees of mobility – maximum velocity, 

pause probability and turn probability. Our simulations were conducted by varying pause 

probabilities and turn probabilities.  

• Pause probability varied as 0, 0.25, 0.5, 0.75, 1.0 

• Turn probability varied as 0, 0.25, 0.5, 0.75, 1.0 

Maximum velocity and pause time were not varied since simulation experiments were 

already conducted by varying these parameters in the RW model itself. The MG model 

was mainly chosen because it offered additional degrees of freedom to vary mobility. The 

default values for pause probability and turn probability were chosen as 0 and 0.25 

respectively. The maximum velocity was chosen as 10 m/s and the default pause time 

was 120 seconds. The communication pattern was the same default communication 

pattern used in the RW model. Table 5.4.1.2 gives the average values of the statistical 

parameters for each of the MG-mobility pattern used in the simulation experiment. It can 

be seen that due to increased nodal density, the partition degree and probability of 

separation values for MG mobility models are much lesser than corresponding values in 

the RW mobility models. 
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Table 5.4.1.2 Statistical Parameter  values for  var ious MG Mobility Patterns 

Parameters 

Pause 

Probability 

Turn 

Probability 

Average node 

degree 

Average no. 

Partitions 

Probability of 

separation 

Average link 

duration 

(seconds) 

0 50 1 0 �  

0.25 6.95 1.36 0.041 37.06 

0.5 7.39 1.29 0.028 36.95 

0.75 7.63 1.30 0.026 36.85 

0 

1.0 8.44 1.16 0.014 36.01 

0.25 9.34 1.49 0.035 417.77 

0.5 17.63 1.03 0.001 373.58 

0.75 26.422 1 0 277.56 

1.0 

0.25 

28.41 1 0 262.69 

 

5.4.1.2.1 Simulation Results 
 
As seen from the combination of the four network statistical parameters in Table 5.4.1.2, 

the network is very stable for a turn probability of 0 followed by turn probabilities of 1.0, 

0.75, 0.5 and 0.25 in decreasing order of stability (increasing order of mobility). From 

Table 5.4.1.2, it can be inferred that a pause probability of 0 represents maximum 

mobility, followed by pause probabilities of 0.25, 0.5, 0.75 and 1.0 in decreasing order of 

mobility. 
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End-to-End delay vs turn probability
(Manhattan Grid Model)
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Figure 5.4.1.13 e2e vs turn probability (MG model, CBR traffic) 

 
Figure 5.4.1.13 and 5.4.1.14 show the variation of e2e as a function of turn and pause 

probabilities respectively. Again, it can be seen that in terms of e2e, EAODV offers 

mostly better or at least equal performance when compared to AODV. As explained 

earlier, the reduction in e2e in EAODV is mainly due to the availability of proactively 

discovered routes in the event of a link breakage. From Figure 5.4.1.13, it can be seen 

that EAODV and AODV perform alike with respect to e2e for a turn probability of 0. For 

other values of turn probabilities, since the network generates higher control load as a 

result of frequent changes in the network, EAODV offers better e2e performance than 

AODV.  

 

Similarly, from Figure 5.4.1.14, it could be seen that for variation in pause probabilities, 

EAODV offers superior e2e performance in the maximum mobility scenario (pause 
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probability of 0), while the e2e performance of EAODV and AODV at lesser mobility 

scenarios becomes more or less indistinguishable. The reason is simple: higher mobility 

implies higher network traffic generated, which in turn improves the performance of the 

prediction algorithm, while lesser mobility reduces network traffic, which degrades the 

performance of the prediction algorithm. The e2e values increase for increasing mobility 

as a result of queuing delay incurred in the higher mobility cases due to increase in 

generation of control traffic.  

End-to-End delay vs pause probability
(Manhattan Grid Model)
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Figure 5.4.1.14 e2e vs pause probability (MG model, CBR traffic) 

 
Figure 5.4.1.15 and 5.4.1.16 show the variation in p.d.r as a function of turn and pause 

probabilities respectively. As with the RW model, AODV offers slightly superior p.d.r 

performance than EAODV for the reasons explained while discussing p.d.r results for 

RW model. Also, the trend in p.d.r can be explained easily; the p.d.r drops as the number 

of network partitions increases (as seen from Table 5.4.1.2).   
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Packet Delivery Ratio vs turn probability
(Manhattan Grid Model)
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Figure 5.4.1.15 p.d.r  vs turn probability (MG model, CBR traffic) 

Figure 5.4.1.17 and 5.4.1.18 show the variation of c.p.d as functions of turn and pause 

probabilities respectively. Again, for the same reasons explained in the RW model, 

AODV offers slightly better c.p.d performance than EAODV. The trend seen in curves in 

Figure 5.4.1.17 and 5.4.1.18 can be explained as follows: the c.p.d increases with 

increasing degree of mobility (determined from network statistics parameters in Table 

5.4.1.2) as at higher rates of mobility (less stable network conditions), more control 

traffic is generated to deliver comparable or lesser amount of data traffic when compared 

to data traffic at lesser mobility rates (see p.d.r curves). 

 

Figure 5.4.1.19 and 5.4.1.20 show the variation of hops as a function of turn and pause 

probabilities respectively. Again, as with the RW mobility model, AODV supplies routes 

with lesser number of hops than EAODV does. The reason for this behavior has already 

been explained during analysis of results for hops for the RW model. The trend of curves 
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seen in Figure 5.4.1.19 and 5.4.1.20 is consistent with our explanation that the number of 

hops decreases as the degree of mobility of nodes in the network decreases. 

Packet Delivery Ratio vs pause probability
(Manhattan Grid Model)
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Figure 5.4.1.16 p.d.r  vs pause probability (MG model, CBR traffic) 

control bits/data bit vs turn probability
(Manhattan Grid Model)
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Figure 5.4.1.17 c.p.d vs turn probability (MG model, CBR traffic) 



 60

control bits/data bit vs pause probability
(Manhattan Grid Model)
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Figure 5.4.1.18 c.p.d vs pause probability (MG model, CBR traffic) 

 

Average number of hops vs turn probability
(Manhattan Grid Model)
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Figure 5.4.1.19 hops vs turn probability (MG model, CBR traffic) 
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Average number of hops vs pause probability
(Manhattan Grid Model)
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Figure 5.4.1.20 hops vs pause probability (MG model, CBR traffic) 

 
From the results of simulations with RW and MG model for CBR traffic, it can be 

concluded that EAODV is beneficial mainly when the degree of mobility is quite high. 

When compared to AODV, the price paid by EAODV at higher mobility is slightly 

higher control overhead and slightly lesser packet delivery ratio caused due to 

inappropriate proactivity. EAODV does not seem to be really useful at stable network 

conditions, because at best, it performs only as well as AODV.  

 

5.4.2 Simulations with TCP traffic 

As with CBR traffic, performances of AODV and EAODV with TCP traffic were 

compared across two traffic models, the Random Waypoint Model and Manhattan Grid 

Model. Only c.p.d, tp, e2e and hops were considered as performance metrics for TCP 

traffic. P.d.r was not chosen as a performance metric because TCP guarantees reliable 
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delivery and the p.d.r values were expected to be indistinguishable for TCP over AODV 

and EAODV. 

5.4.2.1 Simulations with Random Waypoint Model 

The simulations using RW model were run in a 1500m by 1500m area with 50 nodes 

under varying conditions of mobility only. The communication model consisted of 20 

TCP connections, with a packet size of 512 bytes for each set of simulations. Each 

connection was simulated as a FTP transfer of a very large file, so that TCP traffic was 

continuously generated through out the entire duration of simulation. TCP-Tahoe was the 

flavor of TCP used. All statistics were based upon data packets collected over 1000 

simulation seconds.  

Variation in mobility: The RW model has two degrees of mobility – maximum velocity 

and pause time. Our simulations were conducted by varying both maximum velocity and 

pause time. 

• Maximum velocity varied as 1, 5, 10, 15, 20 m/s 

• Pause time varied as 0, 250, 500, 750, 1000 seconds 

For the RW mobility model, the default values for maximum velocity and pause time 

were 10 m/s and 0 seconds respectively. Note that the mobility scenario files used for 

TCP simulations and CBR simulations were the same. 

5.4.2.1.1 Simulation Results 
 
Figures 5.4.2.1 and 5.4.2.2 show the variation of c.p.d with respect to variation in 

maximum velocity and pause time respectively. As seen from these plots, it is clear that 

EAODV offers superior c.p.d performance compared to AODV. The reason for decrease 
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in c.p.d in EAODV can be attributed to the excellent performance of the prediction 

algorithm. With TCP traffic, the number of MAC frames carrying IP-encapsulated TCP 

segments is comparable to the number of control packets generated, and hence the 

prediction algorithm has the luxury of predicting link breakage time with the help of a 

large number of packets. As a result, with EAODV, the number of link breaks in active 

routes is reduced (by effective preemptive switching of active routes) when compared to 

the number of link breaks in AODV, which reduces the control traffic generated. Figures 

5.4.2.3 and 5.4.2.4 show the variation of TCP throughput as functions of maximum 

velocity and pause time respectively. These curves indicate that the throughputs achieved 

in EAODV and AODV are nearly the same. Hence, under conditions of comparable 

throughput, EAODV offers lesser c.p.d than AODV. 

 

The trend seen in the Figures 5.4.2.1 can be explained as follows: higher velocity implies 

higher mobility, which not only increases the network traffic generated, but also 

decreases the throughput values (Figure 5.4.2.3). The net result of these effects is the 

increase in c.p.d for increasing velocities. To explain the trend in Figure 5.4.2.2, consider 

the following: it can be seen from Table 5.4.1.1 that higher values of pause times 

represent lesser mobility and longer link lifetimes. Lesser mobility and longer link 

lifetimes enable that TCP connection to generate bursts at a higher rate for a longer 

duration. But at higher pause time values, the degree of network partition also increases. 

As a result, in some connections that have the sources and destinations in different 

partitions, there are frequent TCP retransmissions. These retransmissions reduce the 

source TCP’s window size to the minimum value, and packets are generated at a very 
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slow rate until the partitions merge. Since TCP packets in such connections are generated 

at a very low rate, the rate of control traffic generated is also very small for the duration 

of the partition (Please remember that RREQs are generated only when there are 

outstanding packets in the AODV queue for a particular destination).  Also, as seen from 

Figure 5.4.2.4, the throughput at higher pause times tends to be higher, which further 

decreases the control traffic to data traffic ratio. Hence, the c.p.d decreases for increasing 

pause times.  

 

The reason for the trend seen in Figure 5.4.2.3 is simple: higher velocity implies higher 

mobility, and frequent link breaks. These link breaks reduce the average window size of 

TCP, which reduces the throughput. Thus at higher velocities, throughput is reduced. As 

seen from Figure 5.4.2.4, the throughput tends to be higher at higher pause times. At 

higher pause times, though the degree of partition is higher, the higher throughput 

achieved in connections that span stable links offsets the lower throughput in 

“connections”  spanning partitions, whereas at lower pause times, the increased mobility 

of nodes reduces the throughput. This explains the trend in the throughput curves. 

 

Figures 5.4.2.5 and 5.4.2.6 show the variation of e2e as a function of maximum velocity 

and pause time. The separation between e2e performances in EAODV and AODV is 

quite unclear because the confidence intervals overlap, although from the curves, one can 

conclude with lesser confidence that EAODV gives better e2e performance than AODV. 

Figure 5.4.2.5 shows that e2e decreases with increasing velocities. This is because with 

increasing velocities, routes are broken quickly and also made quickly, while at lower 

velocities, routes are broken slowly and also made slowly. At lower velocities, once the 
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route is broken, retransmissions may occur because the delay in forming a new route is 

higher. The decrease in delay due to higher rate of bursts possible at lower velocities is 

offset by the increase in delay due to retransmissions as a result of broken links and 

increase in queuing delay due to congestion (and possible retransmission) at higher 

source rates. The effect of increased queuing delay due to increased network traffic due 

to numerous route discoveries at higher velocities is lesser than the effect of increased 

delay due to congestions and retransmissions in the lower velocity case, and hence e2e 

decreases with increasing velocities. As shown in Figure 5.4.2.6, e2e first decreases with 

increasing pause times, since increasing pause times represent decreasing mobility. But 

beyond a pause time of 500 seconds, the e2e starts increasing because the decrease in 

delay due to decreased mobility is offset by an increase in delay due to retransmissions, 

which is more pronounced when the network is highly partitioned.  

control bits/ data bit vs max velocity
(Random Waypoint Model)
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Figure 5.4.2.1 c.p.d vs Max Velocity (RW model, TCP traffic) 
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control bits/ data bit vs pause time
(Random Waypoint Model)
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Figure 5.4.2.2 c.p.d vs Pause time (RW model, TCP traffic) 

Throughput vs max velocity
(Random Waypoint Model)
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Figure 5.4.2.3 Throughput vs Max Velocity (RW model, TCP traffic) 
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Throughput vs pause time
(Random Waypoint Model)
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Figure 5.4.2.4 Throughput vs Pause time (RW model, TCP traffic) 

 

End-to-End delay vs max velocity
(Random Waypoint Model)
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Figure 5.4.2.5 e2e vs Max Velocity (RW model, TCP traffic) 
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End-to-End delay vs pause time
(Random Waypoint Model)
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Figure 5.4.2.6 e2e vs Pause time (RW model, TCP traffic) 

 

Average number of hops vs max velocity
(Random Waypoint Model)
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Figure 5.4.2.7 hops vs Max Velocity (RW model, TCP traffic) 
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Average number of hops vs pause time
(Random Waypoint Model)
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Figure 5.4.2.8 hops vs Pause time (RW model, TCP traffic) 

 
As seen from Figures 5.4.2.7 and 5.4.2.8, the average number of hops traversed per 

delivered packet in both AODV and EAODV is almost the same. Moreover, the number 

of hops seems relatively oblivious to the variation in maximum velocity or pause time. 

Please keep in mind that the hop count obtained with CBR traffic is a true measure of the 

average hop count of all active routes in the simulation, as the traffic source is 

independent of the network condition, while the hop count obtained with TCP traffic is 

not. This is because, in the absence of congestion, the rate of TCP transmissions is very 

sensitive to the number of hops, because the rate depends on the mean round trip time 

(rtt) of each connection, which is largely dependant on the number of hops. Hence at 

lower hop counts, TCP transmits at a very high rate, while the rate rapidly drops at higher 

hop counts. Thus, the average hop count in TCP tends to be similar for all simulations 

just as the average hop count across all CBR simulations are comparable. Since TCP 
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operates as a feedback system, TCP has a lower average hop count than the average hop 

count with CBR traffic for the same mobility scenario.  

5.4.2.2 Simulation parameters for  Manhattan Gr id Model: 

The simulations using MG model were run in a 1000m by 1000m area with 50 nodes 

under varying conditions of mobility only. All statistics were based upon data packets 

collected over 1000 simulation seconds 

Variation in mobility: The MG model has three degrees of mobility – maximum velocity, 

pause probability and turn probability. Our simulations were conducted by varying pause 

probabilities and turn probabilities. 

• Pause probability varied as 0, 0.25, 0.5, 0.75, 1.0 

• Turn probability varied as 0, 0.25, 0.5, 0.75, 1.0 

The default values for pause probability and turn probability were chosen as 0 and 0.25 

respectively. The maximum velocity was chosen as 10 m/s and the default pause time 

was 120 seconds. The communication pattern was the same communication pattern used 

in the RW model. 

5.4.2.2.1 Simulation Results 
 
Figures 5.4.2.9 and 5.4.2.10 show the variation of c.p.d as functions of turn and pause 

probabilities respectively, while Figures 5.4.2.11 and 5.4.2.12 plot the variation of TCP 

throughput as functions of turn and pause probabilities respectively. Figures 5.4.2.13 and 

5.4.2.14 depict the variation of e2e with variations in turn and pause probabilities 

respectively, while Figures 5.4.2.15 and 5.4.2.16 show the variation of average number of 

hops as functions of turn and pause probabilities respectively.  
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From Figures 5.4.2.9 and 5.4.2.10, it can be seen that EAODV seems to offer better c.p.d 

performance than AODV in most cases. For variation in turn probability, the effect of 

reduction in number of link breaks (and subsequent reduction in control traffic generated) 

on c.p.d in EAODV offsets the effect of reduced throughput (Figure 5.4.2.11) on c.p.d 

due to EAODV using routes with higher hop counts than AODV, resulting in lesser c.p.d 

in EAODV than in AODV. The trend seen in c.p.d for varying values of turn probabilities 

is quite similar to the trend seen with CBR traffic.  For variation in pause probability, the 

c.p.d in EAODV decreases when compared to AODV, as the reduction in number of link 

breaks in EAODV reduces the control data generated for comparable throughputs in 

EAODV and AODV (Figure 5.4.2.12). The trend seen in Figure 5.4.2.10 is consistent 

with our earlier explanation for reduction in c.p.d for increasing pause probabilities.  

 

As seen from Figures 5.4.2.13 - 5.4.2.14 and Figures 5.4.2.15 – 5.4.2.16, the e2e and 

average number of hop behavior of both EAODV and AODV are almost 

indistinguishable. The e2e values are almost the same in both EAODV and AODV 

because only a small fraction of packets out of the total delivered packets in EAODV 

benefit from the reduction in delay due to proactive route discovery, and hence their 

effect on the resultant e2e value is negligible. The trends as seen in Figures 5.4.2.11 – 

5.4.2.16 are quite surprising. In all of these curves, for the simulation parameters 

corresponding to the most stable network, throughput and e2e exhibit worst performance, 

while the hops corresponding to these parameters exhibit best performance.  
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In these cases of maximum network stability, though control traffic is greatly reduced, 

the average number of neighboring nodes is very high (Table 5.4.1.2). This increases the 

degree of contention in the wireless physical channel because the simulation model uses 

only a single channel (frequency) for communication between nodes. This in turn 

increases the probability of collision of the control (RTS/CTS/ACK) packets at the MAC 

802.11 (CSMA/CA) layer. Hence, higher the average node degree, higher is the collision 

probability. The collisions require the transmitting nodes to perform an exponential back-

off, which greatly reduces link utilization and effective bandwidth. Hence, in such highly 

inter-connected networks, the e2e and tp performances experience degradation. 

 

control bits/ data bit vs turn probability
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Figure 5.4.2.9 c.p.d vs turn probability (MG model, TCP traffic) 
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control bits/ data bit vs pause probability
(Manhattan Grid Model)
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Figure 5.4.2.10 c.p.d vs pause probability (MG model, TCP traffic) 

 
 

Throughput vs turn probability
(Manhattan Grid Model)
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Figure 5.4.2.11 Throughput vs turn probability (MG model, TCP traffic) 
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Throughput vs pause probability
(Manhattan Grid Model)
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Figure 5.4.2.12 Throughput vs pause probability (MG model, TCP traffic) 

 
 
 

End-to-End Delay vs turn probability
(Manhattan Grid Model)
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Figure 5.4.2.13 e2e vs turn probability (MG model, TCP traffic) 
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End-to-End Delay vs pause probability
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Figure 5.4.2.14 e2e vs pause probability (MG model, TCP traffic) 

 
 

Average number of hops vs turn probability
(Manhattan Grid Model)
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Figure 5.4.2.15 hops vs turn probability (MG model, TCP traffic) 
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Average number of hops vs pause probability
(Manhattan Grid Model)
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Figure 5.4.2.16 hops vs pause probability (MG model, TCP traffic) 

 

From the simulation results with TCP traffic, it can be concluded that:  

• EAODV offers slightly better c.p.d performance than AODV in most cases 

• EAODV offers slightly better e2e performance than AODV in networks that are 

not very stable; the e2e in EAODV is almost indistinguishable from e2e in AODV 

for stable networks 

• EAODV offers comparable throughput performance with AODV in most cases 

• The hops in both AODV and EAODV are comparable in most cases. 

• In both EAODV and AODV, the network experiences maximum congestion when 

the network is most stable. The congestion can be alleviated if link rates are 

increased. 
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5.4.3 Compar ison of CBR and TCP results 

A comparison of CBR and TCP simulation results yields interesting conclusions. The 

c.p.d in case of TCP is much lesser than the c.p.d in CBR. The reasons are two-fold: (1) 

In the absence of congestion, TCP generates maximum traffic over stable links, and 

reduces traffic burst rate over less stable links, while CBR generates traffic independent 

of the state of the links, thus increasing the control traffic overhead  (2) Since c.p.d is 

calculated over the number of packets delivered, TCP has lesser c.p.d than CBR – TCP 

guarantees reliable delivery, while CBR is unreliable delivery and hence in CBR the 

fraction of packets delivered is almost always lesser than in TCP. For identical mobility 

scenarios, TCP has lesser e2e than UDP. The rate control mechanism in TCP-Tahoe 

forces TCP to generate higher rates of bursty traffic when the average rtt is lower, thus 

generating a large number of packets at very low end-to-end delay and very less packets 

at higher end-to-end delay, which leads to lower e2e value. CBR, on the other hand, does 

not have any rate control mechanism, and hence generates packets evenly under all 

conditions and has a higher e2e value. 

 

The most interesting observation is the hops behavior in both TCP and CBR traffic. As 

explained earlier, due to the rate limiting property of TCP-Tahoe, TCP generates higher 

rates of bursts when the hop count is lesser and at lesser rates of bursts at higher hop 

counts, while CBR, as explained above, has no feedback mechanism, and always 

generates packets at an even rate (evidence for this claim is presented in Figures 5.4.3.1 

and 5.4.3.2, and discussed later). In the absence of congestion, the rtt increases linearly 

with the number of hops. This leads to an overall smaller hop count. The fallout of this 
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rate limiting property in TCP is that whenever a link breaks, the delay experienced by a 

TCP packet for route discovery before delivery will increase the rtt of the connection 

(and maybe cause some timeouts and retransmissions). TCP misinterprets this increase in 

rtt (and retransmissions) as congestion, and multiplicatively decreases its window size. 

Even if the rtt value falls subsequently, the window size is only increased additively. This 

behavior can cause potential damage to TCP throughput. If TCP can distinguish between 

increase in rtt due to link breakage and real network congestion, and act accordingly, the 

throughput can be increased. Even if TCP is enabled to distinguish between reasons for 

increase in rtt, TCP still needs reduction in window size during link breakages, because 

link breakages can cause queue build-up at the various nodes, and if TCP continues to 

transmit at the same rate, there is scope for congestion to occur. TCP can additively 

decrease window size during times of link breakage, and multiplicatively decrease during 

congestion, to improve throughput. 

 

Figures 5.4.3.1 and 5.4.3.2 show the number of TCP and CBR packets received by a 

tagged node at each instant of time (with a one second granularity) for each hop count 

value under identical mobility conditions. The simulations were run separately for default 

TCP and CBR communication patterns using the AODV protocol with the same mobility 

pattern file. The mobility pattern was chosen to represent maximum mobility (RW model, 

maximum velocity of 20 m/s and pause time of 0 second), so that the behavior of the 

transport layer protocols (read UDP and TCP) is best studied under extremely transient 

network conditions. Also, the number of received packets in the tagged node is monitored 
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(instead of the generated packets) because the received packets best characterize the 

overall behavior of the various sources for varying network conditions. 
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Figure 5.4.3.1 Number  of TCP packets vs Time 
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Figure 5.4.3.2 Number  of CBR packets vs Time 



 80

In Figures 5.4.3.1 and 5.4.3.2, each entry in the legend is the hop count value. Comparing 

Figures 5.4.3.1 and 5.4.3.2, TCP generates high rates of bursts at smaller hop counts, and 

smaller rates of bursts at higher hop counts. The sizes of the bursts in TCP have a 

correlation with the hop count.  

5.5 Conclusions 

From the simulations conducted, the following conclusions can be drawn: 

• For CBR traffic, EAODV is more beneficial at higher mobility scenarios 

• For TCP traffic, EAODV performs slightly better than AODV in most cases 

• For TCP traffic, in both EAODV and AODV, the network experiences maximum 

congestion when the average node degree is the highest.   

• For TCP running over Ad hoc networks, slight modifications in TCP may be 

required to increase TCP throughput 
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Chapter 6 Conclusions and Future work 

 

This chapter summarizes the total research work done so far and the conclusions drawn 

from the results obtained. We also briefly discuss the potential for future research work. 

6.1 Summary of work done 

• Developed a prediction algorithm to predict link breakage time from signal 

strength information extracted from a packet received on that particular logical 

link 

• Implemented the prediction algorithm in the ns-2 simulator at the 802.11 wireless 

MAC layer 

• Derived EAODV from AODV by suitably modifying AODV to enable cross-

layer interactions with the MAC layer 

• Characterized the behavior of EAODV with CBR traffic, and compared 

performances of EAODV and AODV with CBR traffic sources 

• Characterized behavior of EAODV with TCP traffic, and compared performances 

of EAODV and AODV with TCP traffic sources 

6.2 Conclusions 

From the results of simulation experiments, the following conclusions can be drawn: 

• For CBR traffic, EAODV is more beneficial at higher mobility scenarios. In 

higher mobility scenarios, EAODV experiences a slightly higher control overhead 

and slightly lesser packet delivery ratio than AODV. But the improvement in 
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mean packet end-to-end delay in EAODV outweighs the potential disadvantages 

of using EAODV. 

• For TCP traffic, EAODV performs slightly better than AODV in most cases. 

EAODV always seems to offer slightly better performance in terms of end-to-end 

packet delay and control overhead when compared to AODV. In some cases, the 

throughput of EAODV slightly drops when compared to AODV. Overall, when 

compared to AODV, EAODV does not offer any significant benefits for TCP 

traffic 

• For TCP traffic, in both EAODV and AODV, the network seems to experience 

maximum congestion when the network is most stable.  

• For TCP running over Ad hoc networks, slight modifications in TCP may be 

required to increase TCP throughput. The above observations about TCP 

performance highlight the need for cross-layer interaction schemes in ad hoc 

routing. 

6.3 Future Work 

• One avenue for future research is to test EAODV by introducing effects of fading 

in the ns2 packet corruption model, which will test the prediction algorithm more 

rigorously for the effects of transients. 

• The suitability of EAODV for real-time traffic needs to be further studied by 

testing it with smaller sized CBR packets at a higher packet rate.  

• The behavior of TCP over ad hoc network routing protocols should be an area of 

interesting research. From the results of the simulations, it can be seen that TCP 

exhibits several intriguing properties over ad hoc networks. The reasons for these 
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behaviors are not fully explained. Further research is required to understand fully 

TCP’s behavior over ad hoc networks.  

• The need to shield TCP from effects of rapidly changing network topologies is 

definitely felt at this point. One way of achieving this is through cross-layer 

interactions between various protocol layers. Further study in this direction will 

be very useful.  
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Appendix 
 
In this appendix, the codes added to the appropriate files in the ns-2 simulator software 

are listed (along with the file names). 
 
 

node.h 
 
#def i ne CROSS_LAYER 
 
 
#i f def  CROSS_LAYER 
#def i ne V_MAX 40. 0  / / maxi mum vel oci t y of  t he nodes 
#def i ne V_MI N 1. 0   / / mi ni mum vel oci t y of  nodes 
#def i ne D_MAX 250. 0 / /  t r ansmi ssi on r ange i n met er s 
#def i ne CONSTANT 1. 5 / / gr oupi ng r emai ni ng t er ms i n t wo- r ay pr opogat i on model  
#def i ne CURRENT_TI ME    Schedul er : : i nst ance( ) . c l ock( )  
#def i ne MAX_TI ME 50. 0  / / max t i me of  consi der at i on of  t he st at e of  a l i nk i n seconds 
#def i ne I DLE_TI ME 15. 0 / / max t i me el apsed af t er  whi ch l i nk i s consi der ed i dl e 
#def i ne T_DEV_MAX 4. 0  / / max per mi ssi bl e devi at i on i n t i me i nt er val  bet ween sampl es 
#def i ne V_DEV_MAX 2. 0  / / max per mi ssi bl e devi at i on i n vel oci t y 
#def i ne MI N_SAMPLES 4  / / mi ni mum number  of  sampl es t o base our  est i mat i on upon 
#def i ne MaX( a, b)  ( ( a)  > ( b)  ? ( a)  :  ( b) )  
#def i ne Mi N( a, b)  ( ( a)  < ( b)  ? ( a)  :  ( b) )  
c l ass l i nkl i f eEnt r y {  
 
        publ i c:  
 
        enum l i nkst at us { ACTI VE_LI NK, I DLE_LI NK, USELESS_LI NK} ;                           
/ / enum t o hol d st at e of  l i nk 
        enum movement   { I NWARD, STATI C, OUTWARD} ;                 / / enum f or  di r ect i on of  
movement  
 
 
 
 
                l i nkl i f eEnt r y( ) ;  
                l i nkl i f eEnt r y( u_i nt 32_t , u_i nt 32_t ) ;  
        / /       l i nk_l i f e_ent r y( u_char ) ;  
                ~l i nkl i f eEnt r y( ) { ; }  
 
                u_i nt 32_t  get _da( )                  { r et ur n da; }                  / / r et ur n 
dest i nat i on mac addr ess 
                doubl e get _expi r e_t i me( )    { r et ur n expi r e_t i me; }         / / r et ur n expi r e 
t i me of  l i nk 
                doubl e get _t i mest amp( )      { r et ur n t i mest amp; }           / / r et ur n 
t i mest amp of  l ast  updat i on 
                doubl e get _act i ve_t i mest amp( )  { r et ur n act i ve_t i mest amp; }  / / r et ur n act i ve 
t i mest amp 
                nsaddr _t  get i d( )                 { r et ur n i d; }            / / get  dest i nat i on 
node addr ess 
                l i nkst at us get _l i nk_st at us( )  {  r et ur n st at us; }           / / r et ur n l i nk  
st at us 
                movement  get _di r ect i on( ) {  r et ur n di r ect i on; }             / / get  t he 
di r ect i on i n whi ch t he node i s movi ng 
                bool     get _st at us_f l ag( ) { r et ur n st at us_f l ag; }           / / get  st at us_f l ag 
                voi d   updat e_expi r e_t i me( Packet  * ) ;                     / / comput e expi r e 
t i me f r om al gor i t hm 
                voi d   updat e_l i nk_st at us( ) ;                             / / updat e t he 
st at us of  t he l i nk 
                voi d   updat e_di r ect i on( ) ;                               / / updat e 
di r ect i on of  movement  
                voi d   r eset _df ( ) ;                                       / / r eset  al l  
di r ect i on count er s 
 
                i nt  mac_compar e( u_i nt 32_t ) ;  
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                i nt  i d_compar e( nsaddr _t ) ;  
 
                voi d set _st at us_f l ag( bool  st at _f l ag)  { st at us_f l ag = st at _f l ag; }  
                voi d r eset _al gor i t hm( ) ;  
                voi d dump( ) ;                                               / / dump al l  
i mpor t ant  val ues t o scr een 
/ /               voi d set _max_vel o( doubl e mv) { maxvel o_ = mv; }              / /  set  max 
vel oci t y f r om t cl  scr i pt  
 
        LI ST_ENTRY( l i nkl i f eEnt r y)  l l e_l i nk;  
 
 
 
        pr i vat e:  
                u_i nt 32_t        da;            / / ot her  node' s  mac addr ess 
                u_i nt 32_t        sa;            / / t hi s node' s mac  addr ess 
                nsaddr _t         i d;            / / f or war di ng node' s i p addr ess ( i d)  
 
                i nt              di r ect i on_f l ag[ 3] ;               / / # of  sampl es  
i ndi cat i ng di r ect i on changes! !  
                i nt              no_sampl es;                      / / no of  sampl es 
                doubl e          expi r e_t i me;                     / /  pr edi ct ed t i me when 
l i nk wi l l  br eak 
                doubl e          t i mest amp;                       / /  t i me of  updat i on 
 
                bool             st at us_f l ag;                     / / f l ag t o set  st at us as 
act i ve 
                doubl e          act i ve_t i mest amp;                / / t i mest amp when l i nk was 
l ast  act i ve 
 
                doubl e          v;                               / / i nst ant aneous est i mat ed 
vel oci t y 
                doubl e          V_avg;                           / / est i mat ed aver aged 
vel oci t y 
                doubl e          d;                               / / est i mat ed di st ance f r om 
cur r ent  node 
                doubl e          d_pr ev;                          / / est i mat ed pr evi ous 
di st ance f r om cur r ent  node 
                doubl e          al pha;                           / / conf i dence i ndex 
                doubl e          t _br eak;                         / / es t i mat e r esi dual  l i nk-
l i f et i me 
                doubl e          t _br eak_pr ev;                    / / l ast  known val ue of  
t _br eak 
                doubl e          T_avg;                           / / wei ght ed aver age of  
sampl i ng i nt er val s 
                doubl e          num;                             / / numer at or  of  mean 
squar ed er r or  
                doubl e          denom;                           / / denomi nat or  of  mean 
squar ed er r or  
                doubl e          nmse;                            / / nmse val ue 
                l i nkst at us      st at us;                          / / st at us of  l i nk 
                movement         di r ect i on;                       / / di r ect i on of  movement  
/ /               doubl e          maxvel o_;  
/ *  
 *  Now t he  pr edi ct or  f unct i on 
 *  * /  
                doubl e r esi dual _l i f e_t i me( ) ;  
 
} ;  
 
LI ST_HEAD( r l l _t abl e, l i nkl i f eEnt r y) ;  
 
#endi f  / / CROSS_LAYER 
 
 
 

node.cc 
 
 
Node: : ~Node( )  
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{  
#i f def  CROSS_LAYER 
         l i nkl i f eEnt r y * l l e ;  
         whi l e( ( l l e = r l l _head. l h_f i r st ) ) {  
           LI ST_REMOVE( l l e, l l e_l i nk) ;  
             del et e l l e;  
           }  
 
#endi f  
        LI ST_REMOVE( t hi s,  ent r y) ;  
}  
#i f def  CROSS_LAYER 
 
voi d 
l i nkl i f eEnt r y: : r eset _al gor i t hm( ) {  
 
        expi r e_t i me             = 0. 0;  
        t i mest amp               = 0. 0;  
 
        act i ve_t i mest amp        = CURRENT_TI ME;  
        st at us_f l ag             = t r ue;  
        v                       = V_MI N;  
        V_avg                   = V_MI N;  
        d                       = 0. 0;  
        d_pr ev                  = D_MAX;  
        al pha                   = 0. 0;  
        t _br eak                 = 0. 0;  
        T_avg                   = 0. 0;  
        di r ect i on               = I NWARD;  
        st at us                  = USELESS_LI NK;  
        t _br eak_pr ev            = 0. 0;  
        no_sampl es              = 0;  
        r eset _df ( ) ;  
}  
 
l i nkl i f eEnt r y: : l i nkl i f eEnt r y( ) {  
        r eset _al gor i t hm( ) ;  
        num = 0. 0;  
        denom = 1. 0;  
        nmse = 0. 0;  
}  
 
l i nkl i f eEnt r y: : l i nkl i f eEnt r y( u_i nt 32_t  my_addy, u_i nt 32_t  addy) {  
                sa              = my_addy;  
                da              = addy;  
                r eset _al gor i t hm( ) ;  
                num             = 0. 0;  
                denom           = 1. 0;  
                nmse            = 0. 0;  
}  
 
 
 
voi d 
l i nkl i f eEnt r y: : updat e_expi r e_t i me( Packet  * p) {  
 
        Node * node  = ( Node* ) ( p- >t xi nf o_. get Node( ) ) ;  
        i d= node- >nodei d( ) ;   / / updat e f or war di ng node i d,  i ncase t he i p addr ess changes,  
whi l e mac r emai ns t he same! !  
        d = pow( ( p- >t xi nf o_. get TxPr ( ) / p- >t xi nf o_. RxPr ) , 0. 25)  *  CONSTANT;   / / est i mat e 
di st ance 
        i f ( st at us_f l ag == t r ue) {  
        no_sampl es++;  
        act i ve_t i mest amp = CURRENT_TI ME;  
        }  
        expi r e_t i me = CURRENT_TI ME + r esi dual _l i f e_t i me( ) ;          / /  set  expi r at i on t i me 
 

}  
doubl e 

l i nkl i f eEnt r y: : r esi dual _l i f e_t i me( ) {  
        f l oat  epsi l on = 0. 01;  
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        doubl e del t a_T = 0. 0 , t _wt  = 1. 0,  v_wt  = 1. 0, t _r at i o, v_r at i o;  
 
/ /  Cal cul at e T_avg 
        i f ( t i mest amp == 0. 0) {          / / f i r st  sampl e 
                t i mest amp = CURRENT_TI ME;  
        }  
 
 
        del t a_T = CURRENT_TI ME -  t i mest amp;   / / cal cul at e del t a_T 
 
        i f ( T_avg == 0. 0)                                                 / / f i r st  sampl e 
or  al gor i t hm r eset  
                T_avg = del t a_T;  
 
        i f ( del t a_T > 0. 0) {  
                 v = f abs(  ( d -  d_pr ev) / ( del t a_T)  ) ;  
 
 
        asser t ( T_avg > 0. 0) ;   / / Make sur e no di v i s i on by zer o 
 
                 t _r at i o = del t a_T/ T_avg;   / / get  a posi t i ve val ue f or  r at i o 

 

 
    t _r at i o = t _r at i o > 1. 0 ? t _r at i o :  ( 1. 0/ t _r at i o) ;                / / nor mal i ze r at i o t o > 
1 
                t _r at i o = t _r at i o < T_DEV_MAX ? t _r at i o :  T_DEV_MAX;              / / l i mi t  
max t _r at i o t o max devi at i on al l owed i n ' t '  
                t _wt  = t _r at i o/ T_DEV_MAX;                                        / / f i nd 
t _wt  f r om  ( 1/ max_dev)  t o 1 
 
 
 
        i f ( V_avg > 0. 0)  
                v_r at i o = v/ V_avg;                   / / f i nd devi at i on of  v f r om V_avg 
 
                v_r at i o = v_r at i o > 1. 0 ? v_r at i o :  ( 1. 0/ v_r at i o) ;    / / nor mal i ze r at i o t o 
> 1 
                v_r at i o = v_r at i o < V_DEV_MAX ? v_r at i o :  V_DEV_MAX;  / / l i mi t  max v_r at i o 
t o max devi at i on al l owed i n v 
                v_wt  = t _wt  *  ( v_r at i o/ V_DEV_MAX) ;                    / / f i nd v_wt ! !  
 
        }  
 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
        / / MAI N PART OF THE  ALGORI THM 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
 
                T_avg = t _wt  *  del t a_T + ( 1 -   t _wt )  *  T_avg;   / / cal cul at e T_avg 
                T_avg = T_avg < MAX_TI ME ? T_avg :  MAX_TI ME;   / / l i mi t  maxi mum aver age 
t i me t o TI ME_USELESS 
 
                V_avg = v_wt  *  v       + ( 1 -   v_wt )  *  V_avg;   / / cal cul at e V_avg 
                V_avg = V_avg < maxvel o_ ? V_avg :  maxvel o_;         / / l i mi t  maxi mum 
vel oci t y t o V_MAX 
 
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  
        t _br eak_pr ev = t _br eak;  
 
        i f  ( V_avg > 0. 0) {  
                t _br eak  = ( D_MAX -  d) / V_avg;   / / cal cul at e t _br eak 
                t _br eak = t _br eak < MAX_TI ME ? t _br eak :  MAX_TI ME;  / / f i x upper  l i mi t  on 
t _br eak 
        }  
        el se 
                t _br eak = MAX_TI ME;            / / set  max t i me of  i nt er est  i n t he st at e of  
t he l i nk 
       i f  ( denom > 0. 0)  
           i f  ( nmse ! = num/ denom) {  
               nmse = num/ denom;  
               dump( ) ;  
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         }  
 
 
 
/ / set  di r ect i on of  movement  of  mobi l e node 
 
        i f ( d > d_pr ev)  
                di r ect i on_f l ag[ OUTWARD] ++;  
        el se i f ( d < d_pr ev)  
                di r ect i on_f l ag[ I NWARD] ++;  
        el se i f  ( d == d_pr ev)  
                di r ect i on_f l ag[ STATI C] ++;  
 
       d_pr ev = d;  
        t i mest amp = CURRENT_TI ME;  
 
        r et ur n t _br eak;  
} ;  
 
 
i nt  
l i nkl i f eEnt r y: : mac_compar e( u_i nt 32_t  addy) {  
 
        i f ( addy ! = da)  
             r et ur n 0;  
        r et ur n 1;  
}  
 
voi d 
l i nkl i f eEnt r y: : dump( ) {  
 
/ /       pr i nt f ( " \ n %f :  sr c = %u dst  = %u d = %f  d_pr ev = %f  v = %f  V_avg = %f  t _br eak = 
%f   di r =%d l i nk=%d" , CURRENT_TI ME, sa, da, d, d_pr ev, v, V_avg, t _br eak, di r ect i on, st at us) ;  
        i f ( sa == 18)  
        cout <<" \ n " <<CURRENT_TI ME<<" :  sr c = " <<sa<<"  dst  =" <<da<<"  d = " <<d<<"   d_pr ev = 
" <<d_pr ev<<" v = " <<v<<"  V_avg = " <<V_avg<<"  t _br eak = " <<t _br eak<<"   di r = " <<di r ect i on<<"  
l i nk=" <<st at us;  
}  
 
voi d 
l i nkl i f eEnt r y: : updat e_l i nk_st at us( ) {  
        doubl e t i me_el apsed = CURRENT_TI ME -  act i ve_t i mest amp;  
     / /   cout <<" \ nt i me el apsed = "  << t i me_el apsed << " max of  "  << MAX_TI ME << "  ,  "  << 
( 5* T_avg)  << "  i s "  << MaX( MAX_TI ME, 5* T_avg) ;  
 
        i f  ( t i me_el apsed >= MaX( MAX_TI ME, 10* T_avg) ) {  
                st at us = USELESS_LI NK;  
        / /       cout <<"  f r om l l e updat e_l i nk_st at us: " ;  
                r eset _al gor i t hm( ) ;  
                no_sampl es = 0;  
        } el se i f ( t i me_el apsed >= MaX( I DLE_TI ME, 4* T_avg)  ) {       / / we say l i nk i s i dl e i f  
mor e t han 4 expect ed val ues of  i nt er - packet  ar r i val  t i me i nt er val s have passes si nce t he 
ar r i val  of  t he l ast  packet  
                st at us = I DLE_LI NK;  
                no_sampl es = 0;  
        } el se i f ( no_sampl es > MI N_SAMPLES) {  
                st at us = ACTI VE_LI NK;  
                no_sampl es = 0;  
        }  
}  
 
 
voi d 
l i nkl i f eEnt r y: : updat e_di r ect i on( ) {  
 
        i f (  ( di r ect i on_f l ag[ I NWARD]  > di r ect i on_f l ag[ OUTWARD] )  && ( di r ect i on_f l ag[ I NWARD]  
> di r ect i on_f l ag[ STATI C] ) ) {    / / di r ect i on i s I NWARD                   
 di r ect i on = I NWARD;  
                        r eset _df ( ) ;  
        } el se i f (  ( di r ect i on_f l ag[ STATI C]  > di r ect i on_f l ag[ I NWARD] )  && 
( di r ect i on_f l ag[ STATI C]  > di r ect i on_f l ag[ OUTWARD] ) ) {   / / di r ect i on i s STATI C 
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                        di r ect i on = STATI C;  
                        r eset _df ( ) ;  
        } el se i f (  ( di r ect i on_f l ag[ OUTWARD]  > di r ect i on_f l ag[ I NWARD] )  && 
( di r ect i on_f l ag[ OUTWARD]  > di r ect i on_f l ag[ STATI C] ) ) {    / / di r ect i on i s OUTWARD 
                        di r ect i on = OUTWARD;  
                        r eset _df ( ) ;  
        }  
}  
 
voi d 
l i nkl i f eEnt r y: : r eset _df ( ) {   / / r eset  al l  di r ect i on count s 
        di r ect i on_f l ag[ I NWARD]   = 0;  
        di r ect i on_f l ag[ STATI C]   = 0;  
        di r ect i on_f l ag[ OUTWARD]  = 0;  
}  
 
#endi f  
 
 

mac-802_11.h 
 
cl ass Mac802_11 :  publ i c Mac {  
        f r i end cl ass Def er Ti mer ;  
        f r i end cl ass Backof f Ti mer ;  
        f r i end cl ass I FTi mer ;  
        f r i end cl ass NavTi mer ;  
        f r i end cl ass RxTi mer ;  
        f r i end cl ass TxTi mer ;  
publ i c:  
        Mac802_11( PHY_MI B*  p,  MAC_MI B * m) ;  
        voi d            r ecv( Packet  * p,  Handl er  * h) ;  
        i nl i ne i nt       hdr _dst ( char *  hdr ,  i nt  dst  = - 2) ;  
        i nl i ne i nt       hdr _sr c( char *  hdr ,  i nt  sr c = - 2) ;  
        i nl i ne i nt       hdr _t ype( char *  hdr ,  u_i nt 16_t  t ype = 0) ;  
 
 
#i f def  CROSS_LAYER 
        r l l _t abl e      * r l l _head;  
#endi f  
 
pr ot ect ed:  
        voi d    backof f Handl er ( voi d) ;  
        voi d    def er Handl er ( voi d) ;  
         - - - -  
  - - - -  
  - - - -  
 
pr i vat e:  
        i nt              command( i nt  ar gc,  const  char * const *  ar gv) ;  
 
        / *  
         *  Cal l ed by t he t i mer s.  
         * /  
  - - - - - - -  
  - - - - - - -  
  - - - - - - -  
#i f def  CROSS_LAYER 
        l i nkl i f eEnt r y*   l l e_l ookup( u_i nt 32_t ) ;  
        voi d l l e_i nser t ( u_i nt 32_t ) ;  
        voi d l l e_r emove( u_i nt 32_t ) ;  
        voi d cal cul at e_r l l ( bool ) ;  
#endi f  
 

mac-802_11.cc 

 
voi d 
Mac802_11: : r ecv_t i mer ( )  
{  
        u_i nt 32_t  sr c;  
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        hdr _cmn * ch = HDR_CMN( pkt Rx_) ;  
        hdr _mac802_11 * mh = HDR_MAC802_11( pkt Rx_) ;  
        u_i nt 32_t  dst  = ETHER_ADDR( mh- >dh_da) ;  
 
#i f def  CROSS_LAYER 
        / / pr i nt f ( " \ n\ nt i me = %f  mac sour ce = %u mac dst  = %u my- mac = 
%u" , CURRENT_TI ME, ETHER_ADDR( mh- >dh_sa) , dst , i ndex_) ;  
 
i f ( r l l _head == 0) {  
        r l l _head = &( net i f _- >node( ) - >r l l _head) ;  
      / /   LI ST_I NI T( r l l _head) ;  
}  
#endi f  
 
  - - - - -  
  - - - - -  
     swi t ch( t ype)  {  
 
        case MAC_Type_Management :  
                di scar d( pkt Rx_,  DROP_MAC_PACKET_ERROR) ;  
                got o done;  
                br eak;  
 
        case MAC_Type_Cont r ol :  
                swi t ch( subt ype)  {  
                case MAC_Subt ype_RTS:  
                        r ecvRTS( pkt Rx_) ;  
#i f def  CROSS_LAYER 
                        cal cul at e_r l l ( t r ue) ;  
#endi f  
                        br eak;  
                case MAC_Subt ype_CTS:  
                        r ecvCTS( pkt Rx_) ;  
#i f def  CROSS_LAYER 
                        cal cul at e_r l l ( t r ue) ;  
#endi f  
                        br eak;  
                case MAC_Subt ype_ACK:  
                        r ecvACK( pkt Rx_) ;  
#i f def  CROSS_LAYER 
                        cal cul at e_r l l ( t r ue) ;  
#endi f  
                        br eak;  
                def aul t :  
                        f pr i nt f ( st der r , " r ecvTi mer 1: I nval i d MAC Cont r ol  Subt ype %x\ n" ,  
                                subt ype) ;  
                        exi t ( 1) ;  
                }  
                br eak;  
        case MAC_Type_Dat a:  
                swi t ch( subt ype)  {  
                case MAC_Subt ype_Dat a:  
                        r ecvDATA( pkt Rx_) ;  
#i f def  CROSS_LAYER 
                        cal cul at e_r l l ( t r ue) ;  
#endi f  
                        br eak;  
                def aul t :  
                        f pr i nt f ( st der r ,  " r ecv_t i mer 2: I nval i d MAC Dat a Subt ype %x\ n" ,  
                                subt ype) ;  
                        exi t ( 1) ;  
                }  
                br eak;  
        def aul t :  
                f pr i nt f ( st der r ,  " r ecv_t i mer 3: I nval i d MAC Type %x\ n" ,  subt ype) ;  
                exi t ( 1) ;  
        }  
 done:  
 
 
        pkt Rx_ = 0;  
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        r x_r esume( ) ;  
}  
 

aodv.h 
 
#i f def  CROSS_LAYER 
cl ass l i nkl i f eEnt r y;  
st r uct  t r af f i c_hi st or y;  
#endi f  
 
#i f def  CROSS_LAYER 
#def i ne BREAK_THRESHOLD 0. 15   / / 150ms secs l ef t  f or  l i nk t o br eak 
#def i ne MI N_REPAI R_TI ME 2 *  NODE_TRAVERSAL_TI ME   / / 60 msecs l ef t  f or  l i nk t o br eak 
#def i ne CROSS_LAYER_PA_ROUTE 
#endi f  
 
/ *  
  The Rout i ng Agent  
* /  
c l ass AODV:  publ i c Agent  {  
 
  - - - - - - - - - - - -  
  - - - - - - - - - - - -  
  - - - - - - - - - - - -  
publ i c:  
#i f def  CROSS_LAYER 
                r l l _t abl e      * r l l _head;  
#endi f  
 
 
pr ot ect ed:  
#i f def  CROSS_LAYER 
        voi d            sendRequest ( nsaddr _t  dst , i nt  = 0 
#i f def  CROSS_LAYER_PRI ORI TY 
                        , bool  = f al se 
#endi f  
                        ) ;  
 
#el se 
        voi d            sendRequest ( nsaddr _t  dst ) ;  
#endi f  
 
#i f def  CROSS_LAYER 
        voi d            updat e_expi r e_t i me( ) ;  / / updat e expi r e t i mes ( bot h nei ghbor  and 
r out e)  
 
pr i vat e:  
        voi d            updat e_r t _expi r e_t i me( nsaddr _t , doubl e) ;  / / updat e r out e expi r e 
t i me f r om r ecei ved packet  
        nsaddr _t         get _sendi ng_node_i d( Packet * ) ;   / / get  sendi ng node' s i p addr ess 
        l i nkl i f eEnt r y*   l l e_l ookup( nsaddr _t ) ;        / / get  appr opr i at e ent r y f r om l i nk 
expi r at i on t abl e 
        voi d r epai r _or _r er r ( nsaddr _t ) ;               / /  det er mi ne i f  l ocal r epai r  or  Rout e 
Er r or  
        voi d l ocal _r t _r epai r  ( aodv_r t _ent r y* ) ;       / / over l oaded f unct i on,  t o do 
pr oact i ve r out e r epai r  
        voi d handl e_l i nk_f ai l ur e ( aodv_r t _ent r y* * , i nt ) ;  / / over l oaded f unct i on t o send 
pr oact i ve RERR of  r out es t hat  have not  been l ocal l y r epai r ed 
        voi d sendHel l o( nsaddr _t ) ;                        / / over l oaded f unct i on t o send 
UNI CAST HELLO packet s 
#endi f  
 
 
 

aodv.cc 
 
AODV: : AODV( nsaddr _t  i d)  :  Agent ( PT_AODV) ,  
                          bt i mer ( t hi s) ,  ht i mer ( t hi s) ,  nt i mer ( t hi s) ,  
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                          r t i mer ( t hi s) ,  l r t i mer ( t hi s) ,  r queue( )  {  
 
 
  i ndex = i d;  
  seqno = 2;  
  bi d = 1;  
 
  LI ST_I NI T( &nbhead) ;  
  LI ST_I NI T( &bi head) ;  
#i f def  CROSS_LAYER 
           r l l _head = &( Node: : get _node_by_addr ess( i ndex) - >r l l _head) ;  
#endi f  
  l ogt ar get  = 0;  
  i f queue = 0;  
}  
 
 
voi d 
AODV: : l ocal _r t _r epai r ( aodv_r t _ent r y * r t ,  Packet  * p)  {  
 
 
#i f def  DEBUG 
  f pr i nt f ( st der r , " %s:  Dst  -  %d\ n" ,  __FUNCTI ON__,  r t - >r t _dst ) ;  
#endi f  
  / /  Buf f er  t he packet  
  r queue. enque( p) ;  
 
  / /  mar k t he r out e as under  r epai r  
  r t - >r t _f l ags = RTF_I N_REPAI R;  
#i f def  CROSS_LAYER 
  st r uct  hdr _cmn * ch = HDR_CMN( p) ;  
  i nt  t t l  =max( r t - >r t _hops,  ( 1+ ch- >num_f or war ds( ) ) / 2)  + LOCAL_ADD_TTL;   / / Dr af t  13 
i mpl ement at i on 
/ / f pr i nt f ( st der r , " \ n %f  I n l ocal  r t  r epai r  :  r t - >r t _hops = %d ch- >num_f or war ds = %d,  
comput ed t t l  = %d" ,  CURRENT_TI ME, r t - >r t _hops, ch- >num_f or war ds( ) , t t l ) ;  
 
  sendRequest ( r t - >r t _dst , t t l ) ;  
#el se 
  sendRequest ( r t - >r t _dst ) ;  
#endi f  
 
  / /  set  up a t i mer  i nt er r upt  
  Schedul er : : i nst ance( ) . schedul e( &l r t i mer ,  p- >copy( ) ,  r t - >r t _r eq_t i meout ) ;  
}  
 
voi d 
AODV: : r t _r esol ve( Packet  * p)  {  
st r uct  hdr _cmn * ch = HDR_CMN( p) ;  
st r uct  hdr _i p * i h = HDR_I P( p) ;  
aodv_r t _ent r y * r t ;  
 
 / *  
  *   Set  t he t r ansmi t  f ai l ur e cal l back.   That  
  *   won' t  change.  
  * /  
 ch- >xmi t _f ai l ur e_ = aodv_r t _f ai l ed_cal l back;  
 ch- >xmi t _f ai l ur e_dat a_ = ( voi d* )  t hi s;  
        r t  = r t abl e. r t _l ookup( i h- >daddr ( ) ) ;  
 i f ( r t  == 0)  {  
          r t  = r t abl e. r t _add( i h- >daddr ( ) ) ;  
 }  
 
 / *  
  *  I f  t he r out e i s up or  r out e i s under  pr oact i ve r epai r ,  f or war d t he packet  
  * /  
#i f def  CROSS_LAYER 
 i f ( r t - >r t _f l ags == RTF_UP | |  r t - >r t _f l ags == RTF_PA_REPAI R)  {  
#el se 
 i f ( r t - >r t _f l ags == RTF_UP)  {  
#endi f  
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  - - - - - - - - - - - - -  
  - - - - - - - - - - - - -  
  - - - - - - - - - - - - -  
 
}  
 
voi d 
AODV: : r t _pur ge( )  {  
aodv_r t _ent r y * r t ,  * r t n;  
doubl e now = CURRENT_TI ME;  
doubl e del ay = 0. 0;  
Packet  * p;  
 
#i f def  CROSS_LAYER 
updat e_expi r e_t i me( ) ;     / / updat e r out e and nei ghbor  t i mer s 
#endi f  
 
 f or ( r t  = r t abl e. head( ) ;  r t ;  r t  = r t n)  {   / /  f or  each r t  ent r y 
   r t n = r t - >r t _l i nk. l e_next ;  
 
 
 
#i f def  CROSS_LAYER 
l i nkl i f eEnt r y * l l e = l l e_l ookup( r t - >r t _next hop) ;  
 
/ / asser t ( l l e) ;  
 
 
i f  ( ( r t - >r t _f l ags == RTF_UP | |  r t - >r t _f l ags == RTF_PA_REPAI R ) && ( l l e && l l e-
>get _di r ect i on( )  == l i nkl i f eEnt r y: : OUTWARD && l l e- >get _expi r e_t i me( )  < now) )  {  
#el se 
   i f  ( ( r t - >r t _f l ags == RTF_UP)  && ( r t - >r t _expi r e < now) )  {  
#endi f  
 
   - - - - - - - - - - - - - - - - - - -  
   - - - - - - - - - - - - - - - - - - -  
   - - - - - - - - - - - - - - - - - - -  
#i f def  CROSS_LAYER 
   el se i f  ( r t - >r t _f l ags == RTF_UP | |  r t - >r t _f l ags == RTF_PA_REPAI R)  {  
#el se 
   el se i f  ( r t - >r t _f l ags == RTF_UP)  {  
#endi f  
   / /  I f  t he r out e i s not  expi r ed,  
   / /  and t her e ar e packet s i n t he sendbuf f er  wai t i ng,  
   / /  f or war d t hem.  Thi s shoul d not  be needed,  but  t hi s ext r a 
   / /  check does no har m.  
     asser t ( r t - >r t _hops ! = I NFI NI TY2) ;  
     whi l e( ( p = r queue. deque( r t - >r t _dst ) ) )  {  
       f or war d ( r t ,  p,  del ay) ;  
       del ay += ARP_DELAY;  
     }  
   }  
   el se i f  ( r queue. f i nd( r t - >r t _dst ) )  
   / /  I f  t he r out e i s down and 
   / /  i f  t her e i s a packet  f or  t hi s dest i nat i on wai t i ng i n 
   / /  t he sendbuf f er ,  t hen send out  r out e r equest .  sendRequest  
   / /  wi l l  check whet her  i t  i s t i me t o r eal l y send out  r equest  
   / /  or  not .  
   / /  Thi s may not  be cr uci al  t o do i t  her e,  as each gener at ed 
   / /  packet  wi l l  do a sendRequest  anyway.  
 
     sendRequest ( r t - >r t _dst ) ;  
   }  
 
   - - - - - - - - - - - - - - -  
   - - - - - - - - - - - - - - -  
 }  
 
 
voi d 
AODV: : r ecvRequest ( Packet  * p)  {  
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st r uct  hdr _i p * i h = HDR_I P( p) ;  
st r uct  hdr _aodv_r equest  * r q = HDR_AODV_REQUEST( p) ;  
aodv_r t _ent r y * r t ;  
 
  / *  
   *  Dr op i f :  
   *       -  I ' m t he sour ce 
   *       -  I  r ecent l y hear d t hi s r equest .  
   * /  
 
 
   - - - - - - - - - - - - - - - - - - - - -  
   - - - - - - - - - - - - - - - - - - - - -  
   - - - - - - - - - - - - - - - - - - - - -  
 
     / *  Fi nd out  whet her  any buf f er ed packet  can benef i t  f r om t he 
 
#i f def  CROSS_LAYER 
 i f  ( r t 0 && ( r t 0- >r t _f l ags == RTF_UP | |  r t 0- >r t _f l ags == RTF_PA_REPAI R) )  {  
#el se 
     i f  ( r t 0 && ( r t 0- >r t _f l ags == RTF_UP) )  {  
#endi f  
        asser t ( r t 0- >r t _hops ! = I NFI NI TY2) ;  
         f or war d( r t 0,  buf f er ed_pkt ,  NO_DELAY) ;  
       }  
     }  
   }  
   / /  End f or  put t i ng r ever se r out e i n r t  t abl e 
 
   - - - - - - - - - - - - - - - - - - - - - -  
   - - - - - - - - - - - - - - - - - - - - - -  
   - - - - - - - - - - - - - - - - - - - - - -  
 
f or war d( ( aodv_r t _ent r y* )  0,  p,  DELAY) ;  
 }  
}  
 
voi d 
AODV: : f or war d( aodv_r t _ent r y * r t ,  Packet  * p,  doubl e del ay)  {  
st r uct  hdr _cmn * ch = HDR_CMN( p) ;  
st r uct  hdr _i p * i h = HDR_I P( p) ;  
 
 i f ( i h- >t t l _ == 0)  {  
 
#i f def  DEBUG 
  f pr i nt f ( st der r ,  " %s:  cal l i ng dr op( ) \ n" ,  __PRETTY_FUNCTI ON__) ;  
#endi f  / /  DEBUG 
 
  dr op( p,  DROP_RTR_TTL) ;  
  r et ur n;  
 }  
 
 i f  ( r t )  {  
 
#i f def  CROSS_LAYER 
 
t r af f i c_hi st or y *  t h = r t - >t h_l ookup( i h- >saddr ( ) ) ;  
i f ( ! t h)  
        t h = r t - >t h_add( i h- >saddr ( ) ) ;  
 
doubl e t _el apsed = CURRENT_TI ME -  t h- >t h_t i mest amp;  
 
i f ( t _el apsed > 4 *  t h- >t h_t avg | |  t _el apsed < 0. 25 *  t h- >t h_t avg)  
        t h- >t h_t avg = t _el apsed;  
el se 
        t h- >t h_t avg = 0. 5 *  t h- >t h_t avg + 0. 5 *  t _el apsed;  
 
t h- >t h_t i mest amp = CURRENT_TI ME;  
t h- >t h_hops = ch- >num_f or war ds( ) ;  
 
  asser t ( r t - >r t _f l ags == RTF_UP | |  r t - >r t _f l ags == RTF_PA_REPAI R) ;  
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   l i nkl i f eEnt r y * l l e = l l e_l ookup( r t - >r t _next hop) ;  
   i f  ( l l e) {  
           doubl e exp_t i me = l l e- >get _expi r e_t i me( ) ;  
   }  
#endi f  
  - - - - - - - - - - - - - - - - - - - - - - -  
  - - - - - - - - - - - - - - - - - - - - - - -  
}  
 
voi d 
AODV: : sendRequest ( nsaddr _t  dst  
#i f def  CROSS_LAYER 
, i nt  num_hops             / / t o al l ow speci f i y i ng t he t t l  val ue f or  t he packet  
#endi f  
   ) {  
 
  - - - - - - - - - - - - - - - - - - - - - -  
  - - - - - - - - - - - - - - - - - - - - - -  
#i f def  CROSS_LAYER 
 i f ( r t - >r t _f l ags ! = RTF_PA_REPAI R)   / / dont  expi r e r out e when r out e i s pr oact i vel y 
r epai r ed 
   r t - >r t _expi r e = 0;  
#el se 
   r t - >r t _expi r e = 0;  
#endi f  
 
  - - - - - - - - - - - - - - - - - - - - - -  
  - - - - - - - - - - - - - - - - - - - - - -  
 
}  
 
voi d 
AODV: : sendRepl y( nsaddr _t  i pdst ,  u_i nt 32_t  hop_count ,  nsaddr _t  r pdst ,  
                u_i nt 32_t  r pseq,  u_i nt 32_t  l i f et i me,  doubl e t i mest amp 
#i f def  CROSS_LAYER_PRI ORI TY 
                        , bool  pr oact i ve 
#endi f  
                )  {  
Packet  * p = Packet : : al l oc( ) ;  
st r uct  hdr _cmn * ch = HDR_CMN( p) ;  
st r uct  hdr _i p * i h = HDR_I P( p) ;  
st r uct  hdr _aodv_r epl y * r p = HDR_AODV_REPLY( p) ;  
aodv_r t _ent r y * r t  = r t abl e. r t _l ookup( i pdst ) ;  
 
#i f def  DEBUG 
f pr i nt f ( st der r ,  " sendi ng Repl y f r om %d at  %. 2f \ n" ,  i ndex,  Schedul er : : i nst ance( ) . c l ock( ) ) ;  
#endi f  / /  DEBUG 
 asser t ( r t ) ;  
 
 r p- >r p_t ype = AODVTYPE_RREP;  
 / / r p- >r p_f l ags = 0x00;  
 r p- >r p_hop_count  = hop_count ;  
 r p- >r p_dst  = r pdst ;  
 r p- >r p_dst _seqno = r pseq;  
 r p- >r p_sr c = i pdst ;     / / changed by Pr adeep f r om i ndex t o i pdst  -  v i ol at es dr af t  V- 11 
 r p- >r p_l i f et i me = l i f et i me;  
 r p- >r p_t i mest amp = t i mest amp;  
 
#i f def  CROSS_LAYER 
 l i nkl i f eEnt r y * l l e = l l e_l ookup( r t - >r t _next hop) ;  
/ /  asser t ( l l e) ;  
i f ( l l e) {  
        doubl e exp_t i me = l l e- >get _expi r e_t i me( )  -  CURRENT_TI ME;  
        r p- >r p_r t _l i f et i me = CURRENT_TI ME + exp_t i me;  
}  
#endi f  
 
ch- >pt ype( )  = PT_AODV;  
 ch- >si ze( )  = I P_HDR_LEN + r p- >si ze( ) ;  
 ch- >i f ace( )  = - 2;  
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 ch- >er r or ( )  = 0;  
 ch- >addr _t ype( )  = NS_AF_I NET;  
 ch- >next _hop_ = r t - >r t _next hop;  
 ch- >pr ev_hop_ = i ndex;           / /  AODV hack 
 ch- >di r ect i on( )  = hdr _cmn: : DOWN;  
 
 i h- >saddr ( )  = i ndex;  
 i h- >daddr ( )  = i pdst ;  
 i h- >spor t ( )  = RT_PORT;  
 i h- >dpor t ( )  = RT_PORT;  
 i h- >t t l _ = NETWORK_DI AMETER;  
 
 Schedul er : : i nst ance( ) . schedul e( t ar get _,  p,  0. ) ;  
 
}  
 
 
voi d 
AODV: : r ecvHel l o( Packet  * p)  {  
/ / st r uct  hdr _i p * i h = HDR_I P( p) ;  
/ *  
st r uct  hdr _aodv_r epl y * r p = HDR_AODV_REPLY( p) ;  
AODV_Nei ghbor  * nb;  
 
 nb = nb_l ookup( r p- >r p_dst ) ;  
 i f ( nb == 0)  {  
   nb_i nser t ( r p- >r p_dst ) ;  
 }  
 el se {  
#i f def  CROSS_LAYER 
l i nkl i f eEnt r y * l l e = l l e_l ookup( r p- >r p_dst ) ;  
i f ( l l e) {  
        doubl e exp_t i me = l l e- >get _expi r e_t i me( )  -  CURRENT_TI ME;  
 
        i f ( l l e- >get _di r ect i on( )  ! = l i nkl i f eEnt r y: : OUTWARD)  
             exp_t i me  =  max( exp_t i me,  2 *  BREAK_THRESHOLD) ;  
 
 
        nb- >nb_expi r e = CURRENT_TI ME + exp_t i me;  
}  
el se 
#endi f  
         nb- >nb_expi r e = CURRENT_TI ME + 
                   ( 1. 5 *  ALLOWED_HELLO_LOSS *  HELLO_I NTERVAL) ;  
 }  
 
 Packet : : f r ee( p) ;  
 * /  
}  
 
 
#i f def  CROSS_LAYER 
 
voi d 
AODV: : updat e_expi r e_t i me ( ) {  
 
 
l i nkl i f eEnt r y * l l e = r l l _head- >l h_f i r st ;  / / get  l i nkl i f eEnt r y t abl e head 
 
f or ( ; l l e; l l e = l l e- >l l e_l i nk. l e_next ) {  
         nsaddr _t  sn_i d = l l e- >get i d( ) ;  
 
 i f ( l l e ) {                        / / onl y i f  our  l i nkl i f eEnt r y t abl e / nei ghbor  t abl e has an 
appr opr i at e ent r y 
 
        doubl e expi r e_i n = l l e- >get _expi r e_t i me( )  -  CURRENT_TI ME;  
 
 
        l l e- >updat e_l i nk_st at us( ) ;  
        l l e- >updat e_di r ect i on( ) ;  
        i f ( expi r e_i n > 0. 0) {   / / l i nk i s st i l l  al i ve  or  not  f i r st  sampl e 
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                i f ( l l e- >get _di r ect i on( )  == l i nkl i f eEnt r y: : OUTWARD)  {  / / onl y i f  t he node 
i s movi ng away f r om us 
 
                / *  i f  t her e i s j ust  enough t i me t o i ni t i at e pr oact i ve r out e 
di scover y/ l ocal  r epai r ,  but  mor e t i me t han t hat  woul d nor mal l y t ake f or  
                 *  t he pr ocess of  r out e di scover y/ l ocal  r epai r  
                 * /  
 
 
                       swi t ch( l l e- >get _l i nk_st at us( ) ) {  
 
                              case l i nkl i f eEnt r y: : ACTI VE_LI NK :             / / act i ve l i nk 
abt  t o br eak,  so f i nd al t er nat e r out e 
                                       r epai r _or _r er r ( sn_i d) ;  
                                       br eak;  
 
                              case l i nkl i f eEnt r y: : I DLE_LI NK   :             / /  i dl e l i nk 
abt  t o br eak,  so send HELLO now or  i f         
      HELLO has al r eady been sent ,  do 
l ocal r epai r / r out e di scover y 
                                                br eak;  
 
                              case l i nkl i f eEnt r y: : USELESS_LI NK :                       
/ / we no l onger  car e abt  t he st at e of  t he l i nk 
                                                / / dont  bot her  
                                                br eak;  
 
                              def aul t :                                                
/ / dont  car e agai n 
                                                br eak;  
                      }  / / swi t ch- case 
 
 
                }  / / i f - el se di r ect i on of  movement  
 
 
        } / / i f  expi r y > 0. 0 
        el se {  / / l i nk al r eady br oken! !  
        / / r emove t hi s node f r om t he l l e t abl e -  r t _pur ge & nb_pur ge wi l l  t ake car e of  
pur gi ng t he node out  of  t he r out i ng and nei ghbor  t abl es 
         
        LI ST_REMOVE( l l e, l l e_l i nk) ;  
                del et e l l e;  
 
        } / / i f - el se -  expi r y > 0. 0 
  }  / / i f  l l e & nb 
  }   / /  f or  l oop 
}  
 
 
voi d 
AODV: : updat e_r t _expi r e_t i me ( nsaddr _t  i d,  doubl e expi r e_t i me) {  
aodv_r t _ent r y * r t , * r t n;  
 
 f or ( r t  = r t abl e. head( ) ;  r t ;  r t  = r t n)  {   / /  f or  each r t  ent r y 
            r t n = r t - >r t _l i nk. l e_next ;  
               i f  ( r t - >r t _next hop == i d)  
                        r t - >r t _expi r e =  mi n( expi r e_t i me,  
( CURRENT_TI ME+ACTI VE_ROUTE_TI MEOUT) ) ;   / / f i nd out  t he next hops t hat  mat ch " i d"  and updat e 
t he expi r e t i me 
 }  
}  
 
l i nkl i f eEnt r y*  
AODV: : l l e_l ookup(  nsaddr _t  i d) {  
 
l i nkl i f eEnt r y * l l e = r l l _head- >l h_f i r st ;  
 
  f or ( ; l l e; l l e = l l e- >l l e_l i nk. l e_next ) {  
        i f ( l l e- >i d_compar e( i d) )  
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          br eak;  
  }  
        r et ur n l l e;  
}  
 
 
nsaddr _t  
AODV: : get _sendi ng_node_i d ( Packet  * p) {  
Node *  node = ( Node* ) p- >t xi nf o_. get Node( ) ;  
r et ur n (  node- >nodei d( ) ) ;  
}  
 
 
voi d 
AODV: : r epai r _or _r er r  ( nsaddr _t  next hop) {  
aodv_r t _ent r y * r t , * r t n, * r er r _l i st [ 50] ;  
i nt  no_r er r  = 0;  
i nt  no_l r r  = 0,  hops = - 1; ;  
f or ( r t  = r t abl e. head( ) ;  r t ;  r t  = r t n)  {   / /  f or  each r t  ent r y 
        r t n = r t - >r t _l i nk. l e_next ;  
 
 
 i f  ( r t - >r t _next hop == next hop) {   / / ent r y i n r out i ng t abl e whi ch uses " next hop"  f or  
f or war di ng;  we need t o r epai r / r er r  t hi s l i nk 
         i f ( r t - >r t _f l ags == RTF_UP)  {   / / make sur e t hat  t he r out e i s not  bei ng r epai r ed 
al r eady 
 
               l i nkl i f eEnt r y *  l l e = l l e_l ookup( next hop) ;  
               doubl e exp_i n = l l e- >get _expi r e_t i me( )  -  CURRENT_TI ME;  
                 i f ( r t - >t h_r out e_act i ve( )  == t r ue) {        / / i f  r out e i s act i ve 
                        hops = r t - >t h_act i ve_hopcount ( ) ;  
 
                        i f (  r t - >r t _hops < hops | |  ( hops == 0)  ) {   / / do l ocal  r epai r ,  i f  
t hi s node i s c l oser  t o dst  or  i f  t hi s i s t he or i gi nat or  node! !  
                              i nt  num_hops = max( r t - >r t _hops,  ( ( hops+1) / 2)  )  + 
LOCAL_ADD_TTL;  
 
                              doubl e max_bound = 0. 15;  
                              doubl e mi n_bound = 0. 03;  
                                    i f ( exp_i n <  max_bound && exp_i n > mi n_bound && r t -
>pa_r t _expi r e <= CURRENT_TI ME) {  
                                           l ocal _r t _r epai r ( r t ) ;  
                                    }  
                        }  
                 }  
                el se{  
               }  
         }  / / t o see i f  t he st at us of  l i nk i s up 
 
        }       / / t o deci de i f  t he next hop i s t he node under  consi der at i on 
}  / / f or  l oop 
 
}  
 
voi d 
AODV: : l ocal _r t _r epai r ( aodv_r t _ent r y * r t ) {  
        / / cr eat e a dummy packet  
Packet  * p = Packet : : al l oc( ) ;  
st r uct  hdr _i p * i h = HDR_I P( p) ;  
 
i h- >daddr ( )  = r t - >r t _dst ;   / / copy dest  addr  t o packet ' s dest  addr ;  t hi s i s r equi r ed 
because t he packet  wi l l  be used i n Local Repai r Ti mer -  handl i ng f unct i on 
i h- >t t l _ = 0;     / / make sur e t hat  t he packet  i s never  f or war ded out si de,  even i f  by 
chance i t  l eaves t he node 
        / /  mar k t he r out e as under  r epai r  
         r t - >r t _f l ags = RTF_PA_REPAI R;  
 
i nt  num_hops = max( r t - >r t _hops,  ( i nt ) (  0. 5 *  r t - >t h_act i ve_hopcount ( )  )  )  + 
LOCAL_ADD_TTL;  
 
         sendRequest ( r t - >r t _dst , num_hops) ;  
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        / /  set  up a t i mer  i nt er r upt  
 
 Schedul er : : i nst ance( ) . schedul e( &l r t i mer ,  p,  r t - >r t _r eq_t i meout ) ;  
 
}  
 
voi d 
AODV: : handl e_l i nk_f ai l ur e ( aodv_r t _ent r y * * l i st , i nt  no_r er r ) {  
aodv_r t _ent r y * r t ;  
Packet  * r er r  = Packet : : al l oc( ) ; st r uct  hdr _aodv_er r or  * r e = HDR_AODV_ERROR( r er r ) ;  
 
 
 r e- >Dest Count  = 0;  
  f or ( i nt  i  = 0; i <no_r er r  ; i ++ )  {   / /  f or  each r t  ent r y 
     r t  = l i st [ i ] ;  
     i f  ( ( r t - >r t _hops ! = I NFI NI TY2)   )  {  
             asser t  ( r t - >r t _f l ags == RTF_UP) ;  
             asser t ( ( r t - >r t _seqno%2)  == 0) ;  
             r t - >r t _seqno++;  
             r e- >unr eachabl e_dst [ r e- >Dest Count ]  = r t - >r t _dst ;  
             r e- >unr eachabl e_dst _seqno[ r e- >Dest Count ]  = r t - >r t _seqno;  
 
            r e- >Dest Count  += 1;  
             r t _down( r t ) ;  
           }  
           / /  r emove t he l ost  nei ghbor  f r om al l  t he pr ecur sor  l i st s 
   r t - >pc_del et e( r t - >r t _next hop) ;  
  }  
 
     i f  ( r e- >Dest Count  > 0)  {  
 
        sendEr r or ( r er r ,  f al se) ;  
        }  
        el se {  
              Packet : : f r ee( r er r ) ;  
        }  
 
}  
 
 

aodv_rtable.h 

 
#i f def  CROSS_LAYER 
st r uct  t r af f i c_hi st or y{  
        nsaddr _t  t h_sr c;  
        doubl e t h_t i mest amp;  
        u_i nt 16_t  t h_hops;  
        doubl e t h_t avg;  
        LI ST_ENTRY( t r af f i c_hi st or y)  t h_l i nk;  
} ;  
LI ST_HEAD( t h_t abl e, t r af f i c_hi st or y) ;  
#endi f  
 
 
c l ass aodv_r t _ent r y {  
        f r i end cl ass aodv_r t abl e;  
        f r i end cl ass AODV;  
        f r i end cl ass Local Repai r Ti mer ;  
 
  - - - - - - - - - - - - - - - -  
  - - - - - - - - - - - - - - - -  
 
pr ot ect ed:  
#i f def  CROSS_LAYER 
#def i ne RTF_PA_REPAI R 3 
#def i ne ACTI VE_ROUTE_TI MEOUT 10 
        t h_t abl e        t h_head;                / / t r af f i c hi st or y t abl e 
 publ i c:  
        t r af f i c_hi st or y*  t h_add( nsaddr _t ) ;      / /  add an ent r y 
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        t r af f i c_hi st or y*  t h_l ookup( nsaddr _t ) ;   / / l ookup an ent r y 
        t r af f i c_hi st or y*  t h_del et e( nsaddr _t ) ;   / / del et e an ent r y 
        bool  t h_r out e_act i ve( ) ;                  / /  i s t he r out e act i ve?? 
        u_i nt 16_t  t h_act i ve_hopcount ( ) ;         / / l east  hopcount  of  al l  act i ve r out es 
 pr ot ect ed:  
#endi f  
 
  - - - - - - - - - - - - - - - -  
  - - - - - - - - - - - - - - - -  
}  
 
 

aodv_rtable.cc 

 
 
aodv_r t _ent r y: : aodv_r t _ent r y( )  
{  
i nt  i ;  
 
  - - - - - - - - - - - - - - - -  
  - - - - - - - - - - - - - - - -  
#i f def  CROSS_LAYER 
 LI ST_I NI T( &t h_head) ;  
#endi f  
}  
 
aodv_r t _ent r y: : ~aodv_r t _ent r y( )  
{  
  - - - - - - - - - - - - - - -  
  - - - - - - - - - - - - - - -  
 
#i f def  CROSS_LAYER 
 t r af f i c_hi st or y*  t h ;  
        whi l e( ( t h = t h_head. l h_f i r st ) ) {  
           LI ST_REMOVE( t h, t h_l i nk) ;  
           del et e t h;  
         }  
#endi f  
 
}  
 
#i f def  CROSS_LAYER 
 
t r af f i c_hi st or y*  
aodv_r t _ent r y: : t h_add( nsaddr _t  i d) {  
t r af f i c_hi st or y *  t h;  
 
asser t ( t h_l ookup( i d)  == 0) ;  
t h = new t r af f i c_hi st or y;  
asser t ( t h) ;  
t h- >t h_sr c = i d;  
t h- >t h_t i mest amp = CURRENT_TI ME;  
t h- >t h_t avg = 0. 0;  
t h- >t h_hops = 0;  
 
LI ST_I NSERT_HEAD( &t h_head, t h, t h_l i nk) ;  
r et ur n t h;  
}  
 
t r af f i c_hi st or y*  
aodv_r t _ent r y: : t h_l ookup( nsaddr _t  i d) {  
 
t r af f i c_hi st or y*  t h = t h_head. l h_f i r st ;  
 
        f or ( ; t h; t h=t h- >t h_l i nk. l e_next ) {  
                i f ( t h- >t h_sr c == i d)  
                        br eak;  
        }  
 r et ur n t h;  
}  
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bool  
aodv_r t _ent r y: : t h_r out e_act i ve( ) {  
t r af f i c_hi st or y*  t h = t h_head. l h_f i r st ;  
doubl e now = CURRENT_TI ME;  
 
f or (  ;  t h ;  t h = t h- >t h_l i nk. l e_next  ) {  
      i f (  ( now -  t h- >t h_t i mest amp)  < ( 1. 5 *   t h- >t h_t avg) )  
               r et ur n t r ue;  
}  
r et ur n f al se;  
}  
 
u_i nt 16_t  
aodv_r t _ent r y: : t h_act i ve_hopcount ( ) {  
t r af f i c_hi st or y*  t h = t h_head. l h_f i r st ;  
doubl e now = CURRENT_TI ME;  
u_i nt 16_t  hops = 0;  
 
f or ( ; t h; t h=t h- >t h_l i nk. l e_next ) {  
              i f (  ( now -  t h- >t h_t i mest amp)  < ( 1. 5 *  t h- >t h_t avg)  ) {  
 
        / * choose t he smal l est  val ue of  hops among al l  act i ve r out es * /  
 
                      i f ( hops == 0)  
                               hops = t h- >t h_hops;  
                        el se 
                               hops = hops < t h- >t h_hops ? hops :  t h- >t h_hops;  
              }  
 
 }  
 
r et ur n hops;  
}  
 
/ / t r af f i c_hi st or y*  
/ / aodv_r t _ent r y: : t h_del et e( nsaddr _t  i d) {  
/ /  
#endi f  
 
 
 
 


