Development and Performance Characterization of Enhanced AODV Routing for CBR and TCP Traffic

Pradeepkumar Mani

Master's Thesis Defense The University of Kansas December 8, 2003

Committee:

Dr. David W. Petr (Chair) Dr. Joseph B. Evans Dr. Victor S. Frost

Abbreviations

DSDV

OLSR

RREQ

ZRP

n

n

n

n

n

n

n

n

n

- n MANETs Mobile Ad hoc Networks
 - DSR Dynamic Source Routing
 - AODV Ad hoc On-demand Distance Vector Routing
 - Destination Sequenced Distance Vector Routing
 - Optimized Link State Routing
 - Zone Routing Protocol
 - Route Request
 - RREP Route Reply
 - RERR Route Error
 - LLACKs Link Layer Acknowledgements

- ⁿ Introduction & Motivation
- Background On MANET Routing Protocols
- Link Breakage Prediction Algorithm
- ⁿ Design of EAODV
- Performance Evaluation
- n Conclusions & Future Work

Introduction & Motivation

- n MANETs Autonomous system of mobile routers connected by wireless links
- ⁿ Network topology may change rapidly and unpredictably
- n MANETs find use in scenarios where a centralized command center is infeasible and undesirable – e.g. battle field communication, disaster management scenarios, etc.
- n Key challenge is to devise efficient methods to ensure route availability, while incurring minimal routing overhead

Introduction & Motivation (contd...)

- Most of the existing MANET routing protocols reside in the network layer
- Link state or received signal strength information is largely ignored
- ⁿ Can improve performance if signal strength information used
- n Need for a cross-layer design

Background on MANET routing Protocols

- ⁿ Classification of MANET Routing Protocols
- n Comparison between Proactive and Reactive protocols
- n Overview of DSR and AODV

MANET routing protocols classification (cont...)

- Proactive protocols always have routes to destinations, if possible
 - ⁿ Possibly lesser end-to-end delay, but higher control overhead
- n Reactive protocols attempt to discover routes whenever needed
 - Possibly lesser control overhead, but higher end-to-end delay
- Hybrid protocols combine both proactive and reactive protocols
 - Only slight performance advantage because do not make use of link state information
- ⁿ Each protocol suited better for certain scenarios

Overview of DSR and AODV

- Existing simulation results conclude that reactive protocols
 (DSR and AODV) offer overall better performance
- n DSR vs. AODV
 - DSR outperforms AODV in less "stressful" scenarios (smaller nodes, lower load and/or mobility)
 - Source routing in DSR expensive with larger number of nodes and higher load
 - AODV outperforms DSR in more "stressful" scenarios (more load, higher mobility, etc.)

- Packets source routed using dynamically learned routes from route cache
- n Route discovery process
 - ⁿ On-demand flooding if no route in cache
- n Route maintenance procedure
 - ⁿ Source initiates route discovery when informed of link breakage
- ⁿ Cache expiry methods have direct impact on performance
- ⁿ Can operate over unidirectional links due to source routing

AODV

- n Combination of DSDV and DSR
- n Route discovery process
 - Similar to DSR, but no source routing; instead nodes "remember" only next hops (routing tables)
 - Overhead per packet reduced when compared to DSR due to absence of source routing
 - ⁿ Same message types as in DSR (RREQ, RREP, RERR)
- n Route maintenance procedure
 - ⁿ Intermediate nodes *may* attempt "local repair" to replace broken routes
 - n Else, upstream flooding
 - n Route lifetime extended after every successful use of the route
- n Requires bi-directional links, unlike DSR

Link breakage prediction algorithm

- n Motivation
- n Radio Propagation models
- ⁿ Prediction algorithm developed
- n Reliability of the prediction algorithm

Motivation

- Most MANET routing protocols ignore link state information except while using LLACKs to determine link breakage
 - n Route cache/tables refreshed based on frequency of route usage
- Can argue (intuitively) that link state information will help intelligent (proactive) scheduling of route maintenance
 - ⁿ Strong link, Weak link, etc...
- n Benefits two fold
 - 1. No route discovery delay
 - 2. Can avoid costly LLACKs to determine link breakage

Radio Propagation models

- n Two radio propagation models: Friis and Two-Ray Ground
- If 'd' less than cross-over distance (86.14 m, in our case) then Friis model holds true, otherwise Two-Ray Ground model is better
- All antennas in simulation model assumed to have a transmission range of 250 m
- ⁿ Hence, used the more conservative Two-Ray Ground model for all cases
- ⁿ Equation for received power simplifies to:

$$P_r = k \frac{P_t}{d^4}$$
 where: $k = G_t \cdot G_r \cdot (h_t \cdot h_r)^2$ is a constant

ⁿ With knowledge of P_r and P_t , d can be easily computed

Heuristic prediction algorithm

Always assume nodes moving *radially outward*.

Initially,
$$V = V_{prev} = V_{max}$$
 m/s, $d_{prev} = 0.0$ m
1. $v = \left| \frac{d - d_{prev}}{t - t_{prev}} \right|$

2.
$$V = (w) * v + (1-w) * V_{prev}$$

ⁿ *w* based on ratio of time since last sample $(\Delta t = t - t_{prev})$ and average sample interval *T*

ⁿ Time dependency of *w* ensures quick adaptation to changes

3.
$$t_{break} = \left[\frac{d_{max} - d}{V}\right]$$

4.
$$V_{prev} = V; d_{prev} = d$$

n Algorithm reset after TIME_USELESS (50) seconds

Reliability of the prediction algorithm

- Predicted value of *t_{break}* can be used by any ad hoc routing protocol
 Hence, placed the prediction algorithm in the MAC layer
- n Accuracy suffers in some cases
 - 'False predictions' in high mobility, low load scenarios
- ⁿ False predictions can be reduced by tuning implementation parameters
- Accuracy increases with increase in rate of packets received i.e. in high mobility, high load scenarios

- n Construction of Hybrid Protocols
- n EAODV implementation details
- n Flowchart of EAODV

Construction of Hybrid Protocols

- 1. Introduce proactivity in a reactive protocol
 - © Expect reduction in end-to-end delay, for increase in overhead
- 2. Introduce reactivity in a proactive protocol
 - ø Expect reduction in overhead, for increase in end-to-end delay
- n Given the superior performance of reactive protocols, chose to construct a hybrid protocol using (1)
- n Need an interface to MAC layer to assess state of link before initiating proactivity

EAODV implementation details

- n Chose AODV because it performs better at higher load
 - n higher load also good for prediction
- ⁿ Chose ns-2 simulator (v 2.1b9a) for implementation and testing
 - Widely used by MANET research community fair comparison possible
 - Rich library of wireless routing protocols
- n Basic simulation event/unit is a "packet"
 - Henceforth, packet used interchangeably with MAC frame, IP datagram, and TCP segment

MAC layer implementation in EAODV

- ⁿ Compute distance 'd' from neighbor from incoming MAC frames
- ⁿ Prediction algorithm predicts t_{break} using 'd'
- Can determine if neighbor moving *relatively* INWARD, OUTWARD or STATIC by looking at past 'd' values
- ⁿ Link status marked ACTIVE or IDLE
 - ACTIVE if any packet received/sent
 - IDLE if no packet for $max(4^*T, IDLE_PERIOD (15))$ seconds
- Node direction, Link status concluded only after MIN_SAMPLES (4) observations
- ⁿ Maintained a table with these pieces of information for each neighbor

AODV layer implementation in EAODV

- ⁿ Each neighbor monitored once every 0.5 seconds for breakage
 - Only ACTIVE links connecting neighbors moving OUTWARD
 considered susceptible candidates for breakage
- Impending breakage of any link triggers proactive route discovery (ACTIVE routes only)
 - If MIN_THRESHOLD (0.03) < t_{break} < BREAK_THRESHOLD (0.15) , then proactive route maintenance initiated (includes proactive local repair)
 - Else, link breakage allowed to happen, and normal AODV route
 error handling mechanisms take over

AODV layer implementation (cont...)

- Proactively discovered routes discarded from cache after ACTIVE_ROUTE_TIMEOUT(10) seconds
- n Replacing "broken" routes
 - ⁿ Link assumed broken if either t_{break} has elapsed or through LLACKs in case of erroneous prediction of t_{break}
 - ⁿ To determine link breakage, t_{break} method better than LLACKS method
 - ⁿ Avoids link layer retransmission, and reduces end-to-end delay further
 - If link breaks before ACTIVE_ROUTE_TIMEOUT seconds, route from cache used
 - ⁿ Absence of route in cache triggers normal AODV error handling

- ⁿ Performance metrics
- ⁿ Simulation setup
- ⁿ Simulations with CBR traffic
- ⁿ Simulations with TCP traffic
- ⁿ CBR vs. TCP simulations

Performance Metrics

- ⁿ Mean end-to-end delay (*e2e*)
 - n average delay per packet
- n Control bits per data bit transmitted (*cpd*)
 - n ratio of total AODV overhead (RREQ, RREP, RERR) to total data transmitted
- n Packet delivery ratio (*pdr*)
 - n ratio of packets delivered to packets generated (CBR traffic only)
- ⁿ Throughput (*tp*)
 - n packets delivered per second (TCP traffic only)
- n Average number of hops per packet (hops)

Simulation Setup

- n Two node mobility models
 - n Random Waypoint Model (RW model)
 - n 1500 m x 1500 m simulation area
 - ⁿ 2 degrees of freedom max velocity(*mv*) and max pause time (*mp*)
 - default values: *mv* 10 m/s, *mp* 0 s (continuous mobility)
 - *mv* varied as 1, 5, 10, 15 and 20 m/s
 - *mp* varied as 0, 250, 500, 750, 1000, 1500, and 2000 s
 - n Manhattan Grid model (MG model)
 - n 1000 m x 1000 m simulation area
 - Simulation area reduced from RW model to reduce degree of network partitions
 - mobility varied across turn probability(*pt*) & pause probability (*pp*)
 - n default values: mv 10 m/s, mp 120 s, pt 0.25, pp 0.0
 - *pp* varied as 0, 0.25. 0.5, 0.75, and 1.0
 - *pt* varied as 0, 0.25, 0.5, 0.75, and 1.0
- n In each model, 50 nodes, with mobility captured after 3600 s warm-up time

Simulations with CBR traffic

- 20 CBR connections, 512-byte packets, default packet rate 1 packet/sec (4Kbps), default simulation duration - 2000 s
 - ⁿ Packet inter-arrival time varied as 0.1, 0.25, 0.5, 1.0, 2.0 and 4.0 s
 - Simulation duration adjusted so that packet generation is about 40,000 packets
- ⁿ Both RW and MG mobility pattern used
- ⁿ Performance metrics considered: *e2e*, *pdr*, *cpd* and *hops*
- ⁿ Each data point averaged over 50 simulation runs
- n Results reported with 90% confidence interval

CBR Delay Results

- ⁿ *e2e* in EAODV significantly reduced when compared to AODV
 - Reduction in *e2e* mainly due to proactive behavior induced in EAODV due to cross-layer interactions
 - In case of a link failure, queued data packets forwarded without any (Route discovery) delay using proactively discovered route in cache
 - Improvement in *e*2*e* increases with increasing mobility (higher velocity, lower pause time, higher turn probability, etc.)
 - Higher mobility generates higher network control traffic increased accuracy in prediction

CBR Delay Results: RW model

CBR Delay Results: MG model

Other Results

- n *cpd* increase only marginal in EAODV when compared to AODV
 - n *cpd* good indicator of prediction algorithm performance
 - ⁿ 100% accurate prediction algorithm means no unwanted proactivity (inevitable route discovery advanced in time) *cpd* in EAODV comparable to AODV
 - ⁿ Increase due to approximations in prediction algorithm (e.g.) assuming radial outward motion of nodes
- n *pdr* decrease in EAODV very small
 - ⁿ Again, decrease due to approximations in prediction algorithm
- *n hops* in EAODV always slightly higher than AODV
 - ⁿ AODV always uses best available route, while EAODV uses best available route only *while* reactively discovered route exists
 - In spite of increase in number of hops, decrease in *e2e* achieved

CBR Results Summary

- n Results indistinguishable for AODV and EAODV when load varied
- ⁿ In EAODV, performance gains far outweigh penalties paid
 - ⁿ Mean decrease in *e2e* : 11.95% in RW model, 19.94% in MG model
 - ⁿ Mean decrease in *pdr* : 2.7 % in RW model, 1.45% in MG model
- Clearly, EAODV more beneficial when degree of mobility is higher i.e. when topology is quite transient

Simulations with TCP traffic

- ⁿ 20 *TCP-Tahoe* connections transferring a file of infinite size
- ⁿ 512-byte TCP segments
- n Both RW and MG mobility models used
- ⁿ Performance metrics considered: *cpd*, *e2e*, *tp* and *hops*
- ⁿ Simulation duration is 1000 seconds
- ⁿ Each data point averaged over 50 simulation runs
- n Results reported with 90% confidence interval

TCP Overhead Results

- n *cpd* performance better in EAODV than AODV
 - Much higher packet generation rate in TCP (as opposed to CBR) increases accuracy of prediction algorithm – better *cpd* !!

TCP Overhead Results (cont...)

35

- n *e2e* performance in EAODV slightly better than AODV
 - ⁿ Again, due to better prediction with TCP traffic
- *tp* and *hops* performance comparable for both AODV & EAODV

Some interesting results with TCP traffic

- *n e2e* lower at higher velocities in RW model!!
 - reduced queuing delay due to reduced *tp* greatly offsets
 increased queuing delay due to increased control traffic at
 higher velocities
- *e2e* and *tp* performances degrade in highly stable topologies in MG model
 - Single channel communication model for IEEE 802.11 increases contention and collision of RTS/CTS/ACK frames at highly stable/connected topologies

CBR vs. TCP simulations

- ⁿ *e2e* in TCP much lesser than CBR !!
 - ⁿ Rate limiting property of TCP in action
 - ⁿ maximum throughput when round-trip time (*rtt*) is lowest
 - In the absence of congestion, *rtt* directly dependent on number of hops traversed
 - Most of the packets in TCP generated when hop count to destination is smaller, ensuring smaller overall e2e
 - Packet generation in CBR is oblivious to *rtt* or *hops*, hence overall higher *e2e* when compared to TCP.

TCP Congestion Control Interaction

- ⁿ TCP misinterprets increase in *rtt* due to link breakage as congestion and multiplicatively decreases congestion window L
 - ⁿ Bad for throughput, especially in MANET topologies
- n TCP should be able to distinguish between link breakage and congestion
- Still, reduction in congestion window needed; otherwise build-up at interface queues during link breakage can cause congestion
 - Can use an "additive decrease additive increase" scheme during link breakage and "multiplicative decrease – additive increase" scheme during congestion

Summary of Contributions

- n Conclusions
- n Future Work

Summary of contributions

- S Developed a prediction algorithm to predict link breakage time from signal strength information extracted from a received packet
- S Implemented the prediction algorithm in the ns-2 simulator at the 802.11 wireless MAC layer
- S Derived EAODV from AODV by suitably modifying AODV route maintenance and providing an interface for cross-layer interactions with the MAC layer
- S Characterized the behavior of EAODV with CBR traffic, and compared performances of EAODV and AODV with CBR traffic sources
- S Characterized behavior of EAODV with TCP traffic, and compared performances of EAODV and AODV with TCP traffic sources
- S Compared CBR and TCP traffic performance with EAODV
 - S Noted possible improvements in TCP

Conclusions

- For CBR traffic, EAODV is more beneficial at higher mobility scenarios
 - ⁿ Better *e2e* performance, especially at higher mobility
 - ⁿ Slight degradation in *cpd* and *pdr* performance
- n For TCP traffic, EAODV performs slightly better than AODV in most cases
 - n *cpd* and *e2e* almost always better
 - ⁿ *Tp* slightly lesser
- For TCP running over Ad hoc networks, slight modifications in TCP may be required to increase TCP throughput

Future Work

- Rigorous testing of prediction algorithm for transient effects by introducing fading effects in the ns-2 packet corruption model
 - Breaks fundamental assumption that received power *always* reflects distance of separation
- n Test suitability of EAODV for real time traffic with smaller packets
- ⁿ TCP performance over ad hoc networks requires further study
- ⁿ Modification of TCP congestion control for link breakage

Research Papers

"Performance characterization of Enhanced AODV routing for CBR and TCP traffic", Pradeepkumar Mani, David W. Petr (under consideration at ICC-2004, Paris)

Thank you!!