
Performance Evaluation of Multiple Criteria Routing

Algorithms in Large PNNI ATM Networks

by

Phongsak Prasithsangaree

B.E. (Electrical Engineering),

King Mongkut’s Institute of Technology, Ladkrabang campus,

Bangkok, Thailand, 1995

Submitted to the Department of Electrical Engineering and Computer Science and

the Faculty of the Graduate School of the University of Kansas in partial

fulfillment of the requirements for the degree of Master of Science

Professor in Charge

Committee Members

Date Thesis Accepted

c
 Copyright 2000 by Phongsak Prasithsangaree

All Rights Reserved

To Mom and Dad, for your encouragement

To Kanokwan, for your support, your patience, and your love

Acknowledgments

I would like to express my sincere gratitude to Dr. Douglas Niehaus, my

advisor and committee chairman, for his guidance and advice throughout this re-

search and all of my work with him and for helping to make this thesis possible.

I would like to thank Dr. Victor Frost and Dr. Jerry James for serving as my com-

mittee members.

I would like to express my appreciation to Sprint Corp. for sponsoring this

research project and to Dr. Nail Akar and Sohel Khan for their feedback and inter-

est in my work.

I would like to thank my colleagues, Kamalesh Kalarickal, Gowri Dhanda-

pani, and Bhavanis Shanmugam for their help during the thesis development and

for being parts of the KU-PNNI project group. I would also like to take this oppor-

tunity to thank the other Team Niehaus members that I have had an opportunity to

work with at one point or another: Pramodh Mallipatna, Alejandro Parra-Briones,

Anitha Rajesh, and anybody else that I have inadvertently forgotten.

I would like to thank Sandeep Bhat. His preliminary work on the KU-PNNI

Simulator/Emulator was a foundation on which I have based much of my work. I

also would like to thank my volleyball team, and badminton club fellows for their

friendship and entertainment. I would like to especially thank Lanny Maddux

and Ann Meechai for helping me in writing my thesis, and Aparna Ramkumar,

Arun Gautam Dugganapally, and Priyanka Parameswaran for helping me with

the presentation.

Also I would like to thank my girlfriend, Kanokwan Wichiwaniwed, who

gave me her encouragement, patience, understanding, and love during my thesis

work and throughout 4 years of being apart on another side of the world. Finally I

would like to thank my Mom, Dad and my family for their encouragement during

my stay in the USA. Without their encouragement and their support I would have

never been here at this point of my life.

Abstract

The ATM network is expected to become a backbone network for high-
speed multimedia services because of its capability of supporting a large computer
network with robustness, scalability, and Quality of Service (QoS), such as band-
width, delay, and delay variation for a variety of service classes. Therefore, the
performance issues relating to the Private Network to Network Interface (PNNI)
protocol, which provides link state based dynamic and QoS guaranteed routing
capability in an ATM network, have assumed significance. Therefore, the ATM
forum has released PNNI specification version 1.0, but this specification does not
define path selection algorithms that select appropriate paths with a guaranteed
QoS satisfying several constraints. Thus, we introduce multiple criteria routing
algorithms (MCRAs) to be used for routing in large PNNI ATM networks. In this
thesis, we evaluate the performance of MCRAs using metrics such as the call fail-
ure rate, the call setup time, routing inaccuracy, and link utilization. The results
are taken from the PNNI ATM simulator, which shares about 90% of the real ATM
switch signaling software. Our MCRAs are tested in various kinds of network
topologies, and the results of the performance evaluations are discussed.

Contents

1 Introduction 1

1.1 Problem Statement . 3

2 Background & Related Work 8

2.1 PNNI Signaling . 8

2.1.1 Call Setup Procedure in a PNNI Network 9

2.1.2 Designated Transit List (DTL) 10

2.1.3 Crankback and Alternate Routing 10

2.2 PNNI Routing . 11

2.2.1 PNNI Topology . 12

2.2.2 PNNI Topology Metrics and Attributes 16

2.3 Routing with Multiple QoS Metrics . 19

3 Implementation 23

3.1 Routing Criteria . 24

3.2 Our Approach to Route Computation 26

3.3 Dynamic On-Demand Routing . 29

3.3.1 Path Pruning with Generic Connection Admission Control

(GCAC) . 30

3.3.2 GCAC Algorithm for CBR and VBR Services 32

3.3.2.1 PCR and SCR Parameter Selection for GCAC 32

3.3.2.2 Algorithm for GCAC mechanism 33

i

3.3.3 Algorithm for On-demand Path Computing 34

3.3.3.1 Single-Criteria Routing Algorithm 35

3.3.3.2 Multiple Criteria Routing Algorithms 39

4 Experiment Scenarios 46

4.1 Topologies . 46

4.1.1 Multiple Cluster Topology . 47

4.1.2 Edge-Core Topology . 48

4.2 Performance Metrics . 53

4.2.1 Average Call Blocking Rate . 54

4.2.2 Average Call Setup Time . 54

4.2.3 Routing Inaccuracy . 55

4.2.4 Link Utilization . 56

5 Experimental Results 57

5.1 Multiple Criteria Routing for Bandwidth Guarantees 58

5.1.1 Routing Criteria and Algorithms 58

5.1.2 Experiments with MCRAs with Bandwidth Guarantees . . . 60

5.1.3 Call Blocking Rate as a Function of Requested Bandwidth . . 61

5.1.3.1 Performance of Edge-Core Networks 61

5.1.3.2 Performance of Multiple Cluster Network 63

5.1.4 Call Blocking Rate as a Function of Call Holding Time 65

5.1.4.1 Performance of Edge-Core Networks 65

5.1.4.2 Performance of Multiple Cluster Network 67

5.1.5 Evaluation of Call Setup Time 69

5.1.5.1 Performance of Edge-Core Networks 69

5.1.5.2 Performance of Multiple Cluster Network 71

5.1.6 Evaluation of Routing Inaccuracy 74

5.1.6.1 Performance of Edge-Core Networks 74

ii

5.1.6.2 Performance of Multiple Cluster Network 76

5.2 Multiple Criteria Routing for the Minimum Delay Services 79

5.2.1 Routing Criteria and Algorithms 79

5.2.2 Experiments with MCRAs with Minimum Delay 80

5.2.3 Call Blocking Rate as a Function of Requested Bandwidths . . 81

5.2.3.1 Performance of Edge-Core Networks 81

5.2.3.2 Performance of Multiple Cluster Network 83

5.2.4 Call Blocking Rate as a Function of Call Holding Time 85

5.2.4.1 Performance of Edge-Core Networks 85

5.2.4.2 Performance of Multiple Cluster Network 86

5.2.5 Evaluation of Call Setup Time 89

5.2.5.1 Performance of Edge-Core Networks 89

5.2.5.2 Performance of Multiple Cluster Network 91

5.2.6 Evaluation of Routing Inaccuracy 93

5.2.6.1 Performance of Edge-Core Networks 93

5.2.6.2 Performance of Multiple Cluster Network 95

5.3 Link Utilization . 97

5.3.1 Routing Algorithms and Topology Used 98

5.3.2 Link Utilization in Edge-core Topology 99

5.3.3 Link Utilization in Cluster Network 102

5.4 Alternate Routing with MCRAs . 105

5.4.1 Routing Policies and Topologies 105

5.4.2 Performances of Dense Edge-core Topology 106

5.4.3 Performances of the 3-cluster Network 110

5.5 Effects of Changing the Network Core Density 113

5.5.1 Average Call Blocking Rate and Average Call Setup Time . . . 114

6 Conclusion and Future Work 118

6.1 Problem Statement and Our Implementation 119

iii

6.2 Our Results of the Performance Evaluations 120

6.3 Future Work . 122

A Sample Scripts 126

A.1 Dense Edge-core Topology Script . 126

iv

List of Tables

2.1 Topology State Parameters . 16

3.1 PCR and SCR values used in GCAC for CLP=0 traffic 32

3.2 PCR and SCR values used in GCAC for CLP=1 traffic 33

4.1 Metrics for Multiple Cluster Topologies 48

4.2 Link Metrics for Conventional Edge-core Topologies 52

4.3 Summary of Edge-Core Topologies . 52

4.4 Topologies Used in Our Simulation Experiments 52

5.1 The Characteristics of Three Edge-core Networks with Different Con-

nectivities . 114

v

List of Figures

1.1 The Sample Network Showing Metrics for Problem Resolution 5

1.2 The Routing Model to Our Solution 5

2.1 A PNNI Hierarchical Topology . 12

2.2 The probability density model . 17

3.1 The Multiple Criteria Routing Algorithm Using Two Routing Criteria 25

3.2 Route Computation Flow Chart . 28

3.3 The Sample Network with Two Paths 43

4.1 3 Cluster Topologies . 48

4.2 8 Cluster Topologies . 49

4.3 Light Edge-core Topologies . 50

4.4 Dense Edge-core Topologies . 51

5.1 Average call blocking rate as a function of average requested band-

width: Dense Edge-Core Network . 61

5.2 Average call blocking rate as a function of average requested band-

width: Light Edge-Core Network . 62

5.3 Average call blocking rate as a function of average requested band-

width: 3-cluster Network . 63

5.4 Average call blocking rate as a function of average requested band-

width: 8-cluster Network . 64

vi

5.5 Average call blocking rate as a function of average call holding time:

Dense Network . 65

5.6 Average call blocking rate as a function of average call holding time:

Light Network . 66

5.7 Average call blocking rate as a function of average call holding time:

3-cluster Network . 67

5.8 Average call blocking rate as a function of average call holding time:

8-cluster Network . 68

5.9 Average call setuptime as a function of average requested band-

width: Dense Network . 69

5.10 Average call setup time as a function of average requested band-

width: Light Network . 70

5.11 Average call setup time as a function of average requested band-

width: 3-cluster Network . 71

5.12 Average call setup time as a function of average requested band-

width: 8-cluster Network . 72

5.13 Routing Inaccuracy as a function of average requested bandwidth:

Dense Network . 74

5.14 Routing Inaccuracy as a function of average requested bandwidth:

Light Network . 75

5.15 Routing Inaccuracy as a function of average requested bandwidth:

3-cluster Network . 76

5.16 Routing Inaccuracy as a function of average requested bandwidth:

8-cluster Network . 77

5.17 Average call blocking rate as a function of average requested band-

width: Dense Edge-Core Network . 82

5.18 Average call blocking rate as a function of average requested band-

width: Light Edge-Core Network . 83

vii

5.19 Average call blocking rate as a function of average requested band-

width: 3-cluster Network . 84

5.20 Average call blocking rate as a function of average requested band-

width: 8-cluster Network . 84

5.21 Average call blocking rate as a function of average call holding time:

Dense Edge-Core Network . 85

5.22 Average call blocking rate as a function of average call holding time:

Light Edge-Core Network . 86

5.23 Average call blocking rate as a function of average call holding time:

3-cluster Network . 87

5.24 Average call blocking rate as a function of average call holding time:

8-cluster Network . 88

5.25 Average call setuptime as a function of average requested band-

width: Dense Network . 89

5.26 Average call setup time as a function of average requested band-

width: Light Network . 90

5.27 Average call setup time as a function of average requested band-

width: 3-cluster Network . 91

5.28 Average call setup time as a function of average requested band-

width: 8-cluster Network . 92

5.29 Routing Inaccuracy as a function of average requested bandwidth:

Dense Network . 93

5.30 Routing Inaccuracy as a function of average requested bandwidth:

Light Network . 94

5.31 Routing Inaccuracy as a function of average requested bandwidth:

3-cluster Network . 95

5.32 Routing Inaccuracy as a function of average requested bandwidth:

8-cluster Network . 96

viii

5.33 Link Utilization of Links Using Minhop Routing in Dense Edge-core

Topology . 99

5.34 Link Utilization of Links Using Shortest-minhop Routing in Dense

Edge-core Topology . 100

5.35 Link Utilization of Links Using Widest-minhop Routing in Dense

Edge-core Topology . 101

5.36 Link Utilization of Links Using Minhop Routing in 3-cluster Network102

5.37 Link Utilization of Links Using Shortest-minhop Routing in 3-cluster

Network . 103

5.38 Link Utilization of Links Using Widest-minhop Routing in 3-cluster

Network . 104

5.39 The Call Blocking Rate in the Dense Edge-core Topology Using Short-

est Group Routings . 106

5.40 The Call Setup Time in the Dense Edge-core Topology Using Short-

est Group Routings . 107

5.41 The Call Blocking Rate in the Dense Edge-core Topology Using Widest

Group Routings . 108

5.42 The Call Setup Time in the Dense Edge-core Topology Using Widest

Group Routings . 109

5.43 The Call Blocking Rate in the 3-cluster Network Using Shortest Group

Routing . 110

5.44 The Call Setup Time in the 3-cluster Network Using Shortest Group

Routing . 111

5.45 The Call Blocking Rate in the 3-cluster Network Using Widest Group

Routing . 112

5.46 The Call Setup Time in the 3-cluster Network Using Widest Group

Routing . 112

5.47 The Call Blocking Rate using Routing with Widest Criteria 115

ix

5.48 The Call Setup Time using Routing with Widest Criteria 116

5.49 The Call Blocking Rate using Routing with the Shortest Criteria . . . 116

5.50 The Call Setup Time using Routing with the Shortest Criteria 117

x

List of Programs

3.1 Complex Generic Call Admission Control Algorithm 34

3.2 Simple Generic Call Admission Control Algorithm 34

3.3 Dijkstra’s Algorithm . 36

3.4 D Widest Path Algorithm . 38

3.5 Widest-Shortest Path Algorithm . 41

3.6 Shortest-Widest Path Algorithm . 42

3.7 Shortest-Widest-Min Hop Path Algorithm 44

xi

Chapter 1

Introduction

In the area of communication networks, Asynchronous Transfer Mode (ATM) tech-

nology has been claimed to be a network of future communication. The ATM

network is expected to become a backbone network for high-speed multimedia

because it is able to support a large computer network with robustness, scalability,

and Quality of Service (QoS), such as bandwidth, delay, and delay variation, for a

variety of service classes. Because of its scalability, the ATM network can support

various sizes from local area networks (LANs) to wide area networks (WANs). It

also provides a multi-vendor system which can support a wide variety of networks

with seamless connections and internetworking among a variety of computer net-

works.

To support a large scale network, a dynamically automatic network config-

uration mechanism which can automatically control a topology of switches and

links is required. The ATM forum [6] therefore has introduced a dynamic con-

figuration protocol for supporting private networks called the Private Network to

Network Interface (PNNI) protocol.

The PNNI protocol consists of two parts: signaling and routing. The

PNNI signaling protocol was designed for call connection setup using a message

exchanging mechanism between switches. The message includes the resource

requirements of calls, call setup information, and etc. The PNNI routing protocol

1

was designed for an exchange of topology state information including the ”image”

of network topology, traffic attributes and metrics of each link between switches.

The PNNI routing protocol also performs a Connection Admission Control (CAC).

In order to standardize these protocols, the ATM forum has released PNNI spec-

ification version 1.0 [3]. However, this standard does not define path selection

algorithms that select appropriate paths with a guaranteed QoS satisfying several

constraints.

Path selection algorithms, sometimes called routing algorithms, affect both

the connection setup delay and call blocking probability and influence the quality

of service for users and network utilization which affects the network efficiency

for providers. To select a path which is efficient for not only the user but also the

provider, a routing scheme which supports both user and provider constraints is

necessary. Since the user and provider constraints address different properties, a

routing algorithm must select routes based on more than one criterion

However, as stated in the PNNI specification [3], the original work of the

PNNI routing algorithm was developed using link-state routing. The commmon

link-state routing algorithm is Dijkstra’s algorithm [21]. It provides a determin-

istic solution based on a single criterion. Thus, the original Dijkstra’s algorithm

cannot be used for multiple criteria routing. In addition, a problem arises because

it is also known that routing with more than one requirement is an NP-complete

problem [24]. For this reason, we introduce a multiple criteria routing algorithm (M-

CRA) based on a heuristic approach to avoid the NP-complete problem. Section 1.1

states the problem which arises when multiple criteria routing is needed to sup-

port the user’s QoS requirements.

2

1.1 Problem Statement

QoS routing faces a basic problem of finding a path that satisfies the multiple

constraints imposed by the QoS requirement contained in the user’s call request.

Switch Virtual Circuits (SVCs), which are created for transferring the user data

across the network, cannot be set up until the routing algorithm has found paths

with sufficient resources to meet the user’s requirements. In traditional data net-

works, the network is usually characterized by a single metric such as hop count

or delay, and the shortest-path algorithm is used for path computation.

ATM networks, however, need routing to support multiple metrics to cover

a wide variety of QoS requirements. In order to evaluate a link’s ability to support

a call with a specific QoS constraint, the network must characterize a link by the

highest QoS level that it is able to support, i.e., by QoS link metrics. Therefore, QoS

link metrics are combined to provide the QoS characterization of a path. There are

many QoS metrics that are relevant to ATM networks, but the following four QoS

metrics are most commonly considered: bandwidth, delay, delay jitter, and loss

rate. The ATM Forum [6] has defined another metric, Administrative Weight (AW),

which was included in the PNNI standard. This metric is defined by a network

operator. For example, it may be used as a hop counter or to prioritize links by the

desirability of usage.

When a user’s call request arrives, it contains a traffic descriptor and end-to-

end QoS requirements. The network determines the five metrics needed for path

computation as follows.

� The bandwidth requirement, BW, for the call is determined from the user’s

traffic descriptor.

� The end-to-end delay requirement, D, is determined from the user-specified

maximum cell transfer delay (maxCTD) parameter.

3

� The end-to-end jitter requirement, J, is determined from the user-specified

cell delay variation (CDV) parameter.

� The end-to-end loss rate, L, is determined from the user-specified cell loss

ratio (CLR) parameter, which indicates a maximum tolerable loss rate.

� Administrative weight, AW, is determined from the network operator control

parameter.

The user’s call request is now converted to a quintuple, which we call the

QoS constraints, (bw, d, j, l, aw), when the QoS-routing problem is reformulated as

a typical optimization problem. Note that not all of these parameters may be pro-

vided in a user’s call request. Furthermore, the subset of parameters used depends

upon the category of service being requested.

Each link i in an ATM network is characterized by a quintuple

(bwi; di; ji; li; awi) that represents the current available bandwidth, delay, jitter,

loss rate and administrative weight on the particular link. In Figure 1.1 , the sam-

ple network shows links characterized by this quintuple. The delay, jitter, and loss

rate also determine the behavior of the output buffer of the switch transmitting on

that link. Therefore, these characteristics also affect other elements such as traffic

flows using the output buffer and the switch scheduling algorithm. It is assumed

(as stated in the PNNI standard [3]) that these metrics are updated periodically by

measurement methods and thus reflect the latest status of the link.

In PNNI terminology, additive metrics such as delay, jitter, administrative

weight, and hop count correspond to path constraints. Non-additive metrics such as

bandwidth and loss rate are viewed as link and node constraints, respectively. The

QoS constraints provide both path and link constraints. The link constraints are

one part of the input parameters to the routing algorithm as shown in Figure 1.2.

In Figure 1.2, the topology ”picture” and routing policy are also considered as

input to the routing model.

4

j j j j j m m m m m

n n n n n

p p p p p

q q q q q

bw
k

dk jk lkawkjibw
i

d i li
aw

i

Destination

bw d j l bw jd l

dbw j l

dbw j l

bw d j l

Source

aw aw

aw

aw

aw

Figure 1.1: The Sample Network Showing Metrics for Problem Resolution

with network
constraints

Routing Policy

Transition List (DTL)
Path to fill in Designed

Route

Modules
Computation

User’s Call QoS
Requirements

(link constraints)

Topology graph

Figure 1.2: The Routing Model to Our Solution

5

The rule for combining the link metrics to form path metrics depends upon

the semantics. For example, delay and jitter are additive metrics. Therefore, the

sum of the delay, d, of the links along the path P,
P

i2P
di, gives the total path

delay, and the sum of the jitter, j, of the links along the path P,
P

i2P
ji, gives the

path jitter. The AW metric is required by the PNNI specification to be an additive

metric. The loss rate is a multiplicative metric because the loss rate on the whole

path is computed according to 1 -
Q

i2P
(1 - li) when l is the loss rate of a link.

The bandwidth metric is a comparable metric since the bandwidth of the path is

computed from min[bi]

Therefore, we can represent the general problem as follows: given a source

and a destination, and the user end-to-end QoS requirement (BW, D, J, L, AW), find

a path, P, such that all QoS requirements are fulfilled by the following constraints:

min[bwi] � bw when i 2 P for bandwidth (1.1)
X
i2P

di � d for delay (1.2)

X
i2P

ji � j for delay jitter (1.3)

1-
Y
i2P

(1- li) � l for loss rate (1.4)

X
i2P

awi � aw for administrative weight (1.5)

In order to convert this to a proper optimization problem, one or more of

these criteria can be used in the routing function while the other criteria remain as

hard constraints.

In this thesis, we evaluate the performance of multiple criteria routing algo-

rithms in a PNNI ATM network, which support QoS constraints. Our evaluation

experiments use a simulation tool which has been developed at the Information

and Telecommunication Technology Center (ITTC) of the University of Kansas.

6

The simulation tool includes the UNI signaling messages, the data link QSAAL

layer, the Q93B layer, the Switch Call Control Layer, and the PNNI layer. This

simulation tool implementation shares about 90% of the real ATM switch signal-

ing software, and the results obtained from the simulation are expected to closely

match those obtained using real network experiments. This is the most advanta-

geous feature of our simulation tool over other simulation tools. Therefore, the

aim of this thesis is twofold.

� Showing our simulation tool can support simulations of large scale networks

using our multiple criteria routing algorithms.

� Giving multiple criteria routing results for single peer group PNNI ATM net-

works.

The rest of this thesis is organized as follows: we discuss related work in Chap-

ter 2, and then explain our solution to the multiple criteria routing algorithm in

Chapter 3. Chapter 4 explains our test scenarios, and Chapter 5 presents our ex-

perimental results and evaluation of our solutions to the multiple criteria routing

problems. Our conclusions and future work regarding these issues are discussed

in Chapter 6.

7

Chapter 2

Background & Related Work

PNNI consists of two protocols, a signaling protocol and a routing protocol [3].

The signaling protocol is based on ATM Forum User Network Interface (UNI) sig-

naling [4], which in turn is related to ITU-T Q.2931 [22]. The modification has

been made to provide a network to network interface (NNI), rather than UNI to

make use of the routing protocol, and to provide certain other extra functionali-

ties. The PNNI routing protocol uses similar concepts to the Open Shortest Path

First (OSPF) protocol used within Internet Protocol (IP) networks [16]. However, it

provides QoS-based dynamic hierarchical source routing, and it is scalable. In this

Chapter, Section 2.1 explains the PNNI signaling protocol. In addition, the PNNI

routing protocol is described in Section 2.2.

2.1 PNNI Signaling

PNNI signaling is designed to be compatible with UNI version 3.1, but also pro-

vides functionality from UNI version 4.0 signaling, including [2]:

� point-to-point and point-to-multipoint calls

� parameterized quality of service

� anycast (unicast and multicast)

8

� signaling for ABR class

� switched virtual path connections

� negotiation of traffic parameters – peak cell rate (PCR), sustainable cell rate

(SCR), and maximum burst size (MBS)

In addition, PNNI is created on the capabilities of UNI version 4.0 signaling

to provide soft permanent virtual circuits (SPVC), at both virtual path (VP) and vir-

tual channel (VC) levels. Moreover, due to the source-based routing of PNNI, the

signaling capabilities support the use of designated transit list (DTL), crankback

procedures, and alternate routing. In this thesis, the call setup procedure is sum-

marized in Section 2.1.1. Section 2.1.2 describes the DTL. Crankback procedures

and alternate routing are described in Section 2.1.3.

2.1.1 Call Setup Procedure in a PNNI Network

When a call from an end user arrives at a PNNI network, the node that connects

to the end user, the source node, starts the setup procedure. First, the source node

determines the call request and contacts its topology database to find the route

that leads to the destination specified the call request. The route can be different

depending on the routing policy specified at the source node. After the route is

found, the source node pushes the list of nodes (route) into the information ele-

ment, called a Designated Transit List (DTL). The DTL is included in the signaling

message that is passed to the next transit node. The DTL procedure is explained

in Section 2.1.2. As the call goes along the PNNI network, it can fail. The reason is

that the routing information given at the time of routing at the source node is out

of date. This case can happen in a large network because of the propagation delay

between nodes. Therefore, PNNI implements the crankback procedure to report the

failure to the source node so that the source node can find an alternate route for

9

this call request. The crankback procedure and the alternate routing are described

in Section 2.1.3.

2.1.2 Designated Transit List (DTL)

PNNI uses source routing to forward an SVC request across one or more

groups in a PNNI routing hierarchy. The PNNI term for the source route vector

is the designated transit list (DTL). A DTL is a vector of information that defines a

complete path from the source node to the destination node across a peer group in

the routing hierarchy. A DTL is computed by the source node or first node in a peer

group to receive an SVC request. Based on the source node’s topology database,

it computes a path to the destination that will satisfy the QoS objective of the re-

quest. Intermediate nodes obtain the next element (hop) in the DTL, perform the

call admission control and forward the SVC request through the network.

A DTL is implemented as an information element which is sent in the PNNI

signaling SETUP message. The source node computes the DTL for the entire path

to the destination across the peer groups. One DTL is computed per request for

every peer group. While the source node provides an explicit DTL for its peer

group, it gives the names of the other peer groups it has to traverse. The DTL

then contains the explicit addresses of switches within the same peer group of

the source node and the ”logical” addresses of switches which are in other peer

groups. When the user’s request reaches a border node in the new peer group, it

removes the old DTL and computes the new DTL to traverse its peer group. When

the request reaches the destination peer group, the border node of that peer group

computes the route to the destination node.

2.1.3 Crankback and Alternate Routing

In a PNNI ATM network, when finding a route to the destination, the route is com-

puted using the topology database, containing node information, at the time of the

10

connection request. In a big network, the topology database of each node may not

be up to date due to long convergence time and propagation delays between the

nodes. In such a case, it may not be possible to route the call request to the destina-

tion. At the intermediate node, the request might fail because of the unavailability

of bandwidth on the connecting link due to inaccuracy of the bandwidth informa-

tion, which is different at the time the DTL was created and the time the call was

actually routed. The node where the DTL is blocked sends a RELEASE message

to the preceding node and also includes an information element called Crankback

IE, which contains all the information needed to make an alternate route. The in-

formation element determines the reason for failure of the connection setup and

the blocked node or links. This information is used at the source node to find an

alternate route. The source node eliminates the blocked node or links and tries to

find another route to the same destination. If it finds a route, then a new SETUP

message filled with the new DTL is sent to the destination node along the alternate

path. If no alternate route is available, then the call is released and indicated as a

failed call. Crankback and alternate routing give PNNI the advantage to increase

the call success rate. The maximum number of crankback retries allowed for a con-

nection attempt can be set as a parameter at the source nodes connected to the end

user system.

2.2 PNNI Routing

As stated in the PNNI specification [3], the original work of the PNNI routing

algorithm was developed from the original Dijkstra algorithm [21]. However, it

provides a deterministic solution based on a routing requirement of a single QoS

parameter. Therefore, the original Dijkstra algorithm cannot be used for multiple-

QoS routing.

11

Outside Link

Logical Link

Uplink

Physical linkBORDER NODE (BN)

Outside Link

PEER GROUP LEADER (PGL)

PG B.2
PG A.1 PG A.2

PG B.1

PG B

A.1.2

A.2.2
A.2.1

PG C

induced uplink

A B
C

A.1 A.2 B.1 B.2

C.1 C.2

PG A

logical link

uplink

A.2.3 A.2.4
B.1.3

B.1.4
B.2.2

B.2.3

B.2.1

Logical Group
Node

Logical Group Node (LGN)

A.1.1

A.1.3

Physical link

B.1.2B.1.1

Figure 2.1: A PNNI Hierarchical Topology

2.2.1 PNNI Topology

A PNNI topology creates the PNNI routing hierarchy. Figure 2.1 shows an example

of the PNNI hierarchical architecture. All elements in this figure are explained

below.

Peer Group (PG)

A collection of nodes that shares the topology information generated by each n-

ode through topology information flooding is called a peer group. Members of a

peer group discover their neighbors using a HELLO protocol. Each node sends a

12

HELLO packet through the port that is connected to other nodes to obtain infor-

mation about other nodes. Physical peer groups consist of physical nodes. Logical

peer groups are peer groups composed of logical nodes, which is a node that repre-

sents a lower level peer group at the next higher level of the hierarchy. The logical

node function is explained below.

Peer Group Identifier

The peer group identifier is used to indicate the nodes that are within the same

peer group. It is the first 14 bytes of the ATM address of the nodes. This means the

nodes within the same peer group have the same first 14 bytes of their addresses.

Peer Group Leader (PGL)

Within a peer group, after the nodes exchange the HELLO protocol, the election

to select any node in the peer group to be a Peer Group Leader (PGL) begins. The

PGL is the representative of its peer group at the next higher level. The function

of the PGL is to summarize peer group information and send it to the logical node

that represents its peer group in the next level. Also, it passes the higher level peer

group information obtained from the parent peer group to its peer nodes. This

information is used to route the user request across the peer group.

Logical Group Node (LGN)

The Logical Group Node (LGN) is a node which represents the peer group of the

nodes in the next higher level. The LGN contains the topology information that

is aggregated at the lower level by the PGL. This information is flooded to the

node (which can be a physical node or a logical node) that resides in the same peer

group.

13

Parent and Child Peer Group

A parent peer group is a group which is composed of a LGN of a lower level peer

group in the next higher level. However, the child peer group is the group of nodes

in which the topology information is exchanged between itself and the logical node

representing this group in the parent peer group.

Hello Protocol

HELLO protocol is a standard link state procedure used by neighbor nodes to dis-

cover the existence and identity of each other. After exchanging the HELLO pro-

tocol, the node generates the PNNI Topology State Element (PTSE) and floods to

its neighbor nodes. The PTSE is described in the next section.

PNNI Topology State Element (PTSE)

PTSE is a unit of information used by nodes to build and synchronize a topolo-

gy database within their peer group. PTSEs are reliably flooded between nodes

in a peer group and downward from an LGN to the child peer group to inform

neighbor nodes about its resource information. PTSEs contain topology informa-

tion about the links and nodes in the peer group. A group of PTSEs are carried in

PNNI Topology State Packet (PTSP). The new PTSPs with the updated topology

information are sent out if a significant change in the topology occurs.

Border Node

A border node is a node in a peer group which is connected to the nodes which

are not in the same peer group. This is found during the Hello protocol packet ex-

change by matching different peer group identifiers. The link connecting to border

nodes is called the outside link.

14

Uplink

An uplink is topology information advertised from a border node to a higher level

LGN. The existence of the uplink is derived from an exchange of Hello packets be-

tween the border nodes. These exchanges determine the higher hierarchical level

where the two peer groups have logical nodes represented in a common parent

peer group. They advertise the common level along with the address of the peer

nodes in the common level in the uplink information. The uplink information is

flooded all the way up the hierarchy until the information reaches the LGNs in the

common higher level peer group. The LGNs which are its neighbors try to estab-

lish a logical link by using the addressing of the peer node specified in the uplink

information.

Logical Link

A logical link is a connection between two logical group nodes (LGNs). A logical

link is built from the aggregation done by the PGL of the peer group at the lower

level. A Logical link instance is created to represent one or more physical links,

and its behavior is similar to that of the physical link.

Routing Control Channel

The Virtual Path Identifier number 0 (VPI = 0) and Virtual Circuit Identifier num-

ber 18 (VCI = 18) are reserved as the virtual channels used to exchange PNNI topol-

ogy information between physical nodes. Examples of PNNI information include

the PTSE Packet (PTSP) and the Hello Packet.

Topology Aggregation

To represent the PNNI topology information at the child level to the logical node at

the parent level, aggregation of node and link information is necessary. This pro-

15

cess summarizes information at one peer group level to be advertised into the next

higher level peer group. Topology aggregation is performed by PGLs. Multiple

links at the child level are aggregated into one link at the parent level and a peer

group of nodes is aggregated into one LGN at the next higher level.

2.2.2 PNNI Topology Metrics and Attributes

Basically, PNNI is a topology-state protocol which has topology-state parameters.

These parameters are exchanged among network nodes, and they are classified as

metrics and attributes. A metric is a parameter whose value must be combined for

all links and nodes in the SVC request path to determine if the path is acceptable.

An attribute is a parameter that is considered individually at a switch to determine

if a path is an acceptable candidate for an SVC request. The metrics and attributes

that are supported by PNNI are shown in Table 2.1.

Topology State Parameters
Topology Metrics Topology Attributes

Performance Resource Related Policy Related
Cell Delay variation Cell Loss Ratio for CLP=0 Restricted
Maximum Cell Transfer Delay Cell Loss Ratio for CLP=0+1 Transit Flag
Administrative Weight Maximum Cell Rate

Available Cell Rate
Cell Rate Margin
Variance Factor
Restricted Branching Flag

Table 2.1: Topology State Parameters [3]

Maximum Cell Transfer Delay (MaxCTD)

MaxCTD is the maximum delay for a cell transfer through all the links in a path.

As shown in Figure 2.2, MaxCTD is the sum of the fixed delay component across

16

Figure 2.2: The probability density model [1]

the link or node and the peak-to-peak cell delay variation. It must be less than or

equal to the delay that is requested by a user so that the user cell is accepted.

Cell Delay Variation (CDV)

From Figure 2.2, CDV is the peak-to-peak cell delay variation that determines the

delay of the cell that can be accepted. Cells arriving after the peak-to-peak CDV

interval are considered late. Standards currently define CDV as a measure of cell

clumping. Standards define CDV at either a single point against the nominal entry

point or an exit point. The ATM Forum UNI specification versions 3.1 [4] and

4.0 [2] cover details on computing CDV and its interpretation.

Administrative Weight (AW)

Administrative Weight is the link or nodal-state parameter set by the network ad-

ministrator to indicate the desirability of using a link or node for whatever reason

significant to the network administrator.

17

Cell Loss Ratio (CLR)

CLR is the ratio of the dropped cells to the transmitted cells. It describes the ex-

pected CLR at a node or link for Cell Loss Priority (CLP). A QoS class defines the

cell loss ratio for the CLP=0 flow and the CLP=1 flow [4]. The CLP=0 flow refers

to only those cells which have the CLP header field set to 0, while the CLP=1 flow

refers to only those cells which have the CLP header field set to 1. The aggregate

CLP=0+1 flow refers to all cells in the virtual path or channel connection.

Maximum Cell Rate (MaxCR)

Maximum Cell Rate indicates the maximum capacity used by connections. It can

be a link or node capacity.

Available Cell Rate (AVCR)

Available Cell Rate is a measure of the effective available bandwidth on the link.

Cell Rate Margin (CRM)

Cell Rate Margin is a measure of the difference between the available bandwidth

allocation and the allocation for the sustainable cell rate. The CRM is the band-

width margin allocated above the aggregate sustainable cell rate. The CRM is an

optional attribute.

Variance Factor (VF)

Variance Factor is a relative measure of the square of the cell rate margin normal-

ized by the variance of the sum of the cell rates of all existing connections. The VF

is an optional topology attribute.

18

Restricted Branching Flag

It is used to indicate if a node can branch point-to-multipoint traffic.

Restricted Transit Flag

This is the nodal state parameter that indicates whether a node supports transit

traffic. The transit traffic is the traffic which passes through an intermediate node

in a connection. If a node does not want to act as an intermediate node for the

SVC connection, it will set this flag. In this case, it will accept only the connections

which terminate at a called host connected to it.

2.3 Routing with Multiple QoS Metrics

In multiple-QoS routing, the number of QoS parameters of an ATM network con-

sidered by the routing algorithm could be as high as five, including Peak Cell

Rate (PCR), Sustainable Cell Rate (SCR), Cell Loss Ratio (CLR), Cell Transfer Delay

(CTD), and Cell Delay Variation (CDV). The problem of routing with multiple cri-

teria arises. The problem of multiple criteria routing with more than one additive

QoS metric is known as an NP-complete problem [24]. Therefore, since an optimal

solution method is not computationally feasible, the challenge is how to develop

a heuristic method providing an adequate solution to the NP-complete problem in

an acceptable computational time. Therefore, a number of heuristic algorithms for

multiple-QoS routing have recently been proposed.

Wang and Crowcroft studied complexity of QoS routing with multiple con-

straints [24]. They propose the widest and the shortest-widest path algorithm

as a way of minimizing the call blocking rate. However, there is no performance

evaluation of an implementation of a routing protocol based on these algorithms.

Ma and Steenkiste propose four routing algorithms: widest-shortest,

shortest-widest, shortest-distance, and dynamic-alternative path algorithms [13].

19

Their widest-shortest path algorithm is based on the Bellman-Ford algorithm, and

their shortest-widest path algorithm simply applies Dijkstra’s algorithm twice.

This algorithm can significantly increase the routing time if the network topology

is large. A shortest-distance path algorithm selects a path which has the minimum

”distance” which is derived from any distance function. A dynamic-alternative

path algorithm selects a path using the widest-shortest path algorithm while im-

posing hop count restrictions on the nodes being selected.

Iwata and et al. propose a new QoS routing algorithm for the PNNI protocol

that can find a path guaranteeing several QoS parameters requested by users [11].

They proposed a pre-calculation of the path. The pre-calculation is designed to find

a path which uses as few network resources as possible with a sufficiently short

connection setup delay. This is done by pre-calculating paths using no knowl-

edge of the user’s request. The paths are calculated beforehand, and when there

is a user’s request, the pre-calculated path is returned in response to the user’s re-

quest immediately. However, from their experiments, it has been shown that the

pre-calculated path scheme did not improve much of the call blocking probability

of the PNNI routing request. In addition, they also proposed a combination of an

on-demand path selection with a single criterion, such as the administrative weight

and available bandwidth, with the pre-calculated path selection. First, the pre-

calculated path is returned to the user’s routing request. If the routing with all the

pre-calculated paths fails, the path which is calculated by using the on-demand

path selection algorithm based on a single criterion is returned. If the routing

still fails, there is an option whether this user’s request is rejected, or another path

which is calculated by using the on-demand path selection based on another single

criterion is returned. At this point, if the routing still fails, the user’s request is re-

jected. From their experiments, it has been shown that using a three-path routing

scheme, as described above, significantly increases the call setup time and hardly

improves the call blocking probability of the routing request.

20

Fang et al. investigate the performance of the PNNI routing protocol in a

large ATM network [10]. Their experiments are focused on the inaccuracy of rout-

ing information due to two factors: the topology aggregation and delayed PTSE

updates. Their experiments are done on a virtual PNNI testbed written in the new

network description language TeD [18, 20]. They use the C++ version of the Ted

software system that deploys the Georgia Tech Time Warp (GTW) system as the

underlying simulation engine [7, 19]. They found that the routing information

inaccurancy in large PNNI networks is affected by the PTSE update interval and

topology aggregation. In addition, the effect of crankback tends to be more impor-

tant when the routing at each switch is less accurate.

Neve and Mieghen proposed a multiple QoS routing algorithm, called

TAMCRA, which stands for Tunable Accuracy Multiple Constraints Routing Al-

gorithm [17]. TAMCRA has one integer parameter k which can increase the ac-

curacy of a returned shortest path at the expense of calculation time. The value

k is defined to reflect the number of shortest paths. Their work was developed

from Jeffe’s algorithm [12]. The principle of TAMCRA is to find the shortest path

with two constraints. However, the constraints have to be additive. Therefore,

TAMCRA is not suitable to find a path with a constraint that is not additive, such

as the available bandwidth of the link.

Sun and Langendőrfer proposed a new distributed unicast routing algorith-

m which can find a loop-free delay-constrained path with a small message com-

plexity [23]. They have chosen cost and delay as the routing metrics, and both

are additive. Even though the link cost can be chosen to be a function of residual

bandwidth, residual buffer space, and estimated delay bound of the link [25], their

algorithm is unable to directly find a path whose constraints are not additive, such

as a maximum bandwidth.

There are many research papers that show the performance of QoS rout-

ing using the different approaches. However, our performance evaluation exper-

21

iments use the simulation tool which has been developed at the Information and

Telecommunication Technology Center (ITTC) of the University of Kansas. This

simulation tool is part of a comprehensive architecture which supports a common

interface for simulations, emulation, and real-time ATM network experiments. It

is supported on Bellcore’s Q.Port signaling software. This software includes UNI

signaling messages, the data link Qsaal layer, and the Q93B layer. Our simula-

tion tool is built on this software with all the necessary protocol stacks in a real

ATM switch. Since the simulation tool implementation shares about 90% of the

real ATM switch signaling software, the results obtained from the simulation are

expected to closely match those obtained using real network experiments. This is

the most advantageous feature of our simulation tool over other simulation tools.

Therefore, the aim of this thesis is twofold.

� Showing our simulation tool can support simulations of large scale networks

using our multiple criteria routing algorithms.

� Giving multiple criteria routing results for single peer group PNNI ATM net-

works.

22

Chapter 3

Implementation

As stated in the PNNI specification, the PNNI routing algorithm was

developed from Dijkstra’s original algorithm [3]. However, it provides a routing

method based on a single routing criterion. Thus, the ”best” route found by this

method might not be the best because in the ATM network there are many criteria

for the route that can be considered, such as link bandwidth, link delay, and num-

ber of hops. For example, using the original routing algorithm specified in the

PNNI specification, the route returned has a maximum bandwidth, but it might

have a very high delay. Therefore, our solution is to compromise among two or

more criteria of the routing policy.

Since it is known that routing with more than one criterion an NP-complete

problem [24], we introduce a heuristic to compromise among two or more criteria.

In this chapter, we discuss the routing criteria we used for our solution in

Section 3.1. Our approach to the solution is described in Section 3.2. Section 3.3

explains our implementation of the multiple criteria routing algorithm (MCRA)

for on-demand routing.

23

3.1 Routing Criteria

In order to find a route to fulfill both a call requirement and reasonable use of net-

work resources, we need to carefully specify multiple routing criteria. Convention-

ally, only one routing criterion is used to find a route, examples of which include

a route with: minimum hop, maximum bandwidth, or minimum delay, as a cri-

terion. The routing algorithm using a single routing criterion has a disadvantage.

For example, if there are many calls that have to be routed through the same desti-

nation, using the minimum hop as the routing criteria, some calls will go through

the same route, Route A, and allocate network resources, such as the bandwidth

of each link along the route. Many calls are routed through Route A until any link

within Route A cannot support the call request. However, there might be another

route with the same number of hops as Route A which has a more available band-

width. This example shows that a single criterion routing algorithm often does not

balance the use of network elements (such as links). In addition, in a link there are

many kinds of resource information, i.e., bandwidth, hop count, and delay to be

used to make a routing decision. However the single criterion routing algorithm

does not compromise those available resources. Therefore, the route returned by

this routing algorithm might not give the best route to the user request. For this

reason, multiple routing criteria are necessary to solve the problem above.

In this section, we propose routing criteria for our routing algorithms. The

multiple criteria routing algorithms using two routing criteria are shown in Fig-

ure 3.1. The row of the table shows the primary criterion, and the column of the

table shows the secondary criterion. Marks in the table show the routing algo-

rithms we propose. For example, the algorithm in the first row and third column

is the minhop widest routing algorithm. This algorithm finds a route based on

the maximum bandwidth as the primary criterion and the minimum delay as the

secondary criterion.

24

Shortest

Widest

Shortest

Minimum Hop

Minimum HopWidest

Criterion

Criterion

Single QoS Routing Algorithm

Secondary

Primary

Multiple QoS Routing Algorithm

Figure 3.1: The Multiple Criteria Routing Algorithm Using Two Routing Criteria

In addition, the multiple criteria routing algorithms using three routing cri-

teria are:

� a path with a minimum hop count as a primary objective, a minimum delay

as a secondary objective, and the maximum bandwidth as a tertiary objective

(called ”widest-shortest-minhop”)

� a path with a minimum hop count as a primary objective, the maximum

bandwidth as a secondary objective, and a minimum delay as a tertiary ob-

jective (called ”shortest-widest-minhop”)

We have decided to focus on the maximum bandwidth, minimum delay,

and minimum hop count to be the criteria for our routing algorithms. We did

not yet consider a loss rate in the routing algorithms implemented in our simu-

lation tool and in our simulation experiments. However, we could easily use a

multiplicative metric easily as well. The routing algorithm using the loss rate as

a routing criterion can be implemented by converting the loss rate metric from a

multiplicative object to an additive object by using a logarithmic function. For ex-

25

ample, the loss rate of path P, LP, is the product of the link loss rates (ln, n = link

number) along the path.

Loss Rate (LP) = 1- [(1- l1)(1- l2)(1- l3)] (3.1)

LP = 1- exp ln[(1- l1)(1- l2)(1- l3)] (3.2)

LP = 1- exp[ln(1- l1) + ln(1- l2) + ln(1- l- 3)] (3.3)

After we change the loss rates into a logarithmic function, we can simply

add them together. Thus, we can use our routing algorithm which is designed

for any additive parameter to be used with a loss rate metric also. However, we

consider the loss rate to be a hard constraint. In addition, we did not consider the

jitter to be a criterion for our algorithm, but we have kept it as a hard constraint.

3.2 Our Approach to Route Computation

In this section, we describe our solution to the problems described in Section 3.1,

and explain the routing mechanism when a user’s call arrives at the first node. Fig-

ure 3.2 shows the route computation flow chart specifying the network’s reaction

to a call request. The routing algorithm used to construct the Switch Virtual Circuit

(SVC) path is based on user demand, and it is called an ”on-demand” path routing

algorithm. The algorithm finds a path based on the link-state information of the

network including the recent status of each network link, such as the quintuple

(bw, d, j, l, aw) and other nodal topology information. The link-state information

is maintained in a topology database at each node. The topology database is up-

dated periodically by a flooding mechanism. A node floods the network with a

PNNI status message either when significant changes in the status occur or after

a pre-specified time interval. The significant change is determined by the differ-

26

ence of the network resource, for example, the link available bandwidth of the last

call made from the available bandwidth for the next call to be made. The range of

difference which indicates whether the change is significant is a part of the routing

parameter set network which is specified by a network operator.

In Figure 3.2, when a call request arrives, we use the on-demand path rout-

ing algorithm to find a path to a single specific destination. There are two param-

eters related to the on-demand path routing algorithm, the routing criterion, and

the routing policy. The routing criterion specifies the maximum or the minimum

of the network parameters, e.g., maximum bandwidth and minimum delay. The

routing policy is composed of one or more routing criteria, e.g., the minimum-

delay, maximum-bandwidth policy. In an on-demand routing algorithm, we first

conduct a pruning procedure to remove the links which are unable to support the

user’s request, and also links within a failed path. The failure of the path can be

either because it is unable to satisfy the user’s QoS or because it is returned from

the Crankback procedure.

After the pruning procedure, we have the topology in which all links tend

to support the user’s request. We then use an on-demand path routing algorith-

m to find a possible path that fulfills both the user’s call request and the routing

policy. At this step, a route may not be found because some links are pruned, and

there is no path from the source node to the destination node. The call is rejected

because no path is found. If there is a possible path found, the path is checked

to see whether the path can satisfy the user’s QoS needs. If the path is unable to

support the QoS needs, then all the links of the path are pruned in the pruning

procedure, and the routing procedure is started over again. Otherwise, the path

is selected and the Call Setup procedure is called. Then, the Call Admission Con-

trol (CAC) procedure is performed to reserve switch (or node) resources along the

path for the user’s call request. If a switch is unable to support the user’s call re-

quest, the Crankback occurs, and the call request is returned to the source switch for

27

path in the pruned topology

Use On-Demand Path

Algorithm to construct a new

the limits ?
of Retries exceeds

Did Number

Did

Crankback
occur?

Perform Call
Admission Control

along the PathCall Setup Procedure
and Initiate a
Create a DTL

Pruning Procedure

from Crankback if occurs

excluding failed link

a possible
Is there

path?

to select a path
On receipt of call request, use routing policy

Does the
path satisfy all
QoS needs?

Input of Topology "picture",

and Routing Policy
User’s call constraints,

Yes

Yes

Yes

No

No

No

No Yes

Call Accepted Call Rejected

Figure 3.2: Route Computation Flow Chart

28

re-routing. The routing procedure is started over again.

The call is routed over the feasible path found. Calls may be rejected for two

reasons: either because there is no feasible path after the algorithm tries to find a

path which can support all the QoS requirements or the number of the retries ex-

ceeds the limit which is specified by a network operator or an end user. Recall that

our routing algorithms use the local topology database maintained at each node

to find paths. However, since the information in this database is updated periodi-

cally, it may be out-of-date. In order to validate the most recent status information

about available resources, the PNNI call setup procedure sends a SETUP message

to each node along the path selected by the routing algorithm. A nodal Connection

Admission Control (CAC) procedure is used at each node to determine if the node

currently has enough available resources to accept the call. If there are sufficient

resources at this node, then the call setup message will be forwarded to the next

node along the selected path. This procedure is repeated until all the nodes along

the path have been checked. If any of these nodes cannot support the call request,

the condition called Crankback occurs. Crankback is the mechanism that returns

the call setup message to its source with the cause of setup failure. The call return

with the cause of failure message is used to alter the search for an SVC route for

this call if the call setup time has not expired or the number of retries does not

exceed the limit. The search for a route avoids the failed link which is indicated in

the returned message of the call failure.

3.3 Dynamic On-Demand Routing

The procedure for on-demand routing is divided into two steps. The first is the

construction of a network representation from the topology database, and the

pruning of links in the representation is to eliminate the links which are unable

to support the user’s request. Links are pruned following the mechanism as speci-

29

fied in the PNNI specification [3]. The mechanism to prune all links, which cannot

support a user’s call requirements, is called Generic Connection Admission Con-

trol (GCAC). The GCAC mechanism is explained in the Section 3.3.1.

In case of a call failure, the Crankback mechanism is used to find an alter-

nate path. A failed link or a failed node is indicated in the RELEASE message

which is returned from the node, where all of its links cannot support the us-

er’s call requirements to the source node. The failed link is pruned before finding

another possible path.

After all of the links that cannot support the user’s request are pruned in the

network representation, an on-demand routing algorithm is used to find a feasible

path within our pruned representative of database topology. The algorithm for

finding a feasible path for on-demand routing is explained in Section 3.3.3.

3.3.1 Path Pruning with Generic Connection Admission Control

(GCAC)

PNNI routing shall determine paths that satisfy performance constraints but are

not necessarily optimized with respect to any predetermined performance

criteria. Performance constraints may be implemented in one of three ways: link

constraints, node constraints, and path constraints. For link constraints, non-additive

link-state parameters are used. For node constraints, non-additive nodal state pa-

rameters are used. For path constraints, additive link-state parameters are needed.

Link constraints and node constraints are used to prune the network graph

during the path selection. PNNI routing supports link constraints and node con-

straints implementation of (1) Cell Loss Ratio (CLR) and (2) generic CAC parame-

ters (i.e. Available Cell Rate (AvCR), Cell Rate Margin (CRM) and Variance Factor

(VF)).

As part of providing quality of service (QoS) and throughput guarantees, a

switching system performs the connection admission control (CAC) during a con-

30

nection setup phase to determine if a connection request can be accepted without

violating the existing connections’ QoS and throughput requirements. To enable

the routing to produce paths that are likely to be accepted, it is necessary for the

switching systems to advertise some information about their internal CAC states.

However, requiring switching systems to expose detailed and up-to-date CAC in-

formation may result in a high volume of unacceptable traffic. Furthermore, the

CAC is not subject to standardization in the PNNI specification; and thus, it is not

practical for the switching systems to advertise their potentially different detailed

CAC states [3].

The Generic Connection Admission Control (GCAC) solves this problem by

allowing switching systems to advertise CAC information that is generic (i.e., in-

dependent of the actual CAC used in the switching systems) and compact, but yet

rich enough to support any CAC. GCAC defines a set of parameters to be adver-

tised and a common admission interpretation of these parameters. This common

interpretation is in the form of a generic CAC algorithm to be performed during

path selection to determine if a link or node can or cannot be included for con-

sideration. The algorithm uses the advertised GCAC parameters (available from

the topology database) and the characteristics of the connection being requested

(available from signalling) to determine if a link/node will be likely to accept or

reject the connection. A link/node is included if the GCAC algorithm determines

that it will be likely to accept the connection and excluded otherwise.

PNNI routing supports path constraints implementation of Administrative

Weight (AW), Maximum Cell Transfer Delay (MaxCTD) and Cell Delay Variation

(CDV). In the 1.0 version of the PNNI specification, the GCAC algorithm supports

only CBR and VBR services [3].

31

Traffic PCR SCR
Combination

1 and 3 PCR(CLP=0) PCR(CLP=0)
2 and 4 PCR(CLP=0+1) SCR(CLP=0)

5 PCR(CLP=0+1) PCR(CLP=0+1)
6 PCR(CLP=0+1) SCR(CLP=0+1)

Table 3.1: PCR and SCR values used in GCAC for CLP=0 traffic [3]

3.3.2 GCAC Algorithm for CBR and VBR Services

In the GCAC, a connection is characterized by two traffic parameters: Peak Cell

Rate (PCR) and Sustainable Cell Rate (SCR). These parameters are used to verify

whether a link in the network can support the user’s call request. PCR and SCR

values are different when the Cell Loss Priority (CLP) is set to ”zero” or ”one”.

Note that the CLP is a bit in the ATM cell header that indicates two levels of priority

for ATM cells. CLP=0 cells are higher priority than CLP=1 cells. CLP=1 cells may

be discarded during periods of congestion to preserve the CLR of CLP=0 cells.

Therefore, the selection of PCR and SCR for the GCAC algorithm is determined by

the one of the six traffic combinations that is described in the UNI standard version

3.1 [4]. The PCR and SCR parameter selection is described in Section 3.3.2.1, and

Section 3.3.2.2 describes the algorithm for GCAC mechanism.

3.3.2.1 PCR and SCR Parameter Selection for GCAC

Due to the traffic in the network, the PCR or SCR for the GCAC can be different.

For any topology element along a candidate path, if the Resource Availability In-

formation Group (RAIG) Cell Loss Priority (CLP) bit is set to 0, this indicates that

it allocates resources based on CLP=0 traffic. In this case, PCR and SCR values of

the connection used in GCAC are set according to Table 3.1.

If the RAIG CLP bit is set to 1, this indicates that it allocates resources based

on the CLP=0+1 traffic. In this case, the PCR and SCR values of the connection

32

Traffic PCR SCR
Combination
1, 2, 3 and 4 PCR(CLP=0+1) PCR(CLP=0+1)

5 PCR(CLP=0+1) PCR(CLP=0+1)
6 PCR(CLP=0+1) SCR(CLP=0+1)

Table 3.2: PCR and SCR values used in GCAC for CLP=1 traffic [3]

used in the GCAC are set according to Table 3.2.

3.3.2.2 Algorithm for GCAC mechanism

Generally, PCR and SCR are retrieved from a connection request, and these two

parameters are used in the GCAC mechanism. In PNNI 1.0, there are two choices

of GCAC mechanism: complex GCAC and simple GCAC [3]. The use of either

a complex GCAC or a simple GCAC is based on the GCAC parameters, such as

AvCR, CRM and VF. When AvCR, CRM and VF are advertised for a given link, the

complex GCAC algorithm is recommended for use. Otherwise, a simple GCAC is

used when only the AvCR is advertised. Note that AvCR (Available Cell Rate) is

the current link rate in cells/sec at which a source is allowed to send cells. CRM

(Cell Rate Margin) is a measure of the differences between the effective bandwidth

allocation and the allocation for a sustainable rate in cells per second. In addition,

VF (Variance Factor) is a relative measure of the cell rate margin normalized by the

variance of the aggregate cell rate on the link.

In a complex GCAC, the steps used to include or exclude links are shown

in Program 3.1.

Note that if a SCR is not specified in the Traffic Descriptor IE, then PCR =

SCR and only step 1 and 2 need to be performed. Also, note that when CRM and

VF are zero, step 3 will always result in ”include.” On the other hand, when VF is

infinity, step 3 will always result in ”exclude.”

If only AvCR is advertised, the use of a simple GCAC is recommended. In

33

Program 3.1 Complex GCAC Algorithm [3]

Step 1: If AvCR(i) >= PCR, include the link i; end;
Step 2: If AVCR(i) < SCR, exclude the link i; end;
Step 3:

If [AvCR(i) - SCR] x [AvCR(i) - SCR + 2CRM(i)]
>= VF(i) x SCR(PCR - SCR)

include the link i;
Else

exclude the link i;

Step 4: End;

a simple GCAC, the following step is used to include or exclude links.

Program 3.2 Simple GCAC Algorithm [8]

Step 1. If AvCR >= C
include the link;

Else
exclude the link;

Where C is given by
if (PCR < = 4 x SCR), C = (PCR + SCR) / 2
else if (PCR <= 16 x SCR), C = PC R / 8 + 2 x SCR
else if (PCR <= 64 x SCR), C = (3 x PCR + 465 x SCR) / 128
else C = (13 x SCR + 4413 x SCR) / 1024

3.3.3 Algorithm for On-demand Path Computing

We classify the on-demand routing into two cases: routing with a single criteria

requirement and routing with multiple criteria requirements. The single criteria

routing algorithm takes one of the criteria mentioned in Section 3.1. The returned

path satisfies the single criterion, such as the maximum bandwidth, a minimum

delay, or a minimum number of hops. The multiple criteria routing algorithm con-

siders two or more of the criteria. The returned path satisfies the multiple criteria,

such as the maximum bandwidth and a minimum number of hops, the maximum

34

bandwidth and a minimum delay, and a minimum delay and a minimum number

of hops.

3.3.3.1 Single-Criteria Routing Algorithm

For single-criteria routing, we can use the original version of Dijkstra’s algorithm

to find a path whose single criteria requirement is minimized [21]. Dijkstra’s al-

gorithm solves the problem of finding the shortest path by looking at a single cost

from a point in a graph (the source) to a destination. Dijkstra’s algorithm is shown

in Program 3.3 [5].

In Program 3.3, in which the Relaxation function performs for each vertex

v 2 V, we maintain an attribute d[u], which is an upper bound on the weight of a

shortest path from source s to v. We call d[v] a shortest-path estimate. We initialize

the shortest-path estimates and predecessors by the procedure on Lines 1-6. After

initialization, we get �[v] = NIL for all v 2 V;d[v] = 0 for v = s, and d[v] = 1 for

v 2 V - s The process of relaxing an edge (u; v), as shown on Lines 7-11, consists

of testing whether we can improve the shortest path to v found so far by going

through u and, if so, updating d[v] and �[v]. A relaxation step may decrease the

value of the shortest-path estimate d[v] and update v’s predecessor field �[v]. The

code on Lines 7-11 performs a relaxation step on edge (u; v).

In general, Dijkstra’s algorithm solves the single-source shortest-paths prob-

lem on a weighted, directed graph G = (V;E) for the case in which all edge weights

are non-negative. Therefore, we assume that w(u; v) � 0 for each edge (u; v) 2 E.

Dijkstra ’s algorithm maintains a set S of vertices whose final shortest path

weights from the source s have already been determined. That is, for all vertices

v 2 S, we have d[v] = Æ(s; v) where Æ(s; v) is the shortest path weight between

source node s and node v. The algorithm repeatedly selects the vertex u 2 V - S

with the minimum shortest-path estimate, inserts u into S, and relaxes all edges

leaving u. In the Program 3.3, we maintain a priority queue Q that contains all the

35

Program 3.3 Dijkstra’s Algorithm [5]

1 Initialize single source (G, s) f
2 for each vertex v 2 V[G]
3 d[v] 1
4 �[v] NIL
5 d[s] 0
6 g

7 Relaxation (u, v, w) f
8 if d[v] > d[u] + w(u,v)
9 then d[v] d[u] + w(u,v)
10 �[v] u
11 g

12 Extract-Min (Q) f
13 for each vertex v 2 Q

14 if d[v] is minimum
15 return v
16 g

17 Dijkstra (G, w, s) f
18 Initialize single source(G,s)
19 S ;

20 Q V[G]
21 while Q 6= ;

22 u Extract-Min(Q)
23 S S [fug
24 for each vertex v 2 Adjacent[u]
25 Relaxation(u,v,w)
26 g

36

vertices in V - S, keyed by their d values. The Program assumes that graph G is

represented by adjacency lists.

In Program 3.3, Line 18 performs the usual initialization of d and � values

using the function shown on Lines 1-6. Line 19 initializes the set S to the empty set.

Line 20 then initializes the priority queue Q to contain all the vertices in V - S =

V - ; = V. Each time through, the while loop of line 21-26 iterates exactly jVj

times.

Note that (on Lines 7-11 in the Relaxation function) Dijkstra’s algorithm uses

the addition operation to update the distance from a source to any node. For exam-

ple, we can use the Dijkstra’s algorithm to find a path with minimum delay since

it is an additive metric. However, finding a maximum bandwidth path would be

problematic using the Dijkstra algorithm since the bandwidth is not additive.

Therefore, we modified Dijkstra algorithm to solve the problem of using a

non-additive cost of the link [21], and we renamed it as D Widest path algorith-

m. The D Widest path algorithm finds a path between two nodes with maximum

bandwidth. The D Widest path algorithm is shown in Program 3.4.

Note that in Program 3.4, the Relaxation function is performed for each ver-

tex, v 2 V. We maintain an attribute d[u], which is the lower bound on the band-

width of the widest path for source s to v. We call d[v] here a widest path estimate.

Here are the details of the widest path algorithm as shown in Program 3.4.

The widest path algorithm is very similar to the Dijkstra’s algorithm. First, we

initialize the widest path estimates, d[v], and predecessors, �[v], shown on line 1-4.

In addition, we initialize the widest estimate of source to be infinity as shown on

line 5. After the initialization, we get �[v] = NIL for all v 2 V;d[v] = 1 for v = s,

and d[v] =1 for v 2 V- fsg.

Lines 7-11 show the Relaxation process on edge (u; v). It consists of testing

whether we can improve the widest path to v found so far to be going through u

and, if so, updating d[v] and �[v].

37

Program 3.4 D Widest Path Algorithm

1 Initialize (G, s) f
2 for each vertex v 2 V[G]
3 d[v] NIL
4 �[v] NIL
5 d[s] 1
6 g

7 Relaxation (u, v, bw) f
8 if d[v] < minfd[u], bw(u,v)g
9 then d[v] minfd[u], bw(u,v)g
10 �[v] u
11 Q fvg
11 g

12 Extract-Max (Q) f
13 for each vertex v 2 Q

14 if d[v] is maximum AND v =2 S
15 return v
16 g

17 D Widest (G, bw, s, d) f
18 Initialize(G,s)
19 S ;

20 Q fsg
21 for each vertex v 2 Adjacent[s]
22 Q fvg
23 d[v] bw(s,v)
24 while Q 6= ;

25 u Extract-Max(Q)
26 S S [fug
27 for each vertex v 2 Adjacent[u]
28 Relaxation(u,v,bw)
29 g

38

The Extract-Max process shown on Lines 12-16 finds the vertex, v, which has

the maximum widest-path estimate. The vertex is selected from the priority queue,

Q which contains the vertices that are potentially to be determined and keyed by

their d values.

In the D Widest function, first, we initialize all the parameters using the

Initialize function shown on Line 18. Then, on Lines 19-20, we insert the source

into a priority queue, Q, and we also add the adjacent vertices to the source node

into Q, and initialize the bandwidth between the source node and adjacent node

into their widest estimates as shown on line 19-23.

In the while loop, first, we extract the vertex with the maximum widest-

path estimate, and add it to a set S of vertices whose final widest path from the

source s have already been determined. That is, for all vertices v 2 S, we have

d[v] = bw(s; v) as the widest path weight between source node S and vertex v. The

algorithm repeatedly selects the vertex u 2 V- S with the maximum widest-path

estimate, inserts u into S, and relaxes all edges leaving u. Each time through the

while loop of line 23-28 iterates exactly jVj times.

The result of the widest path algorithm is the widest path from a source to

any destination which can be constructed from �[v].

In conclusion, we use Dijkstra’s algorithm to find a path whose criterion is

additive, such as delay and number of hops. In addition, we modified Dijkstra’s al-

gorithm for finding a path whose criterion is non-additive (maximum) bandwidth

and called the D Widest Path algorithm.

3.3.3.2 Multiple Criteria Routing Algorithms

In this section, we describe algorithms for multiple criteria routing, which we de-

veloped and which we evaluated. We described our criteria for multiple criteria

routing in Section 3.1.

We divided our algorithms into three groups. The first group has algorithm-

39

s for which a minimum additive metric such as a delay and number of hops is the

primary criterion and the maximum bandwidth is the secondary criterion. The

second group has algorithms with the maximum bandwidth as the primary crite-

rion, and any minimum additive metric as the secondary criterion. The last group

has algorithms using three criteria for selecting a path.

The first group consists of an algorithm for a path routing in which a min-

imum additive metric such as a delay or hop count is the primary criterion, and the

maximum bandwidth is the secondary criterion. Examples of such algorithms include

the widest-shortest algorithm and the widest-min hop algorithm. First of all, we

define two cost functions: the minimum ”distance”, such as a hop count or a delay,

as the primary cost and the maximum bandwidth is the secondary cost. In addi-

tion, we modify Dijkstra’s algorithm to consider the maximum of the secondary

criterion (bandwidth) when there is more than one node having an equal amount

of the first criterion (any additive metric). An example of the modified version of

Dijkstra’s algorithm for widest-shortest algorithm is shown in Program 3.5. The

link delay is given as the primary cost indicated as d1, and the link bandwidth is

given as the secondary cost indicated as d2.

The second group consists of an algorithm for a path routing in which maxi-

mum bandwidth is a primary criterion, and any minimum additive metric is a secondary

criterion such as, shortest-widest and minhop-widest. First of all, we defined two

functions of costs. The bandwidth is the primary cost, and any additive metric,

e.g. delay, is the secondary cost. Then, we used the D Widest path algorithm, the

modified version of Dijkstra’s algorithm, to find the maximum bandwidth path as

described in Section 3.3.3.1. After we got the maximum bandwidth of the possible

path from the network, we extensively used Dijstra’s algorithm to find a minimum

cost route with a bandwidth equal to or more than the maximum bandwidth from

the first pass. This algorithm needs two passes to find the minimum additive cost

and maximum bandwidth path.

40

Program 3.5 Widest-Shortest Path Algorithm

1 Initialize-wide-short (G, s) f
2 for each vertex v 2 V[G]
3 d1[v] 1, d2[v] NIL
4 �[v] NIL
5 d1[s] NIL, d2[s] 1
6 g

7 Relaxation-wide-short (u, v, w, bw) f
8 if d1[v] > d1[u] + w(u,v)
9 then d1[v] d1[u] + w(u,v)
10 d2[v] minfd2[u], bw(u,v)g
11 �[v] u
12 else if d1[v] == d1[u] + w(u,v)
13 if d2[v] < minfd2[u], bw(u,v)g
14 then d1[v] d1[u] + w(u,v)
15 d2[v] minfd2[u], bw(u,v)g
16 �[v] u
19 else do nothing;
20 g

21 Widest-Shortest (G, w, bw, s) f
22 Initialize-wide-short(G,s)
23 S ;

24 Q V[G]
28 while Q 6= ;

29 u Extract-Min(Q)
30 S S [fug
31 for each vertex v 2 Adjacent[u]
32 Relaxation-wide-short(u, v, w, bw)
33 g

41

For example, for the shorest-widest path algorithm, we first used the D Widest

path algorithm to find a maximum bandwidth path in the network, assuming that

its bandwidth is bw. After we knew the maximum bandwidth, we used Dijkstra’s

algorithm to find a minimum delay (shortest) route with bandwidth equal to bw

or higher. The shortest-widest path algorithm is given in Program 3.6.

Program 3.6 Shortest-Widest Path Algorithm

1 Initialize-short-wide (G, s) f
2 for each vertex v 2 V[G]
3 d2[v] 1
4 �[v] NIL
5 g

6 Relaxation-short-wide (u, v, BW, w) f
7 if d1[v] > BW f

8 if d2[v] > d2[u] + w(u,v) f
9 then d2[v] d2[u] + w(u,v)
10 �[v] u
11 Q fvg
12 g

13 g

14 g

15 Shortest-Widest (G, bw, w, src, dest) f
16 D Widest(G, bw, src, d1)
17 BW d1[dest]
18 Initialize-short-wide(G, src)
19 S ;

20 Q V[G]
21 while Q 6= ;

22 u Extract-Min(Q)
23 S S [fug
24 for each vertex v 2 Adjacent[u]
25 Relaxation-short-wide(u, v, BW, w)
26 g

Note that the single-pass link-state shortest-widest path algorithm given in

Wang’s paper does not always find the shortest-widest path [24]. For example,

for the topology in Figure 3.3, the algorithm will select the upper path walking

42

A B

C D

E

GF H
400Mb

400Mb

400Mb

200Mb

400Mb

200Mb

400Mb 200Mb

Figure 3.3: The Sample Network with Two Paths

through the links with bandwidth 400Mb. This is because when a link (e.g., the link

connection to node H) with the lower bandwidth (e.g., 200Mb) has to be added to

the path, the earlier shortest-widest segment may no longer be the shortest-widest

one.

The third group consists of an algorithm for a path routing with three cost

functions such as minhop-widest-shortest path, widest-shortest-minhop, and

shortest-widest-minhop. First, we defined three cost functions, for instance, for

shortest-widest-minhop routing algorithm, the number of hops as the primary

cost, maximum bandwidth as the secondary cost, and delay as the tertiary cost.

At the step of finding a node with the minimum number of hops, if more than

one node has the same minimum number of hops, the algorithm will consider the

node whose bandwidth (the secondary cost) is maximum. If more than one node

has the same minimum number of hops and the maximum bandwidth, the algo-

rithm will consider the node whose delay is minimum. The algorithm is finished

when all the nodes are considered. The algorithm for routing with three criteria

for this group is similar to, for example, the Widest-Shortest algorithm. However,

we add one more criterion into the Widest-Shortest algorithm. An example of the

shortest-widest-minhop is shown in Program 3.7. The hop count is given as the

primary cost indicated as d1, the link bandwidth is given as the secondary cost

indicated as d2, and the link delay is given as the tertiary cost indicated as d3.

In conclusion, we divided our multiple criteria routing algorithms into three

groups.

� The routing algorithm with any additive metric as the primary criterion and

43

Program 3.7 Shortest-Widest-Min Hop Path Algorithm

1 Initialize-short-wide-hop (G, s) f
2 for each vertex v 2 V[G]
3 d1[v] 1, d2[v] NIL, d3[v] 1
4 �[v] NIL
5 d1[s] NIL, d2[s] 1 d2[s] NIL
6 g

7 Relaxation-short-wide-hop (u, v, w, bw, h) f
8 if d1[v] > d1[u] + w(u,v)
9 then d1[v] d1[u] + w(u,v)
10 d2[v] minfd2[u], bw(u,v)g
11 d3[v] d3[u] + h(u,v)
12 �[v] u
13 else if d1[v] == d1[u] + w(u,v)
14 if d2[v] < minfd2[u], bw(u,v)g
15 then d1[v] d1[u] + w(u,v)
16 d2[v] minfd2[u], bw(u,v)g
17 d3[v] d3[u] + h(u,v)
18 �[v] u
19 else if d2[v] == minfd2[u], bw(u,v)g
20 if d3[v] > d3[u] + h(u,v)
21 then d1[v] d1[u] + w(u,v)
22 d2[v] minfd2[u], bw(u,v)g
23 d3[v] d3[u] + h(u,v)
24 �[v] u
25 else do nothing;
26 g

27 Shortest-Widest-Min Hop (G, w, bw, h, s) f
28 Initialize-short-wide-hop(G, s)
29 S ;

30 Q V[G]
31 while Q 6= ;

32 u Extract-Min(Q)
33 S S [fug
34 for each vertex v 2 Adjacent[u]
35 Relaxation-short-wide-hop (u, v, w, bw, h)
36 g

44

bandwidth as the secondary criterion.

� The routing algorithm with bandwidth as the primary criterion and any ad-

ditive metric as the secondary criterion.

� The routing algorithm with three criteria.

For the first group, we modified Dijkstra’s algorithm to consider the second cri-

terion (maximum bandwidth) when more than one node has the same primary

criterion (any minimum additive metric). For the second group, we implemented

the D Widest Path algorithm to find a maximum bandwidth in the network. We

then used the modified Dijkstra’s algorithm to find the path whose bandwidth is

not less than the bandwidth calculated by the D widest algorithm and whose ad-

ditive cost is minimum. For the third group, we modified Dijkstra’s algorithm to

consider three cost functions. The algorithm considers the tertiary criteria when

more than one node has the same primary and/or secondary criteria.

45

Chapter 4

Experiment Scenarios

In this chapter, we explain how we tested our routing algorithms. Section 4.1 ex-

plains the topologies used in our tests, and the performance metrics used in our

experiments are described in Section 4.2.

4.1 Topologies

It is known that routing algorithms perform differently in different types of net-

work topologies. It is crucial to select appropriate network topologies in a simulation-

based evaluation of routing algorithms. The most common factors that are impor-

tant to consider when selecting topologies are: size, heterogeneity of link capacity,

symmetry, and connectivity. Our focus is to understand how well a routing al-

gorithm achieves a high network throughput for a variety of network topologies.

Therefore, we studied the performance of our algorithms in four different types of

topologies:

� Multiple Cluster Topology

– 3-cluster topology

– 8-cluster topology

46

� Conventional Edge-Core topology

– Dense topology

– Light topology

4.1.1 Multiple Cluster Topology

In a multiple cluster topology, nodes are clustered in a small strongly-connected

group, and one node is connected to one or many nodes with a link such as the

ATM OC-3 link. Each of the small groups is connected with high capacity links

to another group. We propose two multiple cluster topologies: 3-cluster topology

and 8-cluster topology.

The 3-cluster topology has 8 nodes in one cluster and 3 clusters in the topol-

ogy. The links between two clusters (outside links) are OC-12 links, and there are

three outside links between two clusters. The links in the cluster (inside links) are

OC-3 links, and there are 10 inside links in each cluster. Each node is connected to

one host which provides traffic to the network.

In the 8-cluster network, there are 3 nodes in one cluster and 8 clusters in the

topology. Similar to the 3-cluster network, the links between the clusters are OC-12

links, and the links between nodes in the cluster are OC-3 links. Each cluster has

three inside links, and each cluster has one OC-12 link connecting to the neighbor

cluster. Each node is connected to one host system. The multiple cluster topologies

and link characteristics are summarized in Table 4.1. The 3-cluster topology is

shown in Figure 4.1, and the 8-cluster topology is shown in Figure 4.2. In Table

4.1, the connectivity is the total number of links divided by the total number of

switches in the network.

Regarding the traffic of these two networks, the destination host requested

by the source host is uniformly selected. The traffic is CBR-typed, and the call ar-

rival time is selected from Poisson distribution with a mean of 5 seconds. The call

47

B1

B2

B3

B4

B5

B6

B7

B8

A2

A1

A5

A4

A3

A8

A7

A6

C1

C2

C3

C4

C5

C8

C6

C7

GROUP A

GROUP B

GROUP C

Outside Link (OC-12) delay = Uniform [20 40] msec

Inside Link (OC-3) delay = Uniform [10 20] msec

Conectivity = 1.625

Figure 4.1: 3 Cluster Topologies

holding time is selected from a Poisson distribution with a mean ranging from 60

seconds to 100 seconds. The call bandwidth is selected from the uniform distribu-

tion with a mean ranging from 5 Mb to 50 Mb. There is one host connected to each

node, and every host makes 100 calls. Therefore, there will be 2400 call connection

requests in the network.

Topology nodes Link Type links Bandwidth Delay Connectivity
3-cluster 24 Outside 9 OC-12 Uniform[20 40] 1.625

Inside 30 OC-3 Uniform[10 20]
8-cluster 24 Outside 13 OC-12 Uniform[20 40] 1.541

Inside 24 OC-3 Uniform[10 20]

Table 4.1: Metrics for Multiple Cluster Topologies

4.1.2 Edge-Core Topology

The conventional edge-core topology (ECT) is commonly used in setting up a pri-

vate ATM network. An edge switch is connected to an end-user system. It is analo-

48

G1 G2

G3

E2

E1

E3

C1 C2

C3

A2

A1

A3

B1

B3

B2

D1 D3

D2

F1 F2

F3

H1

H2 H3

Inside Link (OC-3), Delay = Uniform[10 20] msec

Outside Link (OC-12), Delay = Uniform[20 40] msec

Connectivity = 1.541

Group A Group FGroup D Group H

Group EGroup B Group C
Group G

Figure 4.2: 8 Cluster Topologies

gous to a gateway router connecting the user system to the backbone network. The

edge switch is connected to a core switch with high-speed links. The core switch

is analogous to a high performance router. It connects to other core switches with

high capacity links, and it also connects to edge switches with low capacity links.

There can be many links connected from edge switches to a core switch.

In our experiments, we considered two types of edge-core topologies, ”dense”

and ”light” edge-core topologies. The light edge-core topology has a lower num-

ber of links than the dense edge-core topology. The light and dense edge-core

topologies are shown in Figure 4.3 and Figure 4.4, respectively.

In each edge-core topology, core nodes are connected to some of the core

and edge nodes. Each edge node is connected to two core nodes and also connect-

ed to two hosts which generate traffic. No connection is allowed between two edge

nodes. Each core node is classified into one of these following two categories:

� A large-scale node which is connected to other large-scale core nodes with a

high capacity link with high link delay to support long distance traffic.

� A small-scale node which is connected to other core nodes with a small ca-

49

pacity link with small link delay.

E

E

E

E

E

EE

E

E

E

E

E

L

L L

LL

S

S

S

S

S

S

L

H

H

155 Mbps

622 Mbps

622 Mbps

155 Mbps

Figure 4.3: Light Edge-core Topologies

In Figure 4.3 and Figure 4.4, nodes in these two categories are labeled by the

letter S for a small-scale node and L for a large-scale node. An edge node and host

are labeled as E and H, respectively. The link metrics of the topologies in Figure 4.3

and Figure 4.4 are summarized in Table 4.2.

In summary, the two edge-core topologies are summarized in Table 4.3. The

connectivity in Table 4.3 shows the total number of links divided by the total num-

ber of switches in the topology. Note that we select the link between Host (H) and

Edge (E) node to have a higher bandwidth than that between the edge node to core

node to avoid creating a bottleneck at the host. In addition, the sample script of

the dense edge-core network that we used in our experiment to run our simulator

is shown in Appendix A.1.

50

E

E

E

E

E

EE

E

E

E

E

E

L

L L

LL

S

S

S

S

S

S

L

H

H

622 Mbps

155 Mbps

622 Mbps

155 Mbps

Figure 4.4: Dense Edge-core Topologies

In summary, we used two types of topologies in our experiments, multiple

cluster and conventional edge-core topologies. We summarized all of the metrics

of the topologies for our simulation experiments in Table 4.4.

51

Link Capacity Delay (ms)
L node to L node OC-12 Uniform[25 40]
S node to L node OC-3 or OC-12 Uniform[10 25]
E node to L node OC-12 Uniform[5 10]
E node to S node OC-3 Uniform[5 10]

Table 4.2: Link Metrics for Conventional Edge-core Topologies

Topology Nodes Link Type Links Connectivity

Light 12 core S-L 12 1.75
12 edge L-L 6

E-L 12
E-S 12

Dense 12 core S-L 24 2.125
12 edge L-L 3

E-L 12
E-S 12

Table 4.3: Summary of Edge-Core Topologies

Type Total
Number
of Nodes

Number
of Links

Number
of Core
Nodes

Link Bandwidth Connect-
ivity

3 Cluster 24 39 n/a Within PG: OC-3,
Among PG: OC-12

1.625

8 Cluster 24 24 n/a Within PG: OC-3,
Among PG: OC-12

1.541

Light
Switch

24 42 12 See Figure 4.3 1.75

Dense
Switch

24 51 12 See Figure 4.4 2.125

Table 4.4: Topologies Used in Our Simulation Experiments
Note: PG = Peer Group

52

4.2 Performance Metrics

We use the following performance metrics to compare the behaviors of our path

selection algorithms in the different topologies:

� Average Call Blocking Rate

� Average Call Setup Time

� Routing Inaccuracy

� Link Utilization

The average call blocking rate is the common performance metric used to

evaluate how well the routing protocol finds a route from a source to a destination.

Depending on the routing criteria, the call blocking rate can be different because

each routing algorithm allocates a path differently. Allocating the ”right” path

tends to reduce the call blocking probability. The average call blocking rate metric

is described in Section 4.2.1.

Another important metric is the call setup time. The routing protocol uses a

routing algorithm to find a feasible route from a source to a destination. Any rout-

ing algorithm can find the best route yet using an exhaustive technique. However,

if it takes too much time, the total performance of the network will be worse rather

than better. Thus, the average call setup time is another important issue here, and

it is described in Section 4.2.2.

In a large network, the information available for making routing

decisions can be inaccurate because of a network delay. Therefore, the routing

protocol which uses the information can make a mistake by giving an ”incorrect”

route to the user call. Thus, the routing inaccuracy is another important perfor-

mance metric, and it is discussed in Section 4.2.3.

Lastly, another important metric from the network planning point of view is

the link utilization. When network engineers are designing the network topology,

53

their goal is to make sure the capacity of any link is enough for user traffic, which

makes sure they will not have a traffic congestion problem in the near future. On

the other hand, they also want to make sure that the capacity of any link will not

be too high, in order to avoid spending too much money to achieve the goal. The

link utilization which reveals the usage of the link is described in Section 4.2.4.

4.2.1 Average Call Blocking Rate

A call can be rejected in two cases. First, it is rejected because a feasible path with

sufficient resources cannot be found by a routing algorithm at the source node.

Secondly, the call is refused at an intermediate node because during the call con-

nection period the resource availability on the selected path has changed since the

time when the routing decision was made. In other words, the call is rejected be-

cause the source node network state information is out-of-date when the routing

decision is made. The call is crankbacked to the source node to find an alternate

route. The number of routing retries is limited by the network operator. Therefore,

the call in this case can be rejected when the number of routing retries exceeds the

limit. The call blocking (or failure) rate, therefore, is a good performance metric

for studies of PNNI routing in connection-oriented networks like ATM Networks.

We defined call blocking rate as:

Call Blocking Rate =
Total Number of Rejected Calls

Total Number of Calls

4.2.2 Average Call Setup Time

Besides a call connection guarantee, a call connection time is also crucial. The call

setup time is the duration from the time when the call request (setup req) message is

sent out by the host system to the time when either the setup confirm (setup conf)

message or the release indicate (release ind) message is received at the host system.

54

The latter case happens when the call is rejected. Note that the call setup time of

the failed call is not used to calculate the average call setup time.

Generally, most of the time spent in a call setup period is used not only to

find a feasible path which can fulfill the call requirements but also to perform the

call admission control at an intermediate node. If the call fails at the intermediate

node, crankback will occur. The crankback procedure returns the call to the source

node, and a new route will be given for another routing retry. If the routing retried

call setup is successful, the total call setup time is the time spent for the first time

routing and alternate routing retries if crankback occurs. In addition, the call setup

time depends on what type of routing algorithms are used for routing. Therefore,

to evaluate the performance of our routing algorithms, we defined the call setup

time as:

Average Call Setup Time =
Total Call Setup Time

Total Number of Successful Calls

4.2.3 Routing Inaccuracy

Since the information used for the routing decision at the source node can be out-

of-date by the connection setup and routing information distribution delay, the

routing algorithm can generate an incorrect path. The inaccuracy of the routing

decision can thus cause a call connection to be rejected or re-routed. To evaluate

the performance of routing algorithms, we defined routing inaccuracy as:

Routing Inaccuracy =
Number of Crankback Events

Total Number of Call Requests

55

4.2.4 Link Utilization

Since the financial cost of the network link depends on its capacity, network engi-

neers do not want to spend more money than required for the link that will have

a low utilization. In addition, we do not want to spend too little money for a low

capacity link that will have a high utilization, which means in the near future the

link needs to be upgraded, and the additional cost will be added. Therefore, the

link utilization is another important metric that reveals the usage of the link and

the quality of the network. We defined the link utilization metric as:

Link Utilization =
Used Link Bandwidth

Total Link Bandwidth

The used link bandwidth will be sampled periodically. The total link band-

width is the maximum cell rate of the link.

56

Chapter 5

Experimental Results

In this chapter, we discuss the results from our experiments. In Section 5.1, we

discuss the results of multiple criteria routing with bandwidth guarantees, where

the most important criterion of these routing algorithms is the maximum band-

width. Section 5.2 discusses the results of multiple criteria routing algorithms for

the minimum delay services. These routing algorithms find a feasible route with

the minimum delay as their most important criterion. Section 5.3 discusses link

utilizations of a network. The results of link utilization using a single criterion

routing are compared to those using a multiple criterion routing. Results of the

experiments of alternate routing are shown in Section 5.4. This section shows the

performance of each multiple criteria routing algorithm while the number of alter-

nate routing retries increases. Section 5.5 shows the effects of the network density

on the network performance. In this section, three networks with the different net-

work density are tested to examine the effect of changing the network core density

using different routing algorithms.

57

5.1 Multiple Criteria Routing for Bandwidth Guaran-

tees

In this section, we study how to route traffic requiring bandwidth guarantees using

multiple routing techniques to find a feasible path. In general, the common routing

algorithm that has been used to find a feasible route for a user request is the single

source shortest path (SSSP) algorithm which is based on Dijkstra’s algorithm. The

SSSP algorithm can find a route based on only one additive QoS cost such as a

hop number or delay. In addition, the SSSP algorithm cannot be used to find a

route based on a non-additive cost such as the bandwidth. Many path selection

algorithms have been proposed, for example, shortest-widest [24], widest-shortest

[9], and utilization-based path selection algorithm [14]. However, performance

evaluations of these algorithms are not provided here.

In this section, we present the performance evaluation of three multiple cri-

teria: minimum hop count, maximum available bandwidth, and minimum delay.

Our evaluations consider the call blocking rate, the call setup time, and the rout-

ing inaccuracy. The rest of this section is organized as follows. The routing criteria

and our algorithms are described in Section 5.1.1. Section 5.1.2 explains our exper-

iment sets, and Section 5.1.3, Section 5.1.4, Section 5.1.5, and Section 5.1.6 discuss

the performance of different routing algorithms in different networks.

5.1.1 Routing Criteria and Algorithms

In this section, we explain our four multiple criteria routing algorithms (MCRAs),

whose routing routing criteria include the maximum bandwidth criterion (widest).

First, the four MCRAs are shown below:

� minhop-widest path algorithm: a path with the maximum bandwidth among

all feasible paths. If there are several such paths available, the one with the

58

minimum hop count is selected. If there are many such paths with the same

hop count, one is randomly selected.

� widest-minhop path algorithm: a path with the minimum hop count among

feasible paths. If there are several such paths available, the one with the

maximum bandwidth is chosen. If there are several such paths with the same

bandwidth, one is randomly selected.

� shortest-widest path algorithm: a path with the maximum bandwidth among

all of the feasible paths. If there are several such paths available, the one with

the minimum delay is selected. If there are many such paths with the same

delay, one is randomly selected.

� shortest-widest-minhop path algorithm: a path with the minimum hop count

among all feasible paths. If there are several such paths available, the one

with the maximum bandwidth is selected. If there are several such paths

with the same bandwidth, the one with the minimum delay is selected. If

there are several such paths with the same delay, one is randomly selected.

The widest-minhop routing gives high priority to limiting the hop

count number, while the minhop-widest routing gives high priority to balancing

the network load by selecting the one with the maximum bandwidth. The algo-

rithm to find the widest-minhop path is described in Section 3.3.3.2. The algorithm

is shown in Program 3.5; but instead of using the delay as the primary objective,

we used the hop count as the primary objective.

In addition, the shortest-widest algorithm not only balances the network

load but also considers network delay. It ensures a user request will be given the

lowest delay path among maximum bandwidth paths. This implies that the switch

will provide the minimum delay service to the user request as well as balance the

network load. The algorithm is shown in Program 3.6.

59

Furthermore, the shortest-widest-minhop algorithm combines three criteria

together to provide the most appropriate path to the user request. The idea of this

algorithm is to find out whether we can find an even better path than using double

criteria routing algorithms. The algorithm is shown in Program 3.7.

5.1.2 Experiments with MCRAs with Bandwidth Guarantees

In this section, we describe the topologies we used in our experiments to evaluate

the performance of the MCRAs with the bandwidth guarantees. To evaluate the

MCRAs, we used the following four different topologies:

� Dense Edge-Core Network

� Light Edge-Core Network

� 3-Cluster Network and

� 8-cluster Network

The first two networks are built on the same concept (edge-core topology),

and they have the same number of edge and core nodes. These two networks

are explained in Section 4.1.2. However, from Table 4.3, they have the different

number of links in their networks. The dense network has a 2.125 connectivity, but

the light network has a 1.75 connectivity. The difference in the connectivity can

make these two networks exhibit different performance.

The last two networks are created according to the clustering scheme, but

are grouped differently. The 3-cluster network has 3 clusters, and each cluster

has 8 nodes grouped together. On the other hand, the 8 cluster network has 8

clusters, and each cluster has 3 nodes. For both networks, each node in the cluster

is connected via the OC-3 link, and each group is connected via the OC-12 links.

The forming of the network of these two algorithm can make a difference in the

network performance.

60

5.1.3 Call Blocking Rate as a Function of Requested Bandwidth

In this section, we evaluated our four routing algorithms containing a maximum

bandwidth criterion, which are the widest-minhop, minhop-widest, shortest-widest

and shortest-widest-minhop routing algorithms as described in Section 5.1.1. We

examined the call blocking rate of these four routing algorithms using different re-

quested bandwidths and topologies. In the experiments below, the call bandwidth

is uniformly distributed. Traffic is also uniformly distributed. The destination of

the request is uniformly selected among other nodes. The total number of calls is

2400 calls in any network.

5.1.3.1 Performance of Edge-Core Networks

5 10 15 20 25
0

10

20

30

40

50

60
Average Call Failure Rate in Dense Network (%)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

5 10 15 20 25
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Bandwidth (Mb)

Average Call Failure Rate in Dense Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.1: Average call blocking rate as a function of average requested band-
width: Dense Edge-Core Network

Figure 5.1 shows the call failure rate as a function of the average call band-

width in the dense edge-core topology. Overall, we see that the call failure rate is

linearly proportional to the call bandwidth. On the left-hand side, when the aver-

age call bandwidth is as low as 5 Mb, almost no calls failed except for the minhop

61

5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50
Average Call Failure Rate in Light Network (%)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Bandwidth (Mb)

Average Call Failure Rate in Light Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.2: Average call blocking rate as a function of average requested band-
width: Light Edge-Core Network

routing whose call failure rate is about 2%. On the right-hand side, when the call

bandwidth increases, the shortest-widest routing performs poorly because it tends

to allocate long ”expensive” paths, which penalize calls which later arrive. On the

average, the widest-minhop routing tended to perform better than others. Note

that the edge-core topology is a symmetrical network which probably contains

many feasible paths from one source to one destination which have the same hop

count. Therefore, selecting the path which has the maximum available bandwidth

among those feasible paths would reduce the call failure rate because it balances

the bandwidth resource. For the low call bandwidth, the shortest-widest-minhop

tended to perform best, but when the call bandwidth was increased, it performed

as well as the widest-minhop routing.

In Figure 5.2, we show the call blocking rate as a function of the average call

bandwidth in a light edge-core network. When the call bandwidth was increased,

the call failure rate tended to rapidly increase when the call bandwidth was more

than 5 Mb. This is because the network tended to have more congested links across

the network (the link between L-core nodes) unlike the dense edge-core network

62

which has more available links across the network. Overall, the widest-minhop

routing tended to perform better than the others, and the call failure rate of the

shortest-widest-minhop routing was close to that of the widest-minhop routing.

5.1.3.2 Performance of Multiple Cluster Network

5 10 15 20 25
0

10

20

30

40

50

60

70

80

90
Average Call Failure Rate in 3−Cluster Network (%)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Bandwidth (Mb)

Average Call Failure Rate in 3−Cluster Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.3: Average call blocking rate as a function of average requested band-
width: 3-cluster Network

Figure 5.3 shows the call failure rate as a function of average call bandwidth

of the 3-cluster network. Overall, when the call bandwidth was increased and

some links became congested, the shortest-widest routing tended to

perform worse than the others because it tended to allocate the long paths which

have a maximum bandwidth. This increased the blocking probability of the later

arrivals of some links in the network. This is similar to the performance of the

minhop-widest routing. Even though the minhop-widest path has the minimum

hop count among the maximum bandwidth, the hop count number is still high be-

cause the maximum bandwidth routing has a higher priority than minimum hop

count routing. On the other hand, the widest-minhop routing performed better

63

5 10 15 20 25
0

10

20

30

40

50

60

70
Average Call Failure Rate in 8−Cluster Network (%)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

5 10 15 20 25
0

10

20

30

40

50

60

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Bandwidth (Mb)

Average Call Failure Rate in 8−Cluster Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.4: Average call blocking rate as a function of average requested band-
width: 8-cluster Network

than the minhop routing and others. This shows that the widest-minhop routing

probably reduced the congestion by using the minimum resource and balancing

the bandwidth resource. Note that the effect of congestion can penalize the later

arrivals especially when the traffic is high. This is similar to the shortest-widest-

minhop routing, and also its performance is not much different because the chance

that there will be two or more feasible paths with the minimum hop count and the

maximum bandwidth is very low.

Figure 5.4 shows the call failure rate as a function of the average call band-

width of the 8-cluster network. The performance of routing algorithms in this

network is quite similar to that of the routing algorithms in the 3-cluster network.

The widest-minhop and the shortest-widest-minhop routing algorithms tended to

perform better than the others. In addition, the call failure rate in the 8-cluster

network is slightly higher than that in the 3-cluster network. This is because the

diameter of the 8-cluster network is wider, so the probability that the later arrivals

will be blocked is increased.

64

5.1.4 Call Blocking Rate as a Function of Call Holding Time

In this section, we examine the call blocking rate of four routing algorithms men-

tioned in Section 5.1.1 as the function of average call holding time. We test our

algorithms using four topologies: dense edge-core, light edge-core, 3-cluster, and

8-cluster topologies. Each experiment generated a total of 2400 calls with an aver-

age call bandwidth of 10 Mb. The destination of the call was uniformly distributed.

The distribution of the call arrival is the Poisson with an average of 5 seconds be-

tween call. The distribution of the call holding time is also the Poisson.

5.1.4.1 Performance of Edge-Core Networks

60 70 80 90 100
0

5

10

15

20

25

30

35

40
Average Call Failure Rate in Dense Network (%)

Average Call Holding Time (sec)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

60 70 80 90 100
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Holding Time (sec)

Average Call Failure Rate in Dense Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.5: Average call blocking rate as a function of average call holding time:
Dense Network

Figure 5.5 shows the average call failure rate as a function of average call

holding time of the dense edge-core topology. Overall, the average call failure rate

increases linearly as the average call holding time increases. The widest-minhop

and the shortest-widest-minhop routing algorithms tend to perform better than the

minhop routing and others. This is because those two algorithms balance the net-

65

60 70 80 90 100
0

5

10

15

20

25

30

35

40
Average Call Failure Rate in Light Network (%)

Average Call Holding Time (sec)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

60 70 80 90 100
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Holding Time (sec)

Average Call Failure Rate in Light Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.6: Average call blocking rate as a function of average call holding time:
Light Network

work resource by selecting the less congested path when there are many feasible

paths which have the same hop count number. The widest-minhop and shortest-

widest-minhop routing algorithms have a close performance because there are

fewer paths which have different path delays, but have the same path hop count

and the same path bandwidth.

In Figure 5.6, we show the average call failure rate as a function of the

average call holding time of the light edge-core topology. Compared to those in

the dense edge-core network, the widest-minhop and the shortest-widest-minhop

routing algorithms seem to perform much better than the minhop routing algo-

rithm in the light edge-core network. This is because generally there are more

congested links in the light network than those in the dense network. Therefore,

it is crucial to select a path which is not congested, and the widest-minhop or

shortest-widest-minhop routing tended to give a route which was not congested.

In addition, the failure rate using the minhop-widest or the shortest-widest rout-

ing algorithm was higher than the other routing algorithms because the algorithm

tended to give a longer feasible path than others. Note that the longer path con-

66

sumes the larger total amount of network resource. Therefore, the later arrivals

tend to be rejected more often.

5.1.4.2 Performance of Multiple Cluster Network

60 70 80 90 100
0

10

20

30

40

50

60

70
Average Call Failure Rate in 3−Cluster Network (%)

Average Call Holding Time (sec)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

60 70 80 90 100
0

10

20

30

40

50

60

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Holding Time (sec)

Average Call Failure Rate in 3−Cluster Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.7: Average call blocking rate as a function of average call holding time:
3-cluster Network

Figure 5.7 shows the average call failure rate as a function of average call

holding time of the 3-cluster topology. Overall, it shows that the call blocking rate

was linearly proportional to the average call holding time. The shortest-widest

routing tended to perform poorly because it probably allocated a long path which

has a maximum bandwidth. Allocating a long path could increase the blocking

probability of the later arrivals. On the other hand, the widest-minhop tended

to perform well and so did the shortest-widest-minhop routing. However, their

performance was not much improved compared to the minhop routing algorithm.

In Figure 5.8, we show the average call failure rate as a function of average

call holding time of the 8-cluster topology. Overall, the call blocking rate of any

routing algorithm is closely similar to that of the 3-cluster topology. However, the

67

60 70 80 90 100
0

10

20

30

40

50

60

70
Average Call Failure Rate in 8−Cluster Network (%)

Average Call Holding Time (sec)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

60 70 80 90 100
25

30

35

40

45

50

55

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Holding Time (sec)

Average Call Failure Rate in 8−Cluster Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.8: Average call blocking rate as a function of average call holding time:
8-cluster Network

increase in the call blocking rate is likely to be higher than that of the 3-cluster

topology. This is because the 8-cluster topology has a larger diameter, which tends

to increase the congestion in the network.

68

5.1.5 Evaluation of Call Setup Time

In this section, we examine the call setup time of four routing algorithms as men-

tioned in Section 5.1.1 for different requested bandwidths and topologies. In our

experiments below, the call bandwidth was uniformly distributed. Traffic was also

uniformly distributed. The destination of the requested call was uniformly se-

lected among all other nodes. The total number of calls was 2400 calls in all the

experiments. The distribution of the call holding time is the Poisson with a mean

of 60 seconds, and the distribution of the call arrival is the Poisson with an average

of 5 seconds between calls.

5.1.5.1 Performance of Edge-Core Networks

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Average Call Setup Time in Dense Network (sec)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Average Call Bandwidth (Mb)

Average Call Setup Time in Dense Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.9: Average call setuptime as a function of average requested bandwidth:
Dense Network

In Figure 5.9, we show the average call setup time as a function of the av-

erage call bandwidth of the dense edge-core network. First of all, when the call

bandwidth changes from 5Mb to 10Mb, the setup time tends to proportionally in-

crease, but after this point the call setup time tends to be steady. This is because

69

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Average Call Setup Time in Light Network (sec)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Average Call Bandwidth (Mb)

Average Call Setup Time in Light Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.10: Average call setup time as a function of average requested bandwidth:
Light Network

at the point where the call bandwidth is 5Mb, the traffic is sparse so most of the

calls are successfully routed. However, when the call bandwidth increases, and

the network becomes more congested, the calls tend to not be successfully rout-

ed. Thus, the crankback occurs, and an alternate routing is used. The average

call routing time seems to be increased when there are alternate routings. Overall,

the widest-minhop routing probably performs best. However, the shortest-widest

routing tended to perform poorly because it probably allocated a long path which

requires a long setup delay which mainly includes the routing time and the call

admission control time. It also increases the chance of crankback.

Note that in Figure 5.9, you can see the ”jump” in the call setup time graph.

This is because there are several crankbacks and alternate routing retries. When the

call is crankbacked, the amount of time of alternate routing retries is not averaged

but added to the total setup time for that call. Therefore, the tremendous number of

alternate routing retries can significantly increase the average call setup time. Note

that in our experiments, we set the number of the alternate routing to 10 retries.

Further discussion about the alternate routing performance is in Section 5.4.

70

Figure 5.10 shows the average call setup time as a function of average call

bandwidth of the light edge-core network. The widest-minhop routing tended

to perform well, but the average setup time did not improve much compared to

the minhop routing. The shortest-widest-minhop routing performed closely to the

widest-minhop routing. This could be because there are not many feasible paths

which have the same minimum hop count and the same maximum bandwidth.

On the other hand, the shortest-widest and the minhop-widest routing algorithms

tended to have a higher call setup time. This is because those routing algorithms

need to run the D Widest algorithm to find the possible maximum bandwidth of

a path, and then run the modified Dijkstra algorithm to find the shortest path or

minhop path with the maximum bandwidth obtained from D Widest algorithm.

Therefore, the execution time of these two routing algorithms was higher than the

other routing algorithms. The routing algorithms are described in Section 3.3.3.2.

5.1.5.2 Performance of Multiple Cluster Network

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Average Call Setup Time in 3−Cluster Network (sec)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Average Call Bandwidth (Mb)

Average Call Setup Time in 3−Cluster Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.11: Average call setup time as a function of average requested bandwidth:
3-cluster Network

71

5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Call Setup Time in 8−Cluster Network (sec)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Average Call Bandwidth (Mb)

Average Call Setup Time in 8−Cluster Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.12: Average call setup time as a function of average requested bandwidth:
8-cluster Network

In Figure 5.11, we show the average call setup time as a function of average

call bandwidth in the 3-cluster network. Overall, at the low call bandwidth, the

setup time tended to be short because the routing has a high success rate. This is

because when calls are successfully routed without an alternate routing, the total

call setup time for calls will mostly result from one-time routing and call admission

control. However, when the call bandwidth is more than 10 Mb, the call setup time

is higher because there are more crankbacks and alternate routing. The shortest-

widest routing and the minhop-widest routing seem to take more setup time than

the others. This is because these algorithms need to run the D Widest algorithm

and the modified Dijkstra algorithm to find a feasible route, but other algorithms

use only the modified Dijkstra algorithm. Note that the computation in the worst

case of the D Widest algorithm or the modified Dijkstra algorithm is O(V2), where

V is the number of nodes. However, the call setup time of the shortest-widest or the

minhop-widest routing, which uses both the D Widest algorithm and the modified

Dijkstra algorithm, is not twice as much as that of others as we had expected.

Figure 5.12 shows the average call setup time as a function of average call

72

bandwidth in the 8-cluster network. Compared to that of the 3-cluster network,

the average call setup time of the 8-cluster network seems to be higher when the

call bandwidth is low. However, when the call bandwidth is high, the call setup

time tended to be the same as that in the 3-cluster network. In addition, there

are two jumps from the minhop-widest and shortest-widest. This is because the

8-cluster network tends to be more congested than the 3-cluster network. This

shows that when the network is congested, the minhop-widest and shortest-widest

algorithms are probably not suitable since they provide a long-period setup. In

addition, a given route using these two algorithms tended to be more out-of-date.

73

5.1.6 Evaluation of Routing Inaccuracy

In this section, we compared the efficiency of our routing algorithms using the

routing inaccuracy metric described in Section 4.2.3. We show the routing inac-

curacy of dense and light edge-core networks as well as 3-cluster and 8-cluster

networks. In our experiments below, the call bandwidth was uniformly distribut-

ed. Traffic was also uniformly distributed. The destination of the call requested

was uniformly selected among other nodes. The total number of calls was 2400

calls in any network. The distribution of the call holding time is the Poisson with a

mean of 60 seconds, and also the distribution of the call arrival is the Poisson with

an average of 5 seconds per call.

5.1.6.1 Performance of Edge-Core Networks

5 10 15 20 25
0

20

40

60

80

100

120

140

160
Routing Inaccurancy in Dense Network (%)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

5 10 15 20 25
0

20

40

60

80

100

120

140

160

R
ou

tin
g

In
ac

cu
ra

nc
y

(%
)

Average Call Bandwidth (Mb)

Routing Inaccurancy in Dense Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.13: Routing Inaccuracy as a function of average requested bandwidth:
Dense Network

In Figure 5.13, we show the routing inaccuracy of our routing algorithms as

a function of the average call bandwidth in a dense edge-core network. Overall, all

the routing algorithms performed well, but when the average call bandwidth was

74

5 10 15 20 25
0

10

20

30

40

50

60

70
Routing Inaccurancy in Light Network (%)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

5 10 15 20 25
0

10

20

30

40

50

60

70

R
ou

tin
g

In
ac

cu
ra

nc
y

(%
)

Average Call Bandwidth (Mb)

Routing Inaccurancy in Light Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.14: Routing Inaccuracy as a function of average requested bandwidth:
Light Network

more than 5 Mb, the routing algorithms tended not to give the correct path to the

user request. On the average, the widest-minhop routing tended to perform well

on any value of average call bandwidth. Note that the routing inaccuracy can be

more than 100% as shown in Figure 5.13. This is because every call has 10 alternate

routing retries. This means each call can have the maximum of 10 crankbacks.

Therefore, if there are several crankbacks in many calls, the routing inaccuracy can

be more than 100%.

Figure 5.14 shows the routing inaccuracy of our routing algorithms as a

function of the average call bandwidth in the light edge-core network. Overall,

the routing inaccuracy seems to increase up to a certain point, and it is slightly

increased when the average call bandwidth increases. On average, the minhop

routing tended to perform worse than other multiple-criterion routing algorithms

except the minhop-widest one. It has been shown that the minhop routing would

probably give an ”incorrect” path to the user request more than other routing al-

gorithms.

From Figure 5.13 and Figure 5.14, the shortest-widest-minhop routing tend-

75

ed to perform better than the minhop routing when the call bandwidth was high.

This is because it used more information to find a feasible path than the minhop

routing. Therefore, it has been shown that when the traffic load in edge-core net-

work is high, and the routing information is not quite accurate, the multiple criteria

routing tends to perform better than a single criterion routing algorithm.

5.1.6.2 Performance of Multiple Cluster Network

5 10 15 20 25
0

5

10

15

20

25

30

35

40

45
Route Inaccurancy in 3−Cluster Network (%)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

R
ou

te
 In

ac
cu

ra
nc

y
(%

)

Average Call Bandwidth (Mb)

Route Inaccurancy in 3−Cluster Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.15: Routing Inaccuracy as a function of average requested bandwidth:
3-cluster Network

Figure 5.15 shows the routing inaccuracy of our routing algorithms as a

function of the average call bandwidth in the 3-cluster network. Overall the rout-

ing inaccuracy tended to be increased up to a certain point, and it was slightly de-

creased when the average call bandwidth increased. The reason is that when the

call bandwidth increases, the call failure rate is increased because the router can-

not find a feasible route. Therefore, the user request tends to be rejected because

there is no feasible route rather than given an incorrect path which introduces the

crankback in an intermediate node. Note that the routing inaccuracy measures

76

5 10 15 20 25
0

10

20

30

40

50

60

Route Inaccurancy in 8−Cluster Network (%)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

5 10 15 20 25
0

10

20

30

40

50

60

R
ou

te
 In

ac
cu

ra
nc

y
(%

)

Average Call Bandwidth (Mb)

Route Inaccurancy in 8−Cluster Network

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.16: Routing Inaccuracy as a function of average requested bandwidth:
8-cluster Network

only the number of crankbacks rather than the number of failed calls because there

is no route to the destination. On average, the minhop-widest routing tended to

perform better than others.

In Figure 5.16, we show the routing inaccuracy of routing algorithms as a

function of the average call bandwidth in the 8-cluster network. Overall, the rout-

ing inaccuracy tended to be high even though the call bandwidth was low com-

pared to that of the 3-cluster network in Figure 5.15. This is because the diameter of

the 8-cluster network is larger than that of the 3-cluter network. Thus, the updated

information which is triggered by a significant change of network resources seems

to be slowly converged. The 8-cluster network also seems to be congested even at

the low call bandwidth. Therefore, the routing has a tendency to use out-of-date

information to find a feasible path for the user request. Consequently, the request

tends to be crankbacked at an intermediate node.

From Figure 5.15 and Figure 5.16, the widest-minhop routing tended to per-

form better than others. This is because the hop count is an important parameter

for routing in the cluster network because the diameter of the network is long and

77

the network is not symmetric. Therefore, the call with the maximum bandwidth

but the large hop count number route tended to not be successfully routed across

the cluster network.

78

5.2 Multiple Criteria Routing for the Minimum Delay

Services

Multimedia applications, such as Internet telephony and video conferencing, re-

quire strict QoS constraints on delay, delay jitter, and packet loss. In this section,

we experiment with routing algorithms for traffic that require delay guarantees.

The QoS constraints are composed of delay, delay jitter and bandwidth. Similar to

routing traffic requiring bandwidth guarantees, the goal of routing traffic requiring

delay guarantees is to find a feasible route which achieves at least the minimum

link delay if one exists. More than one criterion for choosing those feasible paths

is involved in finding an ”optimal” route.

The rest of this section is described as follows. Section 5.2.1 introduces the

routing algorithms used in our experiments. The experiment description and test

scenarios are explained in Section 5.2.2. Section 5.2.3 shows the results of call block-

ing rate as a function of requested bandwidths, and Section 5.2.4 shows the results

of call blocking rate as a function of call holding time. The performance of routing

in terms of call setup time is shown in Section 5.2.5. Lastly, the performance of the

routing in terms of its accuracy is shown in Section 5.2.6.

5.2.1 Routing Criteria and Algorithms

In this section, we present the performance evaluation of four multiple criteria

routing algorithms (MCRAs), whose routing criteria include the minimum delay

criterion (shortest). The four MCRAs are shown below:

� minhop-shortest path algorithm: select a path with the minimum delay among

all feasible paths. If there are several such paths available, the one with the

minimum hop count is selected. If there are many such paths with the same

hop count, one is randomly selected.

79

� shortest-minhop path algorithm: select a path with the minimum hop count

among all feasible paths. If there are many such paths, the one with the

minimum delay is selected. If there are many such paths, one is randomly

chosen.

� widest-shortest path algorithm: select a path with the minimum delay among

all feasible paths. The one with the maximum bandwidth is selected if there

are many such paths. If there are still many such paths, one is randomly

selected.

� widest-shortest-minhop path algorithm: select a path with minimum hop count

among all feasible paths. If there are many such paths, the one with the

minimum delay is chosen. If there are still many such paths, the one with the

maximum bandwidth is chosen. Finally, if there are still many such paths,

one is randomly selected.

5.2.2 Experiments with MCRAs with Minimum Delay

This section describes the network topologies used in our experiments, and some

of the network parameters are described. We used four topologies to evaluate our

MCRAs algorithms as follows:

� Dense edge-core topology

� Light edge-core topology

� 3-cluster Network and

� 8-cluster Network

The goal of our experiments is to find the performance of our MCRA algo-

rithms in two kinds of networks with different connectivities and diameters. The

edge-core topologies described in Section 4.1.2 have different connectivities. The

80

connectivities of the dense edge-core topology and the light edge-core topology

are 2.125 and 1.75, respectively.

For our experiments, we have several types of links, and we set the delay of

each link in the network from a selected distribution. In the edge-core topology, we

have four kinds of links, large-large, small-large, edge-large and edge-small, each

of which has a different link delay. The link delay of each type of link is uniformly

distributed. The summary of links in edge-core topologies is described in Table 4.2.

The cluster networks used in our experiments are described in Section 4.1.1.

Each of the cluster networks has different network diameters. The maximum di-

ameter of the 8-cluster network is larger than that of the 3-cluster network. In the

cluster networks, there are two kinds of links: the outside link and the inside link.

The delay of the outside link is longer than that of the inside links. In addition, the

delay of each link is uniformly distributed. The summary of links metrics of the

cluster network is shown in Table 4.1.

5.2.3 Call Blocking Rate as a Function of Requested Bandwidths

In this section, we examine the call blocking rate using our four routing algo-

rithms, each of which is composed of a minimum delay criterion, for example, the

minhop-shortest, shortest-minhop, widest-shortest, and widest-shortest-minhop

routing algorithms. The traffic in each experiment has a uniform distribution. The

destination of a call is uniformly selected among all the other nodes. The call band-

width generated by an end-user system is uniformly distributed. The total number

of calls in each network is 2400 calls.

5.2.3.1 Performance of Edge-Core Networks

In Figure 5.17, we show the call failure rate as a function of average call bandwidth

in the dense edge-core topology. Overall, the call failure is linearly increased as the

call bandwidth increases. Performance of all routing algorithms are closed, but

81

5 10 15 20 25
0

10

20

30

40

50

60
Average Call Failure Rate in Dense Network (%)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Bandwidth (Mb)

Average Call Failure Rate in Dense Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.17: Average call blocking rate as a function of average requested band-
width: Dense Edge-Core Network

on average, the widest-shortest-minhop tended to perform slightly better than the

others. This is because the route with minhop seems to preserve network resources

for later calls. With widest and shortest criteria, this algorithm can more efficiently

use the network resource. Therefore, the later arrivals can be more successfully

routed. In addition, the performance of minhop-shortest routing seems to be worse

when the call bandwidth increases. This is because the minhop-shortest routing

tended to give the same route to the user request because the link delay was not

changed. Therefore, when the call bandwidth increases, the minhop-shortest path

tends to be congested and more calls are rejected.

Figure 5.18 shows the call failure rate as a function of average call band-

width in the light edge-core topology. Overall, the call failure rate is linearly in-

creased on the average of 10% for every 5 Mb increase of the call bandwidth. As in

the previous figure, the widest-shortest-minhop routing on average tends to per-

form better than the others.

82

5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50
Average Call Failure Rate in Light Network (%)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Bandwidth (Mb)

Average Call Failure Rate in Light Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.18: Average call blocking rate as a function of average requested band-
width: Light Edge-Core Network

5.2.3.2 Performance of Multiple Cluster Network

Figure 5.19 shows the average call failure rate as a function of average call band-

width in the 3-cluster network. Overall, the call failure rate tends to be linearly

increased, and the failure is quite high even though the average call bandwidth is

about 10 Mb. Furthermore, the slope of the failure rate tends to be decreased when

the call bandwidth is higher.

In Figure 5.20, we show the average call failure rate as a function of average

call bandwidth in the 8-cluster network. Overall, the performance in the 8-cluster

network is similar to the one in the 3-cluster network. However, the average call

failure at any value of call bandwidth is about 5% higher than that in the 3-cluster

network. The reason might be that the call in the 8-cluster network tends to allocate

longer paths because it has the larger diameter, and then the network tends to have

more congested links. Consequently, the call requests tend to be rejected more

often than those in the 3-cluster network.

83

5 10 15 20 25
0

10

20

30

40

50

60

70

80

90
Average Call Failure Rate in 3−Cluster Network (%)

Average Call Bandwidth (Mb)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)
Average Call Bandwidth (Mb)

Average Call Failure Rate in 3−Cluster Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.19: Average call blocking rate as a function of average requested band-
width: 3-cluster Network

5 10 15 20 25
0

10

20

30

40

50

60

70
Average Call Failure Rate in 8−Cluster Network (%)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

5 10 15 20 25
10

15

20

25

30

35

40

45

50

55

60

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Bandwidth (Mb)

Average Call Failure Rate in 8−Cluster Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.20: Average call blocking rate as a function of average requested band-
width: 8-cluster Network

84

5.2.4 Call Blocking Rate as a Function of Call Holding Time

In this section, we examine the call blocking rate of four routing algorithms men-

tioned in Section 5.2.1 as the function of the average call holding time. We tested

our algorithms using four topologies: dense edge-core, light edge-core, 3-cluster,

and 8-cluster topologies. The call bandwidth distribution for our experiment is

uniform with an average of 10 Mb per call. The call holding time has the Pois-

son distribution. The call arrival rate also has Poisson distribution, and it is fixed

at the average of 5 seconds per call. For the rest of this section, the performance

evaluations of our algorithms of the edge-core network and the cluster network

are shown in Section 5.2.4.1 and Section 5.2.4.2, respectively.

5.2.4.1 Performance of Edge-Core Networks

60 70 80 90 100
0

5

10

15

20

25

30

35

40
Average Call Failure Rate in Dense Network (%)

Average Call Holding Time (sec)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

60 70 80 90 100
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Holding Time (sec)

Average Call Failure Rate in Dense Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.21: Average call blocking rate as a function of average call holding time:
Dense Edge-Core Network

Figure 5.21 shows the average call failure rate as a function of the average

holding time in the dense edge-core network. Note that the call holding time has

the Poisson distribution. Overall, the average call failure rate is linearly increased

85

60 70 80 90 100
0

5

10

15

20

25

30

35

40
Average Call Failure Rate in Light Network (%)

Average Call Holding Time (sec)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

60 70 80 90 100
0

5

10

15

20

25

30

35

40

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Holding Time (sec)

Average Call Failure Rate in Light Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.22: Average call blocking rate as a function of average call holding time:
Light Edge-Core Network

as the average call holding time increases. The increasing rate of the call failure

rate is about 5% for every 10 second increase of the call holding time.

In Figure 5.22, we show the average call failure rate as a function of average

call holding time in the light edge-core network. From the figure, the minhop-

shortest routing tended to perform worse than the others. This is because it gives

the shortest route, which is congested when the network traffic is high. Similar-

ly, the widest-shortest routing seems to perform worse than other routing algo-

rithms except the minhop-shortest. It performs somewhat better than the minhop-

shortest routing because it finds the maximum bandwidth link when more than

one route with the same delay is available.

5.2.4.2 Performance of Multiple Cluster Network

Figure 5.23 shows the average call failure rate as a function of average holding

time in the 3-cluster network. Note that the call holding time has the Poisson

distribution. Overall, the call failure rate is high even though the call holding time

86

60 70 80 90 100
0

10

20

30

40

50

60

70
Average Call Failure Rate in 3−Cluster Network (%)

Average Call Holding Time (sec)

minhop
widest−minhop
minhop−widest
shortest−widest
shortest−widest−minhop

60 70 80 90 100
0

10

20

30

40

50

60

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Holding Time (sec)

Average Call Failure Rate in 3−Cluster Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.23: Average call blocking rate as a function of average call holding time:
3-cluster Network

is about 60 seconds, and after that the rate linearly increases. The widest-shortest

tended to perform worse than the others. However, the minhop routing tended to

perform well since it tried to minimize the use of network resources.

In Figure 5.24, we show the average call failure rate as a function of average

call holding time in the 8-cluster network. Compared to the one in 3-cluster net-

work, the call failure rate is 5% higher. In addition, the minhop routing tended to

perform well when the network traffic is high because it minimizes the use of the

network resources.

87

60 70 80 90 100
0

10

20

30

40

50

60

70
Average Call Failure Rate in 8−Cluster Network (%)

Average Call Holding Time (sec)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

60 70 80 90 100
30

32

34

36

38

40

42

44

46

48

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Average Call Holding Time (sec)

Average Call Failure Rate in 8−Cluster Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.24: Average call blocking rate as a function of average call holding time:
8-cluster Network

88

5.2.5 Evaluation of Call Setup Time

In this section, we evaluate the impact of the call setup time using our algorithms

for the minimum delay service. We use two types of topologies, edge-core and

cluster network, and each type has two topologies which are different. These four

topologies are described in Section 5.2.2. In our experiments below, the call band-

width is uniformly distributed, and its average is of 10 Mb. Traffic is also uniformly

distributed. The destination of the connection is uniformly selected among other

nodes. The total number of calls is 2400 calls in any network. The distribution of

call holding time is the Poisson with a mean of 60 seconds, and also the distribu-

tion of the call arrival is the Poisson with an average of 5 seconds per call. In the

following, the average call setup time of the edge-core topologies is shown in Sec-

tion 5.2.5.1. In addition, section 5.2.5.2 shows the average call setup of the cluster

networks.

5.2.5.1 Performance of Edge-Core Networks

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Average Call Setup Time in Dense Network (sec)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Average Call Bandwidth (Mb)

Average Call Setup Time in Dense Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.25: Average call setuptime as a function of average requested bandwidth:
Dense Network

89

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Average Call Setup Time in Light Network (sec)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Average Call Bandwidth (Mb)

Average Call Setup Time in Light Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.26: Average call setup time as a function of average requested bandwidth:
Light Network

In Figure 5.25, we show the average call setup time as a function of av-

erage call bandwidth in the dense edge-core topology. Overall, at the low cal-

l bandwidth the call setup time is low because there are not many crankbacks.

However, when the call bandwidth increases, the call setup time is higher. The

failure rate of minhop-shortest routing tends to be more than that of other routing

algorithms. In addition, when the call bandwidth is 25 Mb, it becomes even worse

because there are many more crankback calls in the network. Thus, the routing

algorithm probably spends most of its time finding alternate routes.

Figure 5.26 shows the average call setup time as a function of the aver-

age call bandwidth in the light edge-core topology. Overall, the performance in

the light edge-core network is similar to the one in the dense edge-core network.

However, there are two ”jumps” of the call setup time using the widest-shortest

and shortest-minhop routing. The reason might be that most of the calls are suc-

cessfully routed by using the alternate routing many times. Note that many of the

alternate routing retries can significantly increase the average call setup time. This

can probably be the transient effect in the network when there are many ”hot”

90

spots in the network. The hot spot happens because of the effect of the routing

algorithm that many calls are routed through the same link.

5.2.5.2 Performance of Multiple Cluster Network

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Average Call Setup Time in 3−Cluster Network (sec)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Average Call Bandwidth (Mb)

Average Call Setup Time in 3−Cluster Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.27: Average call setup time as a function of average requested bandwidth:
3-cluster Network

In Figure 5.27, we show the average call setup time as a function of average

call holding time in the 3-cluster topology. Overall, the average call setup time

does not linearly increase when the call bandwidth increases. The minhop routing

tends to perform well when the call bandwidth is low, but does not when the call

bandwidth is high. As we explained before, the ”jump” of the call setup time when

using minhop-shortest routing happens because there are several crankbacks, and

most of the call setup time is spent finding alternate routes.

Figure 5.28 shows the average call setup time as a function of average call

holding time in the 8-cluster topology. Overall, the performance is similar to the

one in the 3-cluster network. The minhop routing tends to perform well at the low

call bandwidth, but not at the high call bandwidth.

91

5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
Average Call Setup Time in 8−Cluster Network (sec)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Average Call Bandwidth (Mb)

Average Call Setup Time in 8−Cluster Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.28: Average call setup time as a function of average requested bandwidth:
8-cluster Network

92

5.2.6 Evaluation of Routing Inaccuracy

This section shows the results of the routing inaccuracy by using our routing algo-

rithms for minimum delay services. Unlike routing with bandwidth guaranteed

services, the delay of the link is not dynamically changed over time. Therefore,

the link delay information is the same for routing any call request. However, the

routing has to consider other QoS parameters of the link such as bandwidth, which

is dynamically changed. So the routing algorithm might find an ”incorrect” path,

and our algorithms can perform differently in different topologies. For the rest of

this section, we test our algorithms in two types of the topologies. The routing

inaccuracy results of the edge-core topologies and the cluster network are shown

in Section 5.2.6.1 and Section 5.2.6.2, respectively.

5.2.6.1 Performance of Edge-Core Networks

5 10 15 20 25
0

20

40

60

80

100

120

140

160
Routing Inaccurancy in Dense Network (%)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

5 10 15 20 25
0

20

40

60

80

100

120

140

160

R
ou

tin
g

In
ac

cu
ra

nc
y

(%
)

Average Call Bandwidth (Mb)

Routing Inaccurancy in Dense Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.29: Routing Inaccuracy as a function of average requested bandwidth:
Dense Network

In Figure 5.29, we show the routing inaccuracy as a function of the average

call bandwidth in the dense edge-core network. Overall, at the low call bandwidth,

93

5 10 15 20 25
0

20

40

60

80

100

120
Routing Inaccurancy in Light Network (%)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

5 10 15 20 25
0

20

40

60

80

100

120

R
ou

tin
g

In
ac

cu
ra

nc
y

(%
)

Average Call Bandwidth (Mb)

Routing Inaccurancy in Light Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.30: Routing Inaccuracy as a function of average requested bandwidth:
Light Network

all routing algorithms seem to perform well because there are not many crankbacks

nor is there much alternate routing. At the high-level of call bandwidth, the rout-

ing inaccuracy tends to increase. The average routing inaccuracy is about 60%

when the call bandwidth is more than 10 Mb. Thus, the routing with the shortest

criterion, such as the minhop-shortest routing, is probably not appropriate in the

dense network since it tends to give the same route to the user request because the

routing does not consider the available bandwidth of the links, and then it tends

to create more crankbacks.

Figure 5.30 shows the routing inaccuracy as a function of the average call

bandwidth in the light edge-core network. Overall, the performance is similar to

the one in the dense network, but the average of routing inaccuracy is about 40%

when the average call bandwidth is more than 10 Mb. In addition, there are two

”jumps” of the routing inaccuracy when the widest-shortest or shortest-minhop

routing is used. That is probably a transient effect in the network as described

before. In addition, these two jumps cause the jumps of the call setup time in the

light edge-core network.

94

5.2.6.2 Performance of Multiple Cluster Network

5 10 15 20 25
0

5

10

15

20

25

30

35

40

45
Route Inaccurancy in 3−Cluster Network (%)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

R
ou

te
 In

ac
cu

ra
nc

y
(%

)

Average Call Bandwidth (Mb)

Route Inaccurancy in 3−Cluster Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.31: Routing Inaccuracy as a function of average requested bandwidth:
3-cluster Network

Figure 5.31 shows the routing inaccuracy as a function of the average call

bandwidth in the 3-cluster network. For the 5 Mb call bandwidth, the routing

inaccuracy is low because the traffic is not high, and the network is not congested.

However, the routing inaccuracy tends to be increased when the call bandwidth

is more than 10 Mb, and it slightly goes down when the call bandwidth increases.

This can be explained that when the call bandwidth is higher, the network is more

congested. Therefore, the call tends to be rejected because there is no feasible path

to support the call request. The routing inaccuracy is slightly decreased because

the number of rejected calls tends to be more than the number of crankbacked calls.

Because the routing inaccuracy is based on the number of crankbacks, the decrease

of the crankbacked calls makes the routing inaccuracy slightly decreased.

In Figure 5.32, we show the routing inaccuracy as a function of the average

call bandwidth in the 8-cluster network. Overall, the routing inaccuracy is high

even at the low bandwidth. This is because the 8-cluster network has a larger net-

95

5 10 15 20 25
0

10

20

30

40

50

60

Route Inaccurancy in 8−Cluster Network (%)

Average Call Bandwidth (Mb)

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

5 10 15 20 25
0

10

20

30

40

50

60

R
ou

te
 In

ac
cu

ra
nc

y
(%

)

Average Call Bandwidth (Mb)

Route Inaccurancy in 8−Cluster Network

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.32: Routing Inaccuracy as a function of average requested bandwidth:
8-cluster Network

work diameter than the 3-cluster network. Therefore, in the 8-cluster network, call

connections need to reserve longer paths than those in the 3-cluster network. This

causes the 8-cluster network to be more congested than the 3-cluster network even

at 5 Mb call bandwidth. Thereafter, the routing inaccuracy is slightly decreased.

This is because of the same reason described above.

From Figure 5.31 and Figure 5.32, the routing inaccuracy is shown to be

lower when the call bandwidth is higher. This does not mean the higher the call

bandwidth, the better the network performance. If the call bandwidth is higher,

the call failure rate which is proportional to the increase of the call bandwidth will

be increased also. This means increasing the call bandwidth will slightly decrease

the routing inaccuracy, but it significantly increases the call failure rate. The de-

crease of the routing inaccuracy is because calls in the network tend to be rejected

at the source node because of no available route rather than crankbacked at an

intermediate node because of inaccurate network state information at the source

node.

96

5.3 Link Utilization

In this section, we evaluate the utilization of links in the network topology. We

used the dense edge-core topology and the 3-cluster network in our experiments.

In the edge-core topology, links are divided into two kinds, edge-core links and

core-core links. An edge-core link is a link that connects between edge node and

core node. The edge-core link normally has short delay and high capacity. Simi-

larly, a core-core link is a link that connects between core node and core node. The

core-core link commonly has a longer delay and higher capacity than the edge-

core link. In the 3-cluster topology, there are two kinds of links, inside links and

outside links. The inside link is a link that connects two nodes within the same

peer group. On the other hand, the outside link is a link that connects between a

node in one peer group and a node in another peer group. The delay of the inside

links is uniformly distributed between 10 msec and 20 msec. On the other hand,

the delay of outside links is uniformly distributed between 20 msec and 40 msec.

Both inside links and outside links are OC-12 links.

The traffic used in our experiments is explained here. The call bandwidth

was uniformly distributed with the average of 10 Mb. The call destination was

uniformly selected among all other nodes. The call arrival distribution is the Pois-

son with an average of 5 second between calls. The call duration distribution is

also the Poisson with an average of 60 seconds for each call. All the calls are CBR-

typed. In the edge-core topology, there are 24 edge nodes, and each of them is

connected to two hosts. Each host makes 1000 calls. Thus, the total number of calls

in each experiment is 48,000 calls. In the cluster network, there are 24 nodes, but

only 12 nodes are connected to host systems. Each of those nodes is connected to

two hosts, and each host makes 1000 calls. Thus, the total number of calls in each

experiment is 24,000 calls.

The rest of this section shows the results from our experiments. Section 5.3.1

explains the topologies we used and our routing algorithms. The link utilization of

97

the edge-core topology is shown in Section 5.3.2. Section 5.3.3 shows and explains

the results of our experiments in the cluster network.

5.3.1 Routing Algorithms and Topology Used

For our experiments, we selected two types of topologies to evaluate the link uti-

lization of the networks using our routing algorithms. We chose the dense edge-

core topology and the 3-cluster topology. The edge-core topology is somewhat

symmetrical. It is composed of the edge switch which is connected to many end-

user systems. The analog of the edge switch can probably be the gateway in the

network. The edge-core topology is also composed of core switches which are con-

nected to only the core switch or the edge switch. The analog of the core switch

would be the backbone of the network. The details of the dense edge-core topol-

ogy are described in Section 4.1.2. Furthermore, the cluster topology is used to

represent an asymmetrical network. It is composed of several peer groups, and

each peer group is connected to other peer groups with high capacity and high de-

lay links, called outside links. Within the peer group, there are switches connected

to other switches using low capacity and low delay links, called inside links. The

details of the 3-cluster network are described in Section 4.1.1.

For our experiments, we selected three routing algorithms to be evaluated:

the minhop, shortest-minhop, and widest-minhop routing algorithms. The pur-

pose of our experiments is to prove that the multiple criteria routing can improve

the link utilization of the network. Therefore, we select the shortest-minhop and

widest routing to compare their performance with the minhop routing. The rest

of this section is organized as follows: the link utilization of the dense edge-core

network is shown in Section 5.3.2, and Section 5.3.3 shows the link utilization of

the 3-cluster network.

98

5.3.2 Link Utilization in Edge-core Topology

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25
Link Utilization of Edge−Core Links using Min−Hop Policy in Condensed Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25
Link Utilization of Core−Core Links using Min−Hop Policy in Condensed Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

Figure 5.33: Link Utilization of Links Using Minhop Routing in Dense Edge-core
Topology

In Figure 5.33, we show the histogram of the link utilization of edge-core

and core-core links when the minhop routing is used. In the upper figure, it shows

that most of the edge-core links have low utilization. However, there are about 6

edge-core links that have high link utilization. The lower figure shows that most of

the core-core links have about 0 to 0.3 utilization, and there are two links that have

a very high utilization. The links with high utilization are congested, and they are

bottleneck links.

Figure 5.34 shows the histogram of the link utilization when the shortest-

minhop routing is used. Compared to the minhop routing, it shows that the

minhop-shortest slightly improves the utilization of edge-core links and core-core

links. This is because the minhop-shortest routing does not consider the available

bandwidth of links when routing. Therefore, the routing with the widest criterion

would improve the link utilization of the network.

99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25
Link Utilization of Edge−Core Links using Shortest−MinHop Policy in Condensed Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25
Link Utilization of Core−Core Links using Shortest−MinHop Policy in Condensed Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Core−Core Link Utilization

Figure 5.34: Link Utilization of Links Using Shortest-minhop Routing in Dense
Edge-core Topology

In Figure 5.35, we show the link utilization histogram of the edge-core and

core-core links when the widest-minhop routing is used. It shows that the widest-

minhop routing can reduce the number of overly congested edge-core links and

core-core links. In addition, it balances the utilization of all the links at the highest

possible level.

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25
Link Utilization of Edge−Core Links using Widest−Minhop Policy in Condensed Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25
Link Utilization of Core−Core Links using Widest−Minhop Policy in Condensed Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

Figure 5.35: Link Utilization of Links Using Widest-minhop Routing in Dense
Edge-core Topology

101

5.3.3 Link Utilization in Cluster Network

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35
Link Utilization of Inside Links using MinHop Policy in 3−cluster Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
Link Utilization of Outside Links using Minhop Policy in 3−cluster Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

Figure 5.36: Link Utilization of Links Using Minhop Routing in 3-cluster Network

In Figure 5.36, we show the histogram of the link utilization of edge-core

and core-core links when the minhop routing is used. It shows that there are

many edge-core links which have a 0.5 utilization. Furthermore, Figure 5.37 shows

the histogram of the link utilization when the shortest-minhop routing is used.

Compared to using the minhop routing, the link utilization of edge-core links was

slightly improved. The link utilization of core-core links is also improved to some

degree.

In Figure 5.38, we show the link utilization histogram of the edge-core and

core-core links when the widest-minhop routing is used. The link utilization of

edge-core links is improved much more compared to using a minhop and shortest-

minhop routing. Also, the core-core link utilization is improved much more. It

reduces the number of high utilization links and increases the number of low uti-

lization links.

In summary, by using the shortest-minhop routing, the utilization of the

102

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35
Link Utilization of Inside Links using Shortest−MinHop Policy in 3−cluster Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
Link Utilization of Outside Links using Shortest−Minhop Policy in 3−cluster Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

Figure 5.37: Link Utilization of Links Using Shortest-minhop Routing in 3-cluster
Network

core-core link can be slightly improved, but that of the edge-core link is not im-

proved much. Furthermore, the widest-minhop routing can significantly improve

the edge-core and core-core link utilization. By using the widest-minhop routing

in the edge-core or cluster networks, there will not be many congested links or bot-

tle necks. Therefore, the widest-minhop routing can efficiently utilize the network

resource and improve the overall performance of the network.

103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50
Link Utilization of Inside Links using Widest−Minhop Policy in 3−cluster Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15
Link Utilization of Outside Links using Widest−Minhop Policy in 3−cluster Network

N
um

be
r

of
 O

cc
ur

an
ce

s

Link Utilization

Figure 5.38: Link Utilization of Links Using Widest-minhop Routing in 3-cluster
Network

104

5.4 Alternate Routing with MCRAs

In a connection-oriented network like the ATM, a route for a call is calculated by

the PNNI routing protocol before the call request starts signaling to the destina-

tion following the pre-calculated route. At the source node, the routing protocol

takes the resource information from its database and finds a feasible route that can

support the call request. After the call request gets a feasible path, it will reserve

the resource along the way to the destination. Since the resource information con-

tained at the source node is not ”perfect”, the information may be out-of-date, so

a link within the path given by the routing protocol might not be able to support

the call request while the call is routing through the network. The call will be

”crankbacked” to the source node in order to get an alternate route for a retry.

Therefore, alternate routing plays an important role by increasing the chance

that the user call will succeed. The alternate routing can probably decrease the

call failure rate. However, doing alternate routing tends to increase the call setup

time. Thus, in this section, we investigate the impact of increasing the number

of alternate route retries on the call failure rate and call setup time in two kinds

of networks using our multiple criteria routing algorithms. The rest of this sec-

tion is organized as follows. Section 5.4.1 explains our test scenarios. Section 5.4.2

shows the performance of routing algorithms in the edge-core network topology as

a function of the number of alternate routing retries. In addition, the performance

of routing algorithms in the cluster network is shown in Section 5.4.3.

5.4.1 Routing Policies and Topologies

To evaluate the number of alternate routing retries, we used two topologies in our

experiments, the edge-core topology and the cluster topology. The details of these

two topologies are explained in Section 4.1. We used many of our multiple cri-

teria routing algorithms for the experiments. We divided those algorithms into

105

two groups, the shortest group and the widest group. In the shortest group, we

use the shortest-minhop, widest-shortest-minhop, widest-shortest and minhop-

shortest routing to perform in two topologies, and we compared their performance

to that of the minhop routing. This is because we also wanted to compare the

single criterion to multiple criterion routing when the number of alternate routing

retries was increased.

On the other hand, in the widest group, we used the widest-minhop, shortest-

widest-minhop, shortest-widest, and minhop-widest routing to be used in two

topologies. We compared the results using those routing algorithms to those using

the minhop routing algorithm. We wanted to evaluate our multiple criteria routing

algorithm to the single criterion routing such as minimum hop count routing when

the number of alternate routing retries is increased. In Section 5.4.2, we show the

results from our experiments in the edge-core topologies and Section 5.4.3 shows

the results in the multiple cluster networks.

5.4.2 Performances of Dense Edge-core Topology

5 10 15 20 25
4

6

8

10

12

14

16

18

20

22

24

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Number of Alternate Route Retries per Call

Average Call Failure Rate in Condensed Network

minhop
shortest−minhop
widest−shortest−minhop
widest−shortest
minhop−shortest

Figure 5.39: The Call Blocking Rate in the Dense Edge-core Topology Using Short-
est Group Routings

106

5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Number of Alternate Route Retries per Call

Average Call Setup Time in Condensed Network

minhop
shortest−minhop
widest−shortest−minhop
widest−shortest
minhop−shortest

Figure 5.40: The Call Setup Time in the Dense Edge-core Topology Using Shortest
Group Routings

In Figure 5.39 and Figure 5.40, we show the average call failure rate and

the average call setup time as a function of the number of alternate routing retries

of the shortest group respectively. In Figure 5.39, the average call failure rate is

slightly improved when the number of alternate routing retries increases. The call

failure rate is slightly improved because some failed calls have a chance to find

another route using alternate routing, but it is difficult to find an alternate path

when the network traffic is high. Also giving an opportunity of a failed call to be

routed again for many times probably increases the network traffic, and the call

failure rate may not be improved at all. In addition, the average call setup time

tends to increase as shown in Figure 5.40, but the average call failure cannot be

improved much. Therefore, the algorithms in the shortest group are probably not

appropriate to use for improving the call failure rate by using alternate routing.

Figures 5.41 and 5.42 show the average call failure rate and average setup

time as a function of the number of alternate routing retries of the widest group

respectively. In Figure 5.41, an increase in the number of routing retries tends to

reduce the call failure rate when the shortest-widest routing is used, but its failure

107

5 10 15 20 25
4

6

8

10

12

14

16

18

20

22

24

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Number of Alternate Route Retries per Call

Average Call Failure Rate in Condensed Network

minhop
widest−minhop
shortest−widest−minhop
shortest−widest
minhop−widest

Figure 5.41: The Call Blocking Rate in the Dense Edge-core Topology Using Widest
Group Routings

is still high compared to the others. When the widest-minhop and the shortest-

widest-minhop routing are used, the failure rate tends to be reduced at about 3%

(72 calls), and they perform better than the minhop routing. The shortest-widest-

minhop routing tends to perform slightly better than the widest-minhop routing.

In addition, the average call setup time of the widest-minhop routing is slightly

increased as shown in Figure 5.42. Furthermore, the call setup time using shortest-

widest-minhop routing is almost the same as the widest-minhop routing. There-

fore, the shortest-widest-minhop routing performs slightly better than the widest-

minhop routing, but it does not spend more time than the widest-minhop routing.

Thus, the shortest-widest-minhop would be the best algorithm to use with alter-

nate routing for improving the average call failure rate in edge-core networks.

108

5 10 15 20 25
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Number of Alternate Route Retries per Call

Average Call Setup Time in Condensed Network

minhop
widest−minhop
shortest−widest−minhop
shortest−widest
minhop−widest

Figure 5.42: The Call Setup Time in the Dense Edge-core Topology Using Widest
Group Routings

109

5.4.3 Performances of the 3-cluster Network

Figures 5.43 and 5.44 show the average call failure rate and the average call setup

time as a function of the number of alternate routing retries of the shortest routing

groups, respectively.

5 10 15 20 25 30

62

64

66

68

70

72

74

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Number of Alternate Route Retries per Call

Average Call Failure Rate in 3−cluster Network

minhop
shortest−minhop
widest−shortest−minhop
widest−shortest
minhop−shortest

Figure 5.43: The Call Blocking Rate in the 3-cluster Network Using Shortest Group
Routing

Overall, the call failure rate of the 3-cluster network topology is hardly im-

proved using any routing algorithm. In addition, the call setup time of this topolo-

gy is also hardly increased. This would mean that the routing in the shortest group

is not very successful in finding an alternate route for the user request. The rout-

ing algorithm keeps finding an alternate route until the number of retries exceeds

a limit, and the call is rejected. Note that the call setup time of the rejected call is

not calculated in the average call setup time. Thus, the average call failure rate is

hardly improved and the average call setup time is hardly increased by using the

routing in the shortest group to find an alternate route.

In Figure 5.45 and Figure 5.46, we show the average call failure rate and

the average call setup time as a function of the number of alternate routing re-

110

5 10 15 20 25 30

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Number of Alternate Route Retries per Call

Average Call Setup Time in 3−cluster Network

minhop
shortest−minhop
widest−shortest−minhop
widest−shortest
minhop−shortest

Figure 5.44: The Call Setup Time in the 3-cluster Network Using Shortest Group
Routing

tries of the widest routing groups, respectively. On average, the call failure rate

is slightly improved when the number of alternate route retries increases. The

shortest-widest routing tends to slightly improve the failure rate of about 2% (48

calls). However, the call failure rate is still higher than that using the minhop

routing. Overall, an increase of the number of routing retries hardly improves

the call failure rate. In addition, the call setup time is slightly increased as shown

in Figure 5.46. This would mean that there is a small number of alternate routes

which the alternate routing can successfully find. In summary, within the 3-cluster

network, an increase in the number of alternate routing retries probably does not

improve the average call failure rate much.

111

5 10 15 20 25 30

62

64

66

68

70

72

74

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Number of Alternate Route Retries per Call

Average Call Failure Rate in 3−cluster Network

minhop
widest−minhop
shortest−widest−minhop
shortest−widest
minhop−widest

Figure 5.45: The Call Blocking Rate in the 3-cluster Network Using Widest Group
Routing

5 10 15 20 25 30

0.3

0.35

0.4

0.45

0.5

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Number of Alternate Route Retries per Call

Average Call Setup Time in 3−cluster Network

minhop
widest−minhop
shortest−widest−minhop
shortest−widest
minhop−widest

Figure 5.46: The Call Setup Time in the 3-cluster Network Using Widest Group
Routing

112

5.5 Effects of Changing the Network Core Density

The call failure rate in a network can be improved by installing a new core link

in order to share traffic from a congested link. The user call request will be more

successful if we have fewer congested links. Therefore, increasing the number of

core links, which also increases the connectivity of the network, should improve

the average call failure rate. However, adding as many new links as possible may

not always improve the call failure rate because the new links may have a low

utilization. Therefore, the optimal number of new links to be installed to improve

the average call failure rate needs to be carefully determined.

To determine the optimal number for best set of links, we selected the edge-

core network topology to be used in our experiments because the edge-core topol-

ogy is quite similar to many enterprise networks. We use three edge-core topolo-

gies, low-dense, medium-dense, and high-dense, each of which has 12 core nodes

and 12 edge nodes. One edge node is connected to two core nodes by the edge or

local links. Each core node is connected to other core nodes by the core links. The

number of core links of these three networks is different, which also makes their

connectivity different. The link characteristics of these three networks are summa-

rized in Table 5.1. Note that the S–>L link means the link between ”small” capacity

core node (S) and the ”large” capacity core node (L). The more details of edge-core

topology are described in Section 4.1.2.

In our experiments, we used all of our multiple criteria routing algorithms

for evaluation. All the multiple criterion routing algorithms are explained in Sec-

tion 3.3.3. For the rest of this section, the average call blocking rate and the average

call setup time of three edge-core networks are shown in Section 5.5.1.

113

Type of Links Capacity Type of Networks
Low-Dense Medium-Dense High-Dense

S–>L OC-3 12 12 12
S–>L OC-12 0 9 12
L–>L OC-12 6 6 9
S–>S OC-12 0 0 3
Total Core Links 18 27 36
Total Edge Links 24 24 24
Connectivity 1.75 2.125 2.5

Table 5.1: The Characteristics of Three Edge-core Networks with Different Connec-
tivities

5.5.1 Average Call Blocking Rate and Average Call Setup Time

Figure 5.47 shows the average call failure rate as a function of the connectivity

when the widest group routing is used. Overall, it shows that the call failure rate

is decreased when the connectivity increases from 1.75 to 2.125. However, when

the connectivity is further increased from 2.125 to 2.5, the call failure rate is not

improved. In addition, the call setup time as shown in Figure 5.48 is slightly in-

creased when the network connectivity increases. The reason could be the fact that

when the connectivity increases, the routing tends to give a longer feasible path

which will decrease the possibility of later arrivals being successfully routed.

In addition, Figure 5.49 shows the average call failure rate as a function

of network connectivity when the routing algorithms in the shortest group are

used. Overall, the average call failure rate was significantly decreased when the

connectivity increased from 1.75 to 2.125. This means at a 1.75 connectivity, there

are many congested links in the network, which are likely unable to support many

call requests, and the requests are rejected. When we increase the number of core

links, which make the connectivity change to 2.125, the call failure rate is rapidly

decreased. However, when we further increase the connectivity to 2.5, it seems

that the call failure rate is not improved. Also the failure rate seems to be slightly

114

1 2 3 4 5
0

5

10

15

20

25

30
Average Failure Rate in Networks With Different Network Density

1 = minhop
2 = widest−minhop
3 = minhop−widest
4 = shortest−widest
5 = shortest−widest−minhop
Avg Call BW = 15MB

low−dense
medium−dense
high−dense

1.8 2 2.2 2.4 2.6
0

5

10

15

20

25

30

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Network Connectivity

Average Failure Rate in Networks With Different Network Density

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.47: The Call Blocking Rate using Routing with Widest Criteria

increased. The reason is that the routing tends to give a longer feasible path when

the number of links is increased. The longer path for the call request will penalize

later call arrivals and increase the average call setup time as shown in Figure 5.50.

In summary, the average call failure rate can be reduced by increasing the

network connectivity. However, a very large connectivity can deteriorate the per-

formance of the network. The average call setup time increases and the average

link utilization of the network is low. In addition, at some level of increasing the

connectivity, the average call failure rate may not decrease more because the rout-

ing algorithm tends to give a longer path which will penalize later call arrivals.

115

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Average Call Setup Time in Networks With Different Density

1 = minhop
2 = widest−minhop
3 = minhop−widest
4 = shortest−widest
5 = shortest−widest−minhop
Avg Call BW = 15MB

low−dense
medium−dense
high−dense

1.8 2 2.2 2.4 2.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)
Network Connectivity

Average Call Setup Time in Networks With Different Density

minhop
widest−minhop
minhop−widest
shortest−widest
 shortest−widest−minhop

Figure 5.48: The Call Setup Time using Routing with Widest Criteria

1 2 3 4 5
0

5

10

15

20

25

30
Average Failure Rate in Networks With Different Network Density

1 = minhop
2 = minhop−shortest
3 = shortest−minhop
4 = widest−shortest
5 = widest−shortest−minhop
Avg Call BW = 15MB

low−dense
medium−dense
high−dense

1.8 2 2.2 2.4 2.6
0

5

10

15

20

25

30

A
ve

ra
ge

 C
al

l F
ai

lu
re

 R
at

e
(%

)

Network Connectivity

Average Failure Rate in Networks With Different Network Density

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.49: The Call Blocking Rate using Routing with the Shortest Criteria

116

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Average Call Setup Time in Networks With Different Density

1 = minhop
2 = minhop−shortest
3 = shortest−minhop
4 = widest−shortest
5 = widest−shortest−minhop
Avg Call BW = 15MB

low−dense
medium−dense
high−dense

1.8 2 2.2 2.4 2.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ve

ra
ge

 C
al

l S
et

up
 T

im
e

(s
ec

)

Network Connectivity

Average Call Setup Time in Networks With Different Density

minhop
minhop−shortest
shortest−minhop
widest−shortest
widest−shortest−minhop

Figure 5.50: The Call Setup Time using Routing with the Shortest Criteria

117

Chapter 6

Conclusion and Future Work

Asynchronous Transfer Mode (ATM) technology has been used in high-speed net-

work communication. The ATM network is expected to become the backbone net-

work for high-speed multimedia services because it is able to support a large scale

network with robustness, scalability, and Quality of Service (QoS). To support a

large-scale network, a dynamically automatic network configuration mechanism

which can automatically control a topology of switches and links is required. The

ATM forum [6], therefore, has introduced a dynamic configuration protocol for

supporting private networks called Private Network to Network Interface (PNNI)

protocol. The PNNI standard has introduced two kinds of protocols, the signal-

ing protocol and the routing protocol. The PNNI signaling protocol was designed

for a call connection setup using message exchanges between switches. The PNNI

routing protocol was designed for discovering the network elements, exchanging

network resource information, and selecting feasible paths that are able to support

user requests using a routing algorithm.

The routing algorithm plays an important role in finding a feasible path, and

it can affect both the connection setup delay and call blocking probability and also

influence both the quality of service for users and network utilization which affects

the network efficiency for providers. To select a feasible path which is efficient for

not only the user but also the provider, a routing scheme which supports both

118

user and provider constraints is necessary. Since the user and provider constraints

address different properties, a routing algorithm must select a route based on multiple

criteria.

6.1 Problem Statement and Our Implementation

In traditional data networks, the network is usually characterized by a single met-

ric such as hop count or delay, and the shortest-path algorithm is used for path

computation. When we want to do multi-QoS routing, we face a basic problem of

finding a path that satisfies the multiple constraints imposed by the QoS require-

ment contained in the user’s call request. The problem is that routing with more

than one requirement is an NP-complete problem [24]. For this reason, we introduce

a multiple criteria routing algorithm (MCRA) based on a heuristic approach to avoid

the NP-complete problem. We introduce several routing algorithms as follows:

� Double-criteria Routing Algorithms

– widest-shortest and shortest-widest algorithms

– widest-minhop and minhop-widest algorithms

– shortest-minhop and minhop-shortest algorithms

� Triple-criteria Routing Algorithms

– widest-shortest-minhop algorithm

– shortest-widest-minhop algorithm

A traditional routing algorithm that is widely used is the single source short-

est path (SSSP) from Dijkstra. We modified the SSSP algorithm to have two or three

cost functions instead of just one. The reason is that we want to improve the SSSP

algorithm to be able to find a path with more than one criterion. We also proposed

the widest algorithm to be used in a part of the shortest-widest and minhop-widest

119

algorithms. The D widest algorithm is created based on the idea of Dijkstra’s algo-

rithm with the exception that it can take the cost such as the bandwidth for routing.

Furthermore, we tried to prove that routing with three criteria might perform even

better than that with two criteria.

To evaluate our algorithms, we proposed various kinds of networks such

as the edge-core topology and the cluster network, and we also used several kinds

of metrics such as call blocking rate, call setup time, and routing inaccuracy. The

conclusion of our results is discussed in Section 6.2.

6.2 Our Results of the Performance Evaluations

In our experiments, we evaluated the performance of routing algorithms with a

bandwidth guarantee, and with a minimum delay service. The average call block-

ing probability, average call setup time, and routing inaccuracy were measured to

show the performance of the different algorithms.

For the bandwidth guaranteed routing, the average call failure rate was

found to increase when the average call bandwidth or call holding time increased.

Furthermore, the widest-minhop and the shortest-widest-minhop routing tend-

ed to perform better than minhop routing. However, the minhop-widest and the

shortest-widest routing tended to perform worse than the minhop routing because

they tend to give a longer path at the user’s request. In addition, a longer path pe-

nalizes later arrivals.

Moreover, the average call setup time was also increased when the call

bandwidth increased. At the low call bandwidth, the call setup time tended to

be low. However, the call setup time seemed to be higher when the call bandwidth

increased because the number of crankbacks was increased. When the crankback

occurs, the call setup time is increased by the alternate routing time. The widest-

minhop and the shortest-widest-minhop routing tended to have the lower call set-

120

up time than the minhop routing. The shortest-widest and the minhop-widest

routing have the higher setup time than other routing algorithms because they run

the D widest algorithm and the modified Dijkstra’s algorithm in order to find the

maximum bandwidth and the minimum additive cost.

For the minimum delay service routing, the average call failure rate is in-

creased when the call bandwidth or the call holding time increases. The widest-

shortest-minhop performs slightly better than other routing algorithms. However,

in some cases the minhop routing tends to perform slightly better because those

algorithms that do not consider the maximum bandwidth criterion to be a prima-

ry criterion or do not consider it at all. This means the maximum bandwidth is a

crucial criterion in the multiple criteria routing.

We also evaluated the link utilization, and we have shown that we can im-

prove the link utilization by using multiple criteria routing algorithms such as the

widest-minhop routing instead of using a single criteria routing algorithm such as

the minhop routing.

In addition, we evaluated the effects of the routing performance in the net-

works when the number of alternate routing retries increases. We found that an

increase of the number of routing retries hardly reduces the call failure rate. The re-

duction is about 2% - 3%. Also, the call setup time was increased when the number

of route retries increased.

Finally, we evaluated the performance of the network when the core density

of the network changed. We found that increasing the number of core links reduces

the call failure rate but not always. At a certain point, an increase in the network

density does not reduce the call failure because the amount of resource information

is larger. The performance of the flooding mechanism in the PNNI network which

is used to exchange information is deteriorated by the large amount of resource

information. Therefore, the resource information provided to the routing function

tends to be inaccurate, and it degrades the routing performance. In summary,

121

the improvement of the network performance does not continue beyond a certain

point as the number of core links in the edge-core network increases.

6.3 Future Work

There are several issues here about PNNI ATM networks that can support a large-

scale network. One of the most important issues about the PNNI is the scalability.

To be able to scale a large network, the PNNI introduces a hierarchical level of mul-

tiple peer group networks. The issues regarding the hierarchical PNNI network for

future consideration are listed as follows:

� Aggregating topology information using different aggregation methods in

the multiple peer group network.

� Finding a feasible path in the hierarchical network with ”imperfect” topology

information using different routing schemes in the aggregated multiple peer

group network.

� The pre-computation routing schemes for the hierarchical network that com-

promise between a decrease of call setup times and an increase of the call

success rate.

122

Bibliography

[1] ATM Forum Technical Committee. Traffic Management Specification version 4.0

(af-tm-0056.000). ATM FORUM, April 1996.

[2] ATM Forum Technical Committee. ATM User Network Interface specification

version 4.0 (af-sig-0061.000). ATM FORUM, July 1996.

[3] ATM Forum Technical Committee. ATM Private Network-Network Interface

specification version 1.0 (af-pnni-0055.000). ATM Forum, March 1996.

[4] ATM Forum Technical Committee. ATM User Network Interface specification

version 3.1. ATM FORUM, September 1994.

[5] Thomas Cormen and et al. Introduction to Algorithms. McGraw-Hill Book

Company, New York, USA, 1989.

[6] ATM FORUM. http://www.atmforum.com/.

[7] R. M. Fujimoto, S.R. Das, and K.S. Panesar. Georgia tech time warp (gtw

version 2.3) programmer’s manual. Technical report, College of Computing,

Georgia Institute of Technology, 1994.

[8] Private NNI Working Group. Simple gcac errata. ATM Forum Contribution/

96-0896, June, 1006.

[9] R. Guerin, A. Orda, and D. Williams. Qos routing mechamisms and ospf

extensions. IETF Internet Draft (draft-guerin-qos-routing-ospf-00 .txt),

November 1996.

123

[10] F. Hao, E. W. Zegura, and S. Bhatt. Performance of the pnni protocol in large

networks. IEEE ATM WORKSHOP, pages 315–323, May 1998.

[11] A. Iwata, R. Izmailov, H. Suzuki, and B. Senggupta. Pnni routing algorithm

for multimedia atm internet. NEC Research and Development, 38, January 1997.

[12] J. M. Jeffe. Algorithms for finding paths with multiple constraints. Networks,

14:95–116, 1984.

[13] Q. Ma and P. Steenkiste. On path selection for traffic with bandwidth

guarantees. Proceeding of IEEE International Conference on Network Protocols,

October 1997.

[14] Q. Ma, P. Steenkiste, and H. Zhang. Routing high bandwidth traffic in

max-min fair share networks. ACM SIGCOMM’96, 123:206–217, Aug 1996.

[15] Qingming Ma and Peter Steenkiste. Routing traffic with quality-of-service

guarantees in integrated services networks. In Proceedings of Workshop on

Network and Operating Systems Support for Digital Audio and Video, July 1998.

[16] J. Moy. Ospf version 2. Request for Comment (RFC) 1583, March 1994.

[17] H. D. Neve and P. V. Mieghem. A multiple quality of service routing

algorithm for pnni. IEEE ATM WORKSHOP, pages 324–328, May 1998.

[18] K. Perumalla and R. Fujimoto. A c++ instance of ted. Technical Report

GIT-CC-96-33, College of Computing, Georgia Institute of Technology, 1996.

[19] K. Perumalla and R. Fujimoto. Gtw++: An object-oriented interface in c++ to

the georgia tech time warp system. Technical Report GIT-CC-96-09, College

of Computing, Georgia Institute of Technology, September 1996.

[20] K. Perumalla, A. Ogielski, and R. Fujimoto. Metated: A meta language for

modeling telecommunication networks. Technical Report GIT-CC-96-32,

College of Computing, Georgia Institute of Technology, 1996.

124

[21] L. L. Peterson and B. S. Davie. Computer Networks: A Systems Approach.

Morgan Kaufmann Publishers, Inc., 1996.

[22] ITU Recommendation Q.2931. B-ISDN Digital Subscriber Signaling System No

2 User To Network Interface Layer 3 Specification for Basic Call/Connection

Control. ITU-International Telecommunication Union, 1995.

[23] Quan Sun and Horst LangenDőrfer. A new distributed routing algorithm for

supporting delay-sensitive applications. Computer Communications,

21(6):572–578, May 1998.

[24] Z. Wang and J. Crowcroft. Quality of service routing for supporting

multimedia applications. IEEE J. Selected Areas of Comm, 14:1228–1234, 1996.

[25] R. Widyono. The design and evaluation of routing algorithms for real-time

channels. Technical Report TR-94-024, Department of EECS, University of

California, Berkeley, 1994.

125

Appendix A

Sample Scripts

This section shows the simulation scripts describing our network using in our ex-

periments. These scripts are used to run our simulator developed at University of

Kansas.

A.1 Dense Edge-core Topology Script

parameter_block node spartan{
crankback_retries = 10,
flooding_threshold = 2,
default_flooding_period = 1800,
prop_constant = 25,
default_flooding_factor = 5,
hello_timer = 5,
summary_timer = 5,
ptsp_timer = 5,
ack_timer = 3,
request_timer = 5,
routing_policy = min_hop_widest,
numports = 40,
process_time = 5.0,
queuesize = 5000

};

parameter_block host newton{
duration = 400,

126

calltype = cbr,
call_bw = [uniform 1000 100000],
calls = 100,
queuesize = 5000,
host_process_time = 3.0,
destination = uniform_any,
arrival_distribution = poisson,
arrival_mean = 5,
duration_distribution = poisson,
duration_mean = 60

};

node S1{ parameter_block spartan,
address = 0x4705ffef5600000000000000a100000000000000

};
node S2{ parameter_block spartan,

address = 0x4705ffef5600000000000000a200000000000000
};

node S3{ parameter_block spartan,
address = 0x4705ffef5600000000000000a300000000000000

};
node S4{ parameter_block spartan,

address = 0x4705ffef5600000000000000a400000000000000
};

node S5{ parameter_block spartan,
address = 0x4705ffef5600000000000000a500000000000000

};
node S6{ parameter_block spartan,

address = 0x4705ffef5600000000000000a600000000000000
};

--------------- Large Nodes ---------------

node L1{ parameter_block spartan,
address = 0x4705ffef5600000000000000b100000000000000

};
node L2{ parameter_block spartan,

address = 0x4705ffef5600000000000000b200000000000000
};

node L3{ parameter_block spartan,
address = 0x4705ffef5600000000000000b300000000000000

};
node L4{ parameter_block spartan,

address = 0x4705ffef5600000000000000b400000000000000
};

node L5{ parameter_block spartan,

127

address = 0x4705ffef5600000000000000b500000000000000
};

node L6{ parameter_block spartan,
address = 0x4705ffef5600000000000000b600000000000000

};

--------------- Edge Nodes -------------------

node E16{ parameter_block spartan,
address = 0x4705ffef56000000000000001000000000000000

};
node E17{ parameter_block spartan,

address = 0x4705ffef56000000000000001100000000000000
};

node E18{ parameter_block spartan,
address = 0x4705ffef56000000000000001200000000000000

};
node E19{ parameter_block spartan,

address = 0x4705ffef56000000000000001300000000000000
};

node E20{ parameter_block spartan,
address = 0x4705ffef56000000000000001400000000000000

};
node E21{ parameter_block spartan,

address = 0x4705ffef56000000000000001500000000000000
};

node E22{ parameter_block spartan,
address = 0x4705ffef56000000000000001600000000000000

};
node E23{ parameter_block spartan,

address = 0x4705ffef56000000000000001700000000000000
};

node E24{ parameter_block spartan,
address = 0x4705ffef56000000000000001800000000000000

};
node E25{ parameter_block spartan,

address = 0x4705ffef56000000000000001900000000000000
};

node E26{ parameter_block spartan,
address = 0x4705ffef56000000000000001a00000000000000

};
node E27{ parameter_block spartan,

address = 0x4705ffef56000000000000001b00000000000000
};

----------------- Hosts ----------------------

128

host Host1{ parameter_block newton,
address = 0x4705ffef56000000000000001000ec3011000100

};
host Host2{ parameter_block newton,

address = 0x4705ffef56000000000000001000ec3011000200
};

host Host3{ parameter_block newton,
address = 0x4705ffef56000000000000001100ec3011000300

};
host Host4{ parameter_block newton,

address = 0x4705ffef56000000000000001100ec3011000400
};

host Host5{ parameter_block newton,
address = 0x4705ffef56000000000000001200ec3011000500

};
host Host6{ parameter_block newton,

address = 0x4705ffef56000000000000001200ec3011000600
};

host Host7{ parameter_block newton,
address = 0x4705ffef56000000000000001300ec3011000700

};
host Host8{ parameter_block newton,

address = 0x4705ffef56000000000000001300ec3011000800
};

host Host9{ parameter_block newton,
address = 0x4705ffef56000000000000001400ec3011000900

};
host Host10{ parameter_block newton,

address = 0x4705ffef56000000000000001400ec3011001000
};

host Host11{ parameter_block newton,
address = 0x4705ffef56000000000000001500ec3011001100

};
host Host12{ parameter_block newton,

address = 0x4705ffef56000000000000001500ec3011001200
};

host Host13{ parameter_block newton,
address = 0x4705ffef56000000000000001600ec3011001300

};
host Host14{ parameter_block newton,

address = 0x4705ffef56000000000000001600ec3011001400
};

host Host15{ parameter_block newton,
address = 0x4705ffef56000000000000001700ec3011001500

};

129

host Host16{ parameter_block newton,
address = 0x4705ffef56000000000000001700ec3011001600

};
host Host17{ parameter_block newton,

address = 0x4705ffef56000000000000001800ec3011001700
};

host Host18{ parameter_block newton,
address = 0x4705ffef56000000000000001800ec3011001800

};
host Host19{ parameter_block newton,

address = 0x4705ffef56000000000000001900ec3011001900
};

host Host20{ parameter_block newton,
address = 0x4705ffef56000000000000001900ec3011002000

};
host Host21{ parameter_block newton,

address = 0x4705ffef56000000000000001a00ec3011002100
};

host Host22{ parameter_block newton,
address = 0x4705ffef56000000000000001a00ec3011002200

};
host Host23{ parameter_block newton,

address = 0x4705ffef56000000000000001b00ec3011002300
};

host Host24{ parameter_block newton,
address = 0x4705ffef56000000000000001b00ec3011002400

};

port genericport { bw = OC12, delay = 4 } ;

#-------------- Connection S -> L ---------------- #
#
delay S -> L uniform low = 10 high = 25 (24 links)

connection S1->L6 { bw = OC3, ad_weight = 50, delay = 14 } ;
connection S1->L1 { bw = OC3, ad_weight = 60, delay = 13 } ;
connection S1->L2 { bw = OC3, ad_weight = 70, delay = 11 } ;
connection S1->L5 { bw = OC3, ad_weight = 50, delay = 13 } ;
connection S2->L1 { bw = OC3, ad_weight = 60, delay = 20 } ;
connection S2->L2 { bw = OC3, ad_weight = 70, delay = 11 } ;
connection S2->L3 { bw = OC12, ad_weight = 50, delay = 14 } ;
connection S2->L6 { bw = OC12, ad_weight = 60, delay = 22 } ;

connection S3->L2 { bw = OC3, ad_weight = 70, delay = 21 } ;
connection S3->L3 { bw = OC3, ad_weight = 50, delay = 10 } ;

130

connection S3->L4 { bw = OC12, ad_weight = 60, delay = 10 } ;
connection S3->L1 { bw = OC12, ad_weight = 70, delay = 11 } ;
connection S4->L3 { bw = OC3, ad_weight = 50, delay = 22 } ;
connection S4->L4 { bw = OC3, ad_weight = 60, delay = 24 } ;
connection S4->L5 { bw = OC3, ad_weight = 70, delay = 21 } ;
connection S4->L2 { bw = OC3, ad_weight = 70, delay = 25 } ;

connection S5->L4 { bw = OC3, ad_weight = 70, delay = 17 } ;
connection S5->L5 { bw = OC3, ad_weight = 60, delay = 17 } ;
connection S5->L6 { bw = OC12, ad_weight = 50, delay = 15 } ;
connection S5->L3 { bw = OC12, ad_weight = 70, delay = 14 } ;
connection S6->L5 { bw = OC3, ad_weight = 60, delay = 17 } ;
connection S6->L6 { bw = OC3, ad_weight = 50, delay = 20 } ;
connection S6->L1 { bw = OC12, ad_weight = 70, delay = 23 } ;
connection S6->L4 { bw = OC12, ad_weight = 60, delay = 16 } ;

delay L -> L uniform low = 25 high = 40 (3 links)

connection L1->L4 { bw = OC12, ad_weight = 70, delay = 37 } ;
connection L2->L5 { bw = OC12, ad_weight = 70, delay = 31 } ;
connection L3->L6 { bw = OC12, ad_weight = 70, delay = 40 } ;

#delay E -> S unifrom low = 5 high = 10 (12 links)

connection E16->S2 { bw = OC3, ad_weight = 70, delay = 9 } ;
connection E17->S1 { bw = OC3, ad_weight = 70, delay = 6 } ;
connection E18->S3 { bw = OC3, ad_weight = 70, delay = 7 } ;
connection E19->S2 { bw = OC3, ad_weight = 70, delay = 6 } ;
connection E20->S4 { bw = OC3, ad_weight = 70, delay = 10 } ;
connection E21->S3 { bw = OC3, ad_weight = 70, delay = 9 } ;
connection E22->S5 { bw = OC3, ad_weight = 70, delay = 9 } ;
connection E23->S4 { bw = OC3, ad_weight = 70, delay = 9 } ;
connection E24->S6 { bw = OC3, ad_weight = 70, delay = 9 } ;
connection E25->S5 { bw = OC3, ad_weight = 70, delay = 6 } ;
connection E26->S1 { bw = OC3, ad_weight = 70, delay = 6 } ;
connection E27->S6 { bw = OC3, ad_weight = 70, delay = 7 } ;

#delay E -> L unifrom low = 5 high = 10 (12 links)

connection E16->L6 { bw = OC12, ad_weight = 70, delay = 8 } ;
connection E17->L2 { bw = OC12, ad_weight = 70, delay = 8 } ;
connection E18->L1 { bw = OC12, ad_weight = 70, delay = 6 } ;
connection E19->L3 { bw = OC12, ad_weight = 70, delay = 8 } ;
connection E20->L2 { bw = OC12, ad_weight = 70, delay = 6 } ;
connection E21->L4 { bw = OC12, ad_weight = 70, delay = 8 } ;

131

connection E22->L3 { bw = OC12, ad_weight = 70, delay = 10 } ;
connection E23->L5 { bw = OC12, ad_weight = 70, delay = 8 } ;
connection E24->L4 { bw = OC12, ad_weight = 70, delay = 8 } ;
connection E25->L6 { bw = OC12, ad_weight = 70, delay = 8 } ;
connection E26->L5 { bw = OC12, ad_weight = 70, delay = 9 } ;
connection E27->L1 { bw = OC12, ad_weight = 70, delay = 6 } ;

connection Host to Edge (E)

#delay Host -> E fixed = 4 (24 links)

connection Host1->E16 { bw = 2000 };
connection Host2->E16 { bw = 2000 };
connection Host3->E17 { bw = 2000 };
connection Host4->E17 { bw = 2000 };
connection Host5->E18 { bw = 2000 };
connection Host6->E18 { bw = 2000 };
connection Host7->E19 { bw = 2000 };
connection Host8->E19 { bw = 2000 };
connection Host9->E20 { bw = 2000 };
connection Host10->E20 { bw = 2000 };
connection Host11->E21 { bw = 2000 };
connection Host12->E21 { bw = 2000 };
connection Host13->E22 { bw = 2000 };
connection Host14->E22 { bw = 2000 };
connection Host15->E23 { bw = 2000 };
connection Host16->E23 { bw = 2000 };
connection Host17->E24 { bw = 2000 };
connection Host18->E24 { bw = 2000 };
connection Host19->E25 { bw = 2000 };
connection Host20->E25 { bw = 2000 };
connection Host21->E26 { bw = 2000 };
connection Host22->E26 { bw = 2000 };
connection Host23->E27 { bw = 2000 };
connection Host24->E27 { bw = 2000 };

schedule{
duration = 6000
};

132

