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Abstract

Route discovery and selection are fundamental to packet-switched networks.

As a packet transits a network, routers determine the path on which the packet

will be forwarded. The primary objective of a routing system is to discover

feasible and efficient routes for packets to follow in the network.

Finding the minimum-delay route that does not exceed capacity constraints

is a difficult problem. Besides being inherently complex, the problem is intrin-

sically distributed with strong real-time constraints. In addition, the input to

the problem may be unrealistically large or simply unavailable. Therefore, the

input is often simplified and approximated, sometimes using broad and un-

realistic assumptions. Because these assumptions introduce error, solving the

routing problem precisely is of limited value. Heuristic approaches offer a po-

tential balance between accuracy and computational feasibility.

The purpose and contribution of this research is to evaluate both the ana-

lytical and empirical performance of an adaptive routing heuristic that bases

its operation on a genetic metaphor. The system simulates evolution, borrow-

ing from nature’s familiar operators of reproduction, mutation, and selection.

As the landscape changes, the system evolves with it. By modeling nature’s
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“survival of the fittest” optimization operator, near-optimal routing tables can

be cultured in the network “petri dish.” The proposed heuristic operates with-

out an explicit knowledge of the network’s topology or traffic characteristics.

As such, it is well suited to an environment where this information is unavail-

able or changing. In addition, the proposed heuristic is simple, both in concept

and implementation. This research demonstrates that the method is capable of

finding near-optimal routes in the topologies studied. Analysis is provided to

demonstrate that the behavior of the heuristic can be modeled and accurately

predicted.

The approach has limitations and shortcomings. However, like the genetic

mutations it seeks to model, this approach represents an evolutionary step in

routing protocol design. Hence, understanding its strengths and weaknesses is

essential to determine if, when, and how characteristics of the heuristic are to

be incorporated into future routing protocols. Developing this understanding

is the motivation for this research.
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Chapter 1

Introduction

The task of discovering and selecting routes is fundamental to the operation

of packet-switched networks. Routers coordinate the path every packet takes

as it transits the network. To do this, routers need a consistent view of how

the packet is to proceed; otherwise a packet may be caught in a never-ending

loop. In addition to being consistent, the selected route should be efficient.

While the definition of efficiency is context-specific, generally it is beneficial

to minimize the total delay experienced by each packet in the network. The

primary objective of a routing system is to support the discovery and selection

of feasible and efficient routes.

1.1 The Routing Problem

Real-world networks have capacity constraints, and finding a path with min-

imum delay while not exceeding capacity is a difficult problem. Depending

on the objective function and topology the optimization problem may be NP-
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complete. There are at least four significant characteristics of the routing prob-

lem that make it difficult to solve[13]:

• It is intrinsically distributed.

• It is stochastic and time-varying.

• It has multiple objectives that often conflict.

• It has multiple constraints.

In addition to these challenges, the input to the problem may be enormous in

size or even unavailable. Given these limitations, it is common to use approxi-

mations and heuristics in the pursuit of feasible and efficient routing solutions.

Routing protocols may be broadly classified as either static or adaptive.

Static protocols route traffic based entirely on packet destinations, oblivious to

network state. Their performance tends to be stable and deterministic. How-

ever, due to the intrinsic dynamics present in most real-world networks, the

inability of static protocols to adapt as the network and traffic characteristics

change is a major drawback. Adaptive protocols incorporate network state

into their routing decisions, and in theory offer the best hope for efficient use of

network resources. However, adaptive protocols frequently suffer from oscil-

latory behavior, as the feedback mechanisms operate on a time-scale that lags

the dynamics of both the network and traffic.

Early experience with adaptive routing in the ARPANET [59][47] demon-

strated the difficulty of developing a stable adaptive routing protocol. The re-

sult of this experience was the adoption of a class of routing protocols that,
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although adaptive, only change based on the binary up/down state of each

link in the network[65][45], or, in other words, only adapt to the topology of

the network and not in response to real-time traffic characteristics. The task

of altering routing to accommodate changing traffic patterns was relegated to

network operators who manually adjust routing metrics.

While this approach has proven to be a stable and sustainable methodology

for managing large networks, it often distributes traffic suboptimally. Because

it is based on a manual process for selecting and updating metrics, it is difficult

for the system to adapt on the time-scale in which the traffic patterns are chang-

ing. In addition, this approach is incapable of non-uniformly distributing traffic

across multiple paths. Paths with equivalent cost may take equal portions of

the traffic, but there is no facility for one path to be assigned a larger percentage

of the traffic than another. When path capacities are asymmetric the flexibility

to distribute traffic non-uniformly is required for optimal traffic distribution.

This is referred to as non-minimal routing. Because of its inability to adapt

and its inability to distribute traffic non-uniformly, the current approach often

makes inefficient use of available network resources.

1.2 Contribution of This Research

The purpose of this research is to evaluate both analytically and empirically

the behavior of an adaptive routing methodology that bases its operation on

a genetic metaphor. Initially packets are routed randomly, but over time the
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network of routers collects feedback regarding the feasibility of different paths.

The feedback model simulates evolution, borrowing from nature’s familiar op-

erators of reproduction, mutation, and selection. This research demonstrates

that, for the limited set of network topologies studied and with the traffic mod-

els employed, this simple feedback mechanism is able to produce favorable

results relative to those obtained using shortest-path routing techniques.

The approach evaluated in this dissertation diverges significantly from cur-

rent trends in routing protocol design that seek to offer more control and pro-

vide more information to the routing protocol. Many earlier applications of

genetically-motivated heuristics also work with similar control-plane assump-

tions. Such methods suffer when accurate traffic data is not available. This

work explores an approach that moves in the opposite direction: toward less

control. In fact, the routing technique described by this paper does not seek

to discover the network’s topology, does not require the setting of link metrics,

and does not require a priori knowledge of the anticipated traffic matrix. Rather,

each network node independently seeks to discover, based on feedback, opti-

mal egress links for aggregates of destination addresses. The process is contin-

uous, allowing routing to adapt and evolve as both the network topology and

the traffic characteristics change. Because the routers are not maintaining topo-

logical state, distributing new topology information in response to topological

changes is not required.

4



1.3 Organization

This document is structured as follows: Chapter 2 explores the background of

the routing problem. Included in this chapter is a summary of past and present

approaches to solving the routing problem. The chapter concludes with an

overview of other problems being addressed by genetic heuristics. Chapter 3

describes the heuristic approach proposed by this paper and defines many of

its operators and parameters. Chapter 4 analyzes the heuristic’s behavior on a

triplet network and quantifies the impact of some of the parameters described

in Chapter 3. Chapter 5 provides an analysis of the proposed heuristic on a spe-

cific instance of a ring network. Its performance is contrasted with what might

be expected from shortest-path routing systems. Consideration is given to the

algorithm’s ability to converge and adapt in both static and dynamic environ-

ments. Chapter 6 explores the performance of the heuristic on a more realistic

topology, one modeled after a regional network. This network is analyzed with

both simple and complex flow sets. As expected, the heuristic has limitations

and shortcomings, some of which are identified in Chapter 7. This chapter also

discusses possible mitigation techniques for these challenges. Chapter 9 sum-

marizes the research and provides conclusions.
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Chapter 2

Background

The purpose of this chapter is to provide the reader with an understanding of

the routing problem and the challenges associated with solving it. Background

is provided on previous work done in this field, with an emphasis on the ex-

perience gained on the Internet’s predecessor, the ARPANET. In addition, this

chapter provides foundational theory for genetic algorithms, including exam-

ples of their application to the routing problem.

2.1 Network Model: Defining the Problem

A communications network may be modeled as a directed graph, G = (V,E),

where the set of nodes V represents the routers in the network and the set of

edges E represents communications links connecting the routers. Each edge, e,

in E has a capacity, c(e), and a delay, d(e).

c(e) = <+ ∀e ∈ E

d(e) = <+ ∀e ∈ E
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The edges are unidirectional in order to accommodate asymmetries. Com-

munications links with symmetric bandwidth and delay are drawn as single

bi-directional edges in order to simplify drawing network topologies.

The capacity of edge eij represents how many data units can be carried from

vi to vj . For a communications link modeled as a bit-pipe, the capacity is ex-

pressed in bits per second and is referred to as the link’s bandwidth.

The delay experienced by a packet transiting a communications link is com-

prised of at least four separate components:

1. Processing delay is the time between when a packet is received by a router

and when it is placed on an output queue. Among other things, this delay

is a function of the processor clock rate, route-lookup algorithm, size of

the routing table, and backplane scheduling algorithm.

2. Queueing delay is the amount of time the packet waits in queue for trans-

mission. It is a function of the packet inter-arrival times, the packet-size

distribution, and the capacity of the communications link.

3. Transmission delay is the time between when the first and last bits of the

packet are transmitted and is a function of the link’s bandwidth and the

packet size.

4. Propagation delay is the time it takes a single bit to travel from one end of

the communications link to the other. For all practical purposes this delay

is constant, and is the physical path distance divided by the speed of light

in fiber.
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The delay of edge eij represents only the propagation delay between nodes vi

and vj . This research considers the processing delay to be negligible compared

to the propagation delay, an assumption that can be safely made for wide-area

network circuits. Queuing and transmission delays are combined in the queu-

ing delay analysis.

2.1.1 Challenges in Defining the System Input

Discrete groupings of bits are referred to as packets. Among other things,

each packet has associated with it a source and destination, defining where

the packet originated and where it is ultimately destined. For the purpose of

this work, both the source and the destination will be considered to be in the set

V . Discussion of how the model can accommodate networks providing transit

services where neither the source nor the destination are in the set V is pro-

vided in Section 7.2.1. In addition to the time-varying network topology, the

input to the routing problem includes the set of all packets to be introduced

into the network, their sizes, and the time each is created.

Large-scale networks might service many millions of packets each second.

Modeling each packet individually in such an environment would likely re-

sult in an unmanageably large data set. In addition to being too large, such

precise foreknowledge is rarely available. A common strategy for simplifying

the traffic data is to aggregate groups of packets traveling between common

source-destination pairs into flows. The flows are often defined using stochas-
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tic models for packet size and inter-arrival time distributions. The choice of

models greatly affects whether the resultant problem will be tractable.

This research assumes exponentially distributed packet sizes and a Poisson

arrival process. The validity of arrival process assumption for Internet traffic

is both challenged and supported in the academic community[53][70][10][11].

The decision to use this arrival process was based on the desire to choose a

model for which the queuing theory is well understood. The validity of the

packet-size distribution is also questionable, as Internet traffic adheres to a tri-

modal packet-size distribution resulting from the maximum transmission unit

(MTU) of typical networks combined with TCP’s minimally-sized packets[19].

Again, the decision to use an exponential distribution was based on the desire

to fit into well-understood queuing models. In addition, although the Internet

is the focal point of much current research, this work is addresses the general

problem of packet switching, and not the specific problem of packet-switching

on today’s Internet.

Using the concept of flows, the above assumptions, and queuing theory es-

tablished over the past decades[49], meaningful analytic results may be ob-

tained for simple network topologies. To use this output to gauge the success

of a routing algorithm, one also must quantify success in terms of an objective

function.
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2.1.2 Challenges in Defining the Objective Function

One of the challenges to arriving at a precise and relevant solution for the rout-

ing problem is defining a suitable objective function. An objective function

defines the goal of an optimization problem. The definition of the objective

function for the routing problem is context specific and subjective. Typically

there are multiple, sometimes conflicting, objectives. The focus of this work

is on two objectives: avoiding packet loss and minimizing delay. In general,

avoiding packet loss takes priority over minimizing delay. However, focusing

first on avoiding loss by minimizing link utilization without consideration of

the delay implications may result in a suboptimal solution. For example, con-

sider two links with equivalent bandwidth but vastly different delay. To min-

imize the loss probability the traffic should be distributed evenly between the

two links. However, if the amount of traffic is small compared to the available

bandwidth, a solution that routes more traffic over the link having lower delay

is preferable. The formulation of a strategy for determining how to quantify a

solution’s fitness is often subjective.

2.1.3 Challenges Related to Computational Complexity

The size of the input associated with route optimization on a per-packet basis is

often untenable. In order to decrease the size of the input, packets having com-

mon source and destination addresses are often grouped together into what

are referred to as flows. A flow typically has a stochastic model associated

with it defining both the arrival process and the packet-size distribution. Al-
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though this simplifies the input, the computational complexity may be daunt-

ing, even for a simple objective function. Without the ability to divide (deag-

gregate) flows arbitrarily, the flow-assignment problem is NP-hard, even for an

objective function that ignores delay and only seeks to ensure that packets are

not lost. The proof for this is presented in Appendix A.

The flow-assignment problem would likely be more difficult if the objective

function combined multiple objectives. Joint optimization problems are often

NP-complete, and it has been shown that the problem of finding a path subject

to any two of the following metrics is NP-complete: delay, loss probability, cost,

and jitter[83]. While this same paper presents a solution for minimizing delay

with bandwidth constraints, it does not propose a solution that works for more

than a single flow.

2.1.4 Problem Summary

The computational complexity associated with finding a solution to the rout-

ing problem is significant. The definition of the objective function might be

imprecise and subjective. The input to the problem may be enormous. Perhaps

most significant, the input to the problem may not be available. These realities

must be considered when formulating an optimization approach. Rigorously

solving an imprecise problem with imprecise input may provide little advan-

tage over a more efficient heuristic approach. Such an approach is the focus

of this work. The remainder of this chapter will examine some of the previous

research related to solving the routing problem, including heuristic methods.
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2.2 Related Research

As a result of the success of the Internet, interest in the routing problem has

increased significantly. During the same time-frame computational power has

increased dramatically. Genetic algorithms, once thought computationally in-

feasible, are now gaining mainstream acceptance as viable heuristic approaches

to complex problems. Given the complexity of the routing problem, it is not

surprising that genetic routing algorithms, routing techniques that model nat-

ural processes, are increasingly popular. This section begins with an overview

of previous work on the routing problem, followed by foundational theory for

genetic algorithms. This section concludes with a discussion of some of the

ongoing work in genetic routing algorithms.

2.2.1 Routing

Routing may be broadly classified in many ways: adaptive and non-adaptive,

minimal and non-minimal, central and distributed. This section includes an

overview of some of the early lessons learned on the Internet’s predecessor, the

ARPANET. This is followed by a discussion of current trends for routing on the

Internet.

Adaptive Routing

Adaptive routing may be defined as a routing system that adapts to the state of

the network. In some sense, most routing algorithms are minimally adaptive as
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they take into account the topology of the network. However, the connotation

of adaptive routing is traditionally more broad, encompassing the idea of also

adjusting routing based on link utilization and other time-varying characteris-

tics related to network traffic. These techniques are typically reactive, and as

such may be subject to oscillatory behavior.

Early Lessons on the ARPANET

Early in the existence of the ARPANET, researchers tried several adaptive rout-

ing algorithms. The original ARPANET routing algorithm attempted to route

packets along paths of least delay by using a distributed version of the Bellman-

Ford shortest-path algorithm[4][36]. Each node would build a shortest-delay

routing table by estimating its delay to each of its adjacent nodes and then com-

bine these estimates with the routing tables received from each of its neighbors.

Each node would periodically send its updated table to all adjacent nodes. The

delay to a neighbor was estimated by simply counting the number of packets

in queue and then adding a constant value to account for propagation delay.

This technique did not work well for many reasons[71][58][59]. Among other

things, the delay estimate was found to be especially problematic. The effect

was instability and oscillations under heavy load. Hence, a new approach was

needed.

Researchers introduced a new routing protocol in May 1979 which sought to

correct the mistakes of the original ARPANET routing protocol[58][59]. One of

the more significant changes replaced the Bellman-Ford approach for shortest-
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path calculation with a link-state approach. In the new approach each node in

the network maintained a database describing the complete network topology

and associated delays. Using this information each node could independently

build a shortest-path tree using Dijkstra’s shortest-path algorithm[25]. Because

of its search rule, this algorithm is frequently referred to as the shortest-path-

first (SPF) algorithm.

Two important considerations of the new approach were how to estimate

the delay and how to distribute the link-state information. Expected delay

was obtained from the measured average packet-delay in the system over a

10-second interval. The information was distributed through the network us-

ing a technique that later became known as reliable flooding. Reliable flooding

operates by having every node send its own link-state packets (LSPs) to each of

its neighbors. A node that receives an LSP floods it to all of its neighbors, except

the neighbor from which it received the LSP. Loops are avoided by assigning

a unique identifier to each LSP and ensuring that no router will re-forward an

LSP it has already seen. Reliable flooding ensures that every router eventually

obtains a consistent view of the topology. Transient routing loops exist dur-

ing periods when the routers have inconsistent views, but these are short and

infrequent.

Although this new approach represented a significant improvement, like its

predecessor, it tended to break down under heavy load[46][71]. During these

times the predictive accuracy of the measured delays decreased sharply, re-

sulting in poor correlation between the delay estimates and the actual delay
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experienced after routing updates. This shortcoming, combined with the large

dynamic range of the metrics representing delay, resulted in large-scale traf-

fic oscillations. The effect of these oscillations was that a significant portion of

the network bandwidth would be idle while another portion of the network

would be over-used. In effect, the traffic would slosh back and forth between

links resulting in suboptimal performance.

The ARPANET’s final adaptive routing approach was termed “the revised

ARPANET routing metric”[46][71] and only replaced the metric calculation

logic of the previous system. This approach compressed the dynamic range

of the metrics and dampened the rate at which the advertised metric could

change. The new approach had the following characteristics[71]:

• A highly loaded link could cost no more than 3 times its lightly loaded

cost.

• The most expensive link (highly loaded 9.6 Kbs satellite link) could cost

no more than 7 times as much as the least expensive (lightly loaded 56 Kbs

terrestrial link).

• Terrestrial links were favored over satellite links having the same band-

width and utilization.

• High-speed satellite links were favored over low-speed terrestrial links.

• The cost was a function of utilization only at high loads.

The slopes, offsets, and breakpoints for the above parameters were determined

by trial and error.
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The approach was effective for dealing with the oscillations but, in the long

run, did not scale with the rapidly expanding Internet. As newer, higher ca-

pacity circuits became available the parameters were not modified, and it soon

became obsolete.

EIGRP

Despite the challenges encountered in the early ARPANET experience, inter-

est in adaptive routing algorithms has continued. One notable commercially

developed protocol is Extended Inter-Gateway Routing Protocol (EIGRP)[2].

EIGRP uses the Diffusing Update Algorithm (DUAL)[39] for its shortest-path

computation. Like its predecessor, IGRP[43], EIGRP was designed to address

the limitations of Routing Information Protocol (RIP)[55]. Both RIP and EIGRP

are distance-vector protocols, but unlike RIP, EIGRP supports a wide range of

link costs. In RIP, the link cost is defined to be one. EIGRP employs a composite

metric that takes into account the link’s bandwidth (b), the delay (d), the inverse

reliability (r), and the load (l0 < l < 256).

f(d, b, r, l) =

[
K1b+

K2b

(256− l)
+K3d

]
K5

(r +K4)
(2.1)

The coefficients K1 through K5 allow the protocol to be manually tuned to bal-

ance the various factors in support of specific network requirements. Setting

K5 to zero, for example, implies that reliability is not to be taken into consid-

eration. Setting K3 to a high value implies that delay is very important. The

default settings of these constants favor delay[16]. EIGRP is not in wide use on
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the core Internet routers today, possibly because of its proprietary nature which

conflicts with the open nature of the Internet.

Current Approach to Routing in the Internet

Despite the inherent advantages of adaptive routing, most current routing pro-

tocols are only minimally adaptive, adapting only when the topology of the

network changes. Link costs (metrics) are statically set and do not change

automatically in response to link utilization. Commonly used routing pro-

tocols include intermediate-system to intermediate-system (IS-IS)[9][45] and

open shortest path first (OSPF)[63][64][65]. These approaches are relatively

simple to implement and computationally efficient, as the shortest-path prob-

lem can be solved in O(V logV + E) time using Dijkstra’s algorithm[25] and

Fibonacci heaps[20].

These protocols are minimal routing techniques: they lack the ability to dis-

tribute traffic non-uniformly across multiple equal-cost paths. This limitation

not only affects the protocol’s ability to efficiently distribute traffic across multi-

ple paths with varied capacity, but it also affects the computational complexity

associated with determining an optimal assignment. This problem has been

shown to be NP-hard[37]. Due to the complexity of finding optimal assign-

ments for the metrics, they are often set using an ad-hoc methodology. Cisco

recommends setting metrics inversely proportional to link capacities[17]. This

approach has been shown to be non-optimal by [37] but is among the better

traffic-oblivious approaches. One approach would be to use this metric as a
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starting point and then iteratively adjust the metric in response to traffic charac-

teristics using a manual trial-and-error process. More sophisticated approaches

include flow information in their calculations. This has potential benefits but,

as described previously, the input traffic matrix is typically only a rough ap-

proximation. Further complicating this problem for transit networks is the fact

that the input to the problem, the flows, may be affected by the output of the

algorithm, the metrics. For example, Border Gateway Protocol (BGP) uses the

internal metric as part of its decision function[77], and as such the egress router

selection is influenced by the internal metrics. Not only is the problem diffi-

cult to solve, it needs to be solved repeatedly, each time there is a significant

shift in traffic or topology. These factors combine to make the task of manually

managing the network a difficult and risky task.

MPLS

Multiprotocol Label Switching, or MPLS[30], is an encapsulation and forward-

ing mechanism designed to provide increased control of traffic within an IP

network. Originally, MPLS derived from earlier proposals focused on increas-

ing forwarding performance[68][18]. However, as processing power increased

this provided little value and the focus of MPLS shifted to traffic engineering.

MPLS found its first real application as a traffic-engineering tool[84] with

the introduction of signaling protocols such as LDP[29], RSVP-TE[54], and CR-

LDP[31]. Explicit routing is central to MPLS’s traffic-engineering capabilities.

Using explicit routing, MPLS can forward sub-aggregates of flows along paths
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that do not necessarily follow ordinary IP routing rules. As such, MPLS offers

the ability to distribute traffic non-uniformly across multiple paths. In practice,

MPLS traffic engineering is most frequently used to direct traffic around under-

provisioned parts of a network.

Although MPLS may be used to distribute traffic non-uniformly across mul-

tiple paths, it still shares the problem of requiring an accurate estimate of the

traffic to be routed. In fact, its increased control capabilities may require more

detailed input data.

The approach proposed in this work is a step in the opposite direction. Not

only does the heuristic not require a knowledge of what the traffic distribution

will be, it does not even maintain a knowledge of the topology. While this may

seem counter-intuitive, the proposed heuristic will be shown to be a capable

methodology for routing traffic.

Logical thinking is unquestionably useful for many purposes. It usually

plays an important role in setting the stage for an invention. But, at the end

of the day, logical thinking is the antithesis of invention and creativity[52].

2.2.2 Algorithms Motivated by Natural Processes

The underlying metaphor of genetic algorithms is that of natural evolution.

In evolution, the problem each species faces is one of searching for

beneficial adaptations to a complicated and changing environment.

The ‘knowledge’ that each species has gained is embodied in the makeup

of the chromosomes of its members[21].
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Research in genetic and evolutionary algorithms has been going on for over

forty years. Three works are generally recognized as foundational for the field:

• John Holland’s Adaptation in Natural and Artificial Systems[44].

• Ingo Rechenberg’s Evolutionstrategie: Optimierung Technisher Systeme nach

Prinzipien des Biologischen Evolution[76].

• Lawrence Fogel’s Artificial Intelligence through Simulated Evolution[35].

For the first three decades the field of genetic algorithms languished. Re-

searchers assumed the techniques could not be used to solve even the simplest

of problems[34]. However, the techniques may not have been as much at fault

as the limited computing power of the time. As computing power has increased

so has the ability to simulate the processes of evolution.

Genetic algorithms have the following basic components[21]:

• a means of encoding solutions to the problem as chromosomes,

• a means of obtaining an initial population of solutions,

• a function that evaluates the “fitness” of a solution,

• reproduction operators for the encoded solutions, and

• appropriate settings for the genetic algorithm control parameters.

These components are used iteratively to allow the population to evolve and

adapt over time.
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2.2.3 Genetic Routing Algorithms

Due to their flexibility, especially when the actual problem is hard to state, ge-

netic and evolutionary algorithms have been employed in a broad range of

applications including supply-chain optimization [81], petroleum pricing[3],

nonlinear controllers for backing up a truck and trailer[15], and military target

recognition[82]. Even more extreme is the concept of genetic programming,

where computer programs are caused to evolve[51][6][52][74][75].

Genetic algorithms are also being applied to the routing problem[1][78][62].

An approach to discovering the two shortest node-disjoint paths between a pair

of routers has been described[1]. The use of agent-based genetic algorithms

in which agents are sent out on a network with one or more span failures to

discover a recovery path has been demonstrated[78]. Perhaps two of the better

known applications of genetic methods to routing are GBR[67] and AntNet[26].

GBR

The Genetic-Based Routing algorithm (GBR)[67][66] seeks to minimize hop

count and delay. In its initial stages, GBR operates much like existing link-state

algorithms, gathering topology information and identifying least-cost paths.

The algorithm uses unit cost for link cost, resulting in a hop-count-optimized

shortest-path topology.

GBR is a source-routed algorithm, completely pre-determining the path a

packet will take through the network. The route table is comprised of an ex-
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plicit path for each destination address. This implies that the routing decisions

are primarily made at the edges of the network.∗

One of the key attributes of GBR is that it supports the deaggregation of

traffic flows. Over time, multiple paths through the network are identified for

a given destination and the traffic toward that destination is split across these

paths. The proportion of the traffic each path receives is a function of the path

fitness as determined by packets measuring path delay. The weights are deter-

mined by

wi =
1/µi∑
j∈S 1/µj

, where µi =
di∑
j∈S dj

. (2.2)

The measured delay for route i is di, and S represents the set of all routes to

the same destination. Routes with high weights are favored. Routes with low

weights are removed.

Mutation in GBR may be described in terms of the path to be mutated,

{n1, n2, ..., nx}, where n1 is the starting node and nx is the destination. Ran-

domly select a node, n, from the set {n2, n3, ..., nx−1}. Select a neighbor to that

node, n′, and find the shortest path from n1 to n′ and also the shortest path from

n′ to nx. Join these two paths at n′ and verify that the resulting path from n1 to

nx is loop free. If any loops are present, drop the route. Otherwise, add it to the

set of possible routes to the destination nx.

To support crossover or reproduction, select two paths to the same destina-

tion with a non-empty intersection of interior nodes. Select a node from the

∗IP currently has limited support for source routing. No more than 9 hops may be specified using the standard IP
header[72][79]. Source Demand Routing (SDR)[28] extends this. However, source routing is rarely used by hosts and
is often disallowed by routers for security reasons.
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intersection as the crossover site. Exchange all nodes following the crossover

site in both paths. As before, remove all paths containing loops.†

A significant limitation of GBR is the need for source routing.‡ However, the

approach might be usable in conjunction with MPLS.

AntNet

The genetically-motivated routing system most similar to the approach pro-

posed in this research is AntNet[26][38][13][12][14]. AntNet is a distributed,

mobile-agents system inspired by the ant colony metaphor. It makes use of

the concept of stigmergy, the indirect communication between individuals by

modifications induced in their environment. The model seeks to mimic the

behavior of ant colonies, which have been shown to be capable of finding the

shortest path to a destination through the use of a pheromone trail deposited

by other ants[41]. In ant-colony-based routing algorithms, simulated ants roam

the network in search of efficient paths. As they do this, information learned

by successful ants is deposited along the paths they travel.

The AntNet algorithm makes use of autonomous agents (ants) that are in-

jected into the network at regular intervals. Each ant is associated with a des-

tination address, taken from the set of all possible destinations in the network.

Each ant searches for a least-delay path joining the source and destination

nodes. As each ant proceeds through the network in search of its destination,

†[67] does not mention the need to do this, but the possibility of looping exists, so the bogus offspring must be
eliminated. For example, applying crossover to the paths {a, b, d, e, c, f} and {a, b, c, d, e, f} with a crossover site of c
would result in {a, b, c, f} and {a, b, d, e, d, e, f}. The second, of course, contains a loop.
‡[67] alludes to the possibility that GBR could be adapted to create a routing table only specifying next-hop routes.
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it gathers information about its forward path, including timing and congestion

metrics. At each node ants use information left behind by previous ants to

stochastically select an egress link.

Once an ant arrives at its destination it begins the return trip to its source

node along the reverse path. At each node along this return path the returning

ant deposits information indicating the feasibility of the path followed by the

forward-traveling ant. The information, modeled after pheromones, decays

over time. Good paths have associated with them increased concentrations of

pheromones. Once the ants arrive back at their source nodes, they are removed

from the system.

AntNet routing has been shown to perform well under both low- and high-

load conditions[13]. During low-load conditions, the algorithm performed on

par with the other methods of routing. Under high loads, near network satura-

tion, the algorithm was shown to out-perform classic routing techniques.

2.3 Approach Proposed by this Work

The approach explored by this work is similar in many ways to AntNet, al-

though the genetic metaphor is different. The heuristic approach studied in this

work bases its operation on the behavior of parasites. Parasites are attached to

forward-traveling packets and influence route selection. Parasites that lead the

packet on ill-suited paths are destroyed when the packet loops or is dropped.
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Parasites associated with good routing decisions survive and are allowed to

reproduce.

Routers maintain a set of parasites, referred to as a population, for each des-

tination in the network. Each parasite in the population favors a single egress

link and the distribution of parasites in the population defines the probability

distribution function for packet egress-link selection. The probability of tak-

ing a given egress link is simply the relative representation of parasites in the

population favoring that link.

Besides the genetic metaphor, there are some functional differences between

the proposed heuristic and AntNet. One of the more important differences is

the model for updating the routing probability distribution function on each

node. The proposed heuristic updates it both on the forward and on the re-

turn path and uses a different mechanism for calculating the update value.

Another fundamental difference is, unlike AntNet, the proposed approach is

not agent based. Instead information is collected from normal “working-class”

data packets traveling on the network.

The following chapter will describe the proposed heuristic in detail. Subse-

quent chapters will establish both analytically and empirically the viability of

this method for various network topologies.
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Chapter 3

The Proposed Heuristic

The purpose of this chapter is to provide the reader with an understanding of

the operation of the proposed heuristic. Later chapters will discuss the perfor-

mance of the proposed heuristic.

The heuristic seeks to mimic the natural process of evolution, borrowing the

familiar operators of reproduction, mutation, and selection. At the core of the

model is the parasite object that is used to both influence route selection and

gather information regarding the feasibility of a path. Groups of parasites, re-

ferred to as populations, form the probability distribution function (PDF) for

path selection. The goal of the heuristic is to sustain good parasites while elim-

inating bad ones.
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3.1 Overview

This section describes the general operation of the heuristic. It provides the

foundational vocabulary and context for the remainder of the chapter. This

section contains explanations of parasites, populations, and forwarding.

3.1.1 Parasites

The basic building block of the heuristic is the parasite object. An instance of

a parasite has associated with it a router identifier, an interface on that router,

and a destination. The encoding of the router identifier must contain enough

information to facilitate the return of the parasite to its originating router after

the parasite has traveled in the network attached to a packet. Chapter 8 pro-

vides details regarding this encoding. The interface associated with the parasite

is used as the egress interface for the packet. As a packet transits the network

it obtains a parasite at each hop. The packet’s parasite string therefore records

the path the packet takes through the network. Once the packet reaches its

destination, the parasite string is routed along the reverse path to return each

parasite to its original router. Parasites attached to packets that do not reach

their destinations are not returned. Over time, parasites associated with bad

routing decisions are destroyed while those associated with good routing deci-

sions survive and reproduce.
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3.1.2 Populations

A population is a container for parasites having a common destination. Each

router maintains a separate population of parasites for every destination.∗ The

distribution of parasites within the population defines the PDF of interface se-

lection for the destination associated with the population. A population sup-

ports the selection, removal, and return of parasites. In addition it controls the

population size and maintains parasite diversity.

3.1.3 Forwarding

The primary function of a router is to forward packets toward their destina-

tions. The proposed heuristic uses a simple algorithm for this forwarding deci-

sion: randomly select a parasite from the population associated with the packet

destination and forward the packet on the interface favored by this parasite. Be-

fore the router forwards the packet, the parasite is appended to an ordered list

of parasites in the packet header. Each router in the forwarding path attaches

its own parasite to the packet. Section 3.2.6 describes sampling techniques to

reduce network overhead by only attaching parasites to a fraction of the pack-

ets in the network. However, regardless of whether the packet is going to carry

a parasite, the process for selecting an egress interface remains the same.

Once a packet carrying parasites arrives at its destination, the ordered list

of parasites is removed and used to explicitly route a feedback packet along

∗Having one population for every possible destination address would present a problem in an address space as large
as the Internet’s. Details on how multiple populations can be aggregated are provided in Section 7.2.1.
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the reverse path. This feedback packet is relatively small as it carries only the

parasite string. Each router in the reverse path extracts its own parasite and

returns the parasite to its original population.

During the forwarding process, loops are detected by searching the ordered

list of parasites attached to a packet. Each router scans the list looking for one

of its own parasites. If one is found, the ordered list is truncated immediately

previous to that parasite and a new parasite is selected from the population.

All parasites in the truncated portion of the ordered list are destroyed. Section

4.1 provides a more detailed discussion of how this behavior tends to eliminate

routing loops.

In a routing loop involving a large number of routers, it is possible the loop

is the result of a single router making a bad routing decision. The other routers

in the loop may be making proper routing choices. Despite this possibility, all

routers in the loop lose parasites and some may converge to favor other paths.

While this may result in a suboptimal path being selected for a portion of the

traffic, it is not entirely undesirable behavior, as avoiding a router making poor

routing decisions may be a valid objective for the other routers in the loop.

3.2 Operators and Parameters

This section describes key operators and associated parameters that together

form the core of the heuristic approach. Details are included regarding how

populations are created and their sizes controlled. Also discussed is the mech-
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anism through which parasites are selected from their populations. This is fol-

lowed by a description of how parasites reproduce and mutate. The section

concludes with an explanation of how a router determines if a packet should

have a parasite attached to it.

3.2.1 Initial Population

If nothing is known about potentially good solutions, the initial population

may be randomly generated. Otherwise it may be carefully created with po-

tential solutions in mind. If the population is overly specialized from the start,

the population may converge and other good solutions may not be explored. It

is observed in [42] that attempts to introduce the right genetic building blocks

into a population by carefully selecting the initial population may lead to prob-

lems, since genetic algorithms are “notoriously opportunistic.” For this reason

as well as inherent simplicity, a semi-random process is used to create the initial

population.

In the proposed heuristic, the initial population is uniformly distributed,

with equal numbers of parasites representing each interface. The number of

parasites representing each interface in the initial population is given by ηinit.

Since this parameter is used only at the time the population is created, its effect

should be limited in duration to the short period of time during which the

system initially converges toward a solution. In addition, ηinit also affects what

happens when an interface goes down and then comes back up: the chosen
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algorithm for adding a new interface simply adds ηinit parasites favoring the

new interface to the population.

Setting ηinit to a small value may, depending upon topology, improve the

convergence time because the effect of each parasite will be greater and fewer

“bad” parasites will be in the initial population. However, when the effect of

each parasite is greater, the system may initially converge toward the wrong

solution. Ideally, ηinit should be large enough to ensure a significant number of

parasites have returned prior to the initial population being depleted.

3.2.2 Population Control

The number of parasites contained in a population, ψ, is limited both from

above by ψmax and from below by the product of the number of communica-

tions links and ηmin, the minimum number of parasites that must represent the

each link. When ψ > ψmax for a population, parasites are randomly destroyed

using the selection operator described in Section 3.2.3. The router ensures that

there are always at least ηmin parasites representing each interface. When the

removal of a parasite violates this rule, a new parasite is added to the popula-

tion to bring it back into conformance. Therefore, the minimum population is

the product of ηmin and the number of communications links.

One of the primary problems with early attempts at adaptive routing on the

ARPANET network was traffic oscillations[71]. The routing system would rec-

ognize an overloaded interface and adjust the routing to provide relief. The

overload would then appear elsewhere in the network, and the previously
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overused interface would then be underused. Eventually the traffic would shift

back to the newly underused interface.

The proposed heuristic seeks to avoid oscillations by limiting the effect of an

individual parasite. Routing changes occur as the cumulative effect of many

parasites. The effect of a single parasite is inversely proportional to the total

population size. The upper limit to the population size then defines the lower

limit to the effect a single parasite may have on the overall routing. ψmaxdefines

the upper limit on the population. Selecting larger values of ψmax will result in

more stability. However, larger values of ψmax will also cause the system to be

slower to adapt to network conditions.

Selecting a value for ηmin involves tradeoffs. Assuming there is a single in-

terface that is optimal for a given destination, larger values of ηmin will lower

the upper limit of the probability of using the optimal interface. However, dur-

ing the early stages when the population is small, larger values of ηmin will

stabilize the population. In addition, larger values of ηmin are useful to ensure

that the landscape is continuously probed for new solutions, a function that can

also be realized through the mutation operator.

The population also has a high water mark, ψhigh. This value is used to

slow reproduction as the population reaches capacity. Additional information

regarding how this value is used is provided in Section 3.2.4.
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3.2.3 Selection

Selection is the mechanism through which superior solutions are identified in

the population. The proposed heuristic uses a proportional selection operator,

where the probability of a parasite favoring a particular interface is equal to the

number of parasites in the population representing that interface divided by

the total number of parasites in the population,

p(e) =
re
ψ
. (3.1)

p(e) is the probability of choosing a parasite that favors interface e, and re is

the number of parasites in the population associated with e. The distribution

of parasites within a population represents the routing PDF for the destination

associated with the population. This type of proportional selection is some-
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Figure 3.1: Roulette wheel selection operator

times referred to as roulette wheel selection. Figure 3.1 illustrates the selection

operation using the roulette wheel as a model. The parasites are grouped by in-

terface. Each time a selection is to be made the wheel is spun and one parasite

is selected. After a parasite is removed from the population, p(e), the proba-
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bility of selecting the same exit, decreases slightly. Providing re > ηmin, the

subsequent probability of selecting another parasite favoring interface e is

p(e)′ =
re − 1

ψ − 1
. (3.2)

A detailed mathematical study of various selection operators is presented in

[7]. For this research, roulette wheel selection was chosen over other operators

because the suitability of the parasite is not known prior to sending it into the

network. Other selection operators rely on the ability to immediately compare

the fitness of two or more selections, returning the best. The same opportunity

is not available to the heuristic.

In the event the population is empty the selection operator returns a parasite

associated with a randomly selected interface.

3.2.4 Reproduction

The purpose of the reproduction operator is to replace parasites that are lost in

the network and to reward parasites that survive. The heuristic’s reproduction

operator is triggered when a parasite is returned to its population. As long as

the maximum population size has not been exceeded, the heuristic duplicates

each parasite as it returns from the network, thus favoring the parasites associ-

ated with successful path choices. Those lost in the network are removed from

their populations during selection and never return. Over time the popula-

tions evolve to contain primarily parasites associated with interfaces not likely

to experience packet loss.
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Such an approach is largely delay-agnostic, focused on avoiding loss. Since

avoiding loss is the primary objective, this may be reasonable. However, also

rewarding parasites experiencing favorable delay may be beneficial, as mini-

mizing delay is a secondary objective. This may be accomplished by extending

the parasite object to include a timestamp indicating when it was removed from

its population. When a parasite is returned to its population, the timestamp

may be used to determine the round-trip time (RTT). The RTT is the sum of the

forward-path delay and the reverse-path delay, which may not be symmetric.

The forward-path delay may be estimated if the destination router timestamps

the feedback packet. Because only the delay relative to other parasites for the

same destination is needed, the presence of clock skew between the destina-

tion router and the host router is not a significant limitation. This is discussed

in Chapter 8.2.

The operator selected for the delay-aware heuristic simply compares the

forward-path delay of a returning parasite to the forward-path delay of the

most recently returned parasite associated with the same destination. If the de-

lay is favorable for the returning parasite, its representation in the population is

increased by κ. This research does not explore finding the optimal value for κ,

only noting it should be less than the increment awarded for successful packet

delivery, as avoiding loss is the primary objective. In environments where de-

lay is particularly important, κ could be increased.

Listing 3.1 shows the delay-agnostic logic for returning a parasite and List-

ing 3.2 shows the delay-aware version.
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Listing 3.1: Delay-agnostic return parasite operation
return parasite (population p, parasite a)
{

e = egress link(a)
r = get representation array(p)
c = 1
if (pcur(p) < high water(p))
then

c = c + 1
end if
r(e ) = r(e)+c

}

Listing 3.2: Delay-aware return parasite operation
return parasite (population p, parasite a)
{

tc = forward path time(a)
tp = get previous forward path time(p)
e = egress link(a)
r = get representation array(p)
c = 1
if (pcur(p) < high water(p))
then

c = c + 1
end if
if ( tc < tp)
then

c = c + reward
end of
r(e ) = r(e)+c
set previous forward path time(p,tc)

}
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When the population reaches its high-water mark, ψhigh, one-for-one repro-

duction of returning parasites stops. Instead, the parasite is returned to the

population without reproducing. This is done to stabilize the population as it

reaches its maximum capacity. In the case of the delay-aware heuristic, the in-

crement for low delay continues to be awarded, even when the population is

full.

3.2.5 Mutation

In genetic algorithms, mutation[44] is used to explore parts of the landscape

otherwise not reachable through normal reproduction. Without mutation, the

population tends to converge to a homogeneous state where individuals vary

only slightly[69]. Mutated individuals often develop with fatal flaws and are

quickly eliminated from the population. However, occasionally a mutation re-

sults in an individual uniquely suited for the landscape. If this individual is

strong enough, future generations will tend to evolve to gain similar character-

istics.

For the genetic metaphor presented in this research there are limited options

for mutation. Parasite variation is restricted to the set of interfaces on the router.

However, mutation is still needed for the algorithm to explore new paths after

it has converged. Mutation occurs during the selection. The variable ν defines

the probability the parasite returned by the selection operator will be associated

with an interface randomly selected from the uniform distribution of all inter-

faces. Mutation only occurs if the parasite is going to be attached to a packet.
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Because packets not carrying parasites are unable to provide feedback, there is

no point in using them to explore new solutions.

Larger values of ν allow the algorithm to more rapidly explore the topology

after a change occurs. However, increased packet loss is also associated with

larger values of ν, as packets will more frequently be routed along potentially

infeasible paths.

3.2.6 Sampling

As each parasite will require space in a packet’s header, attaching parasites

to every packet may create excessive overhead. In addition, the delivery of

feedback packets will create traffic that must compete with regular traffic for

network resources. In order to decrease this overhead, the heuristic only at-

taches parasites to a fraction of the packets traveling in the network. Packets

not receiving parasites are still routed by the parasite selection operator, but the

parasites used to only make the routing choice are neither removed from their

populations nor attached to the packet.

At least two approaches are available for selecting which packets will carry

parasites: traffic-based or time-based. The traffic-based approach would sam-

ple a fixed percentage of packets passing through the router while the time-

based approach would sample at a fixed rate, spacing samples evenly in time.

The tradeoffs associated with these two approaches are discussed below.

Sampling a fixed percentage of the packets passing through a router has a

few advantages. First, it is easy to implement and does not require additional
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state be maintained in the population. Second, the number of samples is a func-

tion of the amount of traffic. Potentially, the routing will adapt more rapidly

if more samples are used. Therefore increased overhead might be justified for

larger flows of data.

One drawback to this approach is that the effective rate would be difficult

to control, as a packet sampled by one router must be “sampled” by all sub-

sequent routers in the path. Therefore the probability of sampling actually in-

creases at each hop in the forwarding path. This implies that the probability a

packet will carry parasites increases as a function of path length. For a sample

rate sr, the probability that the nth router attaches a parasite is 1 − (1 − sr)
n.

Even when s is seemingly small, the probability of attaching a parasite may

be quite large if the path is relatively long. For example, if s = .05, after 10

hops the chance that the packet will carry parasites is approximately 40%. Be-

cause the goal for sampling was to decrease the overhead, this behavior may

be undesirable.

A second drawback for sampling based on load is the difficulty associated

with selecting a good value for ψmax. Because the rate at which parasites are

removed from the population is a function of the packet arrival rate and sr,

ψmax potentially needs to be a function of the packet arrival rate. If it is not,

it might be too small when traffic is heavy and too large when traffic is light.

The effect of the former is routing instability and the effect of the latter is slow

adaptation.
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The second method of sampling is to temporally space samples at fixed in-

tervals. This has the advantage of not requiring ψmax to be a function of the

packet rate and overcomes the problem of the sample rate increasing for long

paths. It is slightly more difficult to implement; nevertheless, it is the method

selected for the heuristic.†

The sampling algorithm is implemented by storing the time the last par-

asite was taken from each population. Another sample is not taken from a

population until the sample interval has elapsed or until a packet arrives with

parasites attached. Whenever a parasite is taken from the population the last-

sample-time variable is updated. This method of sampling limits the effect of

long paths on the number of samples taken. The pseudo-code for packet for-

warding which includes fixed-interval sampling is shown in Listing 3.3.

While this approach is relatively simple, it may perform poorly when packet

arrivals are bursty. A more accurate fixed-rate sampling scheme could be at-

tempted that would account for burstiness, adjusting the sample interval as a

function of previous gap distribution. The benefits of such an approach are

unlikely to justify its complexity.

3.2.7 Summary of Operators and Parameters

This section presented many of the heuristic’s operators and parameters. One

of the difficulties associated with shortest-path routing is selecting link metrics.

†One desirable property of this sampling strategy is that it makes the behavior of the algorithm more predictable,
as one does not need to consider the flow rate to determine convergence time, assuming the flow rate is large enough
to provide at least one packet during each sample interval.
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Listing 3.3: Packet-forwarding function, including sampling logic
forward packet(packet y)
{

address d = get destination(y)
population p = get population(d)
parasite l = choose parasite(p)
interface e = get exit interface ( l )
number s = sample rate

if parasites are attached(y) and red(e,y) {
remove parasites(y)
}

if queue is full (e,y) {
remove parasite(p,l)
l = choose parasite(p)
e = get exit interface ( l )
}

if parasites are attached(y) or sample gap(p) > now−last sample(p) {
check for loops(y)
remove parasite(p,l)
push parasite(y,l )
last sample(p)=now
}

if queue is not full (e,y) {
send packet(e,y)
}

}
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The heuristic approach eliminates the need for these metrics, but unfortunately

replaces them with an even larger set of parameters. This poses a significant

risk: perhaps these parameters will be more difficult to tune than the metrics

they replace. Indeed, due to the heuristic nature of the algorithm, it is diffi-

cult, if not impossible, to precisely describe in closed form the effect of these

parameters. However, the heuristic appears to be relatively insensitive to the

precise values chosen for these parameters. The parameter values initially cho-

sen, somewhat arbitrarily,‡ needed little modification throughout the simula-

tion studies presented in subsequent chapters. Table 3.1 lists the parameter

values used by this research, unless otherwise noted in the paper.

parameter value comments
ψmax 2000 maximum size of the population
ψhigh .95ψmax population size high-water mark
ηmin 0 minimum number of parasites for each interface
ηinit 100 initial number of parasites for each interface
ω 1/ψmax sample interval in seconds
ν .005 probability of mutation
κ .25 reward for low delay

Table 3.1: Parameter values used in this research

3.3 Congestion

Routing in the presence of congestion is one of the more challenging tasks for

any routing protocol. Often, difficult decisions must be made regarding which

packet to drop. The proposed heuristic has two mechanisms for dealing with

‡There was some logic in the order of magnitude selected for each variable. For example, most of the simulations
had 3 to 12 thousand packets being introduced each second. The size of the maximum population, ψmax was selected
such that it could easily be sampled in a period of one second without requiring every parasite to be sampled.
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congestion. First, if an output queue is full, rather than dropping the packet,

alternate exits are sought for. Second, as the probability of reaching a congested

state increases, parasite strings are selectively dropped in an effort to influence

the routing decisions of upstream routers. This section provides an overview

of each mechanism.

3.3.1 Output Queue Overflow

Packet loss is typically caused by fixed-size output queues reaching their lim-

its. As additional packets are sent to the queue they must be dropped, be-

cause there is no room to store them. Assuming the queue space is not shared

between output interfaces, an assumption that should be valid on many dis-

tributed routing architectures, potentially another interface would be capable

of accepting the packet.

The heuristic reacts to this situation by destroying the parasite associated

with the interface having a full output queue and selecting a new parasite from

the population. The packet and second parasite are both destroyed if the in-

terface associated with the second parasite is full. This behavior increases the

speed at which the population can adapt to an overloaded link. If the router

did not stop with the second parasite and continued to query the population

until a feasible interface was found, the impact on the population associated

with the full interface might be too severe. Strong feedback such as this is often

associated with path oscillations.
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3.3.2 Random Early Detect

Even when the output queue is not completely full, it may be helpful to include

a signaling mechanism to notify upstream routers of potential congestion. For

this reason the basic principles of Random Early Detection (RED)[33][32][8] are

incorporated into the heuristic.

When a RED-enabled router detects congestion, it attempts to signal the traf-

fic sources to decrease their send rates. This is referred to as backpressure[56].

A RED-enabled router detects congestion by monitoring the average output

queue length. Averaging allows short increases in the queue size to occur

without triggering backpressure. An exponentially-weighted moving average

(EWMA) low-pass filter is used by RED:

ave← (1− wq)ave+ wqq. (3.3)

The time constant of the low-pass filter is determined by the weight, wq. Deter-

mining the optimal value for wq is an open problem.

RED’s initial packet-marking probability, pb, is calculated as a linear function

of the average queue size

pb ← maxp
ave−minth
maxth −minth

, (3.4)

where maxp gives the maximum packet-marking probability, minth is the min-

imum threshold that must be exceeded before packets are to be marked, and

maxth is the maximum threshold, the point after which the marking probabil-

ity becomesmaxp. Simply using pb for the packet-marking probability has been

44



shown to result in a geometric spread of the intermarking time. Techniques to

make the intermarking time uniformly distributed have been proposed[33].

For Transmission Control Protocol (TCP)[73] traffic, the only backpressure

mechanism available for a standard router is to drop packets in an attempt to

influence TCP’s flow control. Nothing similar is available for User Datagram

Protocol (UDP) traffic. The proposed heuristic has a unique mechanism to in-

fluence the amount of traffic it is receiving from the source. As congestion is

detected, a router can delete the parasite string in a packet. As a result, parasites

belonging to the upstream routers will not be returned and their populations

will adapt as if the packet had been dropped. Thus, the approach is indepen-

dent of the transport protocol and would work for both TCP and UDP traffic.

The proposed heuristic also deviates from the standard RED algorithm in

that it does not use the queue length as an estimate of link utilization. Queue

length is a poor indicator of link utilization, especially in high-speed circuits.

The proposed heuristic relies on the router to keep track of average link utiliza-

tion over a small time period by measuring the output rate.

The algorithm presented in Listing 3.3 implements RED detection prior to

the full-output-queue check described in Section 3.3.1. The RED function was

placed there to ensure that feedback would be given to upstream routers when

a congested communications link was encountered, even if the second selection

found a less congested interface.

The RED parameters chosen for this research are maxp = .25, minth = .75,

and maxth = 1. Marking begins when the queue is 75% full. The maximum

45



number of parasites marked for the purpose of RED is 25%. These values were

chosen to ensure the heuristic could continue to operate when congested paths

had to be used. To accomplish this goal, the reproduction rate of the popula-

tion, a function of the returning packets, should be larger than the death rate

created by RED. Additionally, these values take into account the dampening ef-

fect of the population size. Typically, RED deals with dropping packets, which

greatly impacts the behavior of the senders; therefore, large values of wq are

used to allow bursting and small values of maxp are used to lower the num-

ber of drops. With the proposed heuristic, the impact is dampened, as only the

parasite string is being dropped, not the packet. Typically, truncating a parasite

string will influence the upstream routers’ populations only slightly.

3.4 Chapter Summary

This chapter has described the proposed heuristic. The concepts of parasites

and populations were introduced, as were the operators and parameters af-

fecting their existence. The formulation of the heuristic was accomplished by

modeling the genetic metaphor in a simple manner. While there appear to be a

large number of parameters, the heuristic should not require continued tuning

if reasonable values are selected initially. During the course of this research the

various parameters generally were not changed. Performance gains might be

achieved by selecting better values, but those chosen are sufficient to demon-

strate the feasibility of the heuristic. This chapter has provided the reader with
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an understanding of the operation of the proposed heuristic. Subsequent chap-

ters will examine the performance of the proposed heuristic.
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Chapter 4

Analysis of a Triplet Network

This chapter presents the reader with an analysis of the proposed heuristic on

a three-node triplet network. From a practical routing standpoint, the network

is relatively uninteresting. For any given source and destination pair, there is

only a single path, leaving little for the routing system to optimize. However,

due to this simplicity, the topology is useful for analyzing the heuristic.

In order to simplify the analysis, this chapter assumes the mutation rate is

set to zero; ηmin is used to ensure exploration of alternate paths. In addition, this

chapter only provides analysis for the delay-agnostic variation of the heuristic.

The network presented has a single loop-free path; therefore the delay-aware

variation offers no additional advantage.

This chapter begins with a description of the the triplet network and the

state model used to represent it. This is followed by observations and analysis

of the expected convergence time. The impact of various parameters on the
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convergence time is discussed. Finally, a simple simulation system is presented

to confirm the model matches empirically obtained data.

4.1 Triplet Network State Model

2 31

a b

Figure 4.1: Triplet network topology

Consider the triplet shown in Figure 4.1. Assume all traffic originates on

node 2 and is destined for node 3. Node 2 maintains a population of parasites

associated with the destination of node 3. Because nodes 1 and 3 only have one

exit, the state of their populations will not affect the routing of packets. There-

fore, the entire state of the system is represented by the population on node 2.

This population will be referred to as “the population” for the remainder of this

chapter.

Initially the population will contain equal numbers of parasites favoring link

a and link b. Because node 1 has only one egress link, it will loop all packets it

receives from node 2 back toward node 2. Node 2 will be able to detect the loop

by searching the parasite string, and it will truncate the parasite string prior to

selecting a new parasite. Thus, parasites favoring link a will never be returned

to the population. Over time the the number of parasites in the population that

favor link a will decrease to ηmin.
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Assuming the capacity of link b is not being exceeded, each parasite sent

on link b will return and be duplicated. Eventually, the number of parasites

associated with link b will reach ψmax − ηmin. At this point the probability of

taking link b will reach its upper limit of p(b) = 1 − ηmin
ψmax

. Prior to reaching

this limit p(b) will reach an acceptable threshold, p(b) ≥ t, at which point the

population will have converged. Calculating the expected number of routing

choices prior to convergence is accomplished using a state model of the system.

4.2 State Analysis of the Triplet Network

The state of the entire system can be represented on a single two-dimensional

state-transition diagram. This is because node 2 is the only node with changing

state information. The instantaneous state of the system can be represented

by a discrete point on a grid, where the x-position represents the number of

parasites in the population that favor link b and the y-position represents the

number of parasites favoring link a. The state space for a system with only

two parasites is a triangle with vertices at (ηmin, ηmin), (ηmin, ψmax − ηmin), and

(ψmax − ηmin, ηmin). All points within the bounds of this triangle are potential

states for node 2. This state space is shown in Figure 4.2.

The state transitions for a node with two exits are shown in Figure 4.3. The

state will transition down when a parasite favoring the exit associated with the

y-axis is chosen. The probability of this happening, given a packet has arrived,

is y
x+y

. The state will transition toward the left when a parasite favoring the exit
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Figure 4.2: State space for a router with two links

associated with the x-axis is chosen. The probability of this happening, given a

packet has arrived, is x
x+y

. The state will transition two positions upward when

a parasite favoring the exit associated with the y-axis returns. The state will

transition two positions to the right when a parasite favoring the exit associated

with the x-axis returns.

For the triplet considered in this chapter, the probability of an upward state

transition is zero, as the link associated with the y-axis is not part of a loop-free

path to the destination. A parasite favoring link a will never be returned to

the population. This, combined with the non-zero probability of a downward

transition, implies that the number of parasites in the system favoring link a

will eventually decrease to ηmin. The potential state space is limited to ηinit ≤
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Figure 4.3: State transitions for a router with two links

y ≤ ηmin. The state transition diagram can be updated to remove the upward

transition, as its probability is zero.

Assuming the packet arrival rate is such that there are never two packets

in the network at the same time, the two horizontal state transitions can be

combined, as a state transition one unit to the left will always be immediately

followed by a state transition two units to the right. This combination results

in a unit transition to the right. The feasible state space may then be limited to

only include states right of the x-position of the initial population: x ≥ ηinit. The

updated possible state transitions for the triplet network are shown in Figure

4.4.

The state of the system follows a path beginning at (ηinit, ηinit) and end-

ing at (ψmax − ηmin, ηmin). The probability of using link b, p(b), is monotoni-

cally increasing, and can reach an acceptable value prior to reaching its limit at

p(b) = 1 − ηmin
ψmax

. At this point the population is said to have converged. The
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Figure 4.4: State transitions for node 2 in the triplet network
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Figure 4.5: The acceptable region of the state space
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acceptable threshold value, t, where p(b) ≥ t, may be used to define the con-

vergence region, limited to all states below the line extending from the origin

to the point (tψmax, (1− t)ψmax). The angle of this line is atan(1−t
t

). This region

is shown in Figure 4.5. Once the state has entered this region the system has

converged.

4.3 Time to Converge

To make the analysis independent of packet rate, the convergence time is de-

fined in terms of the number of probes required before the population con-

verges. A probe is defined to be a parasite’s life span on the network. Define

ex,y to be the expected number of probes required to converge from the start-

state of (x, y). ex,y is a function of the number of probes required by each of

its two adjacent states: state (x + 1, y) and state (x, y − 1). The probability, p,

of moving to state (x + 1, y) is equal to x
x+y

, while the probability of moving to

state (x, y − 1) is y
x+y

= 1 − p. The expected number of probes from ei,j is the

weighted sum of the number of probes expected for each of the adjacent states

plus one, to account for the probe required to move to a neighboring state.

ex,y = pex+1,y + (1− p)ex,y−1 + 1 (4.1)

Three boundary conditions exist for the above equation. First, when y = ηmin

and a parasite associated with the y-axis is selected, the state will transition

back to itself. The x transition remains the same. These state transitions are

shown in Figure 4.6. When y = ηmin the expected number of probes prior to
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convergence is given by Equation 4.2.

���� ��
��p(b)

(x, y) (x+ 1, y)

p(a)

Figure 4.6: State transitions for node 2 in the triplet network when y = ηmin

ex,y = 1 + pex+1,y + (1− p)ex,y

ex,y − (1− p)ex,y = 1 + pex+1,y

pex,y = 1 + pex+1,y

ex,y =
1

p
+ ex+1,y if y = ηmin (4.2)

The second boundary condition occurs when the population size has reached

ψmax: x+ y = ψmax. The change in the reproduction operator that occurs as the

population approaches ψmax as discussed in Section 3.2.4, is not considered

here; its only effect would be to clamp the growth at 95% of ψmax. When the

population size is at ψmax, forwarding a parasite on link b does not cause the

state to change, as the population has no room for the parasite to reproduce

when it returns. However, the state can still transition downward in response

to removing a parasite favoring link a. The state-transition diagram is shown

in Figure 4.7. The expected number of probes prior to convergence is given by

Equation 4.3.

ex,y = 1 + pex,y + (1− p)ex,y−1
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Figure 4.7: State transitions for node 2 in the triplet network when x+y = ψmax

(1− p)ex,y = 1 + (1− p)ex,y−1

ex,y =
1

1− p
+ ex,y−1 if x+ y = ψmax (4.3)

The final boundary condition occurs when the population is within the con-

vergence region, t < x
x+y

. In this case, the expected number of probes prior to

convergence is zero.

ex,y = 0 if x
x+y

> t (4.4)

By combining these boundary conditions the expected number of probes

may be calculated by progressing from right to left, bottom to top through the

feasible space, beginning with the point (ψmax− ηmin, ηmin). This point must be

in the target space, i.e., t < ψmax−ηmin
ψmax

< 1− ηmin
ψmax

, or the target t is unreachable.

If the target is reachable, eψmax−ηmin,ηmin is zero by Equation 4.4. The point to the

immediate left, (ψmax − ηmin − 1, ηmin), is either in the convergence region or,

if outside, may be obtained by using the value for eψmax−ηmin,ηmin and Equation

4.2. The other values on the line y = ηmin may be calculated in this manner,

moving from right to left (decreasing x). Once this row is complete, the value

for (ψmax − ηmin − 1, ηmin + 1) may be calculated using eψmax−ηmin−1,ηmin and

Equation 4.3. The remaining points to the left may be calculated using Equation
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Listing 4.1: Routine to calculate the expected number of probes required to
converge for the triplet network
int EstimateProbes(target t ) {

i=rinit
for(y=rmin;y<=i;y++) {

for(x=pmax−x;x>=i;x−−) {
p=x/(x+y)
if p>=t e[x,y]=0
else if ( y=rmin) then e[x,y]=1/p + e[x+1,y]
else if ( x+y=pmax) then e[x,y]=1/(1−p) + e[x,y−1]
else e[x,y]=1 + p∗e[x+1,y] + (1−p) ∗ e[x,y−1]
end if

end for
end for
return e[ i , i ]
}

4.1. This process repeats, moving up one row at a time, until the expected

number of probes for the initial state, eηinit,ηinit , is calculated. Pseudo-code for

this process is shown in Listing 4.1.

Using this routine the expected number of probes may be calculated given

values for t, ηmin, ηinit, and ψmax. For example, if ηmin = 25, ηinit = 100, and

ψmax = 1000 then the expected number of probes prior to 95% of the traffic

going over link b is 459.8. Maintaining the assumption that no two packets are

in the network at the same time and assuming a nominal round-trip time of

10ms, this could represent up to 5 seconds of delay prior to convergence.

4.3.1 Counting Routing Errors Only

The above analysis counts the total number of probes and does not distin-

guish between sending packets toward link a and sending packets toward link
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b. Only those packets sent toward link a are routing “mistakes.” Therefore,

another relevant metric is the expected number of incorrectly routed packets

toward link a prior to the system converging. The expected number of probes

sent toward link amay be derived in a manner similar to how the total expected

number of probes was derived. The expected number of probes toward link a,

e′i,j , is the weighted sum of the number of probes expected for the state imme-

diately to the left, e′i+1,j , and one plus the expected number of probes from the

state immediately below, e′i,j−1. One is added to the quantity associated with

the state below to account for the probe sent toward link a which resulted in

the state transition. The former quantity is associated with a probe toward link

b and therefore does not include an increment. The boundary conditions may

be adjusted in a similar manner. The new set of equations can be formulated as

follows.

e′x,y =



0 if x
x+y

> t

1
p

+ e′x+1,y − 1 if y = ηmin

e′x,y−1 + 1 if x+ y = ψmax

pe′x+1,y + (1− p)(e′x,y−1 + 1) otherwise

(4.5)

Using the same values for ηmin, ηinit, and ψmaxas above, of the expected 459.8

probes, 80.0 are expected to be toward link a.

4.4 Empirical Results

The system can be simulated to validate these results. Because of the assump-

tion that only one packet is in the network at a time, the simulation system is
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Listing 4.2: Simulator to count probes
int CountProbes(target t) {

i=0 # probes
a=0 # probes toward a
x=rinit # parasites favoring link b
y=rinit # parasites favoring link a
p=.5 # probability of choosing link b
while (p<t) {

if ( random(0,1) < p ) {
x=x+1 if (x+y)<pmax
} else {

y=y−1 if y>rmin
a=a+1
}
i=i+1
p=x/(x+y)
}
return i ,a
}

relatively easy to code. The state of the system is recorded in two variables:

one keeping track of the number of parasites favoring link a and one keeping

track of the number of parasites favoring link b. Looping until the percentage

of parasites favoring link b reaches the target threshold, the system randomly

selects a parasite and either removes it if the parasite favors link a or duplicates

it if the parasite favors link b. Simple counters provide the number of steps it

requires to converge. The code for the simulator is shown in Listing 4.2.

The above program was executed 1000 times. The average number of probes

prior to convergence was 460.2. The average number of probes toward node a

was 80.3. These results match the predicted behavior of 459.8 and 80.0.
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4.5 Understanding the Effects of the Parameters

One benefit of being able to express the performance of the heuristic in math-

ematical terms is the insight this provides into the effects of the heuristic’s pa-

rameters on its performance. This section focuses on the effects the values of

ηmin, ψmax, ηinit, and ω have on convergence.

4.5.1 Minimum Representation

The minimum representation of the population affects how often the algorithm

will explore a link that has previously performed poorly. Thus, one should ex-

pect that increases in ηmin should increase the number of steps prior to conver-

gence. If t is the convergence threshold, increasing ηmin beyond (1− t)ψmax will

result in a system that cannot converge, as the percentage of parasites favoring

link a will always be greater than t:

1− ηmin
ψmax

< 1− (1− t)ψmax
ψmax

< t.

Thus, the probability of sending traffic on the link toward b will always be less

than the convergence threshold, t. Lowering ηmin beyond a certain point also

has diminishing returns. The minimum value for ηmin may be estimated by

calculating the highest probability path from the initial state to when it enters

the convergence region. If ηinit is greater than (1 − t)ηmin, then it is impossible

for the system to reach ηmin parasites favoring link a prior to reaching its target
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state. Therefore, lowering ηmin further will not have any effect on the expected

number of decisions prior to convergence. However, it will continue to affect

the steady-state rate at which bad decisions are made after convergence.

4.5.2 Maximum Population Size

The maximum population size may also affect the expected number of steps

to converge if it is small enough that the boundary condition for Equation 4.2

is met. When this happens the rate at which the system is approaching con-

vergence slows, as the successful parasites are not reproducing. As parasites

favoring link a are taken from the population, the state transitions downward

and once again parasites favoring link b may reproduce. In general, if it is

likely that the maximum population will be reached prior to convergence, con-

vergence takes slightly longer than if the population limit did not exist.

4.5.3 Initial Population

The value for ηinit needs to be somewhere between ηmin and ψmax
n

where n is the

number of interfaces: two in this case. If ηinit is too close to ηmin, it is likely that

the state of the system will hit the line y = ηmin. Being on this line represents

a slower convergence path because no additional parasites favoring link a can

be removed from the population. However, as ηinit approaches ψmax the like-

lihood of the population reaching ψmax increases. Reaching ψmax implies more

steps to convergence because good parasites are not being allowed to repro-
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duce. Clearly an optimal value of ηinit exists for given values of ψmax and ηmin.

Finding this value is not considered in this research.

4.5.4 Sample Rate

The sample rate, ω, will affect the amount of time required to converge. All of

the previous discussion has counted the number of routing decisions. Implied

was that each of these probes involved attaching a parasite. With sampling,

not every packet will be assigned a parasite; therefore, the number of packets

routed prior to convergence will be higher than predicted in the above analy-

sis. Using fixed-interval sampling, if the system is sampling 480 packets per

second, one could expect the system to converge within 1 second. If it is sam-

pling 48 packets per second, the expected time to convergence would be 10

seconds. Convergence time is thus inversely proportional to the sampling rate.

4.6 Chapter Summary

This chapter has provided the reader with a state-based analysis of a simple

triplet network. The triplet network offers a topology for which meaningful

analytic results may be obtained. These results may be used to predict the con-

vergence time and also provide insight into the effects of some of the heuris-

tic’s parameters. In addition, the state model may be used to demonstrate loop

avoidance.
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The topology, although simple enough to be easily analyzed, is not a good

representation of the types of networks in which the heuristic would realisti-

cally be used. The next two chapters discuss the performance of the heuristic

on increasingly complex topologies.
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Chapter 5

Analysis of a Ring Network

This chapter examines the performance of the proposed heuristic on a specific

instance of a ring network. Like the triplet network, this topology is simple

enough that meaningful analytic results may be obtained. In addition to its

simplicity, the ring topology and the chosen link attributes combine to demon-

strate two shortcomings of typical shortest-path-based techniques: the inabil-

ity to non-uniformly distribute traffic across multiple paths and the inability

to adapt routing based on link utilization. The proposed heuristic is shown to

perform well with respect to both of these limitations.

The chapter begins with a derivation of the expected average delay of pack-

ets in the network: a function of both the amount of traffic and the way in

which it is distributed. Using these results the expected delay for each of the

three shortest-path scenarios may be predicted as a function of the size of the

input flows. These results are verified empirically using a discrete-time simula-

tion system. The heuristic is also simulated, and its performance is contrasted
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with that of the shortest-path approach. Detailed analysis of the heuristic’s

operation is provided. The chapter concludes with a study of the heuristic’s

ability to readapt after a topological change.

5.1 Topology
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40 Mb/s
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Figure 5.1: Ring network topology

A diagram of the instance of a ring network used in this chapter is shown

in Figure 5.1. The traffic matrix is comprised of two flows, one from node 0 to

node 5 and the second from node 5 to node 0. Two loop-free paths are available

to each flow. The path using nodes [1, 2, 3, 4] is referred to as the low-delay

path while the path using nodes [6, 7, 8, 9] is referred to as the high-capacity

path. The link attributes (delay and bandwidth) were chosen to highlight the

tradeoffs associated with setting metrics in shortest-path routed networks.
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A path’s capacity is constrained by its minimum capacity link. In this case

the low-delay path is constrained to 10 Mb/s while the high-capacity path is

three times as large. The constraining link in each path is equidistant from

the path endpoints. This placement was chosen such that the path endpoints

could not detect congestion by observing local queue lengths. The magnitude

of the capacities was chosen to be large enough to represent realistic (although

small) wide-area network circuits while being small enough to have meaning-

ful queuing delay.

Two opposing flows are used to ensure that the impact of the overhead asso-

ciated with the feedback is felt. Congestion in the feedback path could poten-

tially affect both the adaptation and performance of the heuristic, as feedback

packets compete for resources with packets carrying data. Without opposing

flows, the feedback overhead would not have a negative effect.

In addition to having more capacity, the high-capacity path has larger prop-

agation delay. This highlights a potential dilemma for path selection: the opti-

mization of one objective may prevent the optimization of another. The prop-

agation delay on the high-capacity path was set to be three times that of the

low-delay path, making it significantly worse from the perspective of delay.

The magnitude of the propagation delays were chosen such that the composite

delay is on the order of what might be expected on a network path across the

United States.
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5.1.1 Defining the Shortest Path

Defining the shortest path implies an understanding of what is considered

“short,” or what is to be optimized. Because of the values used for link ca-

pacities and delays, the path that minimizes delay is not the same path that

maximizes available capacity. The link metrics could be set as a function of de-

lay, in which case all traffic would be routed over the low-delay path; or they

could be set to be inversely proportional to the capacity, in which case all traffic

would flow over the high-capacity path. The only other option would be to

set the metrics such that each path had equal cost, dividing the traffic evenly

between the two paths. This would provide a compromise between delay and

capacity. In typical shortest-path algorithms there are no other options for dis-

tributing the flow. This presents a problem if the size of the flow exceeds the

capacity of the high-capacity path. To route this amount of traffic without loss,

the system needs to use both paths; but using them equally would result in loss

on the low-delay path once the flow exceeded 20 Mb/s. Non-uniform distri-

bution of the flows, referred to as non-minimal routing, would be capable of

facilitating nearly 40 Mb/s of traffic by placing one quarter of the traffic on the

low-delay path and routing the remaining three quarters of the traffic on the

high-capacity path.

In addition to the inability to split the traffic non-uniformly, typical shortest-

path approaches suffer from an inability to automatically adjust based on traf-

fic. Adaptive routing protocols, such as EIGRP[2], incorporate link utilization
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into the link metrics, but, most widely used routing protocols are relatively

static and independent of load. For the ring network considered in this chap-

ter it would be beneficial to switch between the three possible shortest-path

solutions based on the size of the flow, even if the routing algorithm is non-

minimal. If the flow were less than 10 Mb/s, the low-delay path would be

used. If the flow were over 10 Mb/s and under 20 Mb/s, the traffic would be

split between both paths. For flows over 20 Mb/s, the traffic would be routed

over the high-capacity path. While it is easy to make this determination for

the simple topology being considered in this chapter, in larger, more complex

topologies, it is much more difficult to develop a strategy for changing paths

based on flow size. Automating this process while retaining stability is also a

difficult task.

5.1.2 Expected Delay Analysis

The delay along any path may be modeled as the sum of the processing, queu-

ing, transmission, and propagation delays. This research assumes that the pro-

cessing delay is negligible compared to the queuing and the propagation de-

lays. The transmission delay is embedded in the queuing delay formula as the

service time. For paths comprised of high-capacity wide-area network (WAN)

circuits with relatively low utilization, the delay is dominated by the propaga-

tion component. Only for lower capacity or heavily loaded circuits must the

contribution of queuing delay be considered.
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For a system having a Poisson arrival process and exponentially distributed

packet sizes, the expected queuing delay can be approximated using Klein-

rock’s independence assumption[50] to be 1
µC−λ where 1

µ
is the average packet

size, C is the link capacity in bits per second, and λ is the expected packet rate.

As µC approaches λ, the queuing delay increases until the queue’s capacity is

exceeded. At this point packet loss begins and the expected delay for packets

not being dropped levels off at q
C

, where q is the queue size (in units compatible

to C). For this work, the queue size is set to be large enough to queue 333 ms

of traffic. Further increases in flow size will not affect the delay on the output

queue; only the packet loss will increase.

The expected delay on path p, where p is the vector of edges comprising the

path, may be expressed as

d(p) =
|p|∑
i=1

dpi + min
[

1

µCpi − λpi
,
qpi
Cpi

]
(5.1)

where dpi is the propagation delay of the ith link on path p, Cpi is its capacity,

and qpi is its queue size. λpi is the packet rate presented to the ith link in the

path. In the case of the ring network, for all but the first link in the path, λpi is

the minimum of the flow rate presented to the previous link in the path and the

capacity (in packets) of that path. Let fp be the amount of traffic routed toward

the first link in path p.

λ1 = µfp (5.2)

λi = min[µCi−1, λi−1] (5.3)
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The expected average delay for packets in a flow being routed over multi-

ple paths is the weighted average of the delay for each path. Let z(p) be the

probability of taking path p.

d =
∑
p∈P

z(p)d(p) (5.4)

P represents the set of all paths. Using these equations the expected delay

may be calculated for each possible combination of flow size and path distri-

bution. The expected delay may be plotted as a function of two variables: the

flow size and the probability of taking the low-delay path. Figure 5.2 plots the

expected delay against these two variables. In this plot the y-axis represents

the size of the flow and the x-axis represents the probability of a packet being

routed on the low-delay path. The z-axis represents the expected average delay.

The green surface represents the area in which the system does not experience

packet loss. The red surfaces represent combinations of load and flow distribu-

tion that result in packet loss. The height of each of these two red surfaces is a

function of queue size, which for this analysis was set to queue 333 ms of traf-

fic. Superimposed on the surface are four lines. The black line represents the

optimal delay for each value of offered load. The other three lines follow the

expected delays as a function of load for the three potential solutions available

if shortest-path routing is used: all the traffic going over the high-capacity path,

half the traffic going over each path, or all the traffic going over the low-delay

path.
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Figure 5.2: Delay surface for routing in the ring network

This plot illustrates some of the limitations of standard shortest-path-based

approaches. Each of the three shortest-path solutions has a different region for

which it provides a suitable solution. For less than 10 Mb/s of flow, all the

packets may be routed on the low-delay path with no expected packet loss.

As the flow approaches 10 Mb/s, however, the delay increases and the better

solution becomes the one that divides the traffic evenly between both paths.

As the flow approaches 20 Mb/s, the half going over the low-delay path ap-

proaches 10 Mb/s and, once again, significant queuing delay occurs. This is

the point at which the best delay may be expected by routing all the traffic over

the high-capacity link. Typically, shortest-path algorithms do not adapt based

on link utilization; therefore, the safest choice would be to route all traffic on

the high-capacity path, as avoiding packet loss is typically more important than

minimizing delay.
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Another limitation illustrated by this analysis is that none of the shortest-

path-based solutions is able to operate when more than 30 Mb/s of flow is

present. The inability to non-uniformly distribute traffic over multiple paths is

a key limitation of standard shortest-path-based techniques.

One may observe from this surface that there are drawbacks to precisely

selecting the optimal operating point. Assume that the routing system detects

20 Mb/s of flow. The optimal distribution for this amount of traffic puts 46% of

the traffic on the low-delay path. The average delay for the system is predicted

to be 54 ms. If the flow estimate was off by 10%, or if the flow changes by

10% to 22 Mb/s, the average delay will increase by almost 400% to 206 ms.

Similarly, if the algorithm used to calculate the optimal distribution was off

by 10%, resulting in a distribution of 50.6% of the traffic being routed on the

low-delay path, the average delay for the flow becomes 219 ms. Packets being

routed on the low-delay path experience an average delay of 359 ms.∗ This

sensitivity can be explained by observing the surface and the line representing

the optimal solution. The optimal solution follows a path relatively close to

areas for which the delay rapidly increases. Based on the confidence in the

flow predictions, one might choose to over-estimate the flow being input to the

optimization algorithm in order to avoid loss in the event the estimate was too

low. If there was little confidence in the ability to predict flow size accurately,

then the solution which distributes traffic in support of the maximum flow size

would be the safest choice.

∗This result assumes the queue size to be large enough to hold 333 ms of data.
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5.2 Simulation Results for a Static System

The empirical study of the ring network begins with a study of the routing be-

havior for a static system, where neither the flows nor the topology changes.†

This section compares the predicted performance of the shortest-path tech-

niques to the actual performance measured with the simulator. This demon-

strates the analytic models are consistent with the empirical results and builds

some confidence in the accuracy of the simulator. The shortest-path trials are

followed by experiments using both the delay-agnostic and delay-aware heuris-

tics. Empirically observed properties of the heuristic are discussed.

5.2.1 Measured Delay for Shortest-Path Routing

The discrete-time network simulator was used to measure the average delays

experienced by packets in the ring network. Independent simulations were

performed with flows ranging in size from 1 Mb/s to 40 Mb/s. Each of the

three possible shortest-path flow distributions was simulated for 60 seconds.

Figures 5.3, 5.4, and 5.5 show predicted versus measured delays for routing the

flows over the low-delay path, over the high-capacity path, and equally across

both paths. Each line ends when packet loss exceeds 2%. The optimal average

delay is provided as a reference on each plot.

The correlation between the measured and the calculated delays suggests

that the system modeled by the simulator is consistent with the system mod-

†The flows and topology actually change once: they appear at time zero.
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Figure 5.3: Measured vs. calculated delay for shortest-path approach using the
low-delay path
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Figure 5.4: Measured vs. calculated delay for shortest-path approach using the
high-capacity path
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Figure 5.5: Measured vs. calculated delay for shortest-path approach using
both paths equally

eled by the mathematical analysis. This, however, provides little evidence that

the modeled systems match reality. Both systems could be consistently inaccu-

rate. Some confidence is gained from the fact that the mathematical analysis is

based on well-established principles[50].

5.2.2 Measured Delay for the Heuristic Approaches

Simulations were run for both the delay-agnostic and delay-aware variations of

the heuristic approach. The parameter values used were presented previously

in Table 3.1. As before, an independent simulation lasting 60 seconds ran for

each value of flow size. The average delays were plotted until packet loss ex-

ceeded 2%. Figure 5.6 plots the measured delays for both heuristic variations.

The delay-aware variation has better performance for most of the values of
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load. The delay-agnostic variation tries only to find a solution for which there

is no packet loss, and therefore has larger variance for average delay. The vari-

ance of the delay-agnostic variation of the heuristic for multiple simulations

using the same flow size is presented in Section 5.2.5.
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Figure 5.6: Delay vs. load plot for both heuristic methods

Figure 5.7 presents each of the three shortest-path approaches and the two

heuristic approaches on one graph. For flows under 10 Mb/s the best solu-

tion is the shortest-path approach that routes all of the packets over the low-

delay path. The heuristic approaches are close to optimal. As the utiliza-

tion approaches 10 Mb/s the queuing delay on the low-delay path increases

rapidly, and the solution that routes all traffic over the low-delay path becomes

suboptimal. After 10 Mb/s, with the exception of a small region prior to 20

Mb/s where the load-balanced shortest-path approach is optimal, the delay-

aware variation of the heuristic approach finds a better solution than any of the

76



0

0.05

0.1

0.15

0.2

0 10 20 30 40

de
la

y

�

Mb/s

optimal
delay-agnostic

delay aware
spf delay

spf capacity
spf mix

Figure 5.7: Combined delay vs. load plots for the ring network

shortest-path techniques. The delay-agnostic approach does a reasonable job

minimizing delay, even though it does not explicitly try to do so.

In addition to average delay, another performance metric is the range of

flow sizes for which the algorithm is capable of routing traffic without signifi-

cant loss. For this measure, the shortest-path approach that routes all packets

on the low-delay path has a range of less than 10 Mb/s, the shortest-path ap-

proach that equally divides the traffic over the two paths has a range of less

than 20 Mb/s, and the shortest-path approach that routes all traffic over the

high-capacity path may operate up to 30 Mb/s. Both variations of the heuristic

operate without loss over a range of 35 Mb/s.
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5.2.3 Delay Variance Between Packets

Each of the above plots aggregate all the packet statistics for a given value of

flow size into a single point. Figures 5.8, 5.9, 5.10, 5.11, and 5.12 plot a sampling

(10%) of the delays experienced by packets in a 15 Mb/s flow going from node

0 to node 5. Packet loss is not shown on the plots. In the plot for the shortest-

path approach that routes traffic entirely over the low-delay path (Figure 5.8),

the effect of queuing is readily observed. The expected delay quickly rises to

the queuing capacity and then holds constant. Packets routed by the shortest-

path approach that sends all traffic over the high-capacity path (Figure 5.9)

have a very stable delay, that of the high-capacity path. In most instances this

is a desirable property, as packet ordering is likely to be affected if there is large

variation in the expected delay. Section 7.2.2 discusses the issue of reordering

in greater detail. Figure 5.10 shows the delays experienced by packets being

routed by the shortest-path approach that divides the traffic evenly over the

two paths. In this case the two distinct path delays can be observed.

The plots for both heuristic approaches have some interesting artifacts. Sim-

ilar to the shortest-path approach using both paths, large numbers of pack-

ets experience delay equal to one of the two path delays. A small number of

packets is grouped together with a delay equal to approximately the full-path

delay plus twice the link delays. These groupings are a result of packets being

looped back toward the source. Because each link along each path has the same

amount of delay, it does not matter which link loops the packet back: each will
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Figure 5.8: Sampled packet delay for a 15 Mb/s flow using the shortest-path
approach routing all traffic on the low-delay path

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

de
la

y

�

time

Figure 5.9: Sampled packet delay for a 15 Mb/s flow using the shortest-path
approach routing traffic on the high-capacity path
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Figure 5.10: Sampled packet delay for a 15 Mb/s flow using the shortest-path
approach routing traffic on both paths equally
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Figure 5.11: Packet delay for a 15 Mb/s flow using the delay-agnostic heuristic
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Figure 5.12: Packet delay for a 15 Mb/s flow using the delay-aware heuristic

add a constant amount of delay to the packet. If each link had different delays

the groupings would be harder to observe. If the second node in the path is

the one to loop the packet back, then node 0 again may choose between the

two paths. This results in groupings of packet delays 10 ms above the delay

grouping for the low-delay path and 30 ms above the delay grouping for the

high-capacity path. It may be observed in the plots for the heuristic that neither

path is utilized enough to have significant queuing delay.

The distribution of packet delays is difficult to observe in the previous plots

because multiple points may land directly on top of each. A better indicator of

delay distribution may be obtained from a boxplot showing Tukey’s 5-number

summary[80] for each method.‡ Boxplots for flow sizes of 5, 15, 25, and 35 Mb/s

are shown in Figures 5.13, 5.14, 5.15, and 5.16 respectively. In these and all

‡Tukey’s 5-number summary is the minimum, lower quartile, median, upper quartile, and maximum.
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subsequent figures, the label ga is the delay-agnostic variation of the heuristic,

gd is the delay-aware version, sd is the shortest-path algorithm with metrics set

to route all its traffic on the low-delay path, sm is the shortest-path algorithm

with metrics set to distribute the traffic equally on the two paths, and sc is

the shortest-path algorithm with metrics set to route all the traffic on the high-

capacity path.
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Figure 5.13: Tukey boxplots for all approaches with 5 Mb/s flows

These boxplots illustrate that the spread of packet delay for the heuristic

approaches is wider than for the shortest-path approaches. The variance in

the shortest-path approaches is primarily a function of the packet sizes, which

are exponentially distributed. Some variance might also be attributed to occa-

sional queuing. For the shortest-path approach that uses both paths equally, the

packet-delay distribution is bimodal with a peak at each of the path’s propaga-

tion delays. The spread in the heuristic methods is caused by multiple factors.
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Figure 5.14: Tukey boxplots for all approaches with 15 Mb/s flows
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Figure 5.15: Tukey boxplots for all approaches with 25 Mb/s flows
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Figure 5.16: Tukey boxplots for all approaches with 35 Mb/s flows

In addition to the variance mentioned above, packets routed by the heuristic

might experience large delay variance as a result of suboptimal path selection.

The heuristic uses mutation to explore other potential solutions, and such mu-

tation causes some percentage of the packets to be routed along suboptimal

paths. For these experiments the mutation rate was set to be .5%. This implies

the probability of a packet traveling five hops without taking a “mutant” path

is .9955 = .975. However, since mutation randomly selects an egress link, and

one of the two choices is good, the probability of making a bad choice after con-

vergence is 1 − .99755 = .9876. In a network with longer paths or nodes with

higher degrees, the probability of “bad mutation” increases.
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5.2.4 Population Stability over Time

The populations in the heuristic approach change over time. The stability of

these populations is important if consistent routing performance is desired.

This section evaluates the stability of the populations. The shortest-path tech-

niques are stable over time due to the fact that the routing does not change.

Figures 5.17, 5.18, 5.19, and 5.20 plot the probability that node 0 will route to-

ward node 1 traffic destined to egress on node 5 (node 0 PDF). The node 1 PDF

is plotted versus time for flow sizes of 5 Mb/s, 15 Mb/s, 25 Mb/s, and 35 Mb/s

respectively. In each plot, the optimal percentage of traffic to send toward node

1 is shown, as are the upper and lower values for the PDF for which no packet

loss is expected. This feasibility region narrows as the flow size increases. The

shortest-path PDFs are not included, but could be represented by three straight

lines at y = 0 (all traffic over the high-capacity path), y = .5 (equally dividing

the traffic over both paths), and y = 1 (all traffic over the low-delay path).

The PDFs for each of the operating points are stable for both variations of the

heuristic. The approach attempting to minimize delay experiences some minor

oscillations as it continues to probe the low-delay path for additional capac-

ity. The delay-agnostic variation of the heuristic exhibits good stability. This is

because there is no mechanism beyond mutation encouraging the population

to change once it has found a loss-free solution. The exception to this is at 39

Mb/s, where the approach seems to bounce around in search of the feasible

solution. This result is shown in Figure 5.21.
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Figure 5.17: Percent of population favoring link toward node 1 for 5 Mb/s flow
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Figure 5.18: Percent of population favoring link toward node 1 for 15 Mb/s
flow
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Figure 5.19: Percent of population favoring link toward node 1 for 25 Mb/s
flow
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Figure 5.20: Percent of population favoring link toward node 1 for 35 Mb/s
flow
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Figure 5.21: Percent of population favoring link toward node 1 for 39 Mb/s
flow

In general it may be concluded that the heuristic approaches are reasonably

stable for this ring topology. However, questions remain regarding the stability

of the approaches in the presence of a changing topology or traffic matrix. In

these cases it may be desirable for the population on node 0 to adapt quickly in

response to the external changes. However, rapid response may lead to hyper-

sensitivity and oscillations. A study of the behavior of the heuristic in a more

fluid environment is included in Section 5.3.

5.2.5 Solution Variance for the Delay-Agnostic Heuristic

Because the delay-agnostic heuristic seeks only to minimize loss and does not

consider the delay experienced by the packets, one would expect the solution

chosen by this approach to be randomly selected from the PDFs for which loss
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is not expected. This section attempts to quantify the randomness of the solu-

tions chosen by this heuristic.

To study the delay variance of the delay-agnostic variation of the heuristic,

100 simulations were run for flow sizes of 5, 15, 25, and 35 Mb/s. Histograms

for each are shown in Figures 5.22, 5.23, 5.24, and 5.25.
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Figure 5.22: Histogram for 100 runs of delay-agnostic heuristic with 5 Mb/s
flows

These results demonstrate that the delay-agnostic approach operates within

the feasibility envelope, as one would expect. Although it does not seek to min-

imize delay, the approach tends toward the low-delay solutions. This is most

likely due to the fact the approach shares some characteristics with simulated-

annealing-based techniques[60]. As the populations move from their initial

uniform distribution toward a distribution which does not result in packet loss,

they do so in relatively small increments.
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Figure 5.23: Histogram for 100 runs of delay-agnostic heuristic with 15 Mb/s
flows
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Figure 5.24: Histogram for 100 runs of delay-agnostic heuristic with 25 Mb/s
flows
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Figure 5.25: Histogram for 100 runs of delay-agnostic heuristic with 35 Mb/s
flows

5.2.6 Static Ring Topology Summary

This section has demonstrated that the proposed heuristic is capable of finding

near-optimal solutions for routing in the ring network in a static environment.

This is an important conclusion; without it there would be little purpose in

studying the more difficult problem of routing in a dynamically changing net-

work topology. Real-world networks are rarely static; rather, they are fluid and

changing. The next section of this chapter examines the behavior of the heuris-

tic in the presence of change.

5.3 Simulation Results for a Dynamically Changing Network

The above analysis focuses entirely on a static system, as neither the flows nor

the topology is changing during the simulation. This section examines the be-
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havior of the heuristic in the presence of change and determines whether or not

the heuristic can reconverge. Very fast convergence may lead to oscillations, a

problem that could be made worse by carefully timed traffic bursts, creating a

potential denial-of-service attack. In general, good solutions tend to be quick to

pessimism and slow to optimism, meaning, if something bad is happening it is

important to change quickly, but if it appears there is a better solution, proceed

slowly and with caution.

This section looks at the effect of a single dynamic: adding a new link to

the network after convergence. Appendix B contains the simulation results for

other dynamics, including removal of a link, change in flow rate, and change

in path capacity. The real-world behavior of rapidly changing flow sizes is not

studied in this research. It represents an important real-world problem and

the ability for the heuristic to operate in such an environment is left for future

research.

5.3.1 The New Topology

The dynamic considered in this section is that of adding a new path to the

ring network. A path could be added in numerous places, each challenging

the heuristic in a different way. This research considers the case of adding a

path between nodes 1 and 4 with 30 Mb/s of capacity and 5 ms of delay. The

resulting topology is shown in Figure 5.26.

The path is added after the original network has been operating for 10 sec-

onds in the presence of 35 Mb/s flows. The flow size of 35 Mb/s was chosen
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Figure 5.26: Ring topology with added link

to cause the network to be running near peak capacity. Once the new path is

added, node 0 may send more traffic toward node 1. Since the two paths that

pass through node 1 have 40 Mb/s of combined capacity with lower delay to

that experienced on the path through node 9, nearly all the traffic in the flow

from node 0 to node 5 should be routed toward node 1. Figure 5.27 shows the

measured behavior of both variations of the heuristic.

For the first few seconds the delay-agnostic variation of the heuristic looks

for a loss-free solution. After about 5 seconds, node 0 converges on a solution

that sends approximately 8.75 Mb/s of traffic toward node 1 and 26.25 Mb/s

toward node 9. This distribution of traffic results in no steady-state packet

loss, and the solution is stable through the first 10 seconds. Once the new

link is added the heuristic does not seek to reconverge: it is not experiencing
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Figure 5.27: Portion of population on node 0 favoring link toward node 1,
delay-aware and delay-agnostic

packet loss and because it is delay-agnostic there is nothing else to influence it

to change.

The delay-aware variation of the heuristic operates in a similar way for the

first 10 seconds, finding a near-optimal solution. However, after the new link

is added the delay-aware heuristic slowly begins to adapt to use the newly cre-

ated path. The behavior is in accordance with the design goal to react quickly

to negative news and react slowly to positive news. Because the system has

found a loss-free path, moving with caution to a new path with less delay is

acceptable.

An important question to answer is whether the behavior of the delay-aware

variation of the heuristic can be accurately predicted. Is there a model that

describes how fast it will learn to use the new path? The following section
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presents such a model. This analysis will focus on parasites associated with the

destination of node 5.

5.3.2 Understanding the Effect of Round-Trip Time

First observe that the behavior of nodes 0 and 1 are interdependent. Node 0

relies on node 1 adapting such that traffic sent to it by node 0 is not dropped.

Node 1 relies on node 0 sending it enough traffic to meet its minimum sampling

interval. In addition, node 1’s convergence will be hastened if node 0 sends

too much traffic, triggering the RED operator on the downstream paths. This

section focuses on the effect of round-trip time (RTT) on the populations. The

following section will incorporate the effect of the RED operator into the final

predictive model.

The delay-aware variation of the heuristic is able to react to the topology

change because its reproduction operator rewards parasites that experience

low delay. Because the new path has the lowest delay, the relative represen-

tation of parasites favoring this path is expected to increase. The rate of this

increase can be accurately predicted.

Consider the population on node 1. Define the variable n1,2 to be the number

of parasites on node 1 favoring the link toward node 2. n1,4 is defined to be the

number of parasites on node 1 favoring the link toward node 4. Assume further

that node 1’s population has reached its maximum, ψ = ψmax, and therefore

the reproduction loop is only rewarding parasites that return faster than the

previous parasite.
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From the perspective of node 1, if a returning parasite had been sent toward

node 2 (the longer-delay path) it has about a 50% chance of having experienced

less delay than the previous parasite, providing the previous parasite was also

sent on that same path. Otherwise, if the previous parasite was sent directly to-

ward node 4, there is little chance the returning parasite experienced less delay.

Define p1,2 to be the probability that a parasite sent toward node 2 experiences

less delay than the previous parasite.

p1,2 = .5
n1,2

ψ
(5.5)

Similarly, if the returning parasite had been sent directly to node 4 using

the new link and the previous parasite was sent toward node 2, the returning

parasite will nearly always have lower delay. If the previous parasite was sent

toward node 4, then the returning parasite has a 50% chance of having lower

delay.

p1,4 = .5
n1,4

ψ
+
n1,2

ψ
=
.5n1,4 + n1,2

ψ
(5.6)

The reward for having lower delay than the previous parasite is κ. The ex-

pected increment to node 1’s population favoring the link toward node 2, i1,2,

is κtimes the probability that the packet was sent to node 2 multiplied by p1,2.

i1,2 = κ
n1,2

ψ
p1,2 = κ

n1,2

ψ
(.5
n1,2

ψ
) (5.7)

The expected increment to node 1’s population associated with the new link,

i1,4, can be expressed in a similar way.

i1,4 = κ
n1,4

ψ
p1,4 = κ

n1,4

ψ

.5n1,4 + n1,2

ψ
(5.8)
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In general, the expected increment associated with a parasite type is equal to

the product of the probability that parasite type is chosen, the probability that

the parasite will have favorable delay to the previous parasite, and κ. Using

this logic the expressions for node 0 can be derived.

5.3.3 Predicting the Effect of the RED operator

The RED operator is present to influence upstream routers to send less traffic

on a congested path. In this topology the link between nodes 2 and 3 is likely to

experience some congestion as node 0 increases the amount of traffic it sends

towards node 1. In addition, once node 0 is able to send most of its traffic

toward node 1, the RED operator will also drop some parasites being sent on

the new link toward node 4.

To predict the impact of the RED operator the amount of load on each of

the links must be estimated. The amount of traffic being sent to node 1 from

node 0, τ0,1, is the flow rate, |f |, multiplied by the percentage of parasites in the

population that favor the link toward node 1.

τ0,1 = |f |n0,1

ψ
(5.9)

Similarly, the amount of traffic being sent by node 1 on the link toward node 2

can be defined in terms of τ0,1.

τ1,2 = τ0,1
n1,2

ψ
= |f |

(
n1,2

ψ

)(
n0,1

ψ

)
(5.10)
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Since node 2 will send nearly all its traffic to node 3, τ2,3 will roughly be equal

to τ1,2. The amount of traffic being sent by node 1 on the link toward node 4 is

τ1,4 = τ0,1
n1,4

ψ
= |f |

(
n1,4

ψ

)(
n0,1

ψ

)
. (5.11)

The utilization on the link between nodes 2 and 3 is τ2,3
c2,3

where c2,3 is the

capacity of the link between nodes 2 and 3. The probability of node 2’s RED

operator truncating the parasite string, using the RED parameters defined in

Section 3.3.2, is

ρ2,3 =


τ2,3
c2,3
− .75 if τ1,2

c2,3
> .75

0 otherwise.
(5.12)

Because the link between nodes 2 and 3 is constrained to 10 Mb/s, it is unlikely

that there will be enough traffic on the link from node 1 to node 2 for node 1’s

RED operator to truncate a parasite string on a packet being sent to node 2.§

However, the probability of node 1’s RED operator truncating a parasite string

for a packet being sent on the new link is non-zero, and may occur close to

the end of convergence when node 0 is trying to send nearly 35 Mb/s over the

combined 40 Mb/s of path capacity.

ρ1,4 =


τ1,4
c1,4
− .75 if τ1,4

c1,4
> .75

0 otherwise
(5.13)

From node 0’s perspective, the probability that a parasite sent toward node 1

gets dropped is one minus the probability that the parasite is not dropped by a

RED operator. The probability that a parasite is not dropped by a RED operator

is the joint probability that node 1 does not drop the parasite string for packets

§This might not be the case if other flows were present.
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going toward node 4 and the probability that node 2 does not drop the parasite

string for packets being sent on the link toward node 3.

ρ0,1 = 1− (1− ρ2,3
n1,2

ψ
)(1− ρ1,4

n1,4

ψ
) (5.14)

The increment expected if the parasite is destroyed by RED is negative one.

Therefore, the total expected increment is the weighted average of negative

one and κ multiplied by the probability that the current parasite returned in

less time than the previous parasite, as explained above. The weightings for

the average are the probabilities of each event occurring.

i0,1 =
n0,1

ψ

(
−ρ0,1 + (1− ρ0,1)

[
κ
.5n0,1 + n0,9

ψ

])
(5.15)

i0,9 =
n0,9

ψ

(
κ
.5n0,9

ψ

)
(5.16)

i1,2 =
n1,2

ψ

(
−ρ2,3 + (1− ρ2,3)

[
κ
.5n1,2

ψ

])
(5.17)

i1,4 =
n1,4

ψ

(
κ
.5n1,4 + n1,2

ψ

)
(5.18)

Finally, the population control operator must be considered. At each itera-

tion, the total population on each node must be less than ψ.

The algorithm to predict the behavior of the heuristic iteratively calculates

the parasite composition on nodes 0 and 1. Listing 5.1 shows the logic.

The sample interval, x , is set at pmax−1; the reward factor for low delay, k , is

set to be .25; and the population size, s , is set to ψmax. At t = 10, n1,2 = n12 =

1900, n1,4 = n14 = 100, n0,1 = n01 = 520, and n0,9 = n09 = 1480. Figures 5.28
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Listing 5.1: Routine to predict the convergence of node 0 after new link is added
for t=10 to 60 step x {

u23=(z∗(n01/s)∗(n12/s))/c23
if (u12>.75) {

r12=u12−.75
} else {

r12=0
}

u14=(z∗(n01/s)∗(n14/s))/c14
if (u14>.75) {

r14=u14−.75
} else {

r14=0
}

r01=1−(1−r12∗(n12/s))∗(1−r14∗(n14/s));

i01=(n01/s)∗(−r01+(1−r01)∗(k∗(.5∗n01+n09)/s));
i09=(n09/s)∗(−0 +(1−0) ∗(k∗(.5∗n09 )/s ));
i14=(n14/s)∗(−0 +(1−0) ∗(k∗(.5∗n14+n12)/s));
i12=(n12/s)∗(−r12+(1−r12)∗(k∗(.5∗n12 )/s ));

n01=n01+i01
n09=n09+i09
n12=n12+i12;
n14=n14+i14;

if (n12+n14>s) {
n12=n12−n12/s
n14=n14−n14/s
}
if (n01+n09>s) {

n01=n01−n01/s
n09=n09−n09/s
}
}
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and 5.29 plot the predicted values against the measured values for nodes 1 and

0.¶ In each case the behavior of the heuristic was accurately predicted.
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Figure 5.28: Portion of population on node 1 favoring link toward node 4, pre-
dicted and measured

5.3.4 Dynamic Ring Topology Summary

This section has demonstrated the heuristic’s ability to adapt when a new link

is added to the topology. The delay-agnostic variation did not adapt, as it had

already found a solution with no packet loss and had no reason to search for

a new solution. The delay-aware variation of the heuristic, however, was able

to converge to make use of the new link. This section demonstrated that the

rate at which the new path is adopted can be accurately predicted. The rate

of convergence for the delay-aware variation of the heuristic, 30-40 seconds,

¶The sampling algorithm was modified slightly from what was presented earlier to cause the samples to be taken
at more regular intervals. The original method tended to sample less frequently. Regressive analysis will be provided
in a future paper.
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Figure 5.29: Portion of population on node 0 favoring link toward node 1, pre-
dicted and measured

might seem large. However, this is consistent with the design goal of being

slow to optimism. As long as packets are not being dropped, slow adaptation

is acceptable.

5.4 Chapter Summary

This chapter examined the performance of the proposed heuristic on a specific

instance of a ring network. This topology was simple enough to allow deriva-

tion of meaningful analytic results. In addition, with careful selection of the

ring’s parameters, the topology was useful in demonstrating some of the lim-

itations present in static shortest-path-based routing techniques, namely, the

inability to non-uniformly distribute traffic and the inability to adapt based on

load. The proposed heuristic method was shown to be capable of discovering
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reasonable routing solutions, attributes of which included non-uniform load

sharing and real-time adaptation based on network load. While both the delay-

aware and delay-agnostic variations performed reasonably well through most

of the trials, the delay-aware variation consistently outperformed the delay-

agnostic version. The delay-aware variation exhibited many desirable prop-

erties, including routing that resulted in better average delay and the ability

to converge to a new solution when the current solution was not experiencing

packet loss. Advantages of the delay-agnostic heuristic include implementa-

tion simplicity and reduced packet overhead. While the ring topology studied

was useful for its analytic properties, it is not representative of a generalized

network. The following chapter will examine a more realistic topology.
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Chapter 6

Analysis of a Regional Network

The previous topologies have been useful in establishing the baseline perfor-

mance of the heuristic. However, because of their simplicity, they are poor

representations of real-world networks. In each case the network topology and

traffic matrix were carefully constructed to explore specific properties of the

heuristic. This chapter evaluates the performance of the heuristic on a more

realistic network, a topology similar to what might be found in a nationwide

network in the United States. In addition to the topology being more realistic,

the distribution of link sizes and delays were chosen to be less uniform than

those used in the previous chapters. While this is a step toward a more realistic

topology, it still lacks the intricacies and complexities of a real-world network,

mainly due to the simplified traffic flows. As before, the traffic models used

for this analysis assume exponentially distributed packet sizes and a Poisson

arrival process.
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The chapter is organized as follows: First, the topology of the network is de-

scribed. Next, the heuristic is analyzed with a single flow, multiple flows, and

finally, flows between every pair of routers in the network. For each of these ex-

periments, both the shortest-path solution and the optimal solution were found

and contrasted with the results of the heuristic. For the shortest-path calcula-

tion, the link metrics were set to be the propagation delay of the links. The

metrics of the links were not adjusted further to account for traffic conditions.

This was done to keep the analysis as objective as possible. Real-world net-

works typically have metrics set by human operators who employ various ad-

hoc procedures to determine acceptable metric values. Such behavior is hard

to model or quantify. The chapter concludes with a summary of the results.

6.1 Topology

The network topology considered in this chapter roughly approximates the

topology of a regional network with points of presence in large metropolitan

areas. Although a typical real-world regional network would have multiple

routers in each switch site, the topology designed for this analysis only uses

one router per switch site. This was done to keep the problem simple. The

topology of the network is shown in Figure 6.1.

The number and size of links connecting sites were selected to create a non-

uniform topology with a rough mapping back to reality. The capacities of the

links were chosen to be in the tens of megabits per second, small enough to
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Figure 6.1: Instance of a regional network topology

be easily simulated and have interesting queuing behavior. Due to the compu-

tational requirements, the simulation of the heuristic with higher bandwidth

circuits is left as a topic for future research. The delay for each link was esti-

mated using fiber route miles from a real regional network. Tables 6.1 and 6.2

give the capacities and delays for the network.

6.2 Single-Flow Analysis

The initial tests on the regional topology were with a single flow from nyc→phx.

The purpose of selecting such a trivial traffic matrix was to establish baseline

performance. With a single flow, as will be shown shortly, the optimal solu-

tion can be obtained using non-linear programming techniques. Independent

simulations were performed for three flow rates. Each simulation ran for six

fifteen-second time periods. During each time period statistics were gathered
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src
ana atl chi den fw kc nyc orl pen phx wdc sea sj

ana · · · · 11 · · · · 3 · 13 4
atl · · · · 8 · · 6 8 · 7 · ·
chi · · · 8 · · 9 · 8 · · 19 ·
den · · 8 · · 6 · · · · · · 12
fw 11 8 · · · 5 16 · · 9 · · ·
kc · · · 6 5 · · · 12 13 · · ·
nyc · · 9 · 16 · · · 2 · 2 27 ·
orl · 6 · · · · · · · · 10 · ·
pen · 8 8 · · 12 2 · · · 2 · ·
phx 3 · · · 9 13 · · · · · · 6
wdc · 7 · · · · 2 10 2 · · · 27
sea 13 · 19 · · · 27 · · · · · 10
sj 4 · · 12 · · · · · 6 27 10 ·

Table 6.1: Regional network delay matrix (in ms)

src
ana atl chi den fw kc nyc orl pen phx wdc sea sj

ana · · · · 30 · · · · 10 · 40 45
atl · · · · 30 · · 10 15 · 20 · ·
chi · · · 25 · · 20 · 40 · · 15 ·
den · · 25 · · 20 · · · · · · 15
fw 30 30 · · · 15 25 · · 15 · · ·
kc · · · 20 15 · · · 15 40 · · ·
nyc · · 20 · 25 · · · 40 · 40 40 ·
orl · 10 · · · · · · · · 10 · ·
pen · 15 40 · · 15 40 · · · 30 · ·
phx 10 · · · 15 40 · · · · · · 20
wdc · 20 · · · · 40 10 30 · · · 10
sea 40 · 15 · · · 40 · · · · · 20
sj 45 · · 15 · · · · · 20 10 20 ·

Table 6.2: Regional network capacity matrix (in Mb/s)
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and reported. The state of the system was carried from one iteration into the

next, but not between simulations. The first flow rate was chosen to be small

enough to fit the entire flow on the shortest-delay path. The second flow rate

required the flow to be distributed between a few paths. The final flow rate

required the flow to be distributed across most of the available paths between

the source and the destination. Each flow-rate is discussed in its own section

below.

6.2.1 Small Flow

The best path between nyc and phx is nyc→fw→phx. The capacity on nyc→fw

is 25 Mb/s and the delay is 16 ms. On fw→phx the capacity is 15 Mb/s and

the delay is 9 ms. In order to accurately calculate the optimal average delay,

the queuing delay must be accounted for. Assuming the system is m/m/1, the

queuing delay for node x’s queue facing node y is

k

Cxy − Uxy
(6.1)

where Cxy is the capacity of the link from node x to node y, Uxy is the total

amount of traffic from node x to node y in Mb/s, and k is a constant: the av-

erage packet size in bits. The expected average delay is the sum of the prop-

agation delays on the nyc→fw and fw→phx links and the associated queuing

delays: 25.85 ms.

The first segment in the path, nyc→fw, has a capacity of 25 Mb/s and the

second segment, fw→nyc, has a capacity of 15 Mb/s. The maximum flow size

that can be accommodated by the path is the minimum of these two: 15 Mb/s.
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The initial flow size was chosen to be 10 Mb/s to ensure the entire flow can

fit on the shortest-delay path. Therefore, it is expected that the results for the

shortest-path approach will be near optimal.

The delay results for the nyc→phx 10 Mb/s flow are are shown in Figure 6.2.

The packet loss statistics can be found in Table 6.3. In each of these, opt refers

to the optimal solution, gd is the delay-aware heuristic, ga is the delay-agnostic

heuristic and spf is the shortest-path protocol.
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Figure 6.2: Average delay for 10 Mb/s nyc→phx flow

iteration
1 2 3 4 5 6

opt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
gd 0.0028 0.0000 0.0000 0.0000 0.0000 0.0000
ga 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000

spf 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.3: Packet loss for 10 Mb/s nyc→phx flow
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The average delay and loss for the shortest-path approach matched the op-

timal delay without experiencing any packet loss. The heuristic approaches,

while not perfect, found reasonable solutions. Each variation of the heuristic

was able to adapt within the first fifteen-second interval such that no packet

loss was experienced during subsequent intervals. The percentage of packets

lost during the first interval was under .3% for both approaches.

The delay-agnostic variation of the heuristic converged on a loss-free solu-

tion during the first fifteen-second interval and did not adapt further during the

subsequent intervals. The average delay during the final interval was within

20% of the optimal delay.

The delay-aware variation of the heuristic also converged on a loss-free so-

lution during the first fifteen-second interval. It continued to improve in terms

of delay during the second interval. The remaining four intervals saw little

change. During the final interval the average delay experienced by packets in

the network was within 1% of the optimal solution.

While both heuristic solutions were acceptable in terms of loss, the delay-

aware solution was clearly superior in terms of delay. This heuristic approach

was able to get reasonably close to the optimal solution without having any

foreknowledge of the topology, its delays and capacities, or the flows in the

network.
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6.2.2 Medium Flow

A larger flow was used to study the ability of the heuristic to discover sec-

ondary routes when the flow size exceeds the capacity of the shortest-delay

path. Since the shortest-delay path from nyc to phx can only carry 15 Mb/s, a 25

Mb/s flow was selected for this trial, thus requiring some traffic to be placed on

an alternate path. The optimal solution for the 25 Mb/s flow can be estimated

by assuming just under 15 Mb/s will be sent on the shortest-delay path. After

subtracting 15 Mb/s of capacity from each of the two links in the shortest-delay

path, the second-best path can be found using a standard shortest-path algo-

rithm. The second-best path is found to be nyc→pen→kc→phx. Since this path

has a maximum capacity of 15 Mb/s (pen→kc link is the constraining link) it

will be able to carry the remainder of the flow. The average delay in the system

will be the weighted average of the delays associated with each path. To esti-

mate the optimal delay, assign 13 Mb/s to the shortest-delay path and 12 Mb/s

to the second best path. This results in an average delay of 27.6 ms.

A more accurate estimate of the optimal delay can be found by mathemat-

ically modeling the system as a series of equations and using non-linear pro-

gramming (NLP) techniques to find the minimal average delay. The equations

can be derived as follows. The average delay for a flow from node s destined

for node d is the weighted average of the delays associated with sending traffic

destined for d to each of the neighbors of node s. The weighting factor for each

egress link is the percentage of traffic destined for d sent on that egress link.
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The delay associated with each neighbor is the sum of the amount of time to

get the traffic to that neighbor and that neighbor’s average delay to the destina-

tion. The amount of time required to get a packet to each neighbor is the sum of

the propagation and queuing delays, as described previously. The amount of

delay associated with a neighbor is a function of that neighbor’s own routing

table and the amount of traffic it is receiving.

For the current problem, the average delay for the flow f from nyc to phx

can be expressed as

Df,nyc = Pf,nyc,pen[dnyc,pen +
k

Cnyc,pen − Unyc,pen
+Df,pen]

+ Pf,nyc,fw[dnyc,fw +
k

Cnyc,fw − Unyc,fw
+Df,fw]

+ Pf,nyc,chi[dnyc,chi +
k

Cnyc,chi − Unyc,chi
+Df,chi]

+ Pf,nyc,wdc[dnyc,wdc +
k

Cnyc,wdc − Unyc,wdc
+Df,wdc]

+ Pf,nyc,sea[dnyc,sea +
k

Cnyc,sea − Unyc,sea
+Df,sea] (6.2)

where Pf,nyc,pen is the probability of traffic associated with flow f on node nyc

being sent toward pen, dnyc,pen is the propagation delay for the link between nyc

and pen, Cnyc,pen is the capacity between nyc and pen, k is the average packet

size in bits, Unyc,pen is the total utilization (in bits/second) of the nyc→pen link,

and Df,pen is the average delay from pen to the destination of flow f . The gen-

eralized form is

Df,a =
∑

b∈fs(a)

Pf,a,b[da,b +
k

Ca,b − Ua,b
+Df,b] (6.3)
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where fs(a) is the forward star of node a. In order to create a solvable system of

equations some additional supporting equations are required. First, the egress

interface selection probabilities on each node a for each flow f must sum to

one.

1 =
∑

b∈fs(a)

Pf,a,b ∀a 6= (s, d) (6.4)

Next, a variable is defined representing the amount of traffic associated with

flow f leaving each node a: Tf,a. For all nodes that are not the source or the

destination of the flow, Tf,a can be represented as the sum of all traffic associ-

ated with the flow f entering the node due to the conservation of flow:

Tf,a =
∑

b∈bs(a)

Pf,b,aTf,b (6.5)

where bs(a) is the backward star of a. Two boundary conditions can be defined

for the source and destination of flow, s and d:

Tf,s = |f | (6.6)

Tf,d = 0 (6.7)

where |f | is the size of the flow. These two equations simply state that the entire

flow leaves the source node and none of the flow leaves the destination node.

Finally, Ua,b, the utilization of the link from node a to node b can be defined in

terms of T :

Ua,b =
∑
f∈F

Pf,a,bTf,a (6.8)

where F is the set of all flows.
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Using this set of equations and an NLP solver, the optimal delay for a single

25 Mb/s flow from nyc→phx is found to be 27.5. The estimated value was 27.6.

The solution found by the NLP solver may only be a local minimum. Having

the estimate available is valuable in gaining confidence in the solution. The

optimal solution found by the NLP solver represents a high-confidence guess

at what the minimum delay for the system really is.

Figure 6.3 shows the average delay over the six iterations for each of the

simulated algorithms. Table 6.4 provides the loss statistics measured by the

simulator.
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Figure 6.3: Average delay for 25 Mb/s nyc→phx flow

The shortest-path approach performed poorly both in terms of delay and

loss as the capacity along the shortest-delay path was exceeded. Setting the

metrics to be something other than the propagation delay would have allowed

a better distribution of traffic across multiple paths. Finding the optimal met-
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iteration
1 2 3 4 5 6

opt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
gd 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000
ga 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000

spf 0.3864 0.3852 0.3866 0.3856 0.3867 0.3865

Table 6.4: Packet loss for 25 Mb/s nyc→phx flow

rics, especially when the network has multiple flows, can be difficult if not

impossible. For the purposes of this comparison no attempt is made at such an

optimization. The extremely large delay is a result of full output queues along

the shortest-delay path.

The heuristic approaches performed considerably better. Regarding the pri-

mary objective, to minimize loss, both heuristic approaches were able to con-

verge on a loss-free solution within this fifteen-second interval. During the

first interval both variations of the heuristic approach experienced less than

.2% packet loss.

In terms of delay, the delay-aware variation of the heuristic was able to find a

superior solution to that found by the delay-agnostic variation. During the first

interval both approaches were roughly equal, but during the subsequent inter-

vals the delay-aware heuristic showed continuous improvement, resulting in a

solution that was within 1.5% of the optimal solution, while the solution found

by the delay-agnostic heuristic was only 20% of the optimal solution. Again,

as the delay-agnostic variation of the heuristic makes no effort to optimize in

terms of delay, these results are expected.
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6.2.3 Large Flow

The final test using a single flow was performed with a 75 Mb/s nyc→phx

flow. This flow was large enough to require the use of numerous paths through

the network, including paths that made use of all four ingress links toward

phx. The optimal solution can be found using the same technique described in

Section 6.2.2 and an NLP solver. The minimum average delay was found to be

33.6 ms.

Figure 6.4 shows the average delay over the six iterations for each of the sim-

ulated routing approaches and Figure 6.5 shows the loss over the same period.

Tables 6.5 and 6.6 show the delay and loss measured by the simulator.
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Figure 6.4: Average delay for 75 Mb/s nyc→phx flow

As with the 25 Mb/s flow, the shortest-path approach worked poorly both

in terms of average delay and packet loss. Unlike the 25 Mb/s flow, there is
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iteration
1 2 3 4 5 6

opt 33.60 33.60 33.60 33.60 33.60 33.60
gd 54.23 44.51 42.44 45.43 39.65 39.56
ga 111.99 116.58 111.44 112.98 95.99 39.16

spf 681.92 681.86 681.92 682.26 682.17 682.05

Table 6.5: Average delay for 75 Mb/s nyc→phx flow
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Figure 6.5: Packet loss for 75 Mb/s nyc→phx flow

iteration
1 2 3 4 5 6

opt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
gd 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000
ga 0.0019 0.0005 0.0002 0.0002 0.0000 0.0000

spf 0.7908 0.7915 0.7911 0.7905 0.7914 0.7905

Table 6.6: Packet loss for 75 Mb/s nyc→phx flow
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no apparent equal-cost load-balancing solution for the 75 Mb/s flow because

the smallest ingress link into phx is 10 Mb/s. Therefore, if each of the ingress

interfaces were to be used equally, at most 40 Mb/s of flow could be accom-

modated. Depending on the implementation of equal-cost load balancing of

the shortest-path algorithm, one could potentially have more than four equal-

cost paths from the perspective of nyc where some of these paths had the same

ingress link into phx. Finding such a solution is beyond the scope of this work.

In terms of loss, the delay-aware variation of the heuristic performed better

than the delay-agnostic version. While both were able to keep the packet loss

well under 1%, the delay-aware variation did not experience any loss after the

first iteration. The delay-agnostic version experienced small amounts of loss

during the first four iterations.

In addition to higher loss, the delay-agnostic version also struggled during

the first four iterations to find a solution with good delay characteristics. Dur-

ing the first four iterations the average delay for this version of the heuristic

was over 100 ms. Surprisingly, during the sixth iteration it found a solution

that was superior in terms of delay to that found by the delay-aware version.

Both solutions at this point were a little less than 20% from the optimal solution.

For both versions the simulation was allowed to continue for 10 additional

iterations, representing a composite simulation time of about 4 minutes. Over

these iterations the average delay did not significantly change, with the delay-

aware heuristic averaging 40 ms and the delay-agnostic version averaging 38

ms. These results are consistent with the behavior observed on the heavily
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loaded ring network studied in the previous chapter and indicate a stable con-

vergence.

6.3 Multiple Flows

The purpose of this section is to study the behavior of the heuristic in the pres-

ence of a small number of independent flows competing for network resources.

Four separate experiments were performed, each adding one or more flows to

the previously studied nyc→phx 25 Mb/s flow. Each trial is discussed in its

own section below.

6.3.1 Adding a Flow from fw→phx

Section 6.2.2 deals with a single nyc→phx 25 Mb/s flow. The optimal path

for flow distributes the data nearly equally between the nyc→fw→phx and

nyc→pen→kc→phx paths. For this trial an additional flow is included that

sources traffic at fw destined for phx. With the introduction of this flow there is

insufficient capacity on the fw→phx link for both flows. Therefore, each flow

will need some of its traffic to be distributed on secondary and tertiary paths.

Using previously defined equations and an NLP solver, the minimum average

delay in the network is found to be 24.06 ms.

Figures 6.6 and 6.7 show the average delay and packet loss over the six it-

erations for each of the simulated algorithms. Tables 6.7 and 6.8 provide the

specific values measured by the simulator.
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Figure 6.6: Average delay for 25 Mb/s nyc→phx flow and 10 Mb/s fw→phx
flow

iteration
1 2 3 4 5 6

opt 24.06 24.06 24.06 24.06 24.06 24.06
gd 30.93 26.66 26.62 26.71 26.30 26.30
ga 32.11 28.21 28.19 28.21 28.15 28.20

spf 370.04 361.60 355.55 378.84 360.64 360.59

Table 6.7: Average delay for 25 Mb/s nyc→phx flow and 10 Mb/s fw→phx
flow

iteration
1 2 3 4 5 6

opt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
gd 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000
ga 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000

spf 0.5600 0.5590 0.5585 0.5623 0.5600 0.5610

Table 6.8: Packet loss for 25 Mb/s nyc→phx flow and 10 Mb/s fw→phx flow
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Figure 6.7: Packet loss for 25 Mb/s nyc→phx flow and 10 Mb/s fw→phx flow

Consistent with the observations in Section 6.2.2, the shortest-path approach

performed poorly. Both heuristic approaches converged on loss-free solutions

during the first fifteen-second interval. During this interval the packet loss for

both approaches was well under 1%.

In terms of delay, both versions of the heuristic converged on a stable so-

lution during the second interval, with the delay-aware heuristic performing

slightly better than the delay-agnostic version. The delay-agnostic version found

a solution within 20% of the optimal solution while the delay-aware heuristic

converged on a solution within 10% of the optimal solution.

6.3.2 Adding a Flow from pen→kc

In the previous section the second flow had a common endpoint with the first

flow. This section explores the effect of adding a second flow that does not
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have an endpoint in common with the nyc→phx flow but does share a commu-

nications link in the optimal solutions. The flow chosen for this analysis is a 10

Mb/s flow from pen to kc. The nyc→phx flow needs to use this link as part of its

second-best path, but with the additional traffic from the new flow an alternate

route will need to be discovered.

Figures 6.8 and 6.9 show the average delay and packet loss over the six it-

erations for each of the simulated algorithms. Tables 6.9 and 6.10 provide the

specific values measured by the simulator.
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Figure 6.8: Average delay for 25 Mb/s nyc→phx flow and 10 Mb/s pen→kc
flow

Both heuristic approaches were again able to find loss-free routing solutions

during the first fifteen-second interval, and during this first interval both ap-

proaches experienced well under 1% loss.
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iteration
1 2 3 4 5 6

opt 24.53 24.53 24.53 24.53 24.53 24.53
gd 28.73 27.82 26.99 27.09 27 27.12
ga 28.17 26.92 26.97 27.01 27.07 27.17

spf 237.95 243.37 260.11 238.68 262.80 251.31

Table 6.9: Average delay for 25 Mb/s nyc→phx flow and 10 Mb/s pen→kc flow
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Figure 6.9: Packet loss for 25 Mb/s nyc→phx flow and 10 Mb/s pen→kc flow

iteration
1 2 3 4 5 6

opt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
gd 0.0013 0.0000 0.0000 0.0000 0.0000 0.0000
ga 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000

spf 0.2752 0.2747 0.2746 0.2743 0.2763 0.2760

Table 6.10: Packet loss for 25 Mb/s nyc→phx flow and 10 Mb/s pen→kc flow
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In terms of delay, both heuristic approaches were roughly equal with solu-

tions within 11% of the delay expected from the optimal solution. As the delay-

agnostic heuristic focuses on finding any solution not having packet loss, it is

reasonable that occasionally it will find a similar solution to the delay-aware

version, providing that solution does not have packet loss.

6.3.3 Adding a Flow from fw→phx and from pen→kc

In this section both of the flows added in the previous two sections are added

at the same time to the 25 Mb/s nyc→phx flow. The minimum average delay

with this environment is calculated to be 23.05 ms.

Figures 6.10 and 6.11 show the average delay and packet loss over the six

iterations for each of the simulated algorithms. Tables 6.11 and 6.12 provide

the specific values measured by the simulator.

iteration
1 2 3 4 5 6

opt 23.05 23.05 23.05 23.05 23.05 23.05
gd 30.51 26.33 26.82 26.49 25.95 25.17
ga 31.19 26.26 26.29 26.37 26.37 26.42

spf 246.66 251.17 250.60 265.06 253.07 263.23

Table 6.11: Average delay for 25 Mb/s nyc→phx flow, 10 Mb/s pen→kc flow,
and 10 Mb/s fw→phx flow

As before, the packet loss stayed well below 1% and went to zero after

the first fifteen-second interval. The average delay associated with the delay-

agnostic version was within 15% of the optimal delay while the delay-aware

version was able to achieve an average delay within 10% of optimal.
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Figure 6.10: Average delay for 25 Mb/s nyc→phx flow, 10 Mb/s pen→kc flow,
and 10 Mb/s fw→phx flow
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Figure 6.11: Packet loss for 25 Mb/s nyc→phx flow, 10 Mb/s pen→kc flow, and
10 Mb/s fw→phx flow
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iteration
1 2 3 4 5 6

opt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
gd 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000
ga 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000

spf 0.4327 0.4353 0.4336 0.4387 0.4333 0.4373

Table 6.12: Packet loss for 25 Mb/s nyc→phx flow, 10 Mb/s pen→kc flow, and
10 Mb/s fw→phx flow

6.3.4 Adding a flow from atl→sj

In this section a 40 Mb/s atl→sj flow was used in combination with the 25

Mb/s nyc→phx flow. The atl→sj flow has two equal-cost paths, each with

23 ms of propagation delay. The first is atl→fw→phx→sj and the second is

atl→fw→ana→sj.

Illustrative of the complexity of finding optimal solutions for routing prob-

lems, the NLP solver was unable to converge on a solution for this set of flows.

In order to generate a solution, the variables fed to the NLP solver were seeded

with the values corresponding to the solution found by the delay-aware heuris-

tic. Using this as a starting point, the NLP solver was able to improve slightly

upon this solution. The optimal solution found by the solver was 28.26 ms.

Figures 6.12 and 6.13 show the average delay and packet loss over the six

iterations for each of the simulated algorithms. Tables 6.13 and 6.14 provide

the specific values measured by the simulator.

Consistent with prior results, the heuristic approaches were able to converge

on solutions within the first fifteen seconds such that there was no loss during

subsequent iterations. Packets routed by the delay-agnostic heuristic experi-
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Figure 6.12: Average delay for 25 Mb/s nyc→phx flow and 40 Mb/s pen→kc
flow

iteration
1 2 3 4 5 6

opt 28.26 28.26 28.26 28.26 28.26 28.26
gd 35.13 29.86 29.4 28.75 28.96 28.95
ga 37.05 32.96 32.91 32.97 33.01 33.08

spf 443.47 447.03 437.54 444.56 439.21 449.72

Table 6.13: Average delay for 25 Mb/s nyc→phx flow and 40 Mb/s pen→kc
flow

iteration
1 2 3 4 5 6

opt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
gd 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000
ga 0.0009 0.0000 0.0000 0.0000 0.0000 0.0000

spf 0.5235 0.5216 0.5221 0.5226 0.5239 0.5248

Table 6.14: Packet loss for 25 Mb/s nyc→phx flow and 40 Mb/s pen→kc flow
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Figure 6.13: Packet loss for 25 Mb/s nyc→phx flow and 40 Mb/s pen→kc flow

enced an average delay of 33 ms during the final interval, 17% greater than the

minimum delay. The delay-aware version did better, with an average delay

that was only 2.5% greater than the minumum delay found by the NLP solver.

6.4 All-Pairs Flows

The final simulation with the regional network includes flows between every

pair of routers. Finding the optimal flow distribution for this problem is unrea-

sonable using standard computing hardware, as the system to optimize is over

6000 equations with more than 12000 variables. To ensure the heuristic could

be compared to something meaningful, the flow sizes were chosen to be small

enough that each flow could fit on its shortest-delay path. Because of this, the

shortest-path algorithm will find the optimal solution.
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Figures 6.14 and 6.15 show the average delay and packet loss over the six

iterations for each of the simulated algorithms. Tables 6.15 and 6.16 provide

the specific values measured by the simulator.
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Figure 6.14: Average delay for flows between every pair of nodes in the net-
work

iteration
1 2 3 4 5 6

opt 17.32 17.32 17.32 17.32 17.32 17.32
gd 25.20 19.39 18.84 18.49 18.25 18.06
ga 25.69 20.48 20.24 20.16 20.09 20.07

spf 17.33 17.33 17.31 17.32 17.32 17.34

Table 6.15: Average delay for flows between every pair of nodes in the network

Once again the heuristic approaches were able to meet their primary objec-

tive, avoiding loss. After the first fifteen-second interval neither variation of the

heuristic dropped a single packet. In terms of delay, the delay-agnostic varia-

tion found a solution after six iterations which was within 16% of the optimal
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Figure 6.15: Packet loss for flows between every pair of nodes in the network

iteration
1 2 3 4 5 6

opt 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
gd 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
ga 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000

spf 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 6.16: Packet loss for flows between every pair of nodes in the network
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solution while the delay-aware heuristic found a solution within 4% of the op-

timal solution over the same time period. Since it appeared that both versions

of the heuristic continued to be improving after six iterations, both versions

were allowed to run an additional ten iterations for a total of sixteen iterations.

After sixteen iterations, the average delay experienced by packets being routed

with the delay-agnostic heuristic had not changed significantly. However, the

delay-aware heuristic continued to show improvement until it reached an av-

erage delay of 17.55 ms, within 1.5% of the optimal solution.

In addition to the above simulation, a second all-pairs simulation was per-

formed. In this case the flow sizes were increased by 50%, resulting in a system

with inadequate capacity on the shortest paths. The optimal solution for this

configuration is not known. Using a format similar to the previous sections, the

delay and loss are shown in Figures 6.16 and 6.17. Tables 6.17 and 6.18 provide

the specific values measured by the simulator.

iteration
1 2 3 4 5 6

gd 70.69 25.01 22.27 23.65 21.21 22.12
ga 66.92 23.21 22.28 22.96 24.86 23.06

spf 82.40 80.96 80.44 79.13 81.48 83.09

Table 6.17: Average delay for flows between every pair of nodes in the network
with 50% traffic increase

These results demonstrate that the heuristic was able to operate without loss

in an environment with a significant number of flows. The heuristic approaches

found solutions that had only slightly more delay than the delay experienced

when the network was not overloaded. This indicates that the solution is close
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Figure 6.16: Average delay for flows between every pair of nodes in the net-
work with 50% traffic increase
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Figure 6.17: Packet loss for flows between every pair of nodes in the network
with 50% traffic increase
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iteration
1 2 3 4 5 6

gd 0.0043 0.0000 0.0000 0.0000 0.0000 0.0000
ga 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000

spf 0.0184 0.0182 0.0184 0.0181 0.0195 0.0195

Table 6.18: Packet loss for flows between every pair of nodes in the network
with 50% traffic increase

to optimal, as the average delay of the optimal solution with increased traffic

will be slightly larger than the average delay prior to the flow-size increase. The

large increase in delay experienced by the shortest-path approach indicates that

many flows were being routed over congested paths.

6.5 Chapter Summary

This chapter has demonstrated that in the regional network studied, the pro-

posed heuristic is able to meet its primary objective of avoiding loss. In ad-

dition, the delay-aware variation of the heuristic is shown to outperform the

delay-agnostic variation. A summary of the relative performance for both vari-

ations of the genetic heuristic is shown in Table 6.19.

In every trial, the heuristic approaches were able to find a loss-free solution

during the first fifteen-second interval. In addition, the loss during the first in-

terval never exceeded 1%. It might seem counter-intuitive that the delay-aware

heuristic was able to consistently out-perform the delay-agnostic heuristic in

terms of loss. However, this can be explained. The delay-agnostic variation’s

first indication of congestion is when the congestion is severe enough to cause
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percent from optimal delay first iteration loss
gd ga gd ga

nyc→phx 10 Mb/s 0.61% 18.33% 0.0028 0.0029
nyc→phx 25 Mb/s 1.30% 21.23% 0.0012 0.0015
nyc→phx 75 Mb/s 17.73% 16.54% 0.0005 0.0019
nyc→phx & fw→phx 9.31% 17.20% 0.0007 0.0008
nyc→phx & pen→kc 10.55% 10.76% 0.0013 0.0015
three flows 9.19% 14.62% 0.0010 0.0012
nyc→phx & atl→sj 2.44% 17.05% 0.0009 0.0009
all-pairs 4.27% 15.87% 0.0020 0.0019

Table 6.19: Summarization of the performance across all experiments

parasite loss due to RED or packet loss due to the queues being filled. The

delay-aware variation has an early warning mechanism because as queues fill,

delay increases, and as delay increases the delay-aware heuristic seeks other

solutions. This feedback mechanism allows the delay-aware heuristic to adapt

slightly faster to avoid loss.

In terms of delay, the delay-aware heuristic consistently out-performed the

delay-agnostic heuristic. This is consistent with the design goal for the delay-

aware heuristic. In a few cases the delay-agnostic version approached or ex-

ceeded the performance of the delay-aware version, but these can be attributed

to the random nature of the heuristic.

The results of this chapter increase confidence in the ability for the heuristic

to perform well in generalized networks. However, future research will be

required to broaden the base of known topologies for which the heuristic will

work. Topologies can be created for which the heuristic will perform arbitrarily

poorly. These and other limitations are discussed in the following chapter.
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Chapter 7

Challenges for the Heuristic

As might be expected, the proposed heuristic approach has limitations and

shortcomings. Many of these were anticipated and others were discovered in

the course of this research. The purpose of this chapter is to describe some of

the more significant shortcomings and limitations which impact the effective-

ness of the heuristic. While no insurmountable challenges were encountered

during the implementation of the heuristic, lessons were learned. These were

discussed in Chapter 8. This chapter focuses on non-implementation issues.

This chapter includes two sections: the first discusses topologies in which

the heuristic is expected to perform poorly and the second identifies many of

the challenges the heuristic would face if applied to routing on the Internet.

In both sections, mitigation strategies are proposed when available. While it

may be troubling to devote an entire chapter to the subject of the heuristic’s

limitations, understanding them is essential to determine where, how, and if

the heuristic might be applied to real-world routing problems.

135



7.1 General Network-Related Challenges

The heuristic has been shown to operate well for a relatively limited set of

topologies. It is possible to define topologies for which the heuristic can be

made to perform arbitrarily poorly.

Prior to converging on a routing solution, the heuristic method is roughly

equivalent to random routing[48]. Its ability to adapt and converge is based

on the assumption that some of the randomly routed packets eventually ar-

rive at their destinations. There are many ways to decrease the probability a

packet successfully reaches its destination. One approach would be to increase

the number of routing decisions that must be made (related to the diameter of

the network). Another would be to increase the number of “wrong” choices

available for each decision (related to the degree of the nodes on the network).

In addition, the time-to-live of packets being injected into the network greatly

affects the impact of the topology by limiting the number of routing mistakes

from which a packet can recover. All three of these may be combined to create

a system for which the heuristic would perform miserably. Understanding the

limitations is essential to identify the situations in which the heuristic should

not be used.

7.1.1 Time-to-Live of Packets

Prior to discussing the topological issues, it is important to understand the im-

pact of the time-to-live (TTL) field of packets being injected in the network.
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Most network protocols incorporate some type of a time-to-live field into the

headers of packets being routed on the network. The purpose of this field is

to ensure that incorrectly routed packets do not loop indefinitely in the net-

work. For simplicity, this field typically does not measure time, but rather “hop

counts,” or the number of routers through which the packet has passed. The

system creating the packet sets the TTL and then each router along the path

decrements it by one. When the counter reaches zero the packet is assumed to

be looping and it is dropped.

By limiting the amount of time a packet can exist in the network, the TTL

field also limits the number of routing “mistakes” from which it can recover.

Given a generous setting for the TTL this should not be a problem, but it is

possible to set the TTL low enough to impact the ability for the heuristic to

learn. The proposed heuristic initially relies on discovering a feasible path by

following a random path to the destination. Depending upon the topology of

the network, the anticipated number of hops expected prior to reaching the

destination can be quite large[48]. By restricting the number of total hops, the

TTL might greatly increase the anticipated convergence time.

Consider the triplet network discussed in Chapter 4. The probability that a

packet injected at node 2 destined for node 3 with a TTL of 1 making it to its

destination is initially .5. If the TTL is increased to 3, the packet could survive

one routing mistake, increasing the probability of successful delivery to 1 −

.52 = .75. The TTL needs to increase by two to account for being decremented

both when it goes to node 1 and when node 1 returns it to node 2. Node 2 then
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has a second chance to make a routing decision. In general, the probability of

successful delivery for a randomly routed packet is 1 − .5dn/2e where n is the

initial TTL of the injected packet at node 2. This demonstrates the negative

impact of a low TTL. While in this case the probability of successful delivery is

favorable, routing for most topologies is not this simple.

Mitigation strategies for TTL-related problems are limited to affecting how

the TTL is set initially and how the network operates on the field. The initial

TTL value typically is determined by the system originating the packet. This

system has the best chance of understanding of the importance of the packet

and the maximum distance it should need to travel. The first router to attach

a parasite could potentially increase the TTL of the packet, thus increasing the

likelihood of its eventual delivery. However, if the packet were to be passed

between routing domains, unbounded looping could result. A better strategy

might be for the routers to modify their drop logic to not drop a packet with

a TTL of zero when it is carrying parasites. Rather, an additional TTL field

could be added to the header of packets carrying parasites. This value could

be larger than the packet TTL, but still be small enough to keep packets from

looping indefinitely.

The TTL of packets affects the probability a routing error can be survived. In

the next two sections topology issues that affect the probability a routing error

will occur will be discussed.
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7.1.2 High-Degree Nodes

The degree of a node in a network affects the probability that a randomly se-

lected egress link is on the desired path. In particular, if a node has only one

feasible exit, each additional exit represents an additional wrong choice to be

possibly made. In real-world networks, such nodes are common: local area net-

works (LANs) typically connect many hundreds of computers to one or more

routers. In large regional networks LANs are sometimes used in switch sites

for traffic aggregation. While extremely important to networking in general,

LANs are considered outside the domain of networks for which the proposed

heuristic has applicability.

Similarly, the degree of a node greatly affects the speed at which a new path

might be discovered once the heuristic has converged. The number of muta-

tions is equally divided among all egress links. Therefore, as the number of

egress links increases, the frequency at which each is probed for new solutions

decreases.

Balancing the negative impact of high-degree nodes is the reality that of-

ten the additional links are associated with additional paths to the destination.

Therefore, adding another egress interface does not necessarily increase the

probability a bad routing choice will be made. The above discussion made

the assumption that there was only one valid egress link for the destination.

If this assumption is not valid, and it often is not, then the negative impact of

high-degree nodes can be mitigated.
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Of greater impact than node degree, however, is the diameter of the network.

The following section discusses its effect.

7.1.3 Network Diameter

The diameter of a network is the largest distance, in terms of hops, between any

pair of nodes. It directly impacts the probability that a randomly routed packet

will not exceed its TTL by defining the number of correct routing decisions

that are required. The probability of successfully routing a packet is the joint

probability that each step along the way correctly routes the packet.

Consider a 2n+1 node network where every node i, 1 < i < 2n, is connected

to node i+1. Assume packets destined for node 1 with a hop-based TTL of n−1

are entering the network at node n. For the packet to reach its destination, each

node i must send the packet to the adjacent node i − 1. If any node i in the

path makes the wrong choice and routes the packet toward node i + 1, the

packet ultimately will not reach its destination, as the TTL will reach zero prior

to its arrival at node 1. Assuming an initially random system, the probability

that a packet will reach its destination (and hence the chance of the system

learning anything useful) is .5n−1. For modest values of n the probability of a

packet reaching its destination are bleak. For example, if n = 14, approximately

one packet in ten thousand would make it. Node 2 would receive only a few

marked packets for every ten thousand packets sampled by node n. Eventually

the system would converge, but the requisite time would be measured in hours,
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days, or years instead of seconds. The problem could be further exacerbated by

increasing the degree of nodes along the path.

Decreasing the impact of the network diameter is the reality that networks

often ingress traffic at all nodes, and the destinations of this traffic are typically

spread among the set of all routers in the network. Therefore, some of the

traffic will have short paths, allowing the routing to adapt from the inside out.

Consider again the topology for which initially only one out of many thousands

of packets would be successfully delivered. This time assume every node in

the network is receiving packets destined for node 1. The probability of node

2 randomly discovering the path to node 1 is .5. After some fixed number of

packets, node 2 will have converged on a good routing solution for node 1.

Assign T to be the amount of time node 2 required to adapt. At time T the

probability that packets ingressing on node 3 will make it to node 2 without

being sent toward node 4 is at worst .5. It will be even higher if node 3 was

able to learn during the interval in which node 2 converged. Node 3 should

then be able to converge in a similar time interval. Extending this to node n,

the expected convergence time is now nT , which is likely to be acceptable.

7.1.4 Summary of Network-Related Challenges

This section discussed some of the topologies for which the heuristic is ex-

pected to perform poorly. It likely that many additional topologies exist in

which the heuristic will not function well. An important question not answered

by this section is how often such topologies are expected to exist. Understand-
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ing the impact the topological structure has on the heuristic is essential to un-

derstanding the plausibility of its application to a real-world problem.

7.2 Challenges Specific to IP Networks

The Internet’s success makes it a de facto target for most new routing protocols.

Because of its importance, any improvement in routing efficiency or reliabil-

ity could have a significant impact. Unfortunately, significant challenges are

related to routing in an internet protocol (IP) network using the heuristic as

proposed. Some of the limitations include the large number of possible desti-

nations, packet reordering, multicast, fragmentation, the space available in the

IP header, and the interaction with Border Gateway Protocol (BGP). Each of

these is discussed below along with potential solutions, when available.

7.2.1 Destinations

The current version of the Internet Protocol, IPv4[72], supports approximately

4 billion unique destination addresses. IPv6[23] supports many more. Main-

taining a population for each destination is challenging for many reasons. First,

the amount of memory required to store all of the populations is likely be pro-

hibitive. Second, convergence time is related to the number of packets being

sent toward a destination, and having one population for each end-system may

result in populations not having ample traffic to converge quickly. Finally, hav-

ing per-destination populations assumes that all routers in the network are par-
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ticipants in the heuristic algorithm. In a network with as diverse control as the

Internet this assumption is unrealistic. For the heuristic to work with IPv4,

some form of address aggregation is required to create consistent groupings of

destination addresses that can share the same population. This will decrease

the amount of memory, combine traffic to allow for more rapid convergence,

and allow continued autonomous control of networking infrastructure.

The first opportunity for aggregation is to follow the aggregation present in

current route tables, as addresses are allocated in blocks and not individually.

In such an environment there would be a population corresponding to every

address block. This limits the number of populations to a few hundred thou-

sand initially. However, the amount of memory space required to maintain a

population is likely to be much larger than the amount of space used by the

standard route table.∗ For this reason additional aggregation is desirable.

A better approach is to aggregate all destination addresses associated with

the same egress edge-router. In the view of the heuristic, the egress edge-

router’s loopback address would be the “destination” of the packet instead of

the destination encoded into the packet header. Given that today’s largest net-

works typically have less than a few thousand routers, this approach greatly

reduces the number of populations required to be maintained on each router.

Such a model assumes that all routers in the network are capable of consis-

tently determining the egress edge-router for an address. This information

can be obtained from the continued use of external-gateway routing protocols

∗The size of the population will likely be a function of the number of egress links on the router.
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such as BGP[77] to communicate external reachability information between au-

tonomous systems. Routers receiving BGP announcements from external peers

could set the next-hop to be their own loopback address. It is not clear, how-

ever, how the BGP information would be propagated within the network prior

to the heuristic’s convergence.

7.2.2 Packet Reordering

The heuristic proposed herein would likely cause significant packet reorder-

ing. The problem is especially pronounced when two or more egress links with

widely varied delay characteristics have significant representation in a popu-

lation. Nothing in the heuristic seeks to influence packets in the same flow to

use the same egress link. In fact, the heuristic maintains no awareness of flows,

and thus has no opportunity to ensure flows are routed consistently.

TCP is capable of dealing with out-of-order packet delivery. However, it has

been shown that massive packet reordering may result in profoundly degraded

performance which in some cases becomes self-reinforcing[5]. For this reason,

it is important to limit the amount of reordering that occurs in the network.

With traditional routing protocols, reordering typically results from routing

pathologies and, increasingly, local parallelism of communications links. How-

ever, the resultant reordering has thus far been manageable.

Fixing TCP to more efficiently process out-of-order packets is a potential

strategy to deal with the reordering introduced by the heuristic. One technique

that attempts to make TCP less susceptible to performance degradation in the
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presence of reordering involves altering the packet acknowledgment strategy

to be more selective[57]. While such an approach holds promise, out-of-order

packets will continue to have some negative impact on performance and thus

should be avoided when possible.

The heuristic could be modified to maintain an awareness of flows and ac-

tively seek to send packets within a flow on the same egress. This approach

would likely address many of the reordering problems, but has the potential to

create others, as the adaptation of the populations would be affected by flow

characteristics. Large flows would tend to pull the population toward their

egress links. No attempt is made in this research to quantify this effect.

Some existing aspects of the heuristic may serve to dampen the negative

effects of reordering. In particular, reordering has less of an impact if the re-

ordered packets arrive relatively close together. The delay-aware variation of

the heuristic favors the lowest-delay path. If multiple paths are being used,

then these multiple paths likely have similar delay characteristics and, there-

fore, the impact of reordering should not be as significant.

In a network environment where in-order delivery is a significant require-

ment, the proposed heuristic is ill-suited. In more flexible environments where

out-of-order delivery can be tolerated, the packet reordering associated with

the heuristic may be acceptable.

145



7.2.3 Multicast

Multicast routing protocols build forwarding trees based on the reverse-path

forwarding (RPF) rule. This rule states if a packet is received on the interface

that would be used to forward a unicast packet back to the source of the packet,

then the packet is forwarded on all other interfaces that have downstream re-

ceivers for the source and group. With the proposed heuristic, RPF informa-

tion is not available, as there are likely to be a large number of interfaces with

non-zero forwarding probability for each source address. For this reason the

heuristic would not work well with multicast protocols that rely on the unicast

routing table, such as PIM-SM[27] and PIM-DM[24]. This research does not

propose any mitigation strategies for said limitations.

7.2.4 Fragmentation

Fragmentation is the process by which large packets are segmented into smaller

packets. This usually happens as a result of variations in the maximum trans-

fer unit (MTU) of different network media. Fragmentation is also caused by

routers increasing the size of packets by adding information to the header, an

occurrence that would be common if the proposed heuristic were used. Associ-

ated with fragmentation is some loss in efficiency, as packet overhead is dupli-

cated. Fragmentation of the parasite string in the header would be detrimental

to the operation of the heuristic. For this reason routers participating in the

heuristic approach would need to ensure that fragmentation always occurred

after the parasite string. Because the MTUs of most WAN circuit types are rela-
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tively large, the probability of having a parasite string extend beyond the MTU

is highly unlikely or even impossible, depending on the parasite encoding size

and the maximum TTL of the packets.

7.2.5 Space for Options in the Header

To transparently implement the heuristic in an IP network, the parasite string

would need to be stored in the IP header’s options field. The IP-header length

is given by a 4-bit field. The number in this field represents how many 32-bit

words are stored in the IP header. This limits the size of an IP header to 60

bytes, 20 of which are used by the IP header. Therefore the maximum length of

the parasite string is 40 bytes. Assuming a nominal 4-byte parasite encoding,

only 10 parasites could be stored in an IP header. This could be insufficient

during the initial learning phase of the algorithm, where the number of hops

each packet takes is relatively large.

One possible mitigation strategy would be to modify the heuristic to en-

capsulate the original IP packet in a new IP packet. The encapsulating packet

would be able to store both the parasite string and the original packet and have

as its destination the address of the egress edge-router as described in Section

7.2.1. This approach would add some overhead, but would eliminate the prob-

lem of parasite storage space in the IPv4 header.

A more flexible technique might be to modify the heuristic to not attach

parasites to live network traffic. Rather, similar to AntNet[26], probes carrying

parasites could be injected into the network. These probes would carry the
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parasite string as their payload and thus not be restricted by the available space

in the IPv4 header.

7.2.6 BGP Interaction

Border Gateway Protocol (BGP)[77] provides the routing glue that ties together

various networks under separate and autonomous control. The heuristic is in-

capable of implementing the policy control required for such a task. Therefore,

it is reasonable to assume that BGP would continue to be used to exchange ex-

ternal reachability information. The heuristic is best positioned to operate as

an internal gateway protocol, supporting reachability within the domain of the

autonomous system. Therefore, while it would not replace BGP, it would need

to be capable of working with BGP.

Some challenges are related to the heuristic’s interaction with BGP. BGP uses

the metric from the internal gateway protocol as part of its decision function.

This allows the router to select for each packet an egress router that will use

minimal network resources. The proposed heuristic does not use metrics, and

therefore cannot provide this information to BGP.

One approach to this challenge is to establish accurate global time and have

each router maintain an exponential average of the delays associated with each

egress router. This delay value could be used as the metric. Such an approach

might have other impacts, as the remaining decision points would rarely be

used by BGP: the probability of two egress routers having identical average

delay is low.
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7.2.7 Summary of IP-Related Challenges

Due to its success, the Internet is the target of much of today’s routing research.

Improvements to its routing system are likely to have a large impact because of

its scope and reach. The heuristic proposed by this research has fundamental

limitations that make it a poor choice for wide application in today’s Internet.

For some of these limitations, mitigation strategies are available; other chal-

lenges are not as surmountable. Therefore, the most probable way the heuristic

could be used in today’s Internet environment would be as an augment to ex-

isting routing mechanisms. Discovering precisely how this could be done is

left as future work.

7.3 Chapter Summary

The heuristic has limitations, many of which are significant. In certain network

topologies the heuristic is expected to perform poorly. Additionally, a range of

challenges are related to its application in an IP environment.

One mitigation strategy addresses almost all of the challenges: using the

heuristic in conjunction with existing routing protocols. This could be facil-

itated in at least two ways. First, the output of the shortest-path algorithm

could be used to seed the initial populations used by the heuristic. This might

mitigate many of the challenges related to topology and address some of the

challenges related to routing in the Internet. A second approach would be to

continue to use shortest-path routing and apply the heuristic in times of conges-
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tion or loss. Either approach is by itself likely to create a new set of challenges.

Identifying and overcoming these is left for future research.

Because of the limitations to the heuristic, care must be taken when consider-

ing its real-world application. One must understand both what might influence

the heuristic to work well and what might influence it to work poorly. Indeed,

additional work is required to make such an evaluation. However, the potential

strengths of the heuristic justify this effort.
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Chapter 8

Implementation Considerations

Both the delay-agnostic and delay-aware variations of the heuristic approach

were implemented within a discrete-time simulation environment. This effort

provided not only a system capable of gathering empirical data related to the

heuristic’s performance, but also the opportunity to experience some of the

challenges associated with its implementation.

While not a ideal objective measure of complexity, the code required to im-

plement the genetic approach was under 250 lines of perl code, roughly equiv-

alent to the amount of code required to implement the shortest-path algorithm.

However, the code implementing the shortest-path algorithm was not a realis-

tic implementation as each node was given instantaneous access to the topol-

ogy and state of the network. Real-world implementations of the shortest-path

algorithm need to support the distribution of this information among all nodes

in the network. The complexity and time-lag associated with that effort are not

modeled in the shortest-path simulations. In the case of the proposed heuris-
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tic, every effort was made to implement a solution that accurately modeled

real-world challenges. Two of the implementation challenges involved para-

site encodings and global clocks. This appendix provides a discussion about

each.

8.1 Efficient Parasite Encodings

The encoding of a parasite must contain enough information to initially iden-

tify its favored interface and eventually facilitate the return to its original pop-

ulation. Depending on the choice of encodings, reasonable parasite encoding

might range from two to four bytes. This section provides information about

what might impact the size of the parasite encoding.

The heuristic requires a returning parasite to follow the reverse of its for-

ward path. To facilitate this, the parasite needs a field where the next-hop

router can record the interface on which the packet arrived. The next-hop

router uses this information as the parasite is being returned to know what in-

terface the parasite should be returned on. The router identifier, encoded into

the parasite, cannot be used for this function because the next-hop router may

have multiple interfaces connected to the originating router. Because the para-

site will be returned on the same interface in which it left, the egress interface

need not be carried with the parasite. This information can be derived from the

interface the parasite returns on. Although the router identifier is not used for

returning the parasite, it is still required for loop detection.
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This research made the assumption that the combined router identifier and

ingress link identifier could be encoded in two bytes. Using ten bits for the

router identifier and six for the link identifier limits this implementation to net-

works having less than 1024 nodes, where every node has less than 64 commu-

nications links.

An alternate encoding is to give each communications link a globally unique

identifier and have that be the only information carried in the parasite. A router

can detect a loop by searching the parasite string for a parasite favoring one of

its own links. If two bytes were used with this scheme, it would be capable

of distributing the 65 thousand potential identifiers across any combination of

routers and interfaces. One drawback for this approach would be the added

computational complexity required for loop detection: finding the intersection

of two sets is more difficult than searching a set for a single value. For this

reason, if the environment contains more than 1024 hosts where some of the

hosts have more than 64 communications links, consideration should be given

to instead expanding the size of the parasite encoding.

While the parasite encoding does not directly impact the behavior of the

heuristic, it does impact the overhead associated with the heuristic. The impact

of increasing the size of the parasite is not considered in this work.

One field not yet considered in the parasite header is the timestamp encod-

ing used by the delay-aware variation of the heuristic. This is covered in the

following section.
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8.2 Timestamps and Global Clocks

The delay-aware heuristic attempts to measure the delay associated with each

parasite sent into the network. Since the delay may not be symmetric between

the forward and reverse paths, it may be of value to remove the component of

delay associated with returning the parasite. To facilitate this, the destination

router includes a timestamp encoding in the return packet. Using this value,

each router can isolate the amount of delay the parasite incurred along the for-

ward path. However, to do this accurately, the clocks throughout the network

must be synchronized.

The challenges of maintaining accurate global clocks are well understood[61].

To accurately calculate the forward-path delay, the clocks in the network would

need to be accurate at a resolution on the same scale as the variance between

packet delays following different paths. Maintaining clocks to this accuracy

could present a significant challenge. Fortunately, the absolute value of delay

is not required, only the relative time between packets sent to the same host.

Due to clock skew, the implementation may need to be able to correctly deal

with negative values for the delay time.

The amount of space required in the parasite for the timestamp is a function

of the required timer resolution. Because the delay-aware heuristic only uses

the value to compare against the previous value, some amount of error can be

accommodated. Because of this, issues related to counter roll-over need not be a

significant concern, as the occasional error will be averaged out over time. Two
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bytes of millisecond resolution time, at most rolling over once every minute,

should provide adequate resolution.

8.3 Summary

The implementation of the heuristic was relatively easy and straight forward.

A few challenges related to encodings need to be addressed. The overhead

associated with the heuristic is a function of the size of the parasite object,

hence the motivation to keep them as small as possible while supporting the

required functions. The basic parasite was encoded into two bytes. Adding

timestamps to support the delay-aware variation added another two bytes. In

addition to carrying a timestamp in the parasite, a timestamp was added to

the reverse packet such that each router could isolate the forward-path delay

in the round-trip time. Since this delay is compared to other delays associated

with the same destination, only relative values are required. This eliminates the

need for global clocks. The total overhead is a function of the parasite encoding

and the path length.

The implementation of the heuristic sought to be as accurate as possible

within the confines of the simulation environment. The ease with which it can

be implemented is one of its strengths.
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Chapter 9

Conclusions

Routing, the process by which a network of routers chooses the paths packets

will take, is fundamental to the operation and performance of packet-switched

networks. Associated with “good” routing are many characteristics, includ-

ing minimal delay the absence of packet loss. However, solving the routing

problem involves significant challenges. The problem is inherently complex

from a computational standpoint. Depending upon the objective function, it

may be NP-complete. In addition, the problem is distributed with strong real-

time constraints. All routers in the network must have consistent views of

how a packet is to proceed, or routing loops may occur. Finally, and perhaps

most significantly, the input to the problem is often unmanageably large or

unavailable. Knowing packet arrival times, sizes, and destinations requires

unbounded foreknowledge. In addition, the topology of the network is rarely

fixed in real-world situations, as circuits and routers come and go as a function

of operator intervention and external stimuli. Taken alone, any one of these
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challenges might make rigorously finding a solution to the routing problem in-

feasible. Taken together, these challenges necessitate the use of approximating

assumptions and open the door for heuristic approaches. The purpose of this

work has been to introduce and examine one such heuristic method for solving

the routing problem.

The proposed heuristic simulates evolution, borrowing from nature’s fa-

miliar operators of reproduction, mutation, and selection. As the landscape

changes, the system evolves with it. By modeling nature’s “survival of the

fittest” optimization operator, near-optimal routing tables can be cultured in

the network “petri dish.” The proposed heuristic operates without an explicit

knowledge of the network’s topology or traffic characteristics. As such, it is

well suited to an environment where such information is unavailable or chang-

ing.

Due to the inherent complexity of the problem being solved, generalized

analytic results are difficult to obtain. This research presented analytical data

for a small set of topologies including a triplet network, a ring network, and a

simplification of a regional network. As each network was progressively more

complex, their analytical results were less complete. Empirically obtained data

from simulations was used to balance the analysis. The proposed heuristic was

shown to discover near-optimal results for the limited set of topologies studied.

For the network dynamics considered, the heuristic was shown to be capable

of adapting.
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The proposed heuristic has many strengths. It is non-minimal, distributing

traffic non-uniformly when needed. It is able to adapt without explicit knowl-

edge of the topology or traffic. For the topologies studied, the heuristic was

stable in its convergence and did not exhibit oscillatory behavior. It is simple,

both in concept and implementation.

However, if one considers the heuristic as an individual from the pool of

routing protocols, this mutation has some blemishes in its genetic makeup. In

particular, it is possible to define topologies for which the proposed heuristic

performs poorly. Therefore, in an environment where such topologies may oc-

cur, the heuristic in its proposed form would be ill suited. Other shortcomings

associated with characteristics of the heuristic make it difficult to apply to the

most successful large-scale network thus far, the Internet. This research pro-

vided insight regarding these limitations and proposed mitigation strategies.

Despite its limitations and shortcomings, the proposed heuristic does have

beneficial qualities. Perhaps some of its attributes will be incorporated into

future generations of routing protocols. At a minimum, the heuristic presented

is a simple and innovative way to address the important problem of finding

feasible and efficient routes in packet-switched networks.
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Appendix A

Complexity of FLOW

ASSIGNMENT

The FLOW ASSIGNMENT problem can be shown to be NP-complete. Define

FLOW ASSIGNMENT as the following: given a network,G = (V,E), a capacity

for each e ∈ E, and a set of flows, F , is there a flow assignment such that each

flow follows a single path and no edge capacity is exceeded?

FLOW ASSIGNMENT is in NP. It can be verified in non-deterministic poly-

nomial time that a given flow assignment does not exceed the available ca-

pacity. This is done by summing the contribution of each flow on each edge

and then comparing the summed edge utilization to the edge capacities. If

the capacities are not exceeded then the assignment is valid. Further, FLOW

ASSIGNMENT is at least as hard as PARTITION, a problem known to be NP-

complete[40]. The PARTITION problem asks the question: given a finite set

A and a size s(a) ∈ Z+, is there a subset A′ ⊂ A such that
∑
a∈A′ s(a) =
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∑
a∈A−A′ s(a)? The transformation from PARTITION to FLOW ASSIGNMENT

begins by constructing a simple network with nodes x and y and two edges e1

and e2 connecting x to y (see Figure A.1). Let S =
∑
a ∈ As(a). Assign the ca-
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Figure A.1: Transformation from PARTITION to FLOW ASSIGNMENT

pacity of each edge to be S/2. Define a flow from x to y for each a ∈ Awith flow

rate s(a). Using this as the input, if FLOW ASSIGNMENT returns a solution,

then PARTITION is true because there are S units of traffic to be sent from x to y.

If a flow assignment exists, it will have to send flows representing exactly half

of the traffic over each edge. These flows have a one-to-one correspondence

with each s(a); therefore, it may be concluded that there exists some subset ofA,

A′, such that
∑
a∈A′ s(a) = S/2 =

∑
a ∈ A− A′s(a). Therefore, FLOW ASSIGN-

MENT is at least as hard as PARTITION. Since PARTITION ∈ NP-complete and

FLOW ASSIGNMENT ∈ NP, it may be concluded that FLOW ASSIGNMENT ∈

NP-complete.
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Appendix B

Additional Ring Dynamics

This appendix presents additional simulations of the heuristic in the presence

of change. It is an extension of Chapter 5, providing additional evidence that

the proposed heuristic is indeed able to route efficiently in a fluid environment.

The dynamics considered are removing a link, changing the flow size, and

changing the available capacity on a link. Each is discussed in its own section

below.

B.1 Removing a Link from the Topology

This section examines the behavior of the heuristic when a link is removed

from the topology. The initial topology is the ring network with an additional

30 Mb/s link between nodes 1 and 4, as in Section 5.3.1. The topology is shown

in Figure B.1. As before, two 35 Mb/s flows are present: one going from node 0

to node 5 and the other going from node 5 to node 0. For both variations of the

heuristic the system is allowed to converge for 10 seconds. After 10 seconds
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the link between nodes 1 and 4 is removed and the topology reverts back to

the standard ring topology introduced in Section 5.1. The desired behavior

of the system is for it to rapidly transition to send more of the traffic toward

node 9. The rate at which the heuristic converges is a function of the flow size.

The 35 Mb/s flow is large enough to cause sufficient packet loss on node 1’s

path for the population to reconverge quickly. The expected time to converge

is on the order of the amount of time required to sample the entire population,

which in this case is 1 second. Shown in Figure B.2 is the probability of node

0 sending traffic for node 5 on the link toward node 1. Also shown in the

figure is the optimal solution as well as the envelope of acceptable solutions.

The line associated with min represents the minimum amount of traffic that

can be sent toward node 1 without experiencing loss; the line associated with

max represents the maximum amount of traffic that can be sent toward node 1

without experiencing loss.

Both variations of the heuristic initially converge such that node 0 is sending

almost all of its traffic destined for node 5 on the link toward node 1. When

the link between nodes 1 and 4 is removed, both variations of the heuristic

converge at about the same rate, taking approximately 2 seconds to stabilize on

a solution.

This simulation demonstrates that the heuristic is able to rapidly adapt when

this particular link is removed from the topology. This convergence takes place

within two seconds and without any explicit routing messages. The conver-
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Figure B.1: Ring topology with link removed
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Figure B.2: Probability of node 0 sending traffic toward node 1 before and after
a link is removed

170



gence time could be decreased by either shortening the interval between sam-

ples or lowering ψmax. However, this would cause the solution to be less stable.

B.2 Changing Flow Size

This section examines the behavior of the heuristic when the flow size changes.

In earlier sections the flow size varied, but never during the course of a simu-

lation. Rather, the flow size would be fixed at the beginning of the simulation

and would not change. For this section two simulations are conducted for both

variations of the heuristic. In the first simulation the initial flow size is 5 Mb/s.

After 20 seconds this flow changes to 35 Mb/s. The presence of a flow of this

size will likely cause the heuristic to adapt to a new solution in order to avoid

packet loss. After 20 more seconds the flow is returned to 5 Mb/s. The simula-

tion continues another 20 seconds after this change. The second simulation is

similar to first but replaces the 5 Mb/s flow with a 15 Mb/s flow. The expec-

tation in these simulations is that the algorithm will adapt when the flow size

is increased. This is required to avoid loss. When the flow size is returned to

its original value, the delay-agnostic variation is expected to remain at the new

solution while the delay-aware heuristic is expected to slowly adapt to again

make use of the lower-delay path. The rate at which the heuristic adapts to

the increase in flow size is expected to be asymmetric with the rate at which it

adapts once the flow returns to its previous value, as the feedback mechanism

for packet loss is more impacting than the feedback mechanism for delay op-
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timization. Figures B.3 and B.4 show the results for each simulation. Included

on the plot is a line indicating the optimal behavior.
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Figure B.3: PDF for changing flow at 5 Mb/s

As expected, both variations of the heuristic were able to converge in re-

sponse to the increase in flow size. Each required 2 to 3 seconds to converge.

The delay-agnostic heuristic did not reconverge when the flow size was de-

creased. The rate at which the delay-aware heuristic converged toward the op-

timal solution could be predicted using techniques similar to those presented

in Section 5.3.1.

B.2.1 Change in Available Path Capacity

A final network dynamic considered is a change in the capacity available along

a path. While it is unlikely the link capacity itself would change, the amount of

capacity available for a flow might change as other flows are introduced to the
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Figure B.4: PDF for changing flow at 15 Mb/s

network. The simulation presented in this section begins with 15 Mb/s flows

between nodes 0 and 5. These two flows remain unchanged throughout the

simulation. 20 seconds into the simulation two new flows are added, one going

from node 2 to node 3 and the second going from node 3 to node 2. These flows

reduce the available capacity on the low-delay path. 20 seconds later these two

flows are removed, and the simulation continues for 20 more seconds before

terminating. Prior to the introduction of the 5 Mb/s flows, node 0’s optimal

solution for traffic destined to node 5 places approximately 60% of the packets

on the low-delay path. While the two additional flows are present, node 0’s

optimal solution is to route approximately 30% of the packets toward node 1.

After the transient flows are removed the optimal solution should revert back.

The results of simulations for both variants of the heuristic are shown in

Figure B.5.
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Figure B.5: PDF for changing flow at 15 Mb/s

As with the previous simulations, the simulated behavior matches the ex-

pected behavior. Both variations are close to optimal during the first 20 sec-

onds. Once the change is made both adapt to where only 20% of the packets

are being routed toward node 1. After the transient flows are removed the

delay-agnostic variation makes no effort to revert while the delay-aware varia-

tion begins to adapt slowly.

B.3 Summary

The heuristic was consistently able to adapt to changes in its environment. In

the case of the delay-agnostic heuristic, only changes resulting in loss caused

reconvergence. The delay-aware heuristic would continue to search for lower-

delay solutions. It had the desired attribute of rapidly responding to solutions
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that would cause loss and slowly adapting to lower-delay solutions. This pro-

vides a measure of stability.

This work only considered simple topological changes, namely dropping or

adding a single edge. Node failure results in dropping many edges at the same

time. Evaluating the behavior of the heuristic in the presence of node failure is

left as future work.
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