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A prerequisite to providing multimedia services over wireless packet-switched net-

works is the provisioning of new mechanisms that allow such networks to treat

packets differently according to their limitations and performance bounds. Those

new mechanisms are collectively included within what is called a Quality-of-Service

(QoS) architecture. A desirable feature of a QoS architecture for wireless networks

is the ability to provide wireless end users with the same QoS guarantees that wired

users currently enjoy.

To that end, we develop a new and efficient scheduling architecture to support

bandwidth and delay QoS guarantees for packet-switched Broadband Wireless Access

(BWA) networks. Our design goals are simplicity and improved network performance.

The architecture we develop in this research effort supports various types of traffic

including constant bit rate, variable bit rate (real-time and non-real-time) and best

effort.

A key element of our proposed QoS architecture is known as Fair scheduling or

Fair Queueing (FQ). Fair scheduling algorithms have received much attention in

recent years because of their ability to provide a wide range of QoS guarantees to

end users. In this dissertation, we concentrate our efforts on analyzing the stochastic

performance of such a class of fair scheduling systems. We start by presenting a new

analysis method that results in reasonably tight upper and lower bounds on mean

packet delay and mean buffer occupancy experienced by fair scheduling algorithms

under Poisson arrivals. We coin the new term M/G/FQ to describe this analysis

method, and provide a range of simulation experiments to validate its results.

Using more simulations, we continue our study of fair scheduling algorithms by

comparing the performance of three packet-based FQ policies to each other and to

the reference scheduling policy called Generalized Processor Sharing (GPS) under

random Poisson arrivals. Our experiments allow us to derive many useful insights

into the operation of such packet-based FQ policies, which helps us better understand

their specific characteristics and properties.
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Chapter 1

Introduction

THE explosive growth that the Internet has experienced, its nearly universal

coverage, flexibility, ease of use and the continuously declining cost of providing

it, all make it the communication network of the future. People are turning to

the Internet to check the latest news, buy and sell different products, send email,

share their ideas, engage in heated debates and chats, and experiment with video

conferencing. Music files and streaming video are being downloaded over the Internet

in huge volumes every day.

In spite of all the attractive features that the Internet can provide as the network

of the future, there still exist a number of technical challenges that need to be

addressed. The Internet uses the Internet Protocol (IP), which was designed originally

to provide a same-for-all best-effort packet delivery service. Such service is not the

ideal solution for handling heterogeneous types of traffic that exhibit widely different

service requirements. Instead, a more desirable solution would utilize a common

infrastructure to provide multiple layers of service that suit the different requirements

of different customers. This does not reflect the current status of the Internet.

Another shortcoming of the IP architecture is the lack of any network guarantees in

terms of mean packet delay and/or packet loss rate. Such guarantees are particularly

important if we were to effectively carry real-time traffic, such as voice-over-IP or

streaming video, over the Internet.
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In short, since the Internet was not designed with heterogeneous and real-time traffic

in mind, new mechanisms should be put in place to support the diverse requirements

of such traffic. Those new mechanisms are collectively included within what is called

a Quality-of-Service (QoS) architecture for the Internet. In such an architecture, the

Internet (a packet-switched network) will be provided with the tools to treat packets

differently; for example, real-time packets will be given priority over non-real-time

packets allowing them to traverse the network faster and arrive at the destination

within their required delay bounds.

QoS in packet-switched networks can be characterized in terms of a specific set of

carefully defined parameters including: delay, delay jitter, bandwidth and loss or error

rate. The ability to maintain QoS in such networks requires sophisticated supervision

and control mechanisms (known as QoS management functions) to ensure that the

desired QoS parameters are attained and sustained.

A critical element of such QoS management functions is the scheduling of packets

as they traverse different routers along their way through the network. Scheduling

defines the order in which packets get transmitted at the output of each router, thus

ensuring that packets from different applications meet their QoS constraints. An

optimal scheduling mechanism will provide the necessary QoS guarantees required by

heterogeneous classes of traffic while utilizing the resources as efficiently as possible.

The Internet, as we know it, has also expanded to the wireless realm, especially

in recent years. Wireless technologies are gaining more and more popularity within

today’s agile and more mobile working environment. It is expected that, in the near

future, mobile users will be able to transparently access communication networks from

anywhere in the world at any time. The mobile user will use a powerful palmtop or

laptop computer that is equipped with a wireless connection to the Internet to perform

many activities including sending email, browsing web sites, making phone calls and

even having a videoconference.

Such crossover to the wireless side leaves us with the desire to provide multimedia

content to wireless users while extending the same QoS guarantees from the wired

part of the network to the wireless part. The end user with a wireless terminal should

be able to use all the applications that a user with a wired terminal enjoys with

minimal service degradation.

Due to the inherent nature of the wireless environment being a shared medium, an

extra level of complexity in the protocol stack is needed. This new level of complexity

is usually represented by the wireless Medium Access Control (MAC) protocol. The

wireless MAC layer is one of the key components in allowing QoS guarantees to be

implemented in the wireless medium because it defines how the air interface in a

wireless channel is shared among multiple users, thus having a significant impact on

user performance, system capacity and remote terminal complexity.
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The first part of this research effort focuses on designing an effective packet-based

QoS architecture for the wireless MAC environment that can seamlessly integrate

with the QoS architectures proposed for the wired Internet. The scheme we develop

concentrates on the scheduling aspects of such a QoS mechanism. This is because

scheduling represents a key element in maintaining the QoS guarantees required by

end users.

Providing QoS within the wireless infrastructure poses several new technical chal-

lenges that did not exist in wired networks. Those challenges arise from the unique

limitations of wireless channels, such as excessive amount of interference, higher error

rates and lower bandwidth.

It is also interesting to note that the inherent characteristics of the air interface,

being a shared medium, makes the development of a suitable scheduling mechanism

for wireless MAC protocols quite challenging. If the operation of the MAC protocol is

to be optimized, a complete synchronization between scheduling and the other MAC

functions (including random access and data transmission) needs to be achieved.

Hence, our scheduling architecture has to flawlessly cooperate with the wireless MAC

protocol to make the most efficient use of the shared wireless resources.

A key element of our proposed QoS architecture is known as Fair Scheduling or

Fair Queueing (FQ). Fair scheduling algorithms have received much attention in

recent years because of their ability to provide a wide range of QoS guarantees to end

users. Due to their importance to the operation of our QoS architecture, the second

part of this research effort combines novel mathematical analysis with new discrete-

event simulation experiments to extensively study the performance characteristics and

properties of such scheduling policies. When dealing with performance evaluations,

we particularly concentrate on what makes such policies fair and allows them to

protect against misbehavior and congestion scenarios. This step of analytical study

is a necessary first step for making correct decisions about traffic engineering and

resource allocations in future networks.

1.1 IETF QoS Architectures for the Wired Internet

Part of the effort to provide QoS support for multimedia applications over the Inter-

net led to the development of two primary QoS models by the Internet Engineering

Task Force (IETF): The Integrated Services (Intserv) model [1] and the Differentiated

Services (Diffserv) model [3].

The Intserv model resembles, in many aspects, the QoS architecture in Asynchronous

Transfer Mode (ATM) networks. The fundamental assumption is that resources (e.g.,

bandwidth and buffer space) must be explicitly reserved for each real-time application

to provide that application with a specific QoS level. A Resource Reservation Protocol

3



(RSVP) is defined to allow applications to reserve resources explicitly in each router

at the call set-up time [2].

Call Admission Control (CAC) routines determine whether a request for resources

can be granted or not based on the knowledge of total network resources and the

flows that have already been setup. Unfortunately, the Intserv model does not scale

up very easily. Hence, it can only be used in small networks or enterprise Virtual

Private Networks (VPNs).

The other QoS model is the Diffserv model. Diffserv is based on a simple model

where traffic entering a network is classified and possibly conditioned at the bound-

aries of the network, and assigned to specific Behavior Aggregates (BAs), with each

BA being identified by a single Diffserv Code Point (DSCP).

Users request a specific performance level by marking the DSCP field of each packet

they send with a specific value. Within the core of the network, packets are treated

within aggregates according to their DSCP value. Scalability is the salient feature of

the Diffserv framework, which allows it to be deployed in very large networks. This

scalability is achieved by forcing much of the complexity out of the core of the network

into boundary devices which process much smaller volumes of traffic, and by offering

services for aggregated traffic rather than on a per flow basis.

The wireless QoS architecture we develop in this dissertation integrates well with

both the Intsev and Diffserv architectures. This gives our architecture more flexibility

and provides a more realistic solution to the QoS problem at hand.

1.2 Broadband Wireless Networks: An Overview

Associated with the growth of the Internet is the exponential growth of wireless

technologies such as that of cellular communications, Broadband Wireless Access

(BWA) systems, and Wireless Local Area Networks (WLANs).

In early 2003, a boom in the sales of IEEE 802.11b WLAN products, also known as

Wi-FiTM, started to take place. The IEEE 802.11b WLAN standard (with its succes-

sors IEEE 802.11a and IEEE 802.11g)1 is designed to emulate a wireless Ethernet. It

uses the unlicensed industrial 2.4 GHz frequency band to enable multiple computers

and portable devices to connect to one or more wireless hubs, thus gaining access to

the Internet.

IEEE 802.11b allows for the wireless transmission of approximately 11 Mbps of

raw data at indoor distances from several dozen to several hundred feet and outdoor

1IEEE 802.11g is a newer standard that is backwards compatible with IEEE 802.11b. Several
related IEEE protocols address security, Quality of Service, and adaptive signal use, such as IEEE
802.11e, h, and i, among others.
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distances of several to tens of miles. The IEEE 802.11a uses the 5 GHz band, and

can handle 54 Mbps at typically shorter distances.

Wi-FiTMnetworks are now heavily deployed as public short-range wireless access

networks, such as those found at airports, hotels, conference centers, coffee shops and

restaurants. Several companies (such as Boingo, Surf and Sip, T-Mobile HotSpot,

and Wayport) currently offer paid hourly, session-based, or unlimited monthly access

via their deployed networks around the U.S. and internationally.

The growth in wireless technologies has also touched on broadband wireless access

(BWA) networks, which are designed to deliver high-speed data and multimedia

services to stationary wireless end users. Such systems are developed as a wireless

competitor to broadband Cable and Digital Subscriber Line (DSL) access networks.

Major component and equipment manufacturers such as Intel, Nokia, and Fujitsu

have recently indicated they will support WiMAX (Worldwide Interoperability for

Microwave Access), which promotes the IEEE 802.16a standard for BWA networks.

The IEEE 802.16a standard has a range of up to about 30 miles with data transfer

speeds of up to 70 Mbps.

Third generation (3G) cellular systems are also in the beginning processes of provid-

ing high data rates to cellular phone subscribers. The proliferation of camera phones

that can exchange not only email and Web content but also multimedia messages is

a clear evidence of this.

In short, the dream of Internet access (or access to information) anywhere anytime

is becoming a reality, and the wireless technology is to be given the credit.

1.3 Research Motivation, Results and Applications

Our research is motivated by the fact that implementing QoS guarantees in packet

switched networks is a necessary prerequisite for the efficient support of multimedia

services over such networks. We believe that this topic requires extensive research

on both the qualitative and the quantitative sides to achieve the most suitable QoS

architecture.

We are also motivated by the fact that an ideal QoS architecture needs to seamlessly

support the same QoS constraints across heterogeneous types of networks including

those designed for the wired and the wireless environments. Our emphasis would be

directed towards broadband wireless access networks in which stringent requirements

are imposed on the QoS architecture due to the numerous limitations of the wireless

channel. However, our research keeps in mind that such QoS provisioning needs to

integrate well with corresponding QoS architectures for the wired part of the Internet.

We also believe that designing a proper scheduling mechanism for such networks

while understanding its performance characteristics is a key first step to proper im-
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plementation of the desired QoS architecture. We perform a combination of analytical

and simulation studies to investigate the QoS performance aspects of our scheduling

mechanism suitable for broadband wireless access (BWA) networks.

The results we obtained from this research effort are briefly summarized below:

1. We designed a new and efficient scheduling architecture to support bandwidth

and delay QoS guarantees for the IEEE 802.16a broadband wireless access

(BWA) standard. Our design objectives were simplicity and improved network

performance. The architecture we developed supports various types of traffic

including constant bit rate, variable bit rate (real-time and non-real-time) and

best effort.

2. We introduced a new analysis method to statistically model the behavior of fair

scheduling algorithms, which represent the main building block for our wireless

QoS scheduling architecture. This analysis method allows us to derive upper

and lower bounds on mean packet delay and mean buffer occupancy experienced

by packets traveling through such scheduling policies.

3. We also developed extensive discrete-event simulation models and experiments

to validate our analytical results and to further complement our analysis by

providing more insights into the operation of fair scheduling algorithms. We

derived some interesting results that otherwise cannot be obtained using ana-

lytical methods due to the involved complexity.

Our research finds direct application in BWA systems (which are mainly dependent

on the IEEE 802.16a standard). Such systems offer attractive features over other

last-mile access technologies, such as ease and speed of deployment, fast realization

and revenues, and low infrastructure cost. Hence, these systems may find a large

market share in the telecommunications sector.

In a similar way, our research can be extended to WLANs, such as those of IEEE

802.11b and IEEE 802.11a. Such networks are finding more and more acceptance in

today’s agile and more mobile working environment.

The results of our research are also expected to find application in third generation

broadband wireless systems that aim to provide a wealth of multimedia content to

its users on the move. A large portion of the wireless spectrum is already allocated

to this technology, which promises huge benefit streams for wireless operators.

Other areas that can benefit from our proposed QoS architecture are Hybrid Fiber

Coax (HFC) networks used by Cable System providers. Such last-mile systems exhibit

many similarities to BWA networks and many of the concepts discussed here apply

to HFC systems as well.
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On another note, our performance investigation of fair scheduling algorithms, which

represents the bulk of this dissertation, can also benefit the research on QoS archi-

tectures for the wired part of the Internet. To mention just one example, consider

the efforts of the IETF to standardize Layer 2 transport over IP/MPLS backbone

networks, in which users can lease Multi-Protocol Label Switching (MPLS) virtual

connections and be guaranteed a certain level of QoS support [4].

In such a scenario, customers who formerly used to set up virtual private networks

(VPNs) using Layer 2 point-to-point data link layer connectivity using ATM or Frame

Relay virtual circuits can now lease MPLS virtual connections instead. Such MPLS

Layer 2 virtual connections provide a basis for building VPNs that mainly use the IP

protocol to accommodate Internet traffic.

Such setup is ideal for Internet Service Providers (ISPs), who are looking for a

solution where a single IP-based network can provide both Layer 2 and Layer 3 services

to end users. Using IP/MPLS networks will improve reliability and scalability, and

offer users a range of services including VPNs based on leased MPLS links or a

combination of MPLS and IP services.

For an MPLS backbone network to replace Frame Relay and ATM virtual connec-

tions in the next-generation Internet, QoS provisioning in IP/MPLS networks and

the ability to manage a reliable network using MPLS Traffic Engineering should be

the decisive factors for such networks to flourish.

It is expected that fair scheduling algorithms will constitute the main part of this

QoS management procedure, and in such a scenario, our statistical study of fair

scheduling algorithms gains even more importance, since it represents a first step to

traffic engineering of service providers’ backbone IP/MPLS networks.

1.4 Thesis Organization

The rest of this dissertation is organized as follows. Chapter 2 provides background

on earlier work related to this research and explains some of the main wireless

standards available nowadays. Chapter 3 describes our proposed QoS scheduling

architecture for broadband wireless access (BWA) networks. Chapter 4 introduces

the mathematical notation and assumptions used in the performance study of fair

scheduling algorithms. In Chapter 5, we present a new analysis method that results

in upper and lower bounds on mean waiting times experienced under fair scheduling

algorithms, and in Chapter 6 we continue our performance study of such scheduling

systems using simulation. We conclude in Chapter 7 by a quick summary of the

contributions of this research effort and provide some pointers to possible future

work.
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Chapter 2

Background

IN recent years, several last-mile high-speed technologies have been explored to

provide Internet access and multimedia services to end users [5]. Most notable of

those technologies are Hybrid Fiber Coax (HFC) cable networks, Digital Subscriber

Line (DSL), Satellite Access, and fixed Broadband Wireless Access (BWA) systems.

We opted for BWA systems to provide a case study for our research on extending

QoS to the wireless part of the Internet.

The de facto standard for delivering broadband services over fixed BWA systems is

a fairly recent protocol, called IEEE 802.16 (also known as WiMAX), which defines

the wireless MAC protocol to be used in such systems. The IEEE 802.16 standard

was developed as a consolidation of two proposals, one of which was based on the

Data Over Cable Service Interface Specifications (DOCSIS), which defines the MAC

protocol for HFC networks. It is worth mentioning at this point that the two

standards IEEE 802.16 and DOCSIS hold many striking similarities. The reader

will be able to verify this after examining Sections 2.1 and 2.2 below.

We start this chapter by presenting a quick survey of IEEE 802.16 and DOCSIS

standards. The survey is intended to be short but comprehensive. It will be helpful

in describing our wireless QoS architecture in the next chapter. We also provide some

background on scheduling algorithms and explain what makes a scheduling algorithm

fair. Such concepts are relevant to the performance analysis we develop in Chapters

4 and 5.

2.1 Data Over Cable Service Interface Specifications

HFC cable networks have been mainly used in the past to deliver broadcast-quality

TV signals to homes. The wide availability of such systems and the extremely wide

bandwidth they provide allows extending their functionality to deliver high-speed

broadband data signals to end users [6]. To provide such support, the Data Over
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Cable Service Interface Specifications (DOCSIS) protocol [7, 8] was developed by a

group of major cable operators called Cable Labs. DOCSIS was later adopted by the

ITU and is now supported by many vendors. Versions 1.0 and 1.1 of DOCSIS were

completed by 1999, and version 2.0 was introduced in early 2002.

DOCSIS assumes an architecture in which a headend, called a Cable Modem Termi-

nation System (CMTS), controls the operations of many terminating Cable Modems

(CMs) at subscriber locations. The medium between the CMTS and the different

CMs is a two-way shared medium, in which downstream channels carry signals from

the headend to users and upstream channels carry signals from users to the headend.

Upstream and downstream channels in DOCSIS are separated using Frequency Divi-

sion Duplex (FDD). DOCSIS defines both the physical layer and the MAC protocol

to be used on these channels. DOCSIS supports a downstream data rate of up to 27

Mb/s shared among data cable users. In the upstream, data rates up to 10 Mb/s can

be supported.

A CM normally tunes to one upstream channel and an associated downstream

channel. Each upstream channel is inherently a shared medium, and the CMTS

controls access of the CMs to such a medium in an orderly manner by means of the

MAC protocol. The main access scheme in DOCSIS 1.0 and 1.1 is time division

multiple-access (TDMA). DOCSIS 2.0 also allows frequency division multiple-access

(FDMA) and synchronous code division multiple-access (S-CDMA) to complement

the original TDMA access scheme. Each upstream channel is further divided into a

stream of fixed-size time minislots.

The DOCSIS MAC protocol utilizes a request/grant mechanism to coordinate trans-

mission between multiple CMs. If a CM needs to transmit anything on the upstream

channel, it first requests, from the CMTS, an opportunity to transmit a certain

amount of data. The CMTS is then responsible for allocating such a transmission

opportunity (called a data grant) in the next upstream frame(s) if capacity is available.

Periodically, the CMTS sends a bandwidth allocation map (MAP) message over the

downstream channel to indicate to the CMs the specific time minislots allocated to

them as their corresponding upstream transmission opportunities (see Figure 2.1). As

a result of reserving bandwidth, the CMs are guaranteed a collision-free transmission.

Besides indicating the transmission opportunities for the different CMs, the MAP

message indicates in which time intervals the different CMs are allowed to send their

requests for transmission. This reservation interval is a contention interval in which

collisions may actually happen. A contention resolution algorithm is used to resolve

such collisions. DOCSIS uses the simple binary exponential backoff algorithm for

contention resolution. Requests for transmission can also be piggybacked on data

packets transmitted by the CMs on the upstream channel.

DOCSIS supports fragmentation and concatenation of data packets. Fragmentation

happens when the CMTS provides a data grant to a CM that is smaller than the one
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Figure 2.1: The request/grant mechanism used by the DOCSIS MAC protocol.

the CM actually requested. In such a case, the CM fills the partial grant it receives

with the maximum amount of data possible, and sends the rest of the data payload

in the next allocated data grant.

To support QoS, DOCSIS 1.1 introduces the concept of service flows. At least one

service flow must be setup between any particular CM and the CMTS to carry best-

effort traffic. However, to support other types of traffic, the CM may opt to set up

multiple service flows to the CMTS with each flow having its own characteristics and

traffic parameters.

An upstream service flow in DOCSIS 1.1 and DOCSIS 2.0 can be classified within

one of the following Upstream Service Flow Types: Unsolicited Grant Service (UGS),

Real-Time Polling Service (rtPS), Non-Real-Time Polling Service (nrtPS), Best Ef-

fort (BE) and Unsolicited Grant Service with Activity Detection (UGS/AD). The way

DOCSIS treats each of those service flow types is explained in Section 2.3.

2.2 IEEE 802.16 Broadband Wireless Access

The IEEE 802.16 standard was developed for BWA systems to provide high-speed

data access to subscribers [9, 10]. It was formally approved by the IEEE Standards

Association in 2001.

IEEE 802.16 supports a metropolitan area network architecture. It assumes a point-

to-multipoint topology, with a controlling base station (BS) that connects subscriber

stations (SS) to various public networks linked to the BS. The BS and SSs are

stationary and one SS typically serves one business or residential building.

The IEEE 802.16 standard defines a connection-oriented MAC protocol similar to

that of DOCSIS. The MAC layer uses wide channels for the downstream and upstream

channels, which are separated using either Frequency Division Duplex (FDD), as in
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DOCSIS, or using Time Division Duplex (TDD). The access mode for the upstream

channel is Time-Division Multiple Access (TDMA).

IEEE 802.16 utilizes contention and piggybacking, as in DOCSIS, to send requests

to the BS for transmission opportunities on the upstream channel. The BS is the

one responsible for assigning such transmission opportunities to different SSs and

also for assigning a certain contention interval where such reservations can be made.

IEEE 802.16 uses a binary truncated exponential backoff as its contention resolution

protocol and maintains the concept of a bandwidth allocation MAP as in DOCSIS.

Fragmentation and concatenation of data packets are also allowed.

To support QoS, IEEE 802.16 maintains the concept of a service flow. The Upstream

Service Flow Types defined in IEEE 802.16 are, again: Unsolicited Grant Service

(UGS), Real-Time Polling Service (rtPS), Non-Real-Time Polling Service (nrtPS)

and Best Effort (BE).

An extra feature in IEEE 802.16, not available in DOCSIS, is that a SS is allowed

to request transmission opportunities either as Grants per Connection (GPC), which

is exactly the way DOCSIS works, or as Grants per Subscriber Station (GPSS),

in which a SS requests transmission opportunities as a bundle for all the service

flows it is maintaining. The SS then holds the responsibility for reassigning the

received transmission opportunities between the different service flows. This allows

hierarchical and distributed scheduling to be used and is not supported by DOCSIS.

2.3 QoS Service Flows in DOCSIS and IEEE 802.16

Both IEEE 802.16 and DOCSIS define a number of service flow types that should

be treated appropriately by the MAC protocol scheduling process. Those service flow

types are identical for both IEEE 802.16 and DOCSIS and are explained below.

2.3.1 Unsolicited Grant Service (UGS) Flows

UGS is designed to support real-time service flows that generate fixed size data

packets on a periodic basis, such as Voice over IP. The service offers fixed size unso-

licited data grants (transmission opportunities) on a periodic basis. This eliminates

the overhead and latency of requiring the SS to send requests for transmission. In

UGS, the SS is prohibited from using any contention requests and the BS does not

provide any unicast request opportunities1 for the SS. Piggyback requests are also

prohibited in UGS.

1A unicast request opportunity is an interval of the upstream channel in which only one particular
SS is allowed to send a bandwidth request to the BS. This is different from the contention interval
in which many SSs contend to transmit their bandwidth requests.
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The key service parameters for UGS service flows are: Unsolicited Grant Size, Grants

Per Interval, Nominal Grant Interval and Tolerated Grant Jitter. The ideal schedule

for enforcing such parameters (see Figure 2.2) is defined by a Reference Time t0,

with the desired transmission times being ti = t0 + i ∗ interval, where interval is

the Nominal Grant Interval. The actual grant times t′i must be in the range ti ≤
t′i ≤ ti + jitter, where jitter is the Tolerated Grant Jitter. When multiple grants per

interval are requested, all grants must be within this jitter interval.

Nominal Grant Interval

t0

Max Tolerated Jitter

Nominal Grant Interval

Max Tolerated Jitter

ti ti + jitter

Time

Figure 2.2: Data Grants for one UGS Service Flow.

2.3.2 Real-Time Polling Service (rtPS) Flows

rtPS is designed to support real-time service flows that generate variable size data

packets on a periodic basis, such as MPEG video. The service offers periodic unicast

request opportunities, which meet the flow’s real-time needs and allow the SS to

specify the size of the desired grants. The SS is prohibited from using any contention

or piggyback requests. The key service parameters here are: Nominal Polling Interval,

Tolerated Poll Jitter and Minimum Reserved Traffic Rate. The ideal schedule for

enforcing such parameters is very similar to that for UGS service flows.

2.3.3 Non-Real-Time Polling Service (nrtPS) Flows

nrtPS is designed to support non-real-time service flows that require variable size

data grants on a regular basis, such as high bandwidth FTP. The service offers unicast

request opportunities (polls) on a periodic basis, but using more spaced intervals

than rtPS. This ensures that the flow receives request opportunities even during

network congestion. In addition, the SS is allowed to use contention and piggyback

request opportunities. The key service parameters here are: Nominal Polling Interval,

Minimum Reserved Traffic Rate and Traffic Priority.
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2.3.4 Best Effort (BE) Service Flows

In BE service the SS is allowed to use contention and piggyback request opportuni-

ties, but neither periodic polls nor periodic data grants will be sent by the BS. The

key service parameters for BE service flows are: Minimum Reserved Traffic Rate and

Traffic Priority.

It is worth mentioning that for nrtPS and BE service flows, the standard specifies

that the BS should use the Traffic Priority parameter when determining precedence in

request service and grant generation. In addition, the BS must preferentially provide

contention request opportunities based on priority.

2.3.5 Unsolicited Grant Service with Activity Detection (UGS/AD) Ser-
vice Flows

UGS/AD is a service flow type that is supported by DOCSIS only. It is designed

to support UGS flows that may become inactive for substantial portions of time (i.e.,

tens of milliseconds or more), such as Voice over IP with silence suppression. The

service provides unsolicited grants when the flow is active and unicast polls when the

flow is inactive. This combines the low overhead and low latency of UGS with the

efficiency of rtPS. Though USG/AD combines UGS and rtPS, only one scheduling

service should be active at a time.

It is essential that we mention at this point that even though both DOCSIS and

IEEE 802.16 define the QoS service flow types that can be setup between the BS and

the different SSs, they do not define or mandate a specific scheduling algorithm to

be used at the BS to maintain the QoS constraints required by such service flows.

This job is left entirely to the innovation of designers and implementation of service

providers. Since scheduling represents an important component in supporting QoS

over the wireless MAC protocol, and since the scheduler design has a great impact on

the maximum utilization a MAC protocol can achieve, we will start our research (in

Chapter 3) by developing a new and effective scheduling mechanism for IEEE 802.16

(and hence for DOCSIS as well) that can utilize the wireless resources as efficiently

as possible while providing the necessary QoS guarantees to end users.

In addition, our scheduling algorithm will work closely with the request/grant

mechanism employed by the wireless MAC protocol to reduce the possible collisions

of request packets during the bandwidth reservation period. We optimize the resource

reservation phase by efficiently distributing the channel among the competing nodes,

thus reducing the collision probability (see Chapter 3).
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2.4 Contention Minislot Allocation

Both IEEE 802.16 and DOCSIS require that each upstream frame interval include

a proper contention (reservation) period. The standards, however, do not specify any

method to determine the size of this reservation area and leaves that entirely to the

discretion of the service provider. An appropriate choice of this contention area must

reduce the number of possible collisions to shorten the contention resolution phase

without wasting upstream bandwidth. Different strategies for allocating contention

minislots will result in different performance for the entire MAC protocol, especially

for the service flows that depend on contention to send their upstream requests to

the BS (i.e., nrtPS and BE service flows).

No contention minislot allocation strategies have been proposed in the literature

for IEEE 802.16. However, a few proposals have been made for Hybrid Fiber Coax

(HFC) networks [26 – 29], although not all of them addressed the DOCSIS standard

per se. In particular, two main approaches have been thoroughly investigated. They

improve the performance of the MAC protocol by dynamically changing the number

of contention minislots in successive frames based on the observed overall traffic. Such

procedure typically offers improved performance as opposed to the straightforward

solution of using a fixed number of contention minislots in each upstream frame.

The first of those two approaches utilizes a heuristic algorithm to compute the

number of contention minislots. The algorithm is based on the observation that a

simple contention resolution algorithm, such as the binary exponential back-off used

by IEEE 802.16 and DOCSIS, has a maximum theoretical throughout efficiency of

33% [26]. This means that allocating approximately three request minislots for each

data packet transmission expected in the upstream frame will theoretically force the

random collisions in the contention area to drop to near zero. This will reduce the

mean delay such requests incur to reach the BS and thus increase the throughout

they observe (see also Section 3.2 for more details).

This approach is very intuitive and easy to implement, with the equations describing

the algorithm being natural and straightforward. In addition, the results in [26] and

[27] clearly show that such an algorithm (even with slightly different flavors) provides

a noticeable improvement in the performance of the MAC protocol. The results in

[26] show the improvement in throughout compared to assigning a fixed number of

contention minislots in each frame, especially when the amount of contention-based

traffic is significant. The improvement in throughput is shown to occur for both

contention-based traffic and the combined contention-based and non-contention-based

traffic. The results in [27] also show the improvement due to the dynamic algorithm

in terms of mean delay required for successful transmission of bandwidth requests.

The two flavors suggested in [26] and [27] of the first approach to contention minislot

allocation are mainly designed for ATM and IEEE 802.14 networks, and do not
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completely fit the IEEE 802.16 or DOCSIS frameworks. This is because they do not

address specific issues such as variable frame lengths and multi-priority contention

traffic. In addition, one of the algorithms lacks a mechanism to properly combat

congestion scenarios at the BS. Hence, we will introduce appropriate modifications to

this approach to develop a more appropriate contention minislot allocation scheme

for our proposed IEEE 802.16 QoS scheduling architecture (see Chapter 3 for more

details).

The second approach to dynamic minislot allocation is slightly more involved. It

started with the work in [28] where the authors suggest a dynamic allocation algorithm

for the IEEE 802.14 standard (which uses the n-ary tree algorithm for contention

resolution). This dynamic allocation scheme uses a specific formula based on empirical

data to calculate the number of contention minislots in the initial frame, and then if

collisions happen, it sets the number of contention minislots to three times the number

of collisions in the last allocated minislot cluster. A slightly different approach with

a similar two stage allocation system (initial number of contention minislots which

is modified when collisions happen) has also been proposed in [28] for the DOCSIS

binary exponential back-off contention resolution algorithm.

This approach has evolved in [29] into a more elaborate statistically optimized

contention minislot allocation scheme. The new algorithm allocates contention min-

islots in two stages. However, in the first stage a time proportional scheme is used

to estimate the necessary number of contention minislots. Once collisions start

to happen, the new number of contention minislots is calculated by looking up a

predetermined table of most likely number of requests (MLR). The simulation results

in [29] demonstrate the improvement in performance achieved by such algorithm

compared to using a fixed number of contention minislots. The improvement is shown

as a drop in the mean access delay required for upstream requests to successfully reach

the BS (including the ones that incur collisions) and as an increase in the throughput

of the MAC protocol as observed by service flows that are dependent on contention.

Unfortunately, no comprehensive study explores the differences in performance be-

tween the different dynamic contention minislot allocation algorithms discussed above,

mainly because of the different assumptions they make in terms of the infrastructure

MAC protocol and the associated contention resolution algorithm (CRA). In addition,

many of them do not adhere exactly to the DOCSIS MAC protocol and some of

those algorithms require changes to the DOCSIS specifications to work correctly.

This makes the comparison very difficult, if not impossible. For example, if a certain

dynamic contention minislot allocation algorithm turns out to perform very well for

the n-ary tree-based contention resolution algorithm, its mapping to the simpler

binary exponential back-off algorithm might not be straightforward or might even

result in a degraded performance.
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Due to the intuitive nature of the first approach and the difficulty in implementing

the second one, the scheme we develop in Chapter 3 will be based on the first approach

with modifications to adapt to the minislot structure of IEEE 802.16, to account for

piggybacking, to handle multi-priority traffic and to allow for variable frame lengths.

The way we deal with different priorities within nrtPS and BE service flows is inspired

by the work in [22] for dealing with priorities within the DOCSIS MAC protocol,

although the algorithm we develop is slightly different. This is mainly because

the algorithm in [22] requires modifications to the contention resolution algorithm

mandated by DOCSIS, which is not an option we desire.

2.5 Fair Scheduling Algorithms

Fair scheduling or Fair Queueing (FQ) algorithms have received much attention in

recent years because of their ability to provide a wide range of QoS guarantees to

end users. Examples of well-known FQ algorithms include the Generalized Processor

Sharing (GPS) policy [11], Weighted Fair Queuing (WFQ) [11, 12], Self-Clocked Fair

Queuing (SCFQ) [13], Start-Time Fair Queuing (SFQ) [14], Starting Potential-based

Fair Queuing (SPFQ) [15] and Weighted Round Robin (WRR) [16].

2.5.1 Classification of Fair Queueing Algorithms

Based on the way FQ algorithms are constructed, they can be classified into either

frame-based or sorted packet-based algorithms. In frame-based algorithms, the time

axis is divided into fixed or variable length frames, and each flow is allowed to

transmit within a certain portion of this frame period corresponding to its bandwidth

reservation. An example of a frame-based FQ algorithm is the WRR policy.

The sorted packet-based algorithms, on the other hand, are mainly derived from

a packet-by-packet implementation of the GPS algorithm suggested in [11]. Such

algorithms provide QoS guarantees to the supported flows by assigning certain times-

tamps to arriving packets and then serving those packets in increasing order of their

timestamps. The timestamps (either virtual finish times or virtual start times) are

assigned based on a system-wide function called the virtual time, denoted by v(t),

which tracks the progress of work in the scheduling system.

To elaborate more, let us denote by rk the minimum reserved service rate (in

bits/second) associated with each flow k in the set of all flows K supported by a

sorted packet-based scheduler. Each arriving packet i of flow k, pi
k, with arrival time

ai
k and length Li

k is stamped by a virtual start time Si
k and a virtual finish time F i

k

computed as follows,
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F i
k =

Li
k

rk

+ Si
k, Si

k = max(F i−1
k , v(ai

k)), i ≥ 1, k ∈ K (2.1)

where F 0
k = 0 and v(ai

k) is the value of v(t) at the time of packet pi
k arrival. Sorted

packet-based FQ algorithms are divided into Earliest Finish Time First (EFTF)

policies, in which packets are scheduled in the increasing order of their virtual finish

times (e.g., WFQ, SCFQ and SPFQ), and Earliest Start Time First (ESTF) policies,

in which packets are scheduled in the increasing order of their virtual start times (e.g.

SFQ).

It is important to note here that even though the different FQ algorithms mentioned

above were originally designed to emulate GPS behavior, the techniques they use

to calculate the virtual time v(t) are different. As a result, their implementation

complexities and fairness bounds are also different [18].

For example, in WFQ the virtual time v(t) is defined as a piece-wise linear function

with a slope that changes whenever the set of backlogged flows B(t1, t2) in an associ-

ated reference GPS system changes. Mathematically, such virtual time is computed

as follow [11],

v(t2) − v(t1) =
C∑

k∈B(t1,t2)

rk

· (t2 − t1) (2.2)

where C is the total output link capacity in bits/s and [t1, t2] is an arbitrary subin-

terval of a busy period of the associated reference GPS system.

To reduce the complexity of WFQ, many approximations of v(t) that are less

computationally demanding were suggested. As an example, SCFQ uses the virtual

finish time tag of the packet receiving service at any time t as an estimate of v(t),

i.e., v(t) = F i
k during the interval in which packet pi

k is in service. On the other hand,

SFQ uses the virtual start time tag to approximate virtual time, i.e., v(t) = Si
k during

the interval in which packet pi
k is in service.

More elaborate schemes, such as the SPFQ algorithm, uses a piecewise linear func-

tion of time to represent v(t) as follows: v(t2) = v(t1) + (t2 − t1). The algorithm

re-calibrates v(t) periodically (every time a packet finishes service) to a value equal

to the minimum virtual start time currently in the queue. This makes sure the

behavior of SPFQ approximates that of WFQ.

2.5.2 The Bounded Fairness Criterion of FQ Algorithms

Let us denote by Wk(t1, t2) the aggregate service (in bits) received by flow k, k ∈
K, during the time interval [t1, t2]. Wk(t1, t2)/rk is then the normalized service

provided to flow k during that time interval.
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At any time t, a flow maybe backlogged or otherwise absent. A flow is backlogged

if its corresponding buffer contains one or more data packets that are waiting to be

served or are in service. We denote by B(t) the set of flows which are backlogged at

time t and by B(t1, t2) the set of flows which are backlogged during the entire interval

[t1, t2]. We also denote by A(t1, t2) the set of flows that are absent during the entire

interval [t1, t2].

A scheduling algorithm is said to be fair if the difference in normalized services

received by different backlogged flows in the scheduler is bounded (by a fairness bound

Ψ) for all intervals of time [13], where the value of Ψ is specific to the scheduling

algorithm under consideration. In other words, a scheduling algorithm is fair if the

following condition applies,

∣∣∣∣Wk(t1, t2)

rk

− Wj(t1, t2)

rj

∣∣∣∣ ≤ Ψ, j, k ∈ B(t1, t2) (2.3)

where B(t1, t2) is the set of flows which are backlogged2 during the entire time interval

[t1, t2]. For example, the fairness bound for SCFQ and SFQ is given by Ψ = Lmax
k /rk+

Lmax
j /rj, where Lmax

k and Lmax
j are the maximum packet lengths of flows k and j,

respectively.

In sorted packet-based schedulers, an alternative definition of fairness is also possi-

ble. To arrive at such a definition we notice that such FQ algorithms maintain, in

addition to the virtual time (also called system potential), a connection potential vk(t)

associated with each flow k ∈ K. The connection potential keeps track of the amount

of normalized service received by that connection, and is mathematically defined as

follows,

vk(t2) =

{
vk(t1) + Wk(t1, t2)/rk , k ∈ B(t1, t2)
v(t2), k ∈ A(t1, t2)

(2.4)

Connection potentials can be used to generate timestamps for the packets queued

in a FQ system. In an EFTF FQ system, for example, the Nth packet in queue k

has the timestamp (virtual finish time) of [20],

vk(t) +
N∑

n=1

Ln
k

rk

(2.5)

2It is worth mentioning that in some FQ algorithms, such as WFQ, the condition k ∈ B(t1, t2)
in (2.3) refers to flows being backlogged in the reference system maintained by such FQ algorithms
rather than the actual packet-by-packet system.
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where Ln
k is the length of the nth packet queued in buffer k at time t. We define

the service lag of a flow k, denoted by δk(t), as the difference between the system

potential v(t) and the connection potential vk(t) of flow k at any time t, i.e.,

δk(t) = v(t) − vk(t), k ∈ K (2.6)

The fairness bound Ψ for sorted packet-based FQ algorithms can be translated into

an equivalent fairness bound in terms of the service lag characterized by (2.6). Such

a fairness bound can be written as follows (see Appendix A),

0 ≤ δk(t) ≤ ψk(t), k ∈ K (2.7)

where ψk(t) is a fairness bound specific to the scheduling algorithm under consid-

eration3. In SCFQ, for example, the bound on the service lag of flow k is given by

ψk,SCFQ(t) = Lk(t)/rk, where Lk(t) is the length of the packet in queue k that finishes

service after time t [13].

It is easy to see that the mean of the service lag δk(t), denoted by δk, has the

following bound,

0 ≤ δk ≤ ψk, k ∈ K (2.8)

where ψk is the mean of ψk(t). Another important parameter that we will use in our

analysis is the lag between the connection potentials of two different flows, defined as

follows,

δkj(t) = vk(t) − vj(t)
= [v(t) − vj(t)] − [v(t) − vk(t)] = δj(t) − δk(t), k, j ∈ K

(2.9)

The δkj(t) parameter is a random variable with a mean that is bounded in a FQ

system by (cf. (2.8) and (2.9)),

−ψk ≤ δkj ≤ ψj, k, j ∈ K (2.10)

It is worth mentioning that if we introduce some reasonable, although not mathe-

matically rigorous, assumptions (or approximations) we can dramatically enhance the

bounds on δk and δkj in (2.8) and (2.10), respectively. We introduce the assumptions

here, and defer the discussion on why they are reasonable until Chapter 5.

3The results derived in this dissertation work just as well for FQ algorithms that have a fairness
bound of the form −ak ≤ δk ≤ bk. We only need to define a new equivalent fairness bound given by
0 ≤ δ′k ≤ ak + bk = ψ′

k.
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The first approximation allows us to derive a tighter bound on δk, and requires a

more careful consideration of how FQ systems work. Notice from the definition of

a connection potential in (2.4) that when flow k is absent, its connection potential

becomes equal to the system potential (i.e., the service lag becomes zero) and remains

that way until the flow is backlogged again. In other words, we can write,

0 ≤ δk ≤ ψk · Pr [k ∈ B] , k ∈ K (2.11)

where Pr [k ∈ B] is the probability of flow k being backlogged. Although we cannot

find the exact value of such a probability, we can find an upper bound for it, which

would still be useful in (2.11).

To proceed, we remember that in a general G/G/1 queuing system, the probability

of the queuing system being backlogged is equal to the probability of the server being

busy4, which in turn is equal to the utilization factor ρ = λX = λL
/
C. Using

the same argument in our FQ system while assuming that flow k is guaranteed an

equivalent server of minimum capacity of rk (see reasoning in Chapter 5), we get,

Pr [k ∈ B] ≤ λk
Lk

rk

where Lk is the mean length of flow k data packets, and λk is the mean arrival rate

at flow k. We will use ρ′
k to represent the quantity λkLk

/
rk to express the notion of

a new utilization factor of flow k under an equivalent server of capacity rk. Hence,

the mean service lag of flow k has the upper and lower bounds of,

0 ≤ δk ≤ ρ′
kψk = λk

Lk

rk

ψk, k ∈ K (2.12)

We can make another approximation by noticing that the service lag δk(t) is a

random variable that has an unknown distribution. Although such a distribution

will, most likely, be dependent on how the specific FQ algorithm works, we can

assume that the distributions of δk(t) and δj(t), k, j ∈ K, are similar. We refer to

two distributions as similar if they have the forms fδ(δ) and (1/τ) fδ(δ/τ), where τ is a

constant. For example, if it turns out that δk(t) has a uniform distribution extending

between 0 and ψk(t), it is reasonable to assume another uniform distribution for δj(t)

but this time extending between 0 and ψj(t). This is justified by the fact that different

flows in the FQ system are treated in the exact same way except for the amount of

reserved bandwidth they receive.

4Pr[backlog] = 1 − p0 = ρ = λX
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If such an assumption holds then the means of δk(t) and δj(t) will also be related (see

Appendix B). This relation is expressed as follows: If δk = α ρ′
kψk, where 0 ≤ α ≤ 1,

then δj = α ρ′
jψj. Hence, we can say that δkj is given by,

δkj = δj − δk = α
(
ρ′

jψj − ρ′
kψk

)
, k, j ∈ K (2.13)

And a new tighter upper bound on δkj is then derived by setting α = 1,

δkj ≤ ρ′
jψj − ρ′

kψk, k, j ∈ K (2.14)
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Chapter 3

Quality of Service Scheduling
Architecture

IN this chapter, we describe a new and efficient scheduling architecture to sup-

port bandwidth and delay QoS guarantees for both IEEE 802.16 and DOCSIS

standards. Our design goals are simplicity and improved network performance. The

architecture we develop here supports various types of traffic including constant bit

rate, variable bit rate (real-time and non-real-time) and best effort.

It is worth mentioning that a few proposals have already been devised to support

QoS in HFC networks [22 – 25]. However, most of those proposals do not specifically

address the QoS requirements of DOCSIS (or IEEE 802.16). For example, in [22]

the authors propose a multi-tiered priority-based HFC scheduler, which supports

contention-based traffic. The proposed scheduler, however, has no provision for delay-

sensitive traffic such as UGS and rtPS service flows. To the best of our knowledge,

only the work in [25] addresses the DOCSIS 1.1 standard per se, but it also falls short

of supporting all the service flow types defined in DOCSIS (it deals only with UGS

and BE services). Its treatment of UGS service is also problematic since it does not

provide any guarantees in terms of Tolerated Jitter for such UGS service flows.

The scheduling architecture we present here is the first one to be proposed for the

new IEEE 802.16 standard and is also the first that truly addresses the QoS needs

of DOCSIS. Although our scheduler supports both IEEE 802.16 and DOCSIS, our

discussion will be directed more toward the IEEE 802.16 standard.
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3.1 The Scheduling Architecture

Scheduling within the IEEE 802.16 BS can be essentially reduced to the process

of building the bandwidth allocation MAP describing which data grants (packets)

get transmitted in the next frame period. Our suggested upstream scheduling ar-

chitecture for IEEE 802.16 is shown in Figure 3.1. In such architecture, requests

for transmission from the different SSs are received by the BS through contention,

unicast request opportunities and piggybacking (see Chapter 2). Those requests are

first translated into suitable upstream transmission opportunities (data grants), which

then get scheduled on a frame-by-frame basis by building a corresponding allocation

MAP message that describes the usage of each frame interval.

...

Server

semi-preemptive
priority

priority-enhanced
WFQ  (or a variant)

Flow 1

Flow 2

Flow N

Block generating Data
Grants for UGS flows and

unicast  Requests for
rtPS  and nrtPS  flows

Flows with
minimum
bandwidth

reservations

Flows with
NO  bandwidth
reservations

Flows
1 ... M

Type 1 (FIFO) Queue

Type 2 (FIFO) Queues

Type 3 (Priority) Queue

Translate Requests
into Data Grants

rtPS, nrtPS and BE Requests
(either unicast , piggyback or

contention)

Framing and
Contention/Data

Minislot  Allocation

Figure 3.1: Architecture of the proposed upstream scheduler for both IEEE 802.16
and DOCSIS.

To allow for multiple QoS requirements, the scheduler keeps the data grants to be

scheduled in three types of queues, which we will refer to as Type 1, Type 2 and Type

3 queues. We represent the hardware block responsible for scheduling the data grants

(or creating the MAP message) in Figure 3.1 by a server that continuously schedules
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different data grants (and unicast request opportunities) on the upstream channel.

In such a representation, each data grant is treated as a packet that needs to find its

way through the server (scheduler). When such a packet finishes service (i.e., when

a data grant gets scheduled), a corresponding entry is logged in the MAP message

for the next frame period. The actual transmission of the corresponding data packet

does not take place, however, until the next frame starts.

In developing an understanding of our scheduling architecture, the reader should

keep in mind the difference between the time axis used by the scheduler trying to

build the allocation MAP and the actual transmission of data packets on the upstream

channel. The scheduler in Figure 3.1 advances within a faster virtual time frame to

identify the proper instants for scheduling data grants, while the upstream channel

operates within the normal time frame to transmit the corresponding data packets

(see Figure 3.2).

��

�
�
��
��

Creating MAP

Upstream Frame Period

Reservation (Request) PeriodReservation
(Request) Period

Actual Time

Scheduler Time

Data Packets

Scheduler Time (Clock) Frozen

Scheduler Clock Running Faster than Actual Clock

Figure 3.2: Difference between scheduler time and actual time.

Maintaining a different time axis for the scheduler allows us to use the queueing

model in Figure 3.1 as if the server corresponds to the upstream channel. We will

refer to the new time axis used by the scheduler as the scheduler time. More discussion

on the properties of our scheduler and how it treats the different service flow types

in IEEE 802.16 and DOCSIS is presented below.
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3.1.1 Unsolicited Grant Service (UGS) Flows

UGS packets cannot tolerate excessive delays in their transmission. Hence, the

processing of UGS flows should be decoupled as much as possible from all other flows

in the scheduler. To achieve this goal a separate hardware block in our scheduler

keeps track of all admitted UGS service flows by maintaining a table similar to the

one shown in Figure 3.3. This table is updated whenever the Connection Admission

Control (CAC) algorithm admits or releases a new UGS flow. The separate hardware

block then uses the information in this table to periodically generate (in scheduler

time) data grants that feed the Type 1 queue in the scheduler (see Figure 3.1).

Active UGS Service Flows 

Flow 

SID 

Reference 

Time, t0 

Nominal Grant 

Interval 

Tolerated 

Grant Jitter 

Grant Size Grants Per 

Interval 

Other 

Data 

1 X X X X X X 

2 X X X X X X 

3 X X X X X X 

 

Figure 3.3: The table maintained by UGS dedicated hardware block.

One data grant (or more) is generated per nominal interval for each active UGS

service flow. The generation time of each data grant is given by ti = t0 + i ∗ interval,

where interval is the Nominal Grant Interval for that service flow. Each generated

data grant is also marked with a delivery deadline equal to ti + jitter, where jitter is

the Tolerated Grant Jitter for such a flow. The scheduling algorithm makes sure that

data grants fed to the Type 1 queue are served (scheduled) before their corresponding

deadlines by providing priority to such data grants. It is important to mention that

all the above times are in scheduler time discussed earlier and not the actual time.

The server provides a strict semi-preemptive priority to data grants in the Type 1

queue, whereby a grant undergoing service is sometimes allowed to complete service

without interruption even if a grant of higher priority (a Type 1 grant) arrives in

the meantime. This happens only when the newly arriving Type 1 grant can still

be delivered within its deadline without the need to preempt the grant undergoing

service. However, service of a grant must be interrupted (preempted) when a Type

1 grant arrives with a deadline that is earlier than the completion time of the grant

in service. In such a case, the newly arriving Type 1 grant is served first and the

remainder of the preempted grant is served afterwards. In IEEE 802.16, this results in

the lower priority data grant being fragmented. Of course, when the server becomes

free while the Type 1 queue is nonempty, Type 1 grants are always the ones that

enter service first. A question here is whether preemption (when needed) should be

done just before the Type 1 grant deadline or at an earlier time given that the server
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knows it needs to perform preemption. Since preemption means fragmentation of a

particular data grant, we suggest to preempt at a point convenient for fragmentation

(e.g., at a fragment size equal to a power of 2) if possible.

For such a scheduling algorithm to work, fragmentation should be enabled for all

non-UGS service flows in the network. Otherwise, if fragmentation must be avoided,

a simpler architecture can be used in which data grants of all non-UGS service flows

are limited by management functions1 to a certain size that is always smaller than

the minimum Tolerated Jitter of all UGS service flows. In this case, no UGS data

grant will ever miss its deadline due to a grant being served under a simple strict

non-preemptive priority queuing discipline. In fact, in such a design scenario, we can

stop attaching deadlines to Type 1 data grants. The SS will be the one responsible for

limiting the packet sizes corresponding to non-UGS flows to fit the new data grants

with limited sizes.

3.1.2 Real-Time Polling Service (rtPS) Flows

There are two portions of rtPS traffic that need to be handled by the scheduler.

First, there are the periodic upstream unicast request opportunities (periodic polls)

to be provided for each rtPS service flow, and second, there are the actual data grants

(transmission opportunities) to be allocated to such a flow.

Our scheduler treats rtPS upstream unicast request opportunities in exactly the

same way as UGS data grants: A dedicated hardware block generates periodic unicast

requests (polls) based on information stored in an internal table about the rtPS

flows, and feeds those requests to the Type 1 queue in the scheduler. The table

structure is the same as that used for UGS traffic (see Figure 3.3), but with replacing

entries corresponding to data grants by entries corresponding to unicast requests (e.g.,

replacing Nominal Grant Interval by Nominal Polling Interval and Tolerated Grant

Jitter by Tolerated Polling Jitter).

For the other portion of rtPS traffic, which is the transmission of actual data grants,

we notice that a fundamental difference between UGS traffic and rtPS traffic is that

UGS reserves a fixed portion of the upstream bandwidth that can only be used by that

UGS service. In rtPS, however, if a service flow is inactive for a short period of time,

the excess reserved capacity can be reused by other rtPS (or nrtPS and BE) flows2.

Hence, when the scheduler is generating data grants, it should treat rtPS traffic in a

different way than UGS traffic. Also, each rtPS service flow may or may not make a

1IEEE 802.16 allows the BS to impose a specific limit on data grant sizes of rtPS, nrtPS and BE
service flows. This is done using the Maximum Traffic Burst management parameter (which has a
default value of 1522 bytes).

2This requires using a queueing discipline that supports this feature. A straightforward solution
is to incorporate a fair queueing algorithm in our scheduling architecture to provide this behavior.
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minimum bandwidth reservation request at connection setup. The scheduler should

also treat various rtPS flows differently based on the amount of bandwidth reservation

they make.

Based on the above observations, after a rtPS request for transmission is received on

the upstream channel, a corresponding data grant is generated and is fed to either a

Type 2 or a Type 3 queue based on whether the corresponding service flow has made

a minimum bandwidth reservation or not. The data grant is fed to a Type 3 queue

if its corresponding service flow has no bandwidth reservation or is fed to a Type 2

queue if its flow has made such a bandwidth reservation (see Figure 3.1). The Type

3 queue in the scheduler is shared by all service flows with no explicit bandwidth

reservations, while the scheduler provides a dedicated Type 2 queue for each service

flow that has already requested some bandwidth guarantees from the BS.

We suggest using a Weighted Fair Queuing (WFQ) [11, 12] discipline or a simpler

variant of it such as Self-Clocked Fair Queuing (SCFQ) [13] or Start-Time Fair

Queuing (SFQ) [14] to handle rtPS flows fed to Type 2 and Type 3 queues. A

WFQ rate (or weight) is assigned to each Type 2 queue based on the minimum

bandwidth reserved for the corresponding service flow. The WFQ rate for Type 3

queue is calculated by subtracting all the reserved rates for Type 2 queues from the

aggregate output link capacity (of course, after subtracting the bandwidth reserved

for UGS traffic and contention minislots).

It is fair to assume that the number of flows set up with minimum bandwidth

reservations will be much smaller than those with no reservations (because reserving

bandwidth will require the customer to pay a higher fee). This is why aggregating

all flows with no bandwidth reservations in one Type 3 queue will reduce the com-

plexity of the underlying WFQ algorithm considerably. The choice of per service flow

scheduling for Type 2 traffic, on the other hand, is adopted to provide hard bandwidth

guarantees for the corresponding service flows that wish to have such guarantees.

We envision that pricing will depend mainly on the amount of minimum bandwidth

reserved for a certain service flow. As explained in Chapter 2, nrtPS and BE service

flows can be assigned different priority levels in the range of 0 – 7, with higher values

indicating higher priority. We envision that for nrtPS and BE service flows, the

Traffic Priority parameter will be a second-level pricing criterion. In other words,

priority levels can provide finer-grained pricing to be combined with the coarser-

grained pricing for the amount of minimum bandwidth reservation a user makes.

Although the IEEE 802.16 standard does not assign any priority levels to rtPS

service flows, we believe that since users are expected to pay more for rtPS than

nrtPS and BE services, rtPS should have an implicit priority level of 8.
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3.1.3 Non-Real-Time Polling Service (nrtPS) Flows

There are two differences between nrtPS and rtPS services. First, nrtPS does not

depend solely on unicast requests allocated to it by the BS but also utilizes contention

and piggybacking to send requests to the scheduler. Second, nrtPS flows can be

assigned different priority levels while rtPS has only one implicit priority level. In all

other aspects, nrtPS and rtPS service flows are identical.

Hence, we handle the periodic upstream unicast requests (polls) for nrtPS in exactly

the same manner as we handled rtPS (i.e., using a dedicated hardware block feeding

requests to the Type 1 queue). In addition, after the nrtPS requests are received at

the scheduler, the generated data grants are also fed to a Type 2 or Type 3 queue

based on whether they have a minimum bandwidth reservation or not, respectively.

Since the standard requires that higher priority service flows be given lower delay and

higher buffering preference, given that they are identical in all other QoS parameters

besides priority, we propose the following modification of WFQ to produce a priority-

enhanced WFQ. If two data grants (from two different queues, whether Type 2 or

Type 3 queues) have identical3 WFQ virtual finish times, then the first grant to be

served is not selected randomly but is chosen based on its priority level, with higher

priority grants being served first. This makes sure that higher-priority grants always

incur less delay.

In addition, since all service flows fed to the Type 3 queue in the scheduler have

zero bandwidth reservation, priority can be further invoked by adopting a strict non-

preemptive priority discipline in serving data grants from Type 3 queue before being

handed to the WFQ global server (see Figure 3.1). Thus, Type 3 grants pass through

a non-preemptive priority server first, then pass through a WFQ server in which

priority may again be invoked against grants from Type 2 queues.

3.1.4 Best Effort Service (BE) Flows

BE traffic is treated exactly in the same way as nrtPS traffic except for the fact that

no periodic unicast requests are scheduled for any BE service flows unless they are

needed to satisfy the minimum reserved bandwidth for that service.

In Section 3.2 we will discuss how nrtPS and BE flows can use contention minislots

to send their requests to the BS. Our only challenge at this point is that nrtPS and

BE flows with minimum reserved bandwidth may not be able to send enough requests

to the BS to occupy such allocated bandwidth because of possible collisions in the

3The probability of two packets having identical virtual finish times in our scheduler is higher
than that in a general variable-length data packet infrastructure. This is because the size of any
data grant in IEEE 802.16, although variable, is always a multiple of the IEEE 802.16 minislot size.
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contention region (especially at high loads). To avoid this problem, we allocate extra

upstream unicast request opportunities at the start of each frame period to all nrtPS

and BE flows with minimum bandwidth reservations to allow them to at least request

such a minimum bandwidth.

The reason for placing such extra unicast requests at the start of each frame period,

even before the contention minislots, is an attempt to relieve the contention area

by forcing some SSs to use the unicast requests and thus avoid the need for further

contention. This should reduce the number of collisions in the contention area.

3.1.5 Unsolicited Grant Service with Activity Detection (UGS/AD)

To handle a UGS/AD service flow, a certain portion of the upstream channel

bandwidth should be reserved for that flow. This reservation is made fixed when the

service flow is active by creating a temporary entry in the UGS table, and treating

that flow as if it was a UGS flow. When the flow becomes inactive, the entry in the

table is temporarily blanked and instead the service flow is considered a rtPS one

with its Minimum Reserved Traffic Rate parameter set to the original UGS traffic

rate. This allows any excess bandwidth not used by the service flow to be utilized by

other users, but still guarantees the minimum required bandwidth by the service.

3.2 Contention Minislot Allocation

In IEEE 802.16 and DOCSIS, nrtPS and BE service flows use contention to send

their requests to the BS. We need to allocate an appropriate number of contention

request minislots in each frame period to reduce the number of possible collisions and

to shorten the contention resolution process. If done properly, this will improve the

performance of the MAC protocol under varying traffic load conditions.

3.2.1 Frame Structure

In our scheduler we use a variable length upstream frame structure in order to

achieve maximum scheduling flexibility and minimum transmission latency. We opt

for the frame structure shown in Figure 3.4, where contention minislots are all clus-

tered adjacently at the beginning of each upstream frame interval. This configuration

allows easier implementation at both the BS and the SS because both devices have to

switch to the contention mode only once at the start of each frame period. Also in such

a configuration, the feedback MAP message from the BS corresponding to a cluster

of minislots can be received prior to the beginning of the next frame period. This

reduces latency in receiving request acknowledgments and in contention resolution,

which is of great concern in the contention process.
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Actual Frame Size, N = j + n1 + n2

j request
minislots

n1 pre-committed
minislots

���

n2 data
minislots

Maximum Frame Size, Nmax

Transmission of Data Packets

Figure 3.4: Upstream frame structure.

3.2.2 Contention Minislot Allocation

Different contention minislot allocation schemes have been suggested in the litera-

ture [22, 26 – 29]. The scheme we propose here is an extension of the mechanisms

suggested in [26] and [22] with some modifications to adapt to the minislot structure

of IEEE 802.16, to account for piggybacking, and to allow for variable frame lengths.

We assume that the frame length in Figure 3.4 (in units of minislots) is variable with

a certain maximum limit, Nmax. The actual frame length depends on the number of

data grants pending transmission on the upstream channel. Figure 3.4 shows the case

where there are only n2 worth of nrtPS and BE data grants pending transmission.

UGS grants, rtPS polls/grants and other periodic traffic that do not require contention

occupy n1 minislots of the frame interval. Such n1 minislots are considered as pre-

committed minislots in our algorithm and do not count as part of the frame. A

variable number, j, of contention minislots are used in each upstream frame as request

minislots. We will develop an algorithm to dynamically calculate the value of j for

each frame based on different MAC loading conditions.

The algorithm can be explained as follows. Just enough contention minislots need

to be created so that the average throughput (per frame) of the contention request

minislots closely matches the number of new data packets that can be transmitted in

a maximum frame period. We remember that using a simple contention resolution

algorithm such as the random binary exponential backoff, mandated by IEEE 802.16,

gives a throughput efficiency of 33% for contention minislots [26], which means that

approximately three request minislots are needed per request (or data packet) to

achieve 100% throughput efficiency. Hence, the number of contention minislots in a

frame should be adjusted to satisfy the following requirement: the number of requests

that can be transmitted within j contention opportunities should be equal to three

times the number of nrtPS and BE data packets that can be transmitted in a frame

with maximum length.

To transform the above statement to units of minislots, we note that a data packet

may need, on average, ld minislots to be transmitted. Also a contention request may
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need, on average, lc contention minislots to be transmitted4. Hence we can say that

the ratio j/lc : (Nmax−j−n1)/ld should be at most 3:1. The parameters ld and lc can

either be fixed a priori or measured on periodic basis during the scheduler operation.

Our algorithm should also be able to dynamically reduce the number of required

contention minislots per frame as the load on the system increases. This is possible

because as the traffic from certain flows become heavier; those flows can utilize

piggybacking more often, and hence reduce the load on contention. Taking this

into account allows us to reduce the ratio of 3:1 we originally needed for contention

minislots to a smaller ratio. To quantify this effect we note that if a multi-packet

batch arrives at a certain SS buffer, only the first packet in that buffer generates a

contention request. However, future requests for the rest of the multi-packet batch

can be sent using piggybacking. Now, assume that the average length (in units

of packets) of multi-packet batches arriving at different SSs is k, then we can say

that k data packets are utilized for each request that makes it through the minislot

contention process. Again, the value of k can be measured during normal operation.

In summary, we need to have,

j =
3 ∗ (Nmax − j − n1) ∗ lc

k ∗ ld

3.2.3 Algorithm

We compute the number of required contention minislots in each frame period based

on an estimate of the maximum number of data packets that can be transmitted in

such a frame. This estimate is mainly derived from the traffic observed in the previous

frame. The following algorithm dynamically calculates the number of contention

minislots ji for each frame i:

Frame 0: Set j0 = jmin (Initialization)

Frame i: Let ji = max
{

3∗ (Nmax−ji−1−n1,i−1)

(k∗ld/lc)
, jmin

}
If Q ≥ α ∗ (Nmax − ji−1 − n1,i−1), Set ji = jmin

Q in the above expression is the total number of data minislots requested but not

yet allocated by the BS (i.e., the aggregate length of pending data grants at the

scheduler), and α is a design parameter set to 2.5 or 3.5. The condition including

Q means that when there are so many outstanding minislot requests that cannot be

handled within the next two frames or so, the BS should prevent SSs from sending

further contention requests. This will only happen in overload (congestion) situations,

4A typical value of lc is 1 minislot. It is also reasonable to assume that ld >> lc.
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and will prevent the buffers in the BS from overflowing unnecessarily. It also makes

sense to deny piggybacked requests in those overload situations.

3.2.4 Dealing with Priorities

Now that we know the number of contention minislots to allocate per frame, we need

to divide this capacity of contention minislots between the different service flow pri-

orities. The IEEE 802.16 standard requires a preferential treatment of higher priority

traffic allowing it to have a better chance of sending requests through contention.

This can be achieved by introducing a set of multiplication factors, ad, 0 < ad < 1 for

d = 0, . . . , 7 that allow dividing the available amount of contention minislots between

the different priorities based on a preference criterion decided by the service provider

and, of course, related to pricing. The ad factors should satisfy the requirement∑7
d=0 ad = 1. Hence, after calculating the total number of contention minislots per

frame, j, we calculate the number of minislots, jd, to allocate to each priority d as

follows: jd = �j ∗ ad�.
One scenario that might happen in the above minislot allocation scheme is that a

group of flows with a certain priority may get more minislots allocated than their

actual need. This will happen if the aggregate load of a particular priority is smaller

than anticipated. To overcome this situation and to improve the operation of our

allocation scheme, we incorporate another factor related to the observed traffic load of

each priority in the system. More specifically, we start by computing a moving average

of the observed number of contention minislots used per frame for each priority level.

We denote these values by rd for d = 0, . . . , 7. These values will represent estimates

of how many minislots each priority should be expected to use in the next frame

period. Notice that these estimates are updated periodically.

The idea is that we want to utilize any excess amount of contention minislots for

use by other priorities (preferably higher priorities). To do that, after calculating the

number of minislots allocated to one priority, jd, we compare this value to the number

of minislots we should expect in the next frame for that priority, rd. If the value of

jd is much larger than rd, we borrow a few of the jd minislots, say δ, and redistribute

them among the contention minislots allocated to higher priorities. Such an algorithm

is recursive and is illustrated below, where β and δ are design parameters.

Start: d = 0

While d < 7 do{ (we stop at d = 7 – 1)

If jd > β rd, Set jd = jd − δ

And set je = je + δ ∗ ae

/∑7
f=d+1 af for all e = d + 1, ..., 7

}End While
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Another option for distributing the contention minislots between the different pri-

orities is to use a nested priority scheme, in which higher priority flows are allowed

to use the whole contention area, while low priority flows are only allowed to use

part of such a contention region. The reason we avoid this scheme is that it does

not allow complete separation of the different priorities and hence cannot prevent

misbehaving high priority traffic from causing undue collisions in the whole contention

area, including the contention interval for low priority traffic. In our scheme, on the

other hand, the region given to low priority traffic is pre-determined by the service

provider using the ad parameter (which is mainly determined by pricing) and high

priority traffic cannot receive more than its allocated share of the contention interval

unless the low priority traffic load is smaller than anticipated.

3.3 Buffer Management

This section deals with the problem of allocating buffer space to the different queue

Types (Type 1, 2 and 3) of the scheduler to achieve minimum losses of data grants

during scheduling. It is important to note at this point that losing a data grant

at the scheduler due to buffer overflow does not necessarily mean the loss of the

corresponding data packet itself. This is because after the BS receives a request

for a data grant from the SS, it sends a signal back to the SS in the bandwidth

allocation MAP indicating a pending data grant. When this data grant is lost due to

buffer overflow at the scheduler, the SS will eventually timeout and will retransmit

another request. This will certainly cause the SS buffer to grow monotonically during

the timeout period but will not necessarily result in the loss of information. Hence,

mapping data grant losses in the scheduler to actual data packet losses in the SS

is not an easy task to achieve and is heavily dependent on the buffer space at the

different SSs along with the utilized timeout mechanisms.

Now, returning to the scheduler architecture shown earlier in Figure 3.1, we see that

data grants are treated as generic packets that are placed in different queue Types

before being served by the scheduler. An important distinction we need to draw here

is between the virtual and the actual meaning of each queue buffer space in such

a scheduler. Virtually, the system works as if it is scheduling packets with variable

lengths passing through a continuous-time server. Actually, however, when a data

grant is generated, the only information that needs to be stored about such a data

grant is its length (in units of minislots) and optionally its deadline (in the case of

Type 1 data grants). Such information is the only information needed to construct a

bandwidth allocation MAP at the end of each processing period to describe the usage

of the upstream channel. The size of this data grant information is of fixed length

whether it corresponds to a 1 KB data grant or a 4 KB data grant. This means
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that the buffer space allocated to each queue type needs to be measured in units of

fixed-size data grant information units rather than units of bytes.

Now, to distribute the total amount of available buffer space locations between

the different queue types, we start with the single Type 1 queue. Calculating the

maximum number of data grants that can accumulate in such a queue at any moment

of time can be done easily because of the periodic nature of UGS traffic feeding this

queue. We always allocate such a maximum number of buffer space locations to the

Type 1 queue. Remember that we cannot afford to lose any data grants from such a

queue since there is no other mechanism for UGS service flows to request new data

grants if the scheduler loses them. For Type 2 queues, we can allocate buffer space

based on a pricing criterion. Since the price paid for setting up a service flow increases

with the amount of minimum bandwidth reserved for that flow and the priority level

assigned to it, a service flow that reserves more bandwidth and has a higher priority

level should receive a larger buffer space. The remaining buffer space after deciding

on Type 1 and Type 2 queue sizes is then used for the Type 3 queue.

For buffer management of Type 2 and Type 3 queues, we suggest using the Random

Early Detection (RED) and multi-priority RED schemes, respectively. RED [30] is

a buffer management scheme that avoids congestion by randomly (probabilistically)

dropping packets when the buffer occupancy reaches a certain limit. Multi-priority

RED is just an extension of RED to support multi-priority flows sharing the same

buffer, as is the case for the Type 3 queue.

The reason we suggest using RED for buffer management in our scheduler is that

RED was designed to work hand-in-hand with the TCP congestion control algorithm,

and hence is best suited for Internet traffic. Since IEEE 802.16 and DOCSIS are

mainly Internet oriented, RED would be the best candidate for buffer management

in our scheduler.

3.4 Properties and Advantages of the New Architecture

The architecture we described in this chapter supports diverse QoS guarantees for

various service flow types suggested by both IEEE 802.16 and DOCSIS standards.

More specifically, it supports tight delay guarantees for UGS traffic and minimum

bandwidth reservations for rtPS, nrtPS and BE flows. It is worth mentioning that

vendor-specific QoS parameters can also be used in IEEE 802.16 and DOCSIS. This

means that users can also request QoS delay bounds for their rtPS and nrtPS service

flows. Because we are using a fair queueing algorithm in our scheduler, providing

such guarantees is feasible and can be implemented easily given that the service flows

feeding the scheduler are properly policed (either at the BS or at the SS level).

Our architecture employs a dynamic contention minislot allocation scheme that
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should improve performance under varying load conditions. Such algorithm speeds the

contention phase by providing extra bandwidth for contending packets. Another main

advantage of our proposed architecture is the ease in which it can be implemented in

hardware. This is because the architecture is built around simple queueing blocks and

very well established queueing strategies, and also because the architecture schedules

packets using a single-pass approach, in which periodic UGS traffic and non-periodic

traffic are scheduled alongside while time is progressing in one direction. This is

different than software scheduler implementations, where UGS traffic is first coded

into the MAP message in one pass, and then other types of traffic are scheduled in

the next pass. The performance advantage of building the scheduling architecture in

hardware rather than software-based alternatives is significant.

Other features of our architecture include the fact that the scheduler takes advantage

of the Tolerated Jitter parameter for UGS to fit as many packets as possible in the

upstream frame between UGS data grants thus avoiding fragmentation and being

more efficient. The scheduler also lends itself (by virtue of design) to easier and

straightforward performance analysis via classical queuing theory techniques (see

Chapters 4 and 5).

Another attractive property of the proposed scheduling architecture is the ability to

integrate it with both Internet Engineering Task Force (IETF) QoS models: Intsev

and Diffserv (see Chapter 1). Our architecture is based on a per-flow QoS model,

in which QoS parameters are requested and maintained using single flow granularity.

This is exactly the same QoS model employed by Intserv, which means that the

integration between our architecture and Intserv is straightforward. For example, a

possible mapping between Intserv QoS traffic classes (see [1]) and IEEE 802.16 QoS

service flows is explained below:

• Intserv Guaranteed Service can be mapped into UGS service flows.

• Intserv Controlled Load Service can be mapped into rtPS and/or nrtPS service

flows.

• Intserv Best Effort can be mapped into BE service flows.

Integration with the Diffserv QoS architecture is also possible if the IEEE 802.16

BS is equipped with a mechanism to aggregate multiple incoming flows with similar

QoS parameters into one single flow. The aggregation should be consistent with the

different Behavior Aggregates (BAs) defined by the service provider using Diffserv in

the core network. We have designed our scheduling mechanism to be compatible with

the service classes defined by the Diffserv QoS model (see [3]). A possible mapping

between Diffserv and IEEE 802.16 service classes is given below:
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• Diffserv Expedited Forwarding (EF) flows can be mapped into UGS service flows.

This guarantees the required level of isolation and protection necessary for EF

Diffserv traffic.

• Diffserv Assured Forwarding (AF) flows can be mapped into rtPS and/or nrtPS

service flows. Different AF subclasses can also be mapped to different priority

levels within the nrtPS service type.

• Diffserv Best Effort flows can be mapped into BE service flows.

3.5 Scheduler Performance Aspects

We have been involved in a joint project to conduct simulation experiments that

demonstrate the performance and efficiency of the wireless QoS scheduler proposed

here. The experiments were set up using the OPNET simulation package. Even

though OPNET does not include of-the-shelf modules that implement the wireless

framework defined by the IEEE 802.16 standard, it does include an add-on module

that implements the DOCSIS MAC protocol (for HFC networks), which represents

a very similar framework to that of IEEE 802.16. We decided to use the DOCSIS

module because many of the service flow types defined by IEEE 802.16 are already

implemented in DOCSIS (see Chapter 2 for a discussion on the similarities between

DOCSIS and IEEE 802.16).

Unfortunately, however, the simulation process was substantially hindered by the

need to receive new updates to fix critical software bugs in the OPNET DOCSIS mod-

ule. These bugs were discovered during the initial simulation experiments. Because

there were no immediate feasible alternatives, we were forced to leave the process of

verifying the performance of our QoS scheduling architecture (within a comprehensive

IEEE 802.16 environment) for future work. The results of any such study will be

provided in future publications.

In addition, a more elaborate study of the behavior of the dynamic contention

minislot allocation scheme proposed for our scheduling architecture is also being

planned. Specifically, we plan to study the effects of congestion on the effective

throughput and delay performance of such contention minislot allocation algorithm

as observed by the incoming request packets. A comparison of the performance of

this mechanism with other contention minislot allocation schemes (see Section 2.4)

is also in order. We will make sure that any such comparison implements the same

contention resolution algorithm, which is the binary exponential backoff scheme in our

case. This is because each contention resolution algorithm imposes its own limitation

and properties on whatever contention minislot allocation scheme one can propose.

Having deferred the above assignments for future work, we concentrate our efforts

on a more detailed study of the main component of our QoS scheduling architecture,

37



which is the fair queueing (FQ) algorithm that is responsible for guaranteeing the

Minimum Reserved Traffic Rate for rtPS and nrtPS service flows. The remainder

of this dissertation is dedicated to a better understanding of the properties and

performance characteristics of a general class of such fair queueing algorithms. We

specifically concentrate on the traffic engineering aspect of implementing the fair

queueing algorithm within our proposed QoS architecture. The main concern of such

traffic engineering problem is to determine, under normal operating conditions, the

required resources (including the output link capacity and memory space require-

ments) to provide a certain expected delay for the supported end users. This question

might also be slightly modified to consider appropriate selections of the Minimum

Reserved Traffic Rate parameter that users should specify to maintain the mean (or

expected) delay QoS requirements for the applications they are running.

In other words, the performance study of fair queueing algorithms that we perform in

the following chapters will provide a better understanding of the relationship between

the mean packet delay and the associated bandwidth reservations users can make

under a particular fair queueing algorithm. This and more insights into the operation

of fair queueing systems are the topic of the next three chapters.
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Chapter 4

M/G/FQ Mean Packet Delay
Analysis

THE remainder of this dissertation is dedicated to a more detailed investigation

of the properties of a general class of fair scheduling, or fair queueing (FQ),

policies. We use both mathematical analysis and simulation experiments to obtain

useful results that describe the performance behavior and related characteristics of

such queueing systems.

A significant volume of work in the literature [11 – 20] has been concerned with

evaluating the deterministic worst-case delay guarantees that FQ algorithms can

provide when the burstiness of the traffic feeding them is bounded (for example,

shaped by a leaky bucket). Little work, though, has been reported on analyzing the

delay characteristics of such policies under a general probabilistic traffic model, which

is more relevant to the traffic engineering problem we introduced earlier in Section

3.5 (see also Section 4.1 for more details). This has been mainly due to the difficulty

in statistically modeling the complex behavior of FQ algorithms.

Indeed an important advantage of statistical modeling of FQ systems as compared

to worst-case deterministic analysis is that stochastic analysis takes into account the

actual dynamics of the packet arrival process, thus being more accurate in predicting

the system status under normal steady-state operating conditions.

In this dissertation, we carry out a stochastic performance evaluation of a general

class of FQ algorithms. We first derive new upper and lower bounds on mean packet

delay and mean buffer occupancy experienced by FQ systems when fed by Poisson

arrivals, and then perform a multitude of simulation experiments to compare the

performance of a number of FQ policies. This will allow us to derive some very

interesting (and not completely intuitive) behavioral characteristics of fair scheduling

algorithms.
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We derive the analytical delay bounds in Chapter 5 and then describe the simulation

experiments in Chapter 6. This chapter serves two purposes: First it introduces the

underlying mathematical notation adopted throughout this dissertation, and second

it allows us to conduct a quick analysis run-through to illustrate the level of difficulty

one faces when trying to characterize the exact statistical behavior of FQ systems.

This will provide a very good introduction when we derive the bounds on mean packet

delay and mean buffer occupancy in the next chapter.

4.1 Motivation

Different end-to-end applications require different QoS guarantees from the network

infrastructure. This is usually represented by different QoS parameters that such

applications will ask the network to sustain.

For example, voice-over-IP and video conferencing applications have stringent re-

quirements on delay and delay jitter. Delays above 500 ms impair human interaction

and excessive delay jitter imposes extra limitations on the buffer space at both receiv-

ing ends. Other applications, on the other hand, might require stringent bandwidth

and error rate QoS parameters instead of stringent delay and delay jitter. Business

transactions over the Internet represent a good example of this behavior.

The Fair Queueing (FQ) component of our wireless QoS architecture (see Chapter

3) has only one QoS parameter (which is the Minimum Reserved Traffic Rate) that

can be requested by rtPS and nrtPS service flows. It is necessary in such scenario

to provide guidelines to translate between such bandwidth reservations one can make

and the expected performance guarantees in terms of mean delay and delay jitter

that the fair scheduling algorithm will provide. This is especially important in the

case where the end user applications using rtPS and nrtPS service flows define their

required QoS parameters in terms of delay and delay jitter.

As we mentioned at the beginning of this chapter, there have been various efforts to

quantify the absolute maximum packet delay (worst-case scenario) that packets can

incur for a specific bandwidth reservation under fair scheduling policies. Unfortu-

nately, such analysis, by definition, neglects the true nature and main advantage

of packet-switched networks in which substantial improvement in performance is

achieved through statistical multiplexing of randomly arriving traffic. In other words,

such analysis does not provide any clues about the actual statistical performance users

are most likely to encounter under normal steady-state operating conditions.

Researchers have avoided stochastic analysis of fair scheduling algorithms (which

results in mean packet delay for a certain bandwidth allocation) because of the

involved complexity in trying to model fair scheduling policies under a probabilistic

arrival model (see also Section 4.3). Therefore, to complement the research in this
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area, we devote the remainder of this dissertation toward quantifying the relationship

between the reservations users make under a general class of FQ systems and the

performance they should expect in terms of mean packet delay and mean buffer

occupancy.

We will not only address this performance aspect of fair scheduling systems, but we

will also further investigate the similarities and differences that exist between different

types of scheduling policies within our stochastic analysis framework.

4.2 M/G/FQ Notation and Assumptions

The problem we focus on in this dissertation consists of a single-server Earliest Finish

Time First (EFTF) FQ scheduler served by an access link with a total capacity of C

bits/second. The scheduler is work conserving, which means that the server must be

busy if there are packets waiting in the system. We denote by K = {1, 2, 3, ..., K} the

set of flows supported by such a scheduler, and by rk, k ∈ K, the minimum reserved

service rate (in bits/second) associated with each flow k.

The FQ system is fed by multiple Poisson streams with arrival rates λ1, λ2, ...,λK

as shown in Figure 4.1. The buffers corresponding to different flows are infinite in

length and the packets in each one of those buffers are served in the order they arrive.

FQ Server

Poisson
Arrivals

...

...

... Mj

NkPacket i

Flow 1

Flow j

Flow k

Flow K

Figure 4.1: Fair Queueing system under study.

We use Li
k to denote the length (in bits) of the ith data packet arrival at the

kth buffer, k ∈ K. Similarly, we use X i
k = Li

k/C to denote the service time (in

seconds) of the ith data packet arrival at the kth buffer. We assume that the random

variables X i
k from the multiple Poisson streams are identically distributed, mutually

independent, and independent of the arrival times. Such variables X i
k can assume

any general distribution. We denote the mean service time of arriving data packets

by X = E [X i
k] = 1/µ, where µ is the mean service rate. The second moment of the

service time is denoted by X2. For convenience, we will refer to the total arrival rate

at the FQ system by λ =
∑K

k=1 λk.
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The utilization of each flow k is denoted by ρk = λkX = λk/µ, while the utilization

of the output link is given by ρ = λX. In this study we maintain ρ < 1, which keeps

the system from being overloaded in an average sense.

We denote the mean packet waiting time in queue k by Wk, and the expected number

of packets in such a queue (not including any packet that may be in service) by Nk.

We assume ergodicity of the queueing system (which is true provided that ρ < 1) and

note that, in our system, the values of Nk and Wk seen by an outside observer at a

random time are the same as seen by an arriving customer. This is due to the Poisson

character of the arrival process, which implies that the occupancy distribution upon

arrival is typical [31].

Let us tag the ith data packet arrival at the kth queue of the FQ system. This tagged

packet must wait in queue for a mean residual time R until the end of the current

packet transmission and must also wait for the transmission of the mean number of

packets Nk currently in the kth queue ahead of it. In addition, the tagged packet

must also wait for the transmission of all packets in the system (not in queue k) with

timestamps that are smaller than the timestamp assigned to the tagged packet. Some

of these packets may even arrive after the tagged packet. The mean number of such

packets in each queue j in the system is denoted by Mj (see Figure 4.1).

Thus, the mean waiting time (queuing delay) in queue k for the tagged packet is

given by,

Wk = R +
1

µ

(
Nk +

∑
j∈J

Mj

)
(4.1)

where we used J to represent the set of all flows supported by the scheduler except

flow k, i.e., J = {j ∈ K : j �= k}. We can evaluate the mean residual time R by a

graphical argument as in [31] to obtain,

R =
1

2

K∑
k=1

λkX2
k =

λX2

2
(4.2)

Applying Little’s theorem, Nk = λkWk, to (4.1) and substituting the value of R in

(4.2), we obtain,

Wk =
1

2
X2λ + ρkWk +

1

µ

∑
j∈J

Mj (4.3)
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4.3 Exact Mean Packet Delay Analysis

The only unknown quantities in (4.3) now are the values of Mj. Let us attempt to

find such values. We first notice that when the tagged packet i arrives at queue k, it

will find nk packets in front of it with probability P [qk = nk]. We already know that∑∞
nk=0 nk · P [qk = nk] = Nk, which is the mean number of packets in queue k. In a

similar way, we can evaluate Mj for j ∈ J as follows,

Mj =
∞∑

nk=0

E [Mj |qk = nk ] · P [qk = nk], j ∈ J (4.4)

where E [Mj |qk = nk ] is the expected value of the random variable1 Mj given that

the arriving tagged packet finds nk packets in queue k. Hence, to evaluate the mean

value of Mj we need to evaluate E [Mj |qk = nk ] for each value of nk in addition to

finding the probability distribution P [qk = nk] of the buffer k occupancy.

If we assume that the connection potentials for the different incoming flows are equal

on average2, then for each nk packets from queue k, we can serve up to
⌊
(nk + 1)

rj

rk

⌋
packets from queue j (if such number of packets exists). This is due to the way

timestamps are assigned in an EFTF FQ system. In other words,

E [Mj |qk = nk ] =

⌊
(nk+1)

rj
rk

⌋
−1∑

mj=0

mj · P [(qj + aj) = mj]

+
∞∑

mj=
⌊
(nk+1)

rj
rk

⌋
⌊
(nk + 1)

rj

rk

⌋
· P [(qj + aj) = mj]

(4.5)

where P [(qj + aj) = mj] is the probability that the sum of both (a) the packets

already queued in buffer j when the tagged packet i arrives; plus (b) any new packet

arrivals at buffer j while the tagged packet i is waiting in buffer is equal to mj. This

is a joint distribution of both random variables qj and aj.

Notice that we removed the conditioning on qk = nk in the probability P [(qj + aj) =

mj] for convenience. A more comprehensive notation would have been P [(qj + aj) =

mj |qk = nk ]. To simplify the equations in the remainder of this section, we will

remove any conditioning on qk = nk and implicitly assume its existence. In addition,

we will simplify the notation further by defining a new quantity m′
j as follows,

1Notice that we use the symbol Mj to denote both (a) the number of packets served from queue
j before the tagged packet is served (which is a random variable) and also (b) the mean of such
random variable. This helps us avoid a rather awkward notation. We make sure, however, that the
context is clear about the intended meaning of Mj .

2We use this assumption to simplify the mathematical analysis in this section. We will incorporate
the differences in connection potentials in the final analysis in the next chapter.
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m′
j =

⌊
(nk + 1)

rj

rk

⌋
(4.6)

Using (4.6), we can write (4.5) as follows,

E [Mj |qk = nk ] =
m′

j−1∑
mj=0

mj · P [(qj + aj) = mj]

+m′
j ·

∞∑
mj=m′

j

P [(qj + aj) = mj]
(4.7)

By the rules of conditional probability, we can write,

P [(qj + aj) = mj] =

mj∑
lj=0

P [aj = mj − lj |qj = lj ] · P [qj = lj] (4.8)

where the probability P [qj = lj] corresponds to the buffer occupancy distribution of

queue j.

The main purpose of proceeding with this line of analysis is to show how cumbersome

the equations are going to be for the mean packet delay of a FQ system when

attempting to follow through with the above exact equations. To clarify this further,

let us consider the very simple case of a FQ system supporting two flows only, i.e.,

K = {k, j} = {1, 2}, and let us assume that all packets have the same fixed packet

length3.

Finding the probability P [aj = mj−lj |qj = lj ] is possible in this case. Remembering

that the arrivals are Poisson in nature and are independent of service times, we can

evaluate P [aj = mj − lj |qj = lj ] from knowledge of the waiting time of the tagged

packet that just arrived. This waiting time is the sum of three components: (a) the

residual time of the packet currently in service, (b) the time to serve nk packets ahead

of the tagged packet in queue k, and finally (c) the time to serve a maximum of mj

or m′
j packets from queue j. Such waiting time for the tagged packet is thus given

by,

X ′ =

{
R + 1

µ
(nk + mj) , mj < m′

j

R + 1
µ

(
nk + m′

j

)
, mj ≥ m′

j

(4.9)

where we used the not so rigorous approximation that the actual residual time for

the packet in service is equal to the mean residual time R always. Proceeding with

the analysis, this means that,

3This assumption applies only for this section. In the analysis of Chapter 5, we go back to the
assumption of generally distributed packet lengths.
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P [aj = mj − lj |qj = lj ] =
(λjX

′)mj−lj

(mj − lj) !
e−λjX′

(4.10)

Substituting (4.10) into (4.8) gives,

P [(qj + aj) = mj] =

mj∑
lj=0

(λjX
′)mj−lj

(mj − lj) !
e−λjX′ · P [qj = lj] (4.11)

and substituting (4.11) into (4.7) and expanding X ′ we get,

E [Mj |qk = nk ] =
m′

j−1∑
mj=0

(
mj ·

mj∑
lj=0

(λjR+ρj(nk+mj))
mj−lj

(mj−lj) !
· e−λjR−ρj(nk+mj) · P [qj = lj]

)

+
∞∑

mj=m′
j

(
m′

j ·
mj∑

lj=0

(λjR+ρj(nk+m′
j))

mj−lj

(mj−lj) !
· e−λjR−ρj(nk+m′

j) · P [qj = lj]

) (4.12)

Let us now concentrate on the second term on the right hand side of (4.12). Notice

that if we change the order of the sums in that term, we end up with,

m′
j ·

∞∑
lj=0


 ∞∑

mj=max(lj ,m′
j)

(
λjR + ρj

(
nk + m′

j

))mj−lj

(mj − lj) !
· e−λjR−ρj(nk+m′

j)


 · P [qj = lj]

(4.13)

If we introduce the intermediate variable i = mj − lj, the above expression becomes,

m′
j ·

m′
j−1∑

lj=0

(
∞∑

mj=m′
j

(λjR+ρj(nk+m′
j))

mj−lj

(mj−lj) !
· e−λjR−ρj(nk+m′

j)

)
· P [qj = lj]

+m′
j ·

∞∑
lj=m′

j

( ∞∑
i=0

(λjR+ρj(nk+m′
j))

i

i !
· e−λjR−ρj(nk+m′

j)
)
· P [qj = lj]

(4.14)

But the sum over i is the sum of a discrete Poisson probability distribution, which

will add up to unity. This transforms (4.14) into,

m′
j ·

m′
j−1∑

lj=0

(
∞∑

mj=m′
j

(λjR+ρj(nk+m′
j))

mj−lj

(mj−lj) !
· e−λjR−ρj(nk+m′

j)

)
· P [qj = lj]

+m′
j ·

∞∑
lj=m′

j

P [qj = lj]

(4.15)
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Now, back to the first term on the right hand side of (4.12), switching the order of

the sums, we get,

m′
j−1∑

lj=0


m′

j−1∑
mj=lj

mj · (λjR + ρj (nk + mj))
mj−lj

(mj − lj) !
· e−λjR−ρj(nk+mj)


 · P [qj = lj] (4.16)

Substituting (4.15) and (4.16) into (4.12) gives,

E [Mj |qk = nk ] = m′
j ·

∞∑
lj=m′

j

P [qj = lj]

+
m′

j−1∑
lj=0




∞∑
mj=m′

j

m′
j · (λjR+ρj(nk+m′

j))
mj−lj

(mj−lj) !
· e−λjR−ρj(nk+m′

j)

+
m′

j−1∑
mj=lj

mj · (λjR+ρj(nk+mj))
mj−lj

(mj−lj) !
· e−λjR−ρj(nk+mj)


 · P [qj = lj]

(4.17)

The three terms in (4.17) clearly make sense as the basic components for the mean

value of Mj given qk = nk. The first component corresponds to the case of serving

a maximum of m′
j packets if they already exist in the jth buffer at the time of the

tagged packet arrival. If a smaller number of packets exist in the buffer, then we

serve anywhere between zero packets up to a maximum of m′
j packets from queue j

depending on the number of new arrivals at the jth buffer while the tagged packet is

waiting in queue to be served. This represents the other two components in (4.17).

To proceed, (4.17) can be written as follows,

E [Mj |qk = nk ] = m′
j ·

(
1 −

m′
j−1∑

lj=0

P [qj = lj]

)

+m′
j ·

m′
j−1∑

lj=0

(
1 −

m′
j−1∑

mj=lj

(λjR+ρj(nk+m′
j))

mj−lj

(mj−lj) !
· e−λjR−ρj(nk+m′

j)

)
· P [qj = lj]

+
m′

j−1∑
lj=0

(
m′

j−1∑
mj=lj

mj · (λjR+ρj(nk+mj))
mj−lj

(mj−lj) !
· e−λjR−ρj(nk+mj)

)
· P [qj = lj]

(4.18)

After some algebra,

E [Mj |qk = nk ] = m′
j

−m′
j ·

m′
j−1∑

lj=0

(
m′

j−1∑
mj=lj

(λjR+ρj(nk+m′
j))

mj−lj

(mj−lj) !
· e−λjR−ρj(nk+m′

j)

)
· P [qj = lj]

+
m′

j−1∑
lj=0

(
m′

j−1∑
mj=lj

mj · (λjR+ρj(nk+mj))
mj−lj

(mj−lj) !
· e−λjR−ρj(nk+mj)

)
· P [qj = lj]

(4.19)

46



A shorter notation for (4.19) is the following,

E [Mj |qk = nk ] =
m′

j−1∑
lj=0

(
m′

j−1∑
mj=lj

mj · Pmj−lj (λjR + ρj (nk + mj))

)
· P [qj = lj]

+m′
j ·

(
1 −

m′
j−1∑

lj=0

(
m′

j−1∑
mj=lj

Pmj−lj

(
λjR + ρj

(
nk + m′

j

))) · P [qj = lj]

) (4.20)

where Pn(λt) = e−λt(λt)n/n! is the well-documented Poisson distribution. The

expression in (4.20) has a finite computation time since all the sums are finite. A nice

feature of this expression is that the Poisson probabilities can be evaluated once and

reused if necessary.

The final step in the computation process is to substitute (4.20) for each value of

nk in the following equation,

Mj =
∞∑

nk=0

E [Mj |qk = nk ] · P [qk = nk] (4.21)

It is obvious from (4.3), (4.20) and (4.21) that the exact equation for the mean packet

delay is a cumbersome one, and even if we can find it as a closed expression (given

that we can evaluate the buffer occupancy probability distribution of both buffers

k and j in a recursive way), such an expression would be hardly manageable. This

leads us to the conclusion that an approximate solution or some sort of bounds on the

mean packet delay experienced by a FQ algorithm might be a very good replacement

for the exact expression.
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Chapter 5

Mean Delay Bounds for Fair
Queueing Systems

TO the best of our knowledge, the only work on statistical modeling of fair queuing

(FQ) algorithms is that of [21], in which the author derives stochastic bounds

on the delay distribution of GPS-related FQ algorithms fed by a Switched Bernoulli

Batch process. The analysis in [21] is quite complex and does not result in explicit

analytical equations, thus limiting its usefulness for back-of-the-envelope calculations

and comparisons. The analysis also makes some limiting assumptions such as the use

of fixed packet lengths and the need to set all flows other than the tagged one to be

greedy all the time.

The analysis we introduce here, on the other hand, is much simpler than that in

[21] and results in upper and lower bounds on mean waiting time and mean buffer

occupancy experienced by a FQ algorithm fed by Poisson arrivals. Our analysis

follows closely the well-known M/G/1 queueing analysis, thus the name M/G/FQ,

and results in well-contained equations that provide significant theoretical value and

great insight into the operation of FQ systems.

Our analysis fits a broad range of scheduling policies that exhibit fairness bounds.

Such a class of FQ algorithms is similar to the one studied in [17] and many scheduling

policies belong to this group including WFQ, SCFQ, SFQ and SPFQ. The key to our

analysis is to utilize the bounded fairness criterion of FQ systems (see Chapter 2) to

derive the desired bounds on mean waiting time and mean buffer occupancy.
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5.1 M/G/FQ Stochastic Analysis

In Chapter 4 we found that the mean waiting time (queuing delay) for a tagged flow

k in an EFTF FQ system is given by (4.3), which we repeat here for convenience,

Wk =
1

2
X2λ + ρkWk +

1

µ

∑
j∈J

Mj (5.1)

where J = {j ∈ K : j �= k} is the set of all flows K supported by the scheduler except

flow k.

We showed in Chapter 4 how difficult it is to find the exact values of the Mj

quantities, which are certainly dependent on both the arrival rates at the different

queues and the corresponding reservation rates. We can, however, find upper and

lower bounds on the mean waiting time Wk if we can find upper and lower bounds

on the mean values Mj.

Let us consider a single queue j ∈ J in the system. Assume that this queue has

a connection potential vj(a
i
k) at the time ai

k of the tagged packet i arrival at queue

k. Assume also that the connection potential of queue k was vk(a
i
k) at that same

instant. Using the result for the connection potential in (2.5) and noting that the

Mjth packet in the jth queue should have a timestamp that is smaller than the ith

packet (in queue k) so that the FQ scheduler can serve it first, we get,

E
[
vj(a

i
k)

]
+ Mj

Lj

rj

≤ E
[
vk(a

i
k)

]
+ (Nk + 1)

Lk

rk

(5.2)

Also, packet Mj+1 in the jth queue should have a timestamp that is larger than

the ith packet in queue k because packet i gets served first. Hence, we can write,

E
[
vj(a

i
k)

]
+ (Mj + 1)

Lj

rj

≥ E
[
vk(a

i
k)

]
+ (Nk + 1)

Lk

rk

(5.3)

Rearranging (5.2), we get the following upper bound on the mean value Mj,

Mj ≤ (Nk + 1)
rj

rk

+ δkj
rj

XC
, j ∈ J (5.4)

where δkj = vk − vj is the difference in the connection potentials of flows k and j,

respectively, as defined in (2.9). Notice that we have used Lk = Lj in deriving (5.4)

which is based on our earlier assumption of identically distributed packet lengths from

all the supported flows (see Section 4.2).

Similarly, rearranging (5.3) results in a lower bound on the mean value Mj,
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Mj ≥ (Nk + 1)
rj

rk

+ δkj
rj

XC
− 1, j ∈ J (5.5)

Notice that the above upper and lower bounds on Mj are dependent only on the

value of Nk, which is a desirable feature if we want to reduce (5.1) into a manageable

equation (remember that Nk and Wk are related using Little’s law, Nk = λkWk).

However, achieving this simplification means that we have lost any information about

the effect of mean arrival rate of flow j on the actual Mj value. This might affect how

tight the upper and lower bounds on Mj are going to be. Tighter bounds are expected

when the arrival rate at the j flow is high enough that we always have packets to

send from such buffer.

However, we can still include some information about the mean arrival rate at the

jth flow as follows: Notice that we can serve no less than zero packets and no more

than Nj + λjWk packets from queue j before we have to serve the tagged packet i

in queue k, where Nj is the mean number of packets in queue j as observed by the

arriving tagged packet and λjWk is the mean number of packets that arrive at buffer

j while the tagged packet is waiting to be served.

This means that improved upper and lower bounds on Mj can be derived from (5.4)

and (5.5), respectively, as follows,

Mj ≤ min

(
(Nk + 1)

rj

rk

+ δkj
rj

XC
, Nj + λjWk

)
, j ∈ J (5.6)

Mj ≥ min

(
max

(
(Nk + 1)

rj

rk

+ δkj
rj

XC
− 1, 0

)
, Nj + λjWk

)
, j ∈ J (5.7)

It is interesting to note that if Mj = Nj + λjWk, the situation becomes very similar

to that of a strict non-preemptive priority queueing where queue k has a lower priority

than queue j.

5.2 The Upper Bound on Mean Waiting Time

The challenge we face in trying to solve for the upper bound on mean waiting time

is that we need to choose the minimum of two quantities in (5.6) for each flow j ∈ J

before being able to substitute it into (5.1). Such a decision cannot be made without

prior knowledge of the actual Nj (or Wj) values, j ∈ J, which are the unknowns we

are seeking to find.

To avoid such a problem we notice that as far as the upper bound on mean waiting

time is concerned, using the first expression on the right hand side of (5.6) instead of
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the minimum does not actually affect the correctness of the upper bound on Mj,

although it might slightly weaken its tightness. Since such an expression is not

dependent on the value of Nj, we can drastically simplify the derivation process.

Substituting this expression into (5.1) and using Little’s theorem, we get,

Wk ≤
1
2
X2λ +

∑
j∈J

[
1
µ

rj

rk
+ δkj

rj

C

]

1 − ρk

∑
j∈K

rj

rk

(5.8)

We have already derived an upper bound on the quantity δkj for Fair Queueing

(FQ) systems in Chapter 2 (cf. (2.10) and (2.14)). Substituting (2.10) into (5.8) we

get,

Wk ≤
1
2
X2λ +

∑
j∈J

[
1
µ

rj

rk
+ ψj

rj

C

]

1 − ρk

∑
j∈K

rj

rk

(5.9)

On the other hand, using the improved upper bound on δkj from (2.14) transforms

(5.8) into,

Wk ≤
1
2
X2λ +

∑
j∈J

[
1
µ

rj

rk
+

(
ρ′

jψj − ρ′
kψk

) rj

C

]

1 − ρk

∑
j∈K

rj

rk

(5.10)

In Section 5.5, we follow a more elaborate approach to derive an upper bound on

mean waiting time using all the information about Mj provided by (5.6).

5.3 The Lower Bound on Mean Waiting Time

Finding the lower bound on the mean waiting time Wk requires a similar approach

to that of finding the upper bound. For the lower bound, however, we cannot just

substitute the first expression in (5.7) instead of the required minimum since this is

mathematically incorrect. However, we can still derive a simple equation for the lower

bound similar to that of (5.10) by setting the minimum in (5.7) to zero all the time,

which gives the following simple lower bound on mean waiting time,

Wk ≥
1
2
X2λ

1 − ρk

(5.11)
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Obviously, this is not the best possible lower bound on mean waiting time. However,

as will be apparent in Section 5.6, this lower bound is reasonably tight in almost all

practical cases one might encounter. Section 5.5 also explains a more elaborate scheme

for finding the lower bound on mean waiting time using the exact formula in (5.7).

5.4 Properties of the Delay Bounds

An interesting observation we can make about the M/G/FQ delay bounds in (5.9),

(5.10) and (5.11) is that both the upper and lower bounds increase in inverse pro-

portion to 1 − ρk (or 1 − ρk (C/rk)). This means that the mean waiting time in our

system is expected to dramatically increase as the utilization factor increases, or at

least that would be the behavior of the delay bounds in such a condition. Comparing

this to an M/G/1 queueing system, we notice the same exact behavior for the mean

waiting time versus utilization. This behavior is actually a general characteristic of

almost any queueing system one might encounter.

Now let us consider the conditions that would result in tighter bounds on mean

waiting time. We can see from (5.10) and (5.11) that the difference between the

upper and lower bounds is mainly dependent on a summation factor including the

fairness bound ψj for j ∈ J. This means that tighter bounds are expected in the

following situations: (1) when the number of flows K (and hence J) supported by the

scheduler is smaller, (2) when the fairness bound of the FQ system ψj is tighter, and

finally (3) because of the dependence on the inverse of (1 − ρk), tighter delay bounds

are expected when the load on queue k, measured by ρk, is smaller.

It is also interesting to notice that the upper and lower bounds in (5.10) and (5.11)

are applicable not only to one specific FQ algorithm, but rather to the whole class

of FQ policies that exhibit a specific fairness bound. This illustrates the flexibility

and generality of our analysis method, which requires only partial information (the

fairness bound) about the FQ algorithm itself to be able to produce bounding criterion

for its mean waiting time. Such ability is quite important in many situations where

the complexity of the FQ algorithm under consideration may prohibit mathematical

tractability of its exact properties.

On the other side of the coin, deriving delay bounds based on partial information (the

fairness bound) of FQ algorithms means that the obtained bounds need to be as wide

apart as possible to accommodate all scheduling policies with the same fairness bound

irrespective of their internal structure. The power of our analysis method is that we

can further tailor its delay bounds to a specific scheduling algorithm by deriving

tighter bounds on the service lag distributions of such algorithms. Of course, this

requires more information about the specific scheduling policy under consideration to

be known ahead of time to carry out such an analysis.
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As a final note, we want to elaborate on our earlier assumption (approximation)

in Chapter 2 (Section 2.5.2) that allowed us to derive a tighter upper bound on δk

and δkj, which we then used to derive a tighter upper bound on mean waiting time

in (5.10). We assumed that the tagged flow k is guaranteed an equivalent server of

minimum capacity of rk. This allowed us to derive an upper bound on Pr [k ∈ B] (the

probability of the tagged flow being backlogged), which then allowed us to derive a

tighter bound on δk and δkj.

As we mentioned earlier, this assumption is not mathematically rigorous (see also

the results of Chapter 6 to verify that). However, the assumption still provides valid

upper bounds as we will show in the simulation experiments in Section 5.6 below. The

reason this assumption works is that when the load on the system is low, which is the

only time when the assumption is not totally accurate, the actual mean value of Mj

is so small (virtually close to zero). This is due to the fact that the system is empty

for a reasonable amount of time making Nk and the time stamp of the tagged packet

(and hence Mj) very small. A slight error in calculating a positive upper bound on

the Mj value would not be significant at all in such a scenario (again see the results

of Section 5.6 for further validation of this argument).

We conclude this section by reminding the reader that the upper and lower bounds

on mean waiting time can also be used to derive a corresponding upper and lower

bounds on mean buffer occupancy using Little’s law, which states that Nk = λkWk.

Such bounds on buffer occupancy can be very useful in allocating buffer space in

routers and other switching devices that support QoS.

5.5 Improved Delay Bounds

Including the information in (5.6) and (5.7) about the arrival rate at the non-tagged

flows in deriving the upper and lower bounds on mean waiting time is still possible.

This, however, requires a more involved analysis. In this section, we explain two

possible approaches to include the extra information: one that involves an additional

mathematical equation and the other involves an iterative algorithm rather than a

well-contained mathematical formula.

Let us start with the simple approach. Notice that another mathematically valid

upper bound on the Mj values can be calculated using only the second expression on

the right hand side of (5.6) instead of the minimum. Substituting this expression into

(5.1), we get,

Wk ≤ 1

2
X2λ + ρkWk +

1

µ

∑
j∈J

(Nj + λjWk) (5.12)
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By Little’s Law, this becomes,

Wk ≤ 1

2
X2λ + ρkWk +

∑
j∈J

ρjWj +
∑
j∈J

ρjWk (5.13)

Rearranging, we get,

Wk ≤
1
2
X2λ +

∑
j∈J

ρjWj

1 − ρ
(5.14)

where ρ =
∑K

k=1 ρk is the utilization of the output link. To solve for the upper bound

on mean waiting time Wk, we need to calculate the sum involving the Wj values. To

do that, first notice that in this scenario, where Mj = Nj + λjWk, j ∈ J, we have

a very similar situation to a strict non-preemptive priority queueing system1 where

queue k has the lowest priority among all the other flows j ∈ J in the system.

It is apparent why this represents a valid upper bound on the mean waiting time of

flow k. Packets corresponding to flow k incur the worst possible waiting time when

they have the lowest priority. We expect this upper bound on mean waiting time to

be tight (i.e., close to the actual mean waiting time of flow k) if the mean arrival rate

at the non-tagged flows is small. This is because in such case, packets in the lowest

priority buffer do not have to wait for many non-tagged flow packets to depart before

they get a chance to depart, too. However, this same upper bound will tend to be

loose when the arrival rate at the non-tagged flows is high (i.e., when the non-tagged

flows are greedy). This should not be alarming, however, because the upper bound

on mean waiting time that we derived in (5.10) will be tight in such greedy sessions

scenario.

To calculate the new upper bound on mean waiting time, we notice that if flow k

has the lowest priority compared to all the other flows, then the arrivals at queue k do

not affect the mean waiting time Wj of any other flow j ∈ J. Since the server is work

conserving, this means that for the purposes of computing the mean waiting times

Wj, j ∈ J, we can neglect the existence of flow k (except for calculating the residual

time R). This is very similar to the line of analysis in priority M/G/1 queueing

systems. In other words, for calculating the Wj values, we consider a new M/G/1

queueing system with only J flows (instead of K flows) and a link capacity of C bits/s.

In such system, the aggregate Poisson arrival rate is given by
∑

j∈J λj = λ−λk, which

means that the server utilization2 is now ρ − ρk.

1Notice that we cannot just use the simple M/G/1 non-preemptive priority queueing result here
because there is no priority order among the other flows j ∈ J in the system.

2This applies only for the purposes of computing the Wj values, j ∈ J.
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Remember that the conservation law of M/G/1 systems [31] states that the sum

of mean waiting times of individual flows weighted by their corresponding utilization

is equal to the aggregate mean waiting time weighted by the output link utilization.

For our case, this means that,

∑
j∈J

ρjWj = (ρ − ρk) · R

1 − (ρ − ρk)
=

1
2
X2λ (ρ − ρk)

1 − (ρ − ρk)
(5.15)

where R = λX2
/

2 is the mean residual time for the whole system. Substituting

(5.15) into (5.14), we get,

Wk ≤
1
2
X2λ

[
1 + (ρ−ρk)

1−(ρ−ρk)

]
1 − ρ

(5.16)

Rearranging, the new upper bound on mean waiting time Wk becomes,

Wk ≤
1
2
X2λ

(1 − ρ) (1 − ρ + ρk)
(5.17)

Hence, an improved upper bound on mean waiting time Wk can be found by

combining (5.10) and (5.17) together, which results in,

Wk ≤ min




1
2
X2λ +

∑
j∈J

[
1
µ

rj

rk
+

(
ρ′

jψj − ρ′
kψk

) rj

C

]

1 − ρk

∑
j∈K

rj

rk

,
1
2
X2λ

(1 − ρ) (1 − ρ + ρk)


 (5.18)

As we explained earlier, the first expression on the right hand side of (5.18) is

expected to be more useful when the non-tagged flows are greedy (i.e., exhibiting a

high mean arrival rate), while the second expression on the right hand side of (5.18)

is expected to be more useful when the non-tagged flows are not greedy. We illustrate

this idea further in the test results of Section 5.6.

A different approach to utilizing the extra information in (5.6) and (5.7) in deriving

the upper and lower bounds on mean waiting time is through an iterative algorithm,

which we explain below. Since the result for the Mj values in (5.6) and (5.7) are

dependent on the actual value for the mean waiting time Wj (and Wk), which are

the unknowns we are trying to find by computing Mj’s, the iterative algorithm starts

with an initial guess for the Mj values and iterates as we adjust the Mj values based

on the calculated upper or lower bounds on mean waiting time Wk (and Wj).
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Let us start by explaining the iterative algorithm for the upper bound on mean

waiting time. For each flow supported by the scheduler k ∈ K, we build an array

M with K – 1 elements. Each element of the array M represents the corresponding

value of Mj, j ∈ J. We fill the M array by the initial guess for the upper bound on

the Mj values computed from the first expression on the right hand side of (5.6). We

denote such initial guess by M0
j , which is given by,

M0
j = (Nk + 1)

rj

rk

+
(
ρ′

jψj − ρ′
kψk

) rj

XC
, j ∈ J (5.19)

which means that the initial guess for the upper bound on mean waiting time Wk is

given by,

W 0
k =

1

2
X2λ + ρkWk +

1

µ

∑
j∈J

M0
j =

1
2
X2λ +

∑
j∈J

[
1
µ

rj

rk
+

(
ρ′

jψj − ρ′
kψk

) rj

C

]

1 − ρk

∑
j∈K

rj

rk

(5.20)

After calculating the upper bound on waiting time W 0
k for all the flows k ∈ K, we

compute the next iterative value for the upper bounds on Mj, denoted by M1
j . This

is done using the following equation,

M1
j = min

(
M0

j , N0
j + λjW

0
k

)
= min

(
(N0

k + 1)
rj

rk
+

(
ρ′

jψj − ρ′
kψk

) rj

XC
, λj

(
W 0

j + W 0
k

))
, j ∈ J

(5.21)

where N0
k is calculated from W 0

k by Little’s Law. This is done for all the elements of

the array M corresponding to each flow k ∈ K. Once the next iterative value of the

upper bound on Mj is found, the next guess for the upper bound on mean waiting

time is evaluated as follows,

W 1
k =

1

2
X2λ + ρkWk +

1

µ

∑
j∈J

M1
j =

1
2
X2λ + 1

µ

∑
j∈J

M1
j

1 − ρk

(5.22)

This process is repeated until the guesses on the Mj values are no longer modified,

at which time we read the final value on the upper bound on mean packet waiting

times.

Notice that the iterative process can only reduce the values of M i
j , i = 0, 1, 2, . . .,

because of the min(.) function in (5.21), which in turn can only reduce the values

of W i
k, i = 0, 1, 2, . . .. This leads us to the conclusion that even if all the upper
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bounds on the Mj values happen to change, which is highly unlikely, this algorithm

still converges after a finite number of steps. We leave any study on the speed of

convergence of such an iterative algorithm for future work.

The algorithm for the lower bound on mean waiting time is very similar in nature,

except that we make sure that the initial guess on Mj values are greater than or equal

to zero, and then we proceed in the exact same way as we did for the upper bound

on mean packet waiting time.

5.6 Experimental Results

We perform several simulation experiments to validate the results of the M/G/FQ

analysis presented in this chapter. A word of caution is essential at this point. Because

it is quite difficult to find many FQ algorithms with the exact same fairness bound,

we decided to study three EFTF FQ algorithms (namely SCFQ, WFQ and SPFQ)

using the fairness bound ψk = Lk

/
rk even though this bound is exact only for SCFQ.

These three algorithms have close enough fairness bounds that we can safely use only

one of them to illustrate the points we are trying to make.

5.6.1 Experiment: Bounding the Delay of Multiple FQ Algorithms

In this experiment, a FQ server with a total output link capacity of 10 Mb/s supports

four incoming Poisson streams under SCFQ, WFQ or SPFQ. The reserved rates for

the different connections are: r1 = r2 = r3 = r4 = 2.5 Mb/s. The first source is

tagged and its mean arrival rate is varied between 0.25 and 2 Mb/s, while all the

other three sources transmit at a fixed mean rate of 2.5 Mb/s, 2.75 Mb/s and 2.75

Mb/s, respectively. The packet length distribution is uniform and ranges between

4000 bits and 12000 bits per packet (with an average of 8000 bits, or 1000 bytes, per

packet).

The results of the experiment are shown in Figure 5.1(a), in which the simulation-

generated mean waiting time for the tagged flow is displayed versus load under the

different FQ policies. We also show in this figure the analytical upper and lower

bounds derived for this case based on (5.18) and (5.11), respectively.

We notice from the results that the mean packet waiting times generated by SCFQ,

WFQ and SPFQ are all bounded by the upper and lower bounds of the M/G/FQ

analysis irrespective of the incoming load value. This emphasizes the fact that the

delay bounds derived here actually accommodate all FQ algorithms that exhibit the

same (or nearly the same) fairness bound irrespective of their internal operations,

and as such the delay bounds in (5.18) and (5.11) are reasonably tight.
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Figure 5.1: Mean Waiting Time versus Incoming Load for four Poisson streams under
a heavily loaded system (a) only the improved upper bound in (5.18) is shown; and
(b) the two components (5.10) and (5.17) of the improved upper bound are shown.

It is interesting to illustrate in this situation the difference in behavior between

the two components that make up the improved upper bound in (5.18). Those two

components are those in (5.10) and (5.17), both of which are shown separately for

this experiment in Figure 5.1(b). The results in Figure 5.1(b) confirm our earlier

argument that the bound in (5.10) is reasonably tight when the non-tagged sessions

are greedy all the time, which is the case here. However, in such scenario the bound in

(5.17) derived using the M/G/1 conservation law is not tight enough. Since we select

the minimum of those two bounds in (5.18), we end up with a tight upper bound

as a final result. We show in the next section that the situation is different when

the non-tagged sessions are not heavily loaded. In such circumstances, the upper

bound derived using the M/G/1 conservation law provides a better bound than that

in (5.10).

Notice that the upper bound on mean waiting time in Figure 5.1 was calculated

using the improved upper bound on fairness as per (5.10) not (5.9). As we can see,

it still bounds the mean waiting time for all tested FQ algorithms. This strengthens

the validity of the assumption we made earlier in Section 2.5.2 to improve the upper

bound on δkj.

The lower bound in Figure 5.1(a) is also reasonably tight for low to moderate

incoming load values. However, it does not show the same dramatic behavior as

the incoming load approaches its limits when compared to the actual mean waiting

time curves. This is the price we have to pay to obtain a reasonable mathematical

formula as that in (5.11) for the lower bound on mean waiting time.
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As a final observation, let us compare our stochastic upper bound shown in Figure

5.1 to the corresponding deterministic worst-case delay bound that the current liter-

ature provides. A word of caution is necessary at this point. The deterministic upper

bound is derived assuming a regulated traffic scenario (e.g., one that adheres to a

leaky bucket), while our stochastic upper bound is derived assuming purely random

(unregulated) Poisson arrivals. Since those two types of incoming traffic have different

mathematical descriptions, we need to introduce some sort of approximation to be

able to compare the two upper bounds to each other.

The approximation we use here is to slightly modify the Poisson distribution so it

can be described by a leaky bucket for the purpose of calculating the deterministic

upper bound. In other words, as far as the deterministic upper bound is concerned,

we use an approximate regulated Poisson arrival process rather than the actual purely

random Poisson arrivals. We can do that simply by neglecting the tail of the Poisson

probability distribution (for example neglect the arrivals after the 99% quantile of

the distribution). Of course, we make sure to maintain the same mean arrival rate

for both the original Poisson distribution (used for our stochastic bound) and the

approximate regulated Poisson distribution (used for the deterministic bound).

Notice that the above approximation means that we neglect the probability of

infinite arrivals in an arbitrary period of time (which is not a Poisson distribution

in the true mathematical sense). However, the probability of infinite arrivals is very

small, especially when running a simulation experiment for a finite period of time. In

addition, this is the only way we can provide a meaningful comparison between the

two upper bounds. Also notice that this comparison should work to the advantage

of the deterministic upper bound because a small portion of the arrivals are dropped

when calculating such bound.

The result of the comparison between the stochastic and deterministic upper bounds

for the parameters of this experiment is shown in Figure 5.2. In this figure, we display

the deterministic upper bound for WFQ, which is the smallest among all the three

FQ algorithms tested in this experiment. It is clear from the comparison that the

stochastic upper bound provides a much better estimation and tighter bounding of

the mean waiting time of fair scheduling systems under steady-state normal operating

conditions.

5.6.2 Experiment: Reducing the Load on the FQ System

In the previous experiment, we saw the dramatic increase of the mean packet waiting

time as the utilization factor ρk of the tagged flow starts to increase (see Figure

5.1(a)). This was the behavior we would expect by looking at (5.10), which describes

the upper bound on mean waiting time.
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Figure 5.2: A comparison between the Stochastic and corresponding Deterministic
upper bounds on Mean Waiting Time.

However, a key part contributing to this behavior is the fact that all flows other

than the tagged one are transmitting at or above their nominal reserved rate, i.e.,

they are greedy. The aim of this experiment is to investigate the effects of reducing

the load of the non-tagged flows on the results of the FQ system.

For this experiment, we use the exact same parameters as in Section 5.6.1 with

the exception that all flows other than the tagged one are set to transmit at a fixed

mean rate of 2 Mb/s instead of 2.5 Mb/s or 2.75 Mb/s. The results are shown in

Figures 5.3(a) and (b), the scale of which are set to match Figures 5.1(a) and (b).

Figure 5.3(b) shows the two upper bounds (5.10) derived suing the fairness bound

and (5.17) derived using the M/G/1 conservation law, while Figure 5.3(a) shows the

final improved upper bound in (5.18).

In this experiment the load on the FQ system is smaller than that in Section 5.6.1.

Under such circumstances, all three studied FQ policies give comparable performance

because the FQ server is free for a considerable amount of time. The lower bound is

reasonably tight. The upper bound in (5.10), on the other hand, cannot completely

adjust at higher input load values. The reason for this is that when the load on the

non-tagged flows is reduced, the mean packet count Nj, j ∈ J, drops dramatically.

This means that neglecting the Nj + λjWk terms in (5.6) to derive (5.10) in such a

case results in a weaker upper bound. However, in such a situation, the upper bound

in (5.17) provides a tighter upper bound on the mean waiting time because it takes

into consideration the arrival rates at the non-tagged flows. The final result is an

improved upper bound (5.18) in this experiment too.

Although the more elaborate iterative algorithm described in Section 5.5 managed to

converge in both experiments we conducted in Sections 5.6.1 and 5.6.2, unfortunately
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Figure 5.3: Mean Waiting Time versus Incoming Load for four Poisson streams under
a partially loaded system (a) only the improved upper bound in (5.18) is shown; and
(b) the two components (5.10) and (5.17) of the improved upper bound are shown.

it did not provide any enhancements on the obtained upper bounds. This is mainly

because the upper bounds on mean delay for the non-tagged flows were not small

enough to cause a change in the min(.) function in (5.21) required for the iterative

process to converge to a new smaller upper bound. However, this does not preclude the

possibility that in other situations the iterative algorithms might be useful. We were

not motivated to create a special case where the iterative algorithm would actually

improve performance, since simpler results can be obtained by using the lower bound

as a good quick estimate for the mean waiting time in such scenario.

5.6.3 Experiment: Different Reservations and Length Distributions

In this experiment, we test whether changing flow reservations or packet length

distributions affects our upper and lower bounds on mean waiting time. We set up

a FQ server with an output link capacity of 10 Mb/s that supports two incoming

Poisson streams under SCFQ, WFQ or SPFQ. The reserved rates for the two flows

are: r1 = 4 Mb/s and r2 = 6 Mb/s. The tagged flow is the first one, and its mean

arrival rate varies between 0.5 and 3.5 Mb/s, while the other flow transmits at a

fixed mean rate of 6 Mb/s. The packet length distribution is first set to a uniform

distribution that ranges between 4000 bits and 12000 bits per packet, then to a Pareto

distributions with parameters α = 2.5 and β = 4800 (so that the mean packet length

is 8000 bits per packet) and then set to an exponential distribution with an average

packet length of 8000 bits per packet.
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The results of the experiment are shown in Figures 5.4(a), (b) and (c) for the uniform,

Pareto and exponential packet length distributions, respectively. The results clearly

confirm that the delay bounds are working correctly for all three cases.
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Figure 5.4: Mean Waiting Time versus Incoming Load for two Poisson streams with
(a) uniform, (b) Pareto and (c) exponential packet length distributions.
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Chapter 6

Performance Comparison of FQ
Policies

IN the previous chapter we derived a mathematical result that describes the behav-

ior of a general class of Fair Queueing (FQ) systems. Now we move on to study the

difference in statistical performance between different FQ systems within this class.

We start by comparing the performance of three FQ policies (namely Weighted Fair

Queuing (WFQ), Self-Clocked Fair Queuing (SCFQ) and Starting Potential-based

Fair Queuing (SPFQ)) under different flow setup scenarios. We try to answer the

question: how differently will those algorithms perform when faced with random

(unregulated) Poisson arrivals? Our study shows that if none of the incoming flows

exceeds its allocated capacity, all the above three algorithms exhibit virtually the

same mean waiting time. This applies even though the three algorithms have different

deterministic delay bounds under regulated traffic scenarios.

This leads us to the conclusion that under normal operating conditions, many FQ

algorithms (at least the three studied here) perform quite the same when faced with

random arrivals. This has serious implications for the applications of such scheduling

policies, since performance (on average sense) is not the main differentiating factor

between the different FQ algorithms. Rather, fairness and complexity of implemen-

tation become more significant criteria.

We also compare the performance of the above packet-based FQ algorithms to that

of the reference Generalized Processor Sharing (GPS) algorithm, which is considered

the origin of all fair scheduling policies. We illustrate some of the similarities and

differences between such scheduling policies under Poisson arrivals.

Finally, we introduce the concept of virtual capacity allocation, which we use to

derive some useful insights into the operation of packet-based FQ policies. We use

this concept to show that FQ algorithms exhibit some sort of bias towards flows
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with higher reservations. This is an important observation because FQ algorithms

were originally designed to protect against misbehaving flows (i.e., flows exceeding

their allocated capacity) during congestion periods, not to discriminate between flows

under normal operating conditions.

6.1 Comparison between Three Packet-based FQ Policies

In this section, we perform different simulation experiments to compare the perfor-

mance of three FQ algorithms: WFQ, SCFQ and SPFQ. We carefully select appropri-

ate experiments with a wide range of parameters and flow setup scenarios to illustrate

the specific characteristics of such FQ policies in a comprehensive manner. We will

investigate how these three scheduling algorithms behave as we vary the number of

incoming flows, arrival rates, flow reservations and packet length distributions.

We show that under various flow setup and reservation scenarios, the performance

of the three algorithms in terms of mean waiting time is virtually the same. This is

the case only when none of the supported flows is misbehaving (i.e., when none of

the flows is exceeding its allocated capacity). We also experiment with cases where

one or more of the supported flows are misbehaving and observe the differences in

performance that arise between the three FQ policies in such case.

We carry out our simulations using ExtendTM simulation package. To perform

the desired experiments we developed (and validated) new ExtendTM modules that

implement the operations of the three FQ algorithms: WFQ, SCFQ and SPFQ. We

then used the pseudo-random number generator (PRNG) provided by ExtendTM to

generate the incoming packets. We ran the experiments for extended periods of time

to minimize the statistical error in our results, a fact manifested by the absence of

rugged curves in the resulting graphs (see Figures 6.1 – 6.10 below).

To keep our study realistic, we maintained a link capacity of 10 Mb/s and an average

packet length of 1000 bytes (8000 bits) throughout our experiments. Such a scenario

corresponds to an IP protocol running on top of an Ethernet link or a wireless MAC

protocol.

6.1.1 Experiment: Two Flows, Different Reservations

In the first experiment, we start with the minimum possible number of incoming

flows, and assume that they have different reservations. Hence, we consider a FQ

server that supports two incoming Poisson streams under SCFQ, WFQ or SPFQ.

The reserved rates for the different flows are set to r1 = 7 Mb/s and r2 = 3 Mb/s.

The tagged flow is flow 1 and its mean arrival rate is varied between 0.5 and 8 Mb/s,

while the second flow transmits at a fixed mean rate of 2 Mb/s. Notice that we
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wanted to test a case where one of the flows (the tagged flow) transmits well below

its reservation and then starts misbehaving (i.e., starts transmitting at a rate higher

than its reservation). Notice, however, that even though the tagged flow exceeds

its reservation, the stability of the queueing system is maintained because the total

arrival rate is smaller than 10 Mb/s. We opt for a simple packet length distribution

for this experiment, which is a uniform distribution that ranges between 500 and 1500

bytes (4000 – 12000 bits) for each packet.

Figure 6.1 shows the measured mean waiting time for both the tagged and the non-

tagged flows under the three different FQ policies. The graph shows that the three

algorithms perform practically the same when the tagged flow is transmitting below

its reservation of 7 Mb/s. Once the tagged flow starts misbehaving (i.e., transmits at

a rate higher than 7 Mb/s), however, the performance of the different FQ algorithms

starts to differ. We make two interesting observations in this graph. First, when

one of the flows starts to misbehave, the difference in performance between the three

algorithms manifests itself as a difference in the mean waiting time incurred by the

non-misbehaving flow. For the misbehaving flow, on the other hand, all FQ algorithms

provide a dramatic increase in the mean waiting time, which will eventually approach

infinity as shown in Figure 6.1. The second observation we make is that only WFQ

performance starts diverging from the other two FQ policies at the onset of flow

misbehavior. In Section 6.1.3, we show that this is not necessarily the case for all

experiments.

It is worth mentioning at this point that not all FQ policies perform the same

under M/G/FQ assumptions. To prove this, we show in Figure 6.2 the results

of running the same above experiment under SFQ (an ESTF policy). Comparing

this to the results of SCFQ, the difference in mean waiting time for the non-tagged

flow is too obvious to neglect, even when all flows are transmitting well below their

reserved capacities. This result should not come as a surprise because there are

some fundamental differences between the operations of EFTF (e.g., WFQ, SCFQ

and SPFQ) and ESTF (e.g., SFQ) algorithms. In ESTF policies, flows with smaller

reservations are usually overprotected (i.e., experience a smaller mean waiting time

in the queue) by the inherent design of the algorithm itself [14].

6.1.2 Experiment: Two Flows, Other Reservation Scenarios

In this experiment, we test the effect of changing the flow reservations on our mean

waiting time results. Hence, we repeat the experiment in Section 6.1.1 with two

incoming flows but now with different reservation scenarios. The cases we consider

are summarized in Table 6.1 below. They cover all the three possibilities of r1 > r2,

r1 = r2 and r1 < r2. The tagged flow is flow 1.
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Figure 6.1: Mean waiting time for the tagged and non-tagged flows under SCFQ,
WFQ and SPFQ scheduling policies.
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SCFQ scheduling policies.
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Table 6.1: Reservation Scenarios for Experiment 6.1.2 (Values in Mb/s).

Case r1 r2 λ1L̄ λ2L̄
A 7 3 0.5 – 8 2
B 5 5 0.5 – 6 4
C 3 7 0.5 – 4 6

Figure 6.3 shows the mean waiting time for the tagged flow (part (a)) and the non-

tagged flow (part (b)) for all three FQ policies under the different scenarios A, B

and C described in Table 6.1. Figure 6.3 clearly illustrates that irrespective of the

reservations made by the different flows, as long as none of the flows is misbehaving,

all three FQ algorithms (WFQ, SCFQ and SPFQ) perform virtually the same under

random arrivals.

Again, notice in Figure 6.3 that the mean waiting time of the tagged flow dra-

matically increases under all FQ policies as the tagged flow misbehaves, while such

misbehavior effects the mean waiting time of the other non-misbehaving flows such

that WFQ performance starts to diverge from the other FQ policies.
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Figure 6.3: Mean waiting time for the (a) tagged flow and (b) non-tagged flow under
the different reservation scenarios in Table 6.1.

6.1.3 Experiment: Three Flows, Log Normal Packet Length Distribution

For the next experiment, we investigate the effects of changing both the number

of incoming flows to the scheduler and the packet length distribution. We set up

a FQ server that supports three incoming Poisson streams under SCFQ, WFQ or

67



SPFQ. The packet length distribution is set to a Log Normal distribution with a

mean packet length of 1000 bytes (8000 bits) and a standard deviation of twice the

mean (i.e., 16000 bits). We pick a case where the tagged flow makes a reservation that

is nearly equal to the reservations made by the other non-tagged flows. A different

scenario will be tested in the next experiment. The reservations we opted for are r1

= 3 Mb/s, r2 = 2 Mb/s and r3 = 5 Mb/s. The tagged flow is flow 1, and the different

flow arrival rates we consider are summarized in Table 6.2 below. Notice that the

first two scenarios A and B in Table 6.2 represent the case when the tagged flow is

the one that misbehaves in part of the experiment, while in the next two scenarios C

and D, the non-tagged flows are the ones that misbehave all the time.

Table 6.2: Flow Arrival Rates for Experiment 6.1.3 (Values in Mb/s).

Reservations 3 2 5
Case λ1L̄ λ2L̄ λ3L̄
A 0.5 – 6 1 3
B 0.5 – 4 1.5 4.5
C 0.5 – 2 2.5 5.5
D 0.5 – 1 2.5 6.5

Figure 6.4 shows the mean waiting time of the tagged flow for the different scenarios

of this experiment (the non-tagged flow curves are omitted to avoid cluttering the

graph). Part (a) of the figure shows the first two cases A and B, while part (b), on

the other hand, zooms into the last two cases C and D. The results clearly show

that under random arrivals, the tagged flow exhibits nearly the same performance

under the different FQ policies so long as none of the other (non-tagged flows) is

misbehaving. This seems to be the case irrespective of the packet length distribution

one might encounter.

It is also interesting to notice here that SCFQ is the FQ algorithm that has different

performance than the other two when the non-tagged flows are misbehaving. This

is different than what happened in Section 6.1.1, where WFQ was the FQ algorithm

that had different performance.

6.1.4 Experiment: Four Flows, Exponential Packet Length Distribution

To complete our deduction process, we again increase the number of incoming flows

and change the packet length distribution. We perform an experiment where the

FQ server supports four incoming Poisson streams, with packet lengths that are

exponentially distributed. We maintain a mean packet length of 1000 bytes (8000

bits) and tag flow 1. In this experiment, we chose the tagged flow to be the dominant

flow in terms of reservation. Hence, we set the flow reservations to r1 = 6 Mb/s,
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Figure 6.4: Mean waiting time for the tagged flow under the different flow setup
scenarios in Table 6.2. Part (a) shows scenarios A and B, while part (b) shows
scenarios C and D.

r2 = 1 Mb/s, r3 = 2 Mb/s and r4 = 1 Mb/s. Table 6.3 shows the different flow

arrival rates for this experiment, where in the first two scenarios A and B, the tagged

flow heavily utilizes its large reservation, while in the second two cases C and D, the

tagged flow underutilizes its reserved capacity, at which time the non-tagged flows

are misbehaving (exceeding their reservations).

Table 6.3: Flow Arrival Rates for Experiment 6.1.4 (Values in Mb/s).

Reservations 6 1 2 1
Case λ1L̄ λ2L̄ λ3L̄ λ4L̄
A 0.5 – 9 0.25 0.5 0.25
B 0.5 – 7 0.75 1.5 0.75
C 0.5 – 5 1.25 2.5 1.25
D 0.5 – 3 1.75 3.5 1.75

The results of this experiment are shown in Figures 6.5(a) and (b), which again

strengthen our argument that the above three FQ algorithms produce nearly the same

mean waiting times irrespective of the numbers of supported flow and irrespective

of packet length distributions, except when one or more of the supported flows is

misbehaving.
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Figure 6.5: Mean waiting time for the tagged flow under the different flow setup
scenarios in Table 6.3. Part (a) shows scenarios A and B, while part (b) shows
scenarios C and D.

6.2 Comparison with the GPS Policy

One might ask the question: If the performance of the above three FQ algorithms

that are trying to emulate GPS actually converge to one behavior, is that behavior

the same as that of GPS? To answer this question, we redo the experiment in Section

6.1.1, but now under an idealized GPS policy. We compare the performance of GPS

to that of SCFQ in Figure 6.6.

The main conclusion we can derive from Figure 6.6 (combined with Figure 6.1) is

that although WFQ, SCFQ and SPFQ are attempting to emulate GPS, they fail to

emulate its exact behavior under random arrivals. This is because GPS refers to an

idealized solution, while the other algorithms are designed for a more practical packet-

based one. In other words, even though the performance of many EFTF packet-based

FQ policies ended up converging to a single behavior, this behavior is different from

that of the GPS algorithm.

Another interesting observation we can make in Figure 6.6 is that the GPS system

produces a smaller mean waiting time for low reservation flows. The reason for

this behavior is that in GPS, the residual service time seen by an arriving packet is

dependent only on the mean arrival rate for that particular flow. For packet-based

fair scheduling policies, on the other hand, there is an extra residual time added due

to packets arriving from the other flows supported by the scheduler (cf. (4.1) and

(4.2)). Hence, flows that transmit at low rates (corresponding to low reservation

flows) incur smaller waiting times under the GPS policy.
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Figure 6.6: Mean waiting time under SCFQ (a packet-based scheduling policy) and
GPS (an idealized scheduling policy).

This is an interesting observation because comparing Figures 6.2 and 6.6, we no-

tice some similarity between GPS and SFQ behavior in that they both protect low

reservation flows. Since our main focus in this research effort is investigating EFTF

FQ algorithms (rather than ESTF algorithms), we leave for future wok investigating

whether or not this means that ESTF algorithms are more capable of emulating GPS

behavior under random arrivals.

6.3 Virtual Capacity in Queueing Systems

In this section, we introduce a new concept in queueing systems, which we call virtual

capacity allocation. As we explain shortly, this new concept allows us to derive some

useful insights into the operation of packet-based FQ policies by comparing them to

other well-known queueing systems.

The virtual capacity concept allows us to look at the mean waiting time produced by

an M/G/FQ system as if it was a result of an equivalent M/G/1 system (more details

in Section 6.3.1). The interesting thing about virtual capacity is that it is a very

sensitive metric to variations in mean waiting times, which is a desirable property

when comparing the performance of different queueing disciplines.
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6.3.1 The Concept of Virtual Capacity

Earlier in Chapters 4 and 5, we found that the mean waiting time for a tagged flow

k in a FQ system is given by,

Wk = R +
1

µ

(
Nk +

∑
j∈J

Mj

)
(6.1)

Let us assume in (6.1) that Mj = fjk · Nk, where fjk is a factor specific to the pair

of flows j and k, j, k ∈ K. We assume such factors fjk to be unknown for now and,

of course, are dependent on the loading conditions of the FQ system. We can thus

write (6.1) as follows,

Wk = R +
1

µ

(
1 +

∑
j∈J

fjk

)
Nk = R +

1

µ′
k

Nk (6.2)

where,

µ′
k =

µ

1 +
∑
j∈J

fjk

(6.3)

is the effective service rate that packets from queue k observe. We can now define

the virtual capacity ck (in bits/second) seen by flow k as follows,

ck = µ′
k · Lk (6.4)

where Lk is the mean length of data packets arriving at queue k, k ∈ K. Notice

that ck represents the share of the capacity that flow k sees if it was in a virtual

M/G/1 system with its own separate buffer and its own server. Notice that in general∑K
k=1 ck �= C because we are describing a totally different (virtual) system. We will

show, however, that the sum of virtual capacities actually add up to the link capacity

only in one special case, when the first-in first-out (FIFO) scheduling algorithm is

being used.

The concept of virtual capacity is useful in visualizing the operations of FQ systems,

because it converts the result for waiting time in M/G/FQ to that of an equivalent

M/G/1 system. To see this, apply Little’s law to convert (6.2) into,

Wk =
R

1 − λk

µ′
k

=
R

1 − λkLk

ck

(6.5)
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To better understand virtual capacity, let us attempt to solve for a specific case

of virtual capacity allocation using the conservation law of M/G/1 systems. Such

conservation law states that [31],

K∑
k=1

ρkWk =
Rρ

1 − ρ
(6.6)

where ρ =
∑K

k=1 ρk. In our study, since packets from different flows have the same

packet length distribution, (6.6) reduces to,

K∑
k=1

λkWk = λ
R

1 − ρ
= λW (6.7)

where W is the mean waiting time of the aggregate of all packets arriving at the

queueing system. Let us consider the simple case of only two flows, i.e., K = {1, 2}.
In such a case, (6.7) can be expanded using effective capacities as follows,

λ1
R

1 − λ1L
c1

+ λ2
R

1 − λ2L
c2

= λ
R

1 − λL
C

(6.8)

After some algebra, (6.8) becomes,

((
L

)2

c1c2

− L

λ2c1

− L

λ1c2

)
=

((
L

)2

c1C
− L

λc1

− L

λ1C

)
+

((
L

)2

c2C
− L

λ2C
− L

λc2

)
(6.9)

There are many possible solutions for (6.9). One possibility is to separately equate

the L and
(
L

)2
terms on both sides of the equation. This results in two new equations,

the first being,

1

c1c2

=
1

c1C
+

1

c2C
(6.10)

which after manipulation is equivalent to,

c1 + c2 = C (6.11)

which is the case of effective capacities adding up to C. As we will prove shortly,

this applies only when FIFO queueing is used, and is the only case when the effective

capacities add up to the total link capacity C. The second equation that we can

derive from (6.9) is then,
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1

λ2c1

+
1

λ1c2

=

(
1

λc1

+
1

λ1C

)
+

(
1

λ2C
+

1

λc2

)
(6.12)

or,

λ1

λ
c2 +

λ2

λ
c1 =

λ1

λ

λ2

λ
(c1 + c2) +

c1c2

C
(6.13)

If we substitute (6.11) into (6.13) to solve for c1, we get,

c2
1 −

(
2λ1

λ
C

)
· c1 +

(
λ1

λ
C

)2

= 0 (6.14)

This is a quadratic equation that has a unique solution in c1, given by,

c1 =
λ1

λ
C (6.15)

In a similar argument, we can show that c2 = λ2C/λ. This means that in this

particular solution, virtual capacity is split between the two flows based on their

demand (arrival rate) regardless of any reservations they might have made. One can

immediately see that this corresponds to the well-known FIFO scheduling policy. To

prove that this is indeed the case, we substitute (6.15) into (6.5) to calculate the mean

waiting time observed by flow 1 packets, which becomes,

W1 =
R

1 − λL
C

(6.16)

Similarly, for flow 2 packets, the mean waiting time is W2 = R
/(

1 − λL
/
C

)
.

Notice that the mean waiting times for both flows 1 and 2 are exactly the same

and are equal to the mean waiting time of the aggregate of both flows. This is the

behavior of FIFO scheduling.

Finally, we notice from (6.11) that this is the only case when the effective capacities

add up to the link capacity C. It is easy to prove this statement because if (6.15) does

not hold (i.e., this is not a FIFO policy), then (6.12) would not hold either (remember

that the solution for the quadratic equation in (6.14) was unique). If (6.12) does not

hold, then it follows that (6.11) does not hold as well, because both are derived from

a single equation (6.9), which completes the proof.

74



6.3.2 Experiment: Virtual Capacity Allocation in FIFO and SCFQ

We now perform a simulation experiment to illustrate the differences in virtual

capacity allocation in FIFO and FQ policies.

We set up two Poisson steams to be served by either SCFQ or FIFO. The reservations

for SCFQ are set to r1 = 7 Mb/s and r2 = 3 Mb/s, and the packet length distribution

is kept uniform with a mean of 1000 bytes. The tagged flow is flow 1 and its mean

arrival rate is varied between 0.5 and 8 Mb/s, while the second flow transmits at a

fixed mean rate of 2 Mb/s. These parameters are identical to those we used in the

experiment in Section 6.1.1.

The mean waiting times for the tagged and non-tagged flows under both queueing

disciplines are shown in Figure 6.7. As expected, both the tagged and non-tagged

flows in FIFO received the same mean waiting time, while they were treated differently

in SCFQ. Although the difference in mean waiting time between the two scheduling

policies is identifiable, we can better understand the specific operations of both

queueing algorithms by looking at the virtual capacity diagram shown in Figure 6.8.

Figure 6.8 is derived from Figure 6.7 by a straightforward application of (6.5).
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Figure 6.7: Mean waiting time for the tagged and non-tagged flows under SCFQ and
FIFO.

The first observation we make about Figure 6.8 is that even though the sum of

virtual capacities under FIFO queueing is equal to C, this is not the case under

SCFQ; instead we have c1 + c2 > C.

Another observation we make is how sensitive virtual capacities are to slight varia-

tions in the mean waiting time. It is quite clear that the differences between FIFO
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Figure 6.8: Virtual capacity allocation under SCFQ and FIFO.

and SCFQ operations are much more obvious in Figure 6.8 compared to that of Figure

6.7, especially at low load conditions. This makes virtual capacities a very attractive

option to illustrate the differences between various queueing systems.

As we explained earlier (cf. (6.15)), the virtual capacity allocation in FIFO is based

on the flow demand (or arrival rate). Although Figure 6.8 shows this clearly, Figure

6.9 illustrates the concept even better. In Figure 6.9 we plot the ratio of arrival rate

to that of virtual capacity for each flow. You can see that for FIFO, this ratio is kept

equal for both flows at all times.

Virtual capacity allocation in SCFQ (and similar FQ policies), on the other hand,

is a much more complex endeavor. At low loading conditions, the allocation of such

capacities is such that the higher reservation flow (the tagged flow) receives the best

treatment possible. This is clear from Figures 6.8 and 6.9, where you see that the

flow with lower reservation is actually mistreated (compared to FIFO queueing) so

that the flow with higher reservation receives a lower delay.

This process of protecting the high reservation flow is an interesting one to under-

stand, because FQ algorithms were originally designed to protect against misbehaving

flows, not to favor a certain flow against the other.

One might expect that this process of mistreating the low reservation flow to stop

when we reach the condition of λ1/r1 = λ2/r2, i.e., when flow 1 is transmitting

at 4.67 Mb/s. Figures 6.8 and 6.9 show that this is not necessarily the case. The

mistreatment of the low reservation flow continues long after this point. However, once

76



0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Incoming Load of Tagged Flow (Mb/s)

A
rr

iv
al

s 
R

at
e/

V
irt

ua
l C

ap
ac

ity

Ratio of Arrival Rate to Virtual Capacity under SCFQ and FIFO

SCFQ, Flow 1 (Tagged)
SCFQ, Flow 2
FIFO, Flow 1 (Tagged)
FIFO, Flow 2

Figure 6.9: Ratio of mean arrival rate to virtual capacity under SCFQ and FIFO.

the high reservation flow starts to misbehave (when its mean arrival rate approaches

its reservation of 7 Mb/s), mistreatment of the low reservation flow stops.

6.3.3 Experiment: Two Flows, Same Reservations

The low reservation flow mistreatment phenomenon in FQ policies grows smaller

and smaller as the difference in reservation between the two flows gets smaller. In

this section, we perform an experiment to illustrate the limiting case of two flows

having equal reservations r1 = r2 = 5 Mb/s. The tagged flow is flow 1 and its mean

arrival rate is varied between 0.5 and 6 Mb/s, while the second flow transmits at a

fixed mean rate of 4 Mb/s. The parameters we use for this experiment are identical

to those of case B in Table 6.1 of Section 6.1.2.

Figure 6.10 shows the virtual capacity allocation for both FIFO and SCFQ based on

the mean waiting times recorded for this experiment. The results indicate that SCFQ

behavior approaches that of FIFO queueing when all flows have the same reservation

level.

6.4 Summary

Although we cannot perform all possible simulation experiments to study the stochas-

tic performance of packet-based FQ algorithms, we have managed to carry out a wide

range of such experiments that involve a variety of possible scenarios and flow setup
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Figure 6.10: Virtual capacity allocation under both SCFQ and FIFO.

parameters. The results we obtained indicate that if none of the flows supported by

the scheduler is misbehaving, then the mean waiting times of the three FQ algorithms

WFQ, SCFQ and SPFQ are quite the same under random Poisson arrivals.

We also showed that the mean waiting time one expects from the idealized GPS is

not exactly the same as that observed under WFQ, SCFQ or SPFQ.

Finally, using the concept of virtual capacity we confirmed the fact that FQ algo-

rithms not only protect against misbehaving flows during congestion scenarios, but

also provide some sort of bias (or protection) to high reservation flows at the expense

of low reservation flows during normal operating conditions.
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Chapter 7

Concluding Remarks and Future
Work

WE finish up this dissertation with a quick summary of the contributions of this

research effort and a few pointers to future work. We also introduce a totally

new queueing algorithm that we stumbled upon during our research by coincidence.

The study of this new queueing system is left entirely for future work but we mention

it here because it is related to the general area of research we pursued in this work.

7.1 Summary of Contributions and Future Work

• Contribution: Introduced a new QoS scheduling architecture for both

IEEE 802.16 and DOCSIS.

Discussion: The new architecture supports diverse QoS guarantees for various

flow types suggested by the two standards. It employs a dynamic minislot allo-

cation scheme that should improve performance under varying load conditions,

and it lends itself to a straightforward implementation in hardware, thus gaining

a performance advantage over other software-based alternatives.

Future Work: As we mentioned earlier, the process of demonstrating the

efficiency and performance of this new scheduler was stalled by critical bugs in

the DOCSIS module of OPNET. Because of no immediate feasible alternatives,

we were forced to leave the process of verifying the performance of our scheduling

architecture within a complete DOCSIS (or IEEE 802.16) environment for

future work.

• Contribution: Presented a new analysis method that produces simple

and reasonably tight upper and lower bounds on mean waiting time

of FQ algorithms under Poisson arrivals.

79



Discussion: The analysis method uses the bounded fairness criterion of FQ

algorithms (represented by the bounds on mean service lag distribution) in

order to derive the desired bounds on mean waiting time and mean buffer

occupancy. We showed several experiments that illustrate the validity of such

delay bounds and how they accommodate different FQ policies with the same

fairness criterion.

Future Work: We are currently investigating the possibility of deriving tighter

bounds on the mean service lag for some of the well-known FQ policies and using

those values to derive tighter bounds on mean waiting times experienced by such

scheduling algorithms.

• Contribution: Studied the stochastic performance of three packet-

based FQ algorithms, namely: WFQ, SCFQ and SPFQ.

Discussion: We showed that if none of the incoming flows is misbehaving,

then the mean waiting times of the above three algorithms are quite the same

under random Poisson arrivals, even though they have different determinis-

tic delay bounds. This is an important statement because it implies that

more sophisticated FQ algorithms (with higher implementation complexities

and smaller deterministic delay bounds) are not necessarily the best choice in

certain applications where the main concern is average delay performance.

Future Work: This result is also relevant to mathematical analysis of FQ

algorithms. One can argue that since the above three FQ policies exhibit

virtually the same performance under Poisson arrivals, analyzing one algorithm

might be sufficient to provide a very good solution for all the other algorithms.

Hence, one might focus on the FQ algorithm that exhibits the simplest (and

most elegant) solution to find a less challenging answer that will work for other

FQ algorithms as well.

• Contribution: Compared the performance of the three packet-based

FQ algorithms (WFQ, SCFQ and SPFQ) to that of the idealized GPS

policy.

Discussion: We showed that the mean waiting time one expects from the

idealized GPS is not exactly the same as that observed under WFQ, SCFQ or

SPFQ.

Future Work: This means that even if one finds an exact analysis for GPS,

such analysis would not be totally applicable to practical packet-based FQ

systems. An exact GPS analysis would be considered only an approximation to

the actual packet-based FQ policies unless, of course, appropriate corrections

are introduced.
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• Contribution: During our study of FQ algorithms under random arrivals, we

noticed that ESTF FQ policies might be more capable of emulating

GPS behavior than EFTF FQ algorithms.

Discussion: In ESTF FQ policies (e.g., SFQ), flows with smaller reservations

are usually overprotected (i.e., experience a smaller mean waiting time in the

queue compared to EFTF FQ algorithms). Low reservation flows also receive

smaller mean waiting times in GPS. This raises the question of how close is the

stochastic performance of ESTF algorithms to that of the idealized GPS policy?

Future Work: This requires a further study that is focused on ESTF schedul-

ing policies.

• Contribution: Introduced the virtual capacity concept, and used it to

derive some useful insights into the operation of packet-based FQ

algorithms.

Discussion: We used the virtual capacity concept to show that FQ algorithms

not only protect against misbehaving flows during congestion scenarios, but

also provide some sort of bias (or protection) to high reservations flows at the

expense of low reservation flows during normal operating conditions.

Future Work: We are currently investigating the possibility of an approximate

mathematical analysis of packet-based FQ algorithms under random Poisson

arrivals. We believe that using the virtual capacity concept should make the

analysis easier. Such analysis should be applicable to more than just one FQ

policy (see Section 6.4).

7.2 H-F2Q Queueing Algorithm

As we were developing a new simulation module for WFQ (one of the FQ algo-

rithms studied in Chapters 5 and 6), we stumbled upon a new promising queueing

discipline. It turns out that introducing a minor modification to the operations of

WFQ transforms such a fair queueing policy into a different system that exhibits very

interesting properties. We now call the new algorithm the Hybrid-FIFO/FQ system

(or H-F2Q for short) because it exhibits desirable properties from both WFQ and

FIFO scheduling policies.

The description of this new queueing algorithm is intended to be informative only.

The details of any investigation into the properties of such system will be left entirely

for future work. The following sections describe the modifications required to trans-

form WFQ into H-F2Q and explain the preliminary observations we made about this

new queueing discipline.
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7.2.1 Modifications to Create H-F2Q

For a review of the operations of packet-based FQ algorithms (including WFQ) the

reader is referred to Chapter 2. The operations of such FQ systems are dependent on

the virtual time, v(t), which in WFQ is calculated using (2.2), which we repeat here

for convenience,

v(t2) − v(t1) =
C∑

k∈B(t1,t2)

rk

· (t2 − t1) (7.1)

where C is the total output link capacity in bits/s, B(t1, t2) is the set of backlogged

flows in an arbitrary subinterval [t1, t2] of a busy period of the associated reference

GPS system. Hence, v(t) is a piecewise linear increasing function of time with a slope

that changes whenever the set of backlogged flows B(t1, t2) changes.

At each new packet arrival at WFQ, we need to make sure that the virtual time

(which we represent by a C++ variable called roundNumber) is updated. Of course,

each time we update the variable roundNumber, we need to update the lastRUpdate-

Time variable, which indicates the last time when the roundNumber was updated.

These two variables are used in our C++ code to implement (7.1) as follows,

roundNumber = roundNumber +
(currentT ime − lastRUpdateT ime)

weightSum
· capacity ;

All we need to create the H-F2Q policy is stop updating the lastRUpdateTime

variable in only one scenario: When the roundNumber variable is not updated at

a new packet arrival because none of the flows in the reference GPS system are

backlogged. For WFQ, you have to update the lastRUpdateTime at every packet

arrival irrespective of the queueing system status. For the interested reader, the

following two subsections explain this idea further.

7.2.1.1 WFQ Operations

In WFQ, calculating the virtual time during a busy period is done using (7.1), where

the break points t1 and t2 are the instants of new arrivals and/or departures as seen

by the reference GPS system. Notice that the arrivals at the GPS system are the

same as those at the WFQ system. On the other hand, departure instants might be

different for both systems.

Let us say that at time τe a busy period ends. At this time you should reset v(t) to

zero or stop updating v(t), which means v(t) would remain at v (τe)
1. When a new

1Busy periods always refer to the reference GPS system because this is where v(t) is calculated
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busy period starts again at τs by a new arrival (say at flow 1), the first packet arrival

receives a time stamp based on v (τs) = v (τe). For the next (second) arrival, v(t)

would be correspondingly updated to (given that the first packet did not depart the

GPS system just yet),

v(τ2) = v (τs) +
C

r1

· (τ2 − τs) (7.2)

7.2.1.2 H-F2Q Operations

Calculating the virtual time in H-F2Q is exactly the same as in WFQ until the end

of a busy period. At the end of a busy period τe, we maintain the value of the virtual

time v (τe), but do not update the variable lastRUpdateTime. This means that at a

new busy period, the first arrival at τs receives a time stamp based on v (τs) = v (τe).

However, for the next (second) arrival, v(t) would be updated to be,

v(τ2) = v (τs) +
C

r1

· (τ2 − τe) (7.3)

which is different from (7.2). This means that the second arrival gets a much bigger

timestamp than it is supposed to (i.e., is delayed more).

Of course, if the first packet already left the GPS system, then τ2 would be the time

of GPS departure of that first packet. However, things get a bit cumbersome because

this means that we reached the end of another busy period.

7.2.2 Properties of H-F2Q

Preliminary investigation of the H-F2Q queueing system indicates that if the utiliza-

tion of such system is smaller than unity (i.e., ρ ≤ 1), the queueing system provides

the same mean packet delay for all supported flows (similar to the behavior of first-

in first-out FIFO queueing). However, if the utilization grows beyond unity (i.e.,

when the system encounters a congestion period), the system reverts back to operate

as a WFQ system, providing protection against misbehaving flows. In such mode,

the mean packet delay of misbehaving flows (flows that send above their capacity

reservations) grows dramatically while the delay of other behaving flows is kept finite,

in the same way WFQ operates.

Although we do not go into details of proving the above statement (this is left for

future work), this behavior has two important implications: First, H-F2Q is a new and

very interesting queueing system that nobody has thought of before. It will probably

find applications not only in computer networking and processor sharing algorithms,

but also in many other applied science disciplines that utilize queueing theory.
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Second, and more importantly, since the modifications that convert WFQ to H-F2Q

are minor, a careful analysis of H-F2Q might be a key to finding an expression for

the mean waiting time of the WFQ algorithm (and hence an approximate solution to

SCFQ and SFQ as we explained earlier in the concluding remarks in Section 6.4).

This might be done by arguing that,

Wk,WFQ = Wk,H−F 2Q + ∆k = WFIFO + ∆k, ρ ≤ 1 (7.4)

where ∆k is a result of the minor modification required to convert WFQ into H-F2Q,

and WFIFO is the mean waiting time under FIFO queueing (which is equal for all

supported flows k ∈ K).
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Appendix A

WE prove the equivalence of the two fairness bounds Ψ and ψk(t) for packet-

based FQ algorithms, and show that knowledge of one can lead to the other.

Assume that we have established that an arbitrary FQ system has the following

fairness bound on the service lag of a flow k,

0 ≤ δk(t) ≤ ψk(t), k ∈ K (A.1)

We show in this appendix that this fairness bound can be translated into another

equivalent fairness bound in the form,

∣∣∣∣Wk(t1, t2)

rk

− Wj(t1, t2)

rj

∣∣∣∣ ≤ Ψ, j, k ∈ B(t1, t2) (A.2)

We start by noticing that the fairness bound in (A.1) can be written more conve-

niently as follows,

0 ≤ δk(t) ≤ max
t

[ψk(t)] , k ∈ K (A.3)

This means that the fairness bound on the quantity |δk(t2) − δk(t1)|, t2 > t1, can be

written as follows,

|δk(t2) − δk(t1)| ≤ max
t

[ψk(t)] , k ∈ K (A.4)

If we expand the service lag difference in (A.4), we get,

δk(t2) − δk(t1) = [v(t2) − vk(t2)] − [v(t1) − vk(t1)] = [v(t2) − v(t1)] − [vk(t2) − vk(t1)]

(A.5)
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When flow k is backlogged during the entire interval [t1, t2], we have,

vk(t2) − vk(t1) =
Wk(t2)

rk

− Wk(t1)

rk

=
Wk(t1, t2)

rk

, k ∈ B(t1, t2) (A.6)

Substituting this into (A.5) and using (A.4), we get the following bound when flow

k is backlogged,

∣∣∣∣[v(t2) − v(t1)] − Wk(t1, t2)

rk

∣∣∣∣ ≤ max
t

[ψk(t)] , k ∈ B(t1, t2) (A.7)

The same expression applies if we consider another flow j ∈ B(t1, t2). Subtracting

the expression (A.7) corresponding to flow k from that corresponding to flow j, we

get,

∣∣∣∣Wk(t1, t2)

rk

− Wj(t1, t2)

rj

∣∣∣∣ ≤ max
t

[ψk(t)] + max
t

[ψj(t)] , k, j ∈ B(t1, t2) (A.8)

which has the same form as (A.2) with the parameter Ψ being,

Ψ = max
t

[ψk(t)] + max
t

[ψj(t)] (A.9)

The reverse process can be easily proved in a similar way. To give the reader an

example of the fairness bound, we notice that in SCFQ maxt [ψk(t)] = Lmax
k /rk,

maxt [ψj(t)] = Lmax
j

/
rj and ΨSCFQ = Lmax

k /rk + Lmax
j /rj.
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Appendix B

WE show that the means of two similar probability distributions (e.g., the ones

shown in Figures B.1(a) and (b)) are actually related.

00 =x 1x

)(xf

00 =x tx *1

( )txf
t

1

Figure B.1: Two similar probability distributions.

Assume that the probability distribution in Figure B.1(a) is f(x) and its mean is

given by,

m =

x1∫
0

x f(x) dx

The probability distribution in Figure B.1(b) is given by (1/t)f(x/t), and its mean

is,

x=t∗x1∫
x=0

(x/t)f(x/t) dx =

u=t∗x1/t∫
u=0

t · u f(u) du = t · m

Both of which are related by t.
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