

Network Resilience Improvement and Evaluation Using Link Additions Ph.D. Dissertation Defense

Mohammed J.F. Alenazi

Advisor: James P.G. Sterbenz

Department of Electrical Engineering & Computer Science Information Technology & Telecommunications Research Center ResiliNets Research Group The University of Kansas

> {malenaz/jpgs}@ittc.ku.edu https://wiki.ittc.ku.edu/resilinets

Network Resilience Improvement Outline

- Introduction and motivation
- Background and related work
- Graph models
- Network design and improvement
- Evaluation and improvement
- Conclusions and future work

Network Resilience Improvement Introduction and Motivation

- Introduction and motivation
- Background and related work
- Graph models
- Network design and improvement
- Evaluation and improvement
- Conclusions and future work

Introduction and Motivation Motivation

- Communication networks
 - e-government to provide online services to citizens
 - hospitals manages patients data records
 - e-learning an essential part of education
 - increasing number of on-line business customers
 - in 2014, business-to-consumer (B2C) sales 1.5 trillion
- The Internet topology
 - physical layer
 - logical layer

Introduction and Motivation Challenges

- Large-scale disasters
 - earthquakes, typhoons, tornados, or hurricanes
 - cause correlated failures in physical layer
- Targeted attacks: knowledge of network topology
 - attackers target most important nodes or links in the network
 - centrality-based attacks are performed on nodes or links
 - cause significant drop in connectivity among users
- Network resilience is defined as [SHÇJRSS2010]

"the ability of the network to provide and maintain an acceptable level of service in the face of various faults and challenges to normal operation"

Introduction and Motivation Thesis Statement

- Improvement of network resilience against attacks
 - investigate several graph robustness metrics
 - improve network resilience
 - adding a set of new links

• Thesis Statement:

Network connectivity improvement, via adding a new set of links to maximize a given graph robustness metric under cost constraints, can improve the resilience of the underlying networks against targeted attacks. Determining the best robustness metric can better improve the overall resilience.

Network Resilience Improvement Contributions

- Investigated several graph robustness metrics
- Defined flow robustness metric for weighted graphs
- Introduced model weighted physical graph
 - via nodes' population
- Designed and implemented greedy algorithms
 - improve network given graph robustness metric
- Applied algorithms to real-world graphs
- Evaluated and compared the improvement algorithms
 - applying centrality-based attacks
 - examine their network resilience during the attacks

Network Resilience Improvement Background and Related Work

- Introduction and motivation
- Background and related work
- Graph models
- Network design and improvement
- Evaluation and improvement
- Conclusions and future work

Background and Related Work Network Design Problem

- Given a graph and an objective function
 - objective function: maximize robustness of the graph
 - constrained by number of links k
 - find a set of links with size *k* to maximize objective function
 - constrained by a budget (total cost value)
 - find a set of links with any length where
 - total cost is less than or equal to the budget
 - maximum value of objective function
- Optimal solutions using exhaustive search
 - grow exponentially with the size of the network [SSG2013]
- Many problems are considered to be NP-hard [WM2008]

Background and Related Work Robustness Metrics

- No ideal metric that measures network resilience
- A method to measure resilience based [SHÇJRSS2010]
 - operational states
 - service states
- Graph robustness metrics
 - a large number of graph robustness metrics
 - select most promising against random or target attacks
 - study their un- and weighted versions
 - compare their algorithmic time complexity

• Total graph diversity (TGD)

TC

- better accuracy in predicting survivability
- synthetic and real networks
- compared to other graph metrics
 - clustering coefficient, average hop count, betweenness
- Algebraic connectivity (AC)
 - second smallest eigenvalue of Laplacian matrix
 - higher AC, more robust against partitioning
 - compared to average node degree
 - more informative and accurate network resilience measure

[LSPM2009]

- Weighted spectral distribution (WS)
 - introduced to analyze the Internet topology
 - compared to other metrics

TC

- geographic correlated failures
- better measure geo. correlated vulnerable links and nodes

Background and Related Work

- Network criticality
 - spectral graph robustness metric
 - smaller value indicates higher network robustness
 - compared to AC, average degree, average betweenness

[LTG2014]

[BTG2009]

Background and Related Work Robustness Metrics: Graph Centrality

- Degree: number of links connected to a node
- Closeness: inverse average distance to other nodes
- Node betweenness
 - number of shortest paths through a node
- Link betweenness
 - number of shortest paths through a link
- Flow robustness is defined as

[RJS2012]

"the ratio of the number of reliable flows to the number of total flows in the network"

Background and Related Work Robustness Metrics: Path Diversity

- Path diversity
 - measure of links and nodes in common
- EPD: effective path diversity [0,1)
 - normalized diversity with respect to a single shortest path
 - measure of E2E flow resilience
- TGD: total graph diversity is average of EPD
 - for all pairs: quantifies available diversity in graph

 $rac{|P_k \cap P_0|}{|P_0|}$

[RJS2012]

 $D(P_k)=1$

Graph Robustness Metrics Spectral Robustness Metrics

- Algebraic connectivity (λ_2)
 - second smallest eigenvalue of Laplacian matrix
- Spectral gap ($\Delta\mu$)
 - delta of largest and second largest eigen. of adjacency matrix
- Natural connectivity ($\overline{\mu}$)
 - scaled average of eigenvalues of adjacency matrix
- Weighted spectral (WS)
- Network criticality (τ̂)
- Effective graph resistance (C*)

Background and Related work Quantifying Network Resilience

- Define [SHÇJRSS2010]

 service and operational states

 Choose scenario Metrics

 Metrics States
 Observe Junder challenge
 Inder challenge
- Resilience
 - $-\mathbb{R} = 1$ area under curve
 - for particular scenario
 - resilience R
 over all scenarios

Operational State N

Network Resilience Improvement Graph Models

- Introduction and motivation
- Background and related work
- Graph models
- Network design and improvement
- Evaluation and improvement
- Conclusions and future work

Dataset Random Graphs

- Gilbert random graphs G(n, p)
 - given n nodes; each pair connected with probability p
- Waxman random graphs:

$$P(\{u,v\}) = \beta e^{\frac{-d(u,v)}{L\alpha}}$$

L: maximum distance between two nodes

 α and β : tuning parameters for long and short links

- exhibit mesh-like properties of logical-level networks
- Gabriel random graphs
 - two nodes connected if no other nodes fall inside their circle
 - exhibit grid-like properties of physical-level networks

Dataset

Unweighted Real-World Networks

- Several US-based backbone providers
- Available in http://www.ittc.ku.edu/resilinets/maps/
- Initial graph properties

Network	Nodes	Links	Avg. Deg.	Avg. Hop.		
AT&T	383	488	2.6	14.1		
Level 3	99	130	2.6	7		
Sprint	264	312	2.4	14.8		
Internet2	57	65	2.3	6.7		
CORONET	75	99	2.6	6.5		

Dataset

Weighted Real-World Networks

- RENs (research and education networks)
- Capacity weighted
- Initial graph properties

Network	Nodes	Links	Avg. Deg.	Avg. Hop.		
KAREN	25	28	2.24	3.42		
InternetMCI	19	33	3.47	2.39		
CARNet	44	43	1.95	2.99		
GEANT	37	56	3.03	3.46		

Measuring Robustness Three Robustness Measures

- Flow robustness (FR)
 - measures end to end connectivity ratio
 - always 1 for connected graphs
 - full mesh FR = 1; star FR = 1
- Three measurements based on flow robustness
 - sums of flow robustness degree attack (SFRD)
 - sums of flow robustness closeness attack (SFRC)
 - sums of flow robustness betweenness attack (SFRB)
- Captures graph robustness under stepwise attack
 - full mesh SFR* high; star SFR* low

Measuring Robustness Example

• Measuring SFRB for 9-node wheel topology

Network Resilience Improvement Network Design and Improvement

- Introduction and motivation
- Background and related work
- Graph models
- Network design and improvement
- Evaluation and improvement
- Conclusions and future work

KUSSSITTC

Algebraic Connectivity Improvement Algorithm

- Objective
 - identify the best links to be added to improve a(G)
 - reduce the cost by selecting the least cost links
- Candidate links
 - links connected to lowest degree nodes
 - removing long links
- Link selection based on: *a*(*G*) and cost
 - rank function: $\operatorname{rank}[L] = (1 \gamma) a(G) + \gamma (1 \operatorname{cost}(L))$
 - tuning parameter γ

Algebraic Connectivity Improvement Example Improvement

- 8 nodes and 9 links graph
 - for $\gamma = 0$, link (7,1) highest a(G)
 - for $\gamma = 1$, link (0,2) lowest cost

Path Diversity Improvement Algorithm

• Objective

[AÇS2014b]

- identify the best links to be added to improve TGD
- reduce the cost by selecting the least cost links
- Candidate links
 - links connected to node pairs with the lowest EPD
 - removing long links
- Link selection based on: EPD and cost
 - if multiple EPD candidates, select with the least cost

Path Diversity Improvement Algorithm

- 5 nodes, 5 links, 5 candidate links, lowest EPD pair
- Best link (1,3): the most EPD increase, least costly

Centrality-Balanced Improvement Algorithm

• Objective

[AÇS2014c]

- minimize variance of a given centrality function for all nodes
- reduce the cost by selecting the least cost links
- Candidate links
 - all links in complement graph
 - removing long links
- Link selection based on minimum variance
 - if multiple links with same variance, select least cost

Centrality-Balanced Improvement Algorithm

- 7 nodes and 6 candidate links,
- betweenness and degree (3,6), for closeness (2,4)

Network Resilience Improvement Outline

- Introduction and motivation
- Background and related work
- Graph models
- Network design and improvement
- Evaluation and improvement
- Conclusions and future work

Graph Metrics Evaluation Baseline Graphs

	Star	Tree	Linear	Barbell	Ring	Ladder	Grid	Wheel	Torus	Mesh
C _D	1.80	1.87	1.80	2.83	2.00	2.60	2.67	3.60	4.00	9.00
$\sigma_{C_D}^2$	5.76	0.92	0.16	0.47	0.00	0.24	0.44	3.24	0.00	0.00
$\sigma_{C_{C}}^{2}$	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
$\sigma_{C_{\mathrm{B}-n}}^2$	0.09	0.05	0.04	0.06	0.00	0.01	0.01	0.03	0.00	0.00
$\sigma^2_{C_{B-l}}$	0.00	0.02	0.02	0.04	0.00	0.00	0.00	0.00	0.00	0.00
CC	0.00	0.00	0.00	0.58	0.00	0.00	0.00	0.62	0.33	1.00
As	-1.00	-0.52	-0.12	0.13	1.00	0.28	-0.06	-0.33	1.00	1.00
R	1.00	3.00	5.00	4.00	5.00	3.00	2.00	1.00	2.00	1.00
D	2.00	6.00	9.00	7.00	5.00	5.00	4.00	2.00	2.00	1.00
ď	1.80	3.50	3.67	3.48	2.78	2.33	2.00	1.60	1.50	1.00
TGD	0.00	0.00	0.00	0.23	0.39	0.68	0.73	0.82	0.91	1.00
λ ₂	1.00	0.10	0.10	0.09	0.38	0.38	1.00	1.47	3.00	10.00
Δμ	3.00	0.29	0.24	0.01	0.38	0.73	1.41	2.63	3.00	10.00
î	1.80	3.50	3.67	3.03	1.83	1.25	0.96	0.69	0.50	0.20
WS	2.00	5.46	4.37	3.02	3.75	3.04	2.44	1.48	1.27	1.00
λ	1.49	1.18	1.09	2.19	1.19	1.61	1.67	2.95	2.87	9.66
C*	0.11	0.04	0.05	0.06	0.11	0.16	0.23	0.29	0.44	1.00
SFRD	1.00	1.61	2.11	1.97	2.56	2.62	2.72	2.91	3.14	3.67
SFRC	1.00	1.94	1.67	1.86	2.29	2.47	2.61	2.73	3.14	3.67
SFRB	1.00	1.61	1.67	1.86	2.29	2.47	2.61	2.73	3.14	3.67
SFR	1.00	1.72	1.82	1.90	2.38	2.52	2.64	2.79	3.14	3.67

Graph Metrics Evaluation Random Graphs

- Nonlinear correlation with SFRB measure [AÇS2015c]
- Correlation of 30,000 random graphs
 - algebraic connectivity and link betweenness best for Gilbert

network criticality best for the others

corr(X, SFRB)	\bar{C}_{D}	$\sigma^2_{C_D}$	$\sigma^2_{C_C}$	$\sigma^2_{C_{B-n}}$	$\sigma^2_{C_{B-l}}$	CC	As	R	D	ď	TGD	λ2	Δμ	τ	WS	λ	C*
Gilbert p=0.8	0.43	-0.60	-0.41	-0.61	-0.69	0.32	0.25	0.15	0.00	-0.43	0.59	0.75	0.37	-0.49	-0.46	0.39	0.49
Gilbert p=0.5	0.49	-0.43	-0.29	-0.62	-0.64	0.23	0.28	0.00	-0.09	-0.50	0.42	0.69	0.33	-0.60	-0.46	0.40	0.60
W(0.5, 0.5)	0.76	-0.03	-0.40	-0.84	-0.81	0.22	0.15	-0.16	-0.41	-0.77	0.81	0.74	0.45	-0.85	-0.72	0.60	0.85
W(0.5, 0.8)	0.67	-0.24	-0.56	-0.78	-0.79	0.18	0.20	0.11	-0.31	-0.71	0.74	0.75	0.42	-0.81	-0.62	0.52	0.81
W(0.8, 0.5)	0.62	-0.26	-0.54	-0.73	-0.78	0.19	0.16	0.42	0.11	-0.68	0.66	0.76	0.39	-0.78	-0.58	0.48	0.78
Gabriel	0.62	0.18	0.06	-0.53	-0.68	0.17	0.10	-0.22	-0.43	-0.69	0.73	0.73	0.27	-0.77	-0.61	0.51	0.77

Algebraic Connectivity Improvement Evaluation Results

- Adding 100 links
- Betweenness attack is the most destructive
- Improved graph is more resilient $\gamma = 0$

Path-Diversity Improvement Evaluation Results

- For comparison, lowest degree (LD) improvement
 add cost-efficient links to lowest degree nodes
- Adding 20 links
- Path-diversity (PD) improved graphs are more resilient

Centrality-Balanced Improvement Evaluation Results

- Budget constraint
 - adding links based with 50×10^6 m total length
- Betweenness and degree based perform better
 - considering all cases

[AÇS2015a]

Comprehensive Comparison Unweighted Evaluation Results

- Adding 20 links to real-world networks
- Minimize or maximize given robustness function
- Link-betweenness balanced graphs with best results

Comprehensive Comparison Unweighted Evaluation Summary

- Sum of flow robustness attacking all nodes
 - area under the curve
- Three centrality-based attacks
- Link-betweenness balanced graphs $\sigma_{C_{B-1}}^2$

best results for Level 3 and the other two networks

Centrality Attack		Objective Function												
	λ ₂	As	CC	Δμ	ď	$\hat{ au}$	$ar{m{\lambda}}$	$\sigma^2_{C_C}$	$\sigma^2_{C_D}$	$\sigma^2_{C_{B-l}}$	$\sigma^2_{C_{B-n}}$	WS	TGD	
Degree	10.5	9.46	7.8	8.44	8.5	12.35	9.73	12.72	10.77	14.62	13.28	9.89	9.21	
Closeness	8.79	10.47	7.68	6.87	7.32	11.93	7.36	11.07	8.99	13.75	13.38	8.9	9.22	
Betweenness	8.18	6.41	5.7	6.34	5.76	9.32	5.68	8.28	7.97	10.37	9.79	7.28	7.56	

Level 3 physical network

Comprehensive Comparison Weighted Evaluation Results

- Adding 20 links to weighted real-world networks
- Minimize or maximize given robustness function
- Degree balanced graphs with best results

Comprehensive Comparison Weighted Evaluation Results

- Sum of flow robustness as attacking all nodes
- Three centrality-based attacks
- Node-betweenness balanced graphs $\sigma_{C_{D}}^2$
 - best results for GÉANT and the other two networks

Centrality Attack		Objective Function												
	λ2	TGD	$\sigma^2_{C_C}$	CC	WS	ď	$\sigma^2_{C_{B-n}}$	τ	$\sigma^2_{C_{B-l}}$	Δμ	As	$\sigma^2_{C_D}$	λ	
Degree	2689.34	3430.82	3485.94	2109.32	2088.8	2840.92	2475.68	3112.7	2454.03	2035.75	3025.59	3595.01	1990.79	
Closeness	3254.4	3547.47	3582.98	2467.93	2053.28	2650.7	3074.53	3487.71	2662.36	2123.06	2957.06	3651.72	1996.02	
Betweenness	2645.45	3293.76	3316.64	1959.08	2036.48	2420.92	2416.86	3037.95	2633.43	1971.23	2299.24	3407.27	1815.88	

GÉANT network

Comprehensive Comparison Resilience State-Space Analysis

- Adding 20 links to unweighted real-world networks
- State definitions
 - service state: percentage of E2E connectivity [AÇS2015a]
 - operational state: connectivity of nodes

Comprehensive Comparison Resilience State-Space Summary

- Network resilience
 - $-\mathbb{R} = 1$ area under trajectory
- Link-betweenness balanced graphs $\sigma_{C_{B-1}}^2$

- best results for Level 3

Centrality Attack		Objective Function												
	λ2	As	CC	Δμ	ď	î	Ā	$\sigma^2_{C_C}$	$\sigma^2_{C_D}$	$\sigma^2_{\mathrm{C}_{\mathrm{B}-\mathrm{l}}}$	$\sigma^2_{{ m C}_{{ m B}-n}}$	WS	TGD	
Degree	9.51	8.66	6.95	7.73	7.42	10.46	8.92	10.44	8.72	11.96	10.38	8.93	8.08	
Closeness	7.94	9.48	6.92	6.21	6.58	10.02	6.72	9.77	7.75	11.45	11.43	8.1	8.28	
Betweenness	7.4	5.81	5.19	5.84	5.17	8.28	5.17	7.32	7.12	9.27	8.52	6.54	6.78	

Level 3 physical network

Network Resilience Improvement Outline

- Introduction and motivation
- Background and related work
- Graph models
- Network design and improvement
- Evaluation and improvement
- Conclusions and future work

Conclusions Graph Resilience Evaluation

- Investigated several robustness graphs
- Presented three robustness measures
 - based on sum of flow robustness during attacks
- Evaluated graph robustness metrics accuracy
 - AC and link-betweenness balanced graphs
 - consistent best results with Gilbert graphs
 - network criticality and effective graph resistance
 - for Waxman (mesh-like) and Gabriel (grid-like)
 - predicts network resilience against centrality attacks
- No ideal graph robustness metric for all graph types

Conclusions Graph Resilience Improvement

- Several topology improvement algorithms
 - cost-efficient
 - number of links or budget constraint
- Evaluating improved graphs
 - several objective functions
 - against centrality-based attacks
- Our link- and node-betweenness balanced graphs
 - show better results for centrality-based attacks

Future Work

- Focused on adding links
 - plan to investigate adding a set of new nodes
- Multilevel evaluation and improvement
- For evaluation, we focused centrality-based attacks
 - correlated geographic failures and random failures
- Models and analysis are graph-theoretic
 - using ns-3 for application and protocol behavior
 - study other performance parameters
 - packet delivery
 - end-to-end delay

Network Resilience Improvement References and Further Reading

- Color coding
 - my publications
 - ResiliNets publication
 - other reference

Selected Publications References and Further Reading

- 1. [AS2015a] Mohammed J.F. Alenazi, James P.G. Sterbenz, "Evaluation and Improvement of Network Resilience via Multiple Graph Robustness Metrics", *IEEE/IFIP RNDM*, Oct. 2015 (to be submitted)
- 2. [AS2015b] Mohammed J.F. Alenazi, James P.G. Sterbenz, "Evaluation and Improvement of Network Resilience against Attacks using Graph Spectral Metrics", *3rd International Symposium on Resilient Communication Systems*, Aug. 2015 (submitted)
- 3. [AS2015c] Mohammed J.F. Alenazi, James P.G. Sterbenz, "Comprehensive Comparison and Accuracy of Graph Metrics in Predicting Network Resilience", *Design of Reliable Communication Networks, DRCN 2015*

Selected Publications References and Further Reading

- 4. [AÇS2014a] <u>Mohammed J.F. Alenazi</u>, Egemen K. Çetinkaya, James P.G. Sterbenz, "Cost-Efficient Algebraic Connectivity Optimisation of Backbone Networks", *Optical Switching and Networking Journal*, 2014
- [AÇS2014b] <u>Mohammed J.F. Alenazi</u>, Egemen K. Çetinkaya, James P.G. Sterbenz, "Cost-Efficient Network Improvement to Achieve Maximum Path Diversity", *IEEE/IFIP RNDM*, Oct. 2014
- 6. [AÇS2014c] <u>Mohammed J.F. Alenazi</u>, Egemen K. Çetinkaya, James P.G. Sterbenz, "Cost-Constrained and Centrality-Balanced Network Design Improvement", *IEEE/IFIP RNDM*, Oct. 2014
- [AÇS2013] <u>Mohammed J.F. Alenazi</u>, Egemen K. Çetinkaya, James P.G. Sterbenz, "Network Design and Optimisation Based on Cost and Algebraic Connectivity", *IEEE/IFIP RNDM*, Almaty, September 2013

Selected Publications References and Further Reading

- [SHÇJRSS2010] James P.G. Sterbenz et. al. "Resilience and Survivability in Communication Networks: Strategies, Principles, and Survey of Disciplines", *Computer Networks*, Volume 54, No. 8, pp. 1245 – 1265, Jun. 2010
- [RJS2012] Justin P. Rohrer, Abdul Jabbar, and James P.G. Sterbenz, "Path Diversification for Future Internet End-to-End Resilience and Survivability", *Springer Telecommunication Systems Journal*, accepted April 2012
- [KU-TopView] https://www.ittc.ku.edu/resilinets/maps

References

- [LSPM2009] William Liu, Harsha Sirisena, Krzysztof Pawlikowski, Allan McInnes, "Utility of Algebraic Connectivity Metric in Topology Design of Survivable Networks," *Design of Reliable Communication Networks, DRCN 2009*
- [LTG2014] Xuelian Long, David Tipper, Teresa Gomes, "Measuring the survivability of networks to geographic correlated failures", *Optical Switching and Networking*, August 2014
- [BTG2009] Alireza Bigdeli, Ali Tizghadam, and Alberto Leon-Garcia, "Comparison of Network Criticality, Algebraic Connectivity, and Other Graph Metrics in *Proceedings of the 1st Annual Workshop on Simplifying Complex Network for Practitioners* (SIMPLEX '09)

References

- [F1973] M. Fiedler, "Algebraic connectivity of graphs", *Czechoslovak Mathematical Journal*, Volume 23, No. 2, 1973, pp. 298 305
- [E2006] Estrada, E. "Network robustness to targeted attacks. The interplay of expansibility and degree distribution." *The European Physical Journal B-Condensed Matter and Complex Systems* (2006)
- [SSG2013] A. Sydney, C. Scoglio, and D. Gruenbacher, "Optimizing algebraic connectivity by edge rewiring", *Applied Mathematics and Computation*, Volume 219, No. 10, January 2013, pp. 5465 5479
- [WM2008] H. Wang, P. Van Mieghem, "Algebraic connectivity optimization via link addition", *ICST BIONETICS*, November 2008
- [HT1973] J. Hopcroft, and R. Tarjan. "Algorithm 447: efficient algorithms for graph manipulation." *Communications of the ACM* (1973)

Alenazi

Network Resilience Improvement

Questions?

Alenazi

End of Foils

AT&T Physical

Alenazi

Sprint Physical

Alenazi

Level 3 Physical

21 April 2015

Internet2 Physical

CORONET Physical

Alenazi

GÉANT Physical

21 April 2015

KARen Physical

CARNet Physical

InternetMCI Physical

