## **Optimistic Parallel Simulation of TCP/IP over ATM networks**

#### M.S. Oral Examination

November 1, 2000

#### Ming Chong

mchang@ittc.ukans.edu



## <u>Agenda</u>

- Introduction
  - parallel simulation
  - ProTEuS
- Georgia Tech. Time Warp (GTW)
- Implementation
- Evaluation
- Conclusion



## **Introduction**

- DARPA's Next Generation Internet Implementation Plan call for simulations of multiprotocol networks with 10,000,000 nodes in year of 2005.
- Conventional sequential simulators such as *BONeS* and *OPNET* lack capabilities.
- Parallel simulation and new modeling framework
  - *GTW*, Georgia Tech Time Warp
  - Telesim project, University of Calgary
  - UCLA's ParSec, Purdue's ParaSol, etc.



## Parallel Discrete Event Simulation

- A simulation is partitioned into Logical Processes (LPs).
- LPs are distributed on a shared-memory multiprocessor machine.
- LPs communicate by timestamped message (i.e. event scheduling).
- Synchronization technique is required to ensure that events are processed in the same order as in a single processor simulation.
- Causality error -- LP receives a message with a timestamp earlier than the LP's local clock.



## Synchronization Conservative vs. Optimistic

Conservative approach

- LP advances its local clock ONLY if it could ensure no causality errors
- Parallelism depends on how much an LP can lookahead
- Network simulation -- lookahead available is often too little to exploit parallelism
- Deadlock possible



## Optimistic approach: Time Warp

- Causality errors are allowed (I.e. each LP advances without regard to the states of other LPs).
- Mechanism is required to detect and correct causality errors.
- Rollback: Restore simulation state from a previously saved state.
- State-saving to permit Rollback.



### **Motivation**

- Compare the performance of *GTW* to *ProTEuS* on large-scale ATM and TCP/IP networks simulation.
- Focus on
  - Parallelism (i.e. speedup )
  - Scalability with network size
  - Impacts of network characteristics



## ProTEuS

- A rack of PCs costs less than a shared-memory multiprocessors machine.
- ProTEuS performs network simulation on a network of PCs and ATM switches.
- Simulation involves real TCP and ATM protocol stack.
- Proportional time distributed system to synchronize distributed simulations.



## Georgia Tech Time Warp (GTW)

- Optimistic discrete event simulator developed by PADS group of Georgia Institute of Technology.
- Support small granularity simulation
  Cell level simulation of ATM network
- GTW runs on shared-memory multiprocessor machines
  - Sun Enterprise, SGI Origin, KSR



## Logical Process (LP)

- GTW simulation consists of a collection of LPs.
- Mapping of LPs to processors is static.
- Execution of LP is message driven.
- Behavior of LP is governed by 3 functions
  - Initialize()
    - Bind LP to processor, allocate memory
    - initialize state variables, send initial message to trigger simulation at time 0.
  - Process-event()
    - Invoke event handlers upon arrival of an event
    - modify state variables (state-saving), schedule new events
  - Wrapup()
    - Output statistics



## State and Checkpointing

- Each LP defines a state vector
- A state vector may include 3 types of state variables distinguished by checkpointing schemes.
  - Read-only
    - No checkpointing
  - Full-copy
    - Perform state-saving prior to each event processing

#### – Incremental

- Perform state-saving only when variables are modified.
- Different checkpointing schemes are designed to reduce state-saving overhead.



#### Data structures

Each processor maintains 3 important queues

- Message Queue (MsgQ)
  - Hold incoming positive messages.
- Event Queue (EvQ)
  - Hold unprocessed and processed messages.
- Message cancellation queue (CanQ)
  - Hold messages that have been cancelled (I.e. antimessages, negative messages).



#### Event queue data structure

The event queue (EvQ) consists of

- Processed event queue
  - Each LP maintains a processed event queue sorted by receive timestamp.
  - Each processed event contains pointers to state vector history, pointers to messages scheduled by this event.
- Unprocessed event queue
  - Each processor maintained a single priority queue of unprocessed events for all LPs mapped to the processor.
  - Eliminate the need to enumerate the next executable
    LP.



### The main scheduler loop

After initialized, each processor enters a loop:

- Messages in MsgQ file into EvQ, one at a time
  - Timestamp(msg) < LP local time ==> Rollback
    - Cancel msg sent by rolled back event
    - Enqueue cancelled msg into CanQ of the processor holding the msg
- Process anti-message in CanQ
  - Anti-messages annihilate their complementary positive messages
  - If positive messages have been processed ==> secondary rollback
- Dequeue an unprocessed event (smallest timestamp) from EvQ, process the event.



## Computing GVT

- Global virtual time (GVT)
  - timestamp lower bound of all unprocessed or partially processed messages, and anti-messages.
  - Ensure simulation progress, perform fossil collection.
- Any processor can initiate a GVT computation
- All processors report their local minimum
- Last processor to report computes new GVT
- Fossil collection is performed to reclaim memory



### **Implementation**

- Simulation models are modularized based on protocol layers:
  - ABR, VBR, TCP sources
  - TCP
  - ATM AAL5
  - ATM network
  - link
- Based on NIST ATM simulator
- Consistent with ProTEuS



## Implementation: Protocol layers

- TCP source, ABR source
  - greedy
- VBR source
  - cell trace from MPEG clip
- TCP
  - Derived from BSD 4.3 (Reno)
- ATM AAL5
  - segmentation and reassembly
- ATM network layer
  - ATM Forum Traffic Management 4.0



### ABR traffic management

• Network provides information on available bandwidth through a feedback system (EPRCA) via *resource management* (RM) cell.





## **EPRCA**

#### Switch

- Determine load by monitoring queue length
- Compute *fairshare* of the bandwidth for each ABR VC
- Modify CI, NI bits in BRM cells to indicate network congestion, advertise *fairshare* to source via ER.
- Explicit rate (ER) is the max rate allowed to source Host
- Compute Allowed cell rate (ACR) based on CI, NI, ER

| CI | NI | New ACR                              |
|----|----|--------------------------------------|
| 0  | Û  | $MIN(ER, ACR + PCR \times RIF, PCR)$ |
| 0  | 1. | MIN(ER, ACR)                         |
| 1. | X  | $MIN(PCR, ACR - ACR \times RDF)$     |



### Queuing Discipline

- Per-Class queuing
- Priority order on traffic classes: RM, CBR, VBR, ABR, UBR
- Cell-level traffic shaping on ABR VCs.



### **Evaluation**

- Evaluate performance of GTW, compare to ProTEuS
  - Speedup
  - Scalability
  - Network characteristics, simulation parameters
- Hardware -- *Clipper* located at LBNL
  - Sun Enterprise server
  - 8 CPU (168 MHz)
  - 1 GBytes physical memory



## Validation of GTW models



- Line rate
- ABR sources
- VBR sources
- EPRCA threshold
- Simulated time

8000 cps

Greedy (PCR=8000 cps, ICR=1000 cps)

Bursty (MPEG clip, avg rate = 3000 cps)

- (Low, High) = (200, 300) cells
- 50 seconds



#### ABR source rate



#### ABR queue length



#### Link utilization

|               | Link A |         | Link B |         |
|---------------|--------|---------|--------|---------|
| Experiment    | GTW    | ProTEuS | GTW    | ProTEuS |
| A:5ms B:20ms  | 0.502  | 0.503   | 0.498  | 0.497   |
| A:15ms B:15ms | 0.498  | 0.499   | 0.502  | 0.501   |
| A:20ms B:5ms  | 0.498  | 0.499   | 0.502  | 0.501   |

#### Mean queuing delay

|               | ABR 1 queuing delay (sec) |         | ABR 2 queuing delay (sec) |         |
|---------------|---------------------------|---------|---------------------------|---------|
| Experiment    | GTW                       | ProTEuS | GTW                       | ProTEuS |
| A:5ms B:20ms  | 0.159                     | 0.156   | 0.164                     | 0.163   |
| A:15ms B:15ms | 0.165                     | 0.163   | 0.161                     | 0.160   |
| A:20ms B:5ms  | 0.167                     | 0.165   | 0.159                     | 0.157   |



## **GTW** performance evaluation

#### Scenario A: 6 ATM switches, 40 hosts



- Link: OC-3
- link delay: 5 ms

| ABR sources  | Greedy<br>PCR = 21000 cps<br>ICR = 25% PCR<br>MCR = 0 cps                |
|--------------|--------------------------------------------------------------------------|
| V BR sources | 50% square wave<br>period = 100 ms<br>MAX = 15000 cps<br>MIN = 10000 cps |
| TCPsource    | Greedy                                                                   |
| TCPlayer     | Window size = 512 KBytes<br>TCP Processing time = 1 ms                   |





#### <u>Scenario B</u>

- 16 ATM switches, 120 Hosts
  - OC-3 link
- 5 ms link delay

| ABR sources | Greedy                     |  |  |
|-------------|----------------------------|--|--|
|             | PCR = 36000 cps            |  |  |
|             | 1CR = 25% PCR              |  |  |
|             | MCR = 0 cps                |  |  |
| VBR sources | 50% square wave            |  |  |
|             | period = 100ms             |  |  |
|             | MAX = 36000 cps            |  |  |
|             | MIN = 10000 cps            |  |  |
| TCPsource   | Greedy                     |  |  |
| TCPlayer    | Window size = 128 KBytes   |  |  |
|             | TCP Processing time = 1 ms |  |  |



#### **Results: Scenario A**

|                       | #Processors | Execution Time (seconds) |         |  |
|-----------------------|-------------|--------------------------|---------|--|
| Experiment            |             | GTW                      | ProTEuS |  |
| Uni-directional       | 2           | 1551.75                  | 1191.32 |  |
| Traffic               | 4           | 1228.38                  | 1213.28 |  |
| ABR only              | 6           | 610.33                   | 1055.88 |  |
| <b>Bi-directional</b> | 2           | 2622.97                  | 1548.12 |  |
| Traffic               | 4           | 2177.81                  | 1540.79 |  |
| ABR only              | 6           | 1134.29                  | 1221.99 |  |
| Uni-directional       | 2           | 1600.48                  | 1234.22 |  |
| Traffic               | 4           | 1649.88                  | 1243.12 |  |
| TCP over ABR          | 6           | 663.93                   | 1070.77 |  |
| <b>Bi-directional</b> | 2           | 3016.11                  | 1540.10 |  |
| Traffic               | 4           | 2730.70                  | 1502.08 |  |
| TCP over ABR          | 6           | 1488.28                  | 1200.08 |  |

#### Observations

- ProTEuS scales better
- GTW exploits more parallelism





#### Results: Scenario B

|                       |             | Execution Time (seconds) |         |  |
|-----------------------|-------------|--------------------------|---------|--|
| Experiment            | #Processors | GTW                      | ProTEuS |  |
| Uni-directional       | 2           | 762.88                   | 327.14  |  |
| Traffic               | 4           | 385.36                   | 239.43  |  |
| ABR only              | 6           | 298.47                   | 178.87  |  |
| <b>Bi-directional</b> | 2           | 1569.48                  | 527.29  |  |
| Traffic               | 4           | 851.44                   | 335.64  |  |
| ABR only              | 6           | 662.42                   | 257.88  |  |
| Uni-directional       | 2           | 784.74                   | 349.75  |  |
| Traffic               | 4           | 425.72                   | 241.39  |  |
| TCP over ABR          | 6           | 331.21                   | 178.66  |  |
| <b>Bi-directional</b> | 2           | 1535.20                  | 549.22  |  |
| Traffic               | 4           | 871.57                   | 327.24  |  |
| TCP over ABR          | 6           | 668.90                   | 251.07  |  |

#### Observation

• ProTEuS outperformed GTW by a larger margin





#### GTW speedup: Scenario B





## Effect of network characteristics

- Network with feedback loops
  - ABR & TCP
- Increased feedback traffic ==> more Rollbacks
- 6-switch model on 6 processors
- Rollback activity depends on event memory allocation





### Effect of event memory allocation



- less event memory ==> events are more likely aborted
- less event memory ==> more fossil collection to reclaim memory for new event
- Aborting event slowed down LP ==> reduce potential rollbacks



## Effect of Round Trip Time (RTT)

- 6-switch scenario (6 CPUs used)
- RTT: 10, 50, 100, 200, 400 ms
- Fixed load

#### **Observations**

- longer RTT ==> poor performance
- Performance worsen with TCP
- Impact of RTT on ProTEuS is less





### Effect of Network Size

- 6 processors used
- simulated time: 10 s
- Network size increases by factor of 3
- Load increases by factor of 5.3

|            | Network size/scenario | Execution Time (seconds) |         |  |
|------------|-----------------------|--------------------------|---------|--|
| Experiment |                       | GTW                      | ProTEuS |  |
| Uni-ABR    | A                     | 610.33                   | 1055.88 |  |
|            | В                     | 3520.28                  | 1754.40 |  |
| Bi-ABR     | A                     | 1134.29                  | 1221.99 |  |
|            | Б                     | 7845.38                  | 2528.08 |  |
| Uni-TCP    | A                     | 663.93                   | 1070.77 |  |
|            | В                     | 3834.70                  | 1873.59 |  |
| Bi-TCP     | A                     | 1488.28                  | 1200.08 |  |
|            | В                     | N/A                      | 2579.70 |  |



Increase in execution time from scenario A to B

• ProTEuS scales better



### **Conclusions**

- Require careful LP mapping to achieve load balancing
- Require tuning to optimize performance
- Network simulation can benefit from GTW
  - Great speedup on more CPU ==> exploit parallelism
- ProTEuS has better scalability in network size
- Network characteristics impact GTW's performance



#### **Future Work**

- Optimize models to reduce memory usage
  - memory consumption limits network size
- Simulate more realistic scenarios
  - Asymmetric topology
  - various kinds of traffics
- Experiment GTW on a NOW platform



# Questions ?

