Design and Implementation of Data Models & Instrument Scheduling of Satellites in a Space Based Internet Emulation System

> Karthik N Thyagarajan Masters Thesis Defense December 20, 2001

> > Defense Committee:

Dr. Gary J. Minden (Chair)

Dr. Joseph B. Evans

Dr. Victor Frost

Organization

- SBI Mission
- Introduction
- SBI Approach
- SBI Emulation System
- Satellite Data Models
- Earth Surface Database
- Instrument Scheduling
- Tests and Results
- Summary
- Future Work

SBI Mission

Space Based Internet (SBI) aims at applying mobile wireless technology and innovative topology and routing algorithms suitable for satellite systems to enable routing between satellites or satellites and ground stations.

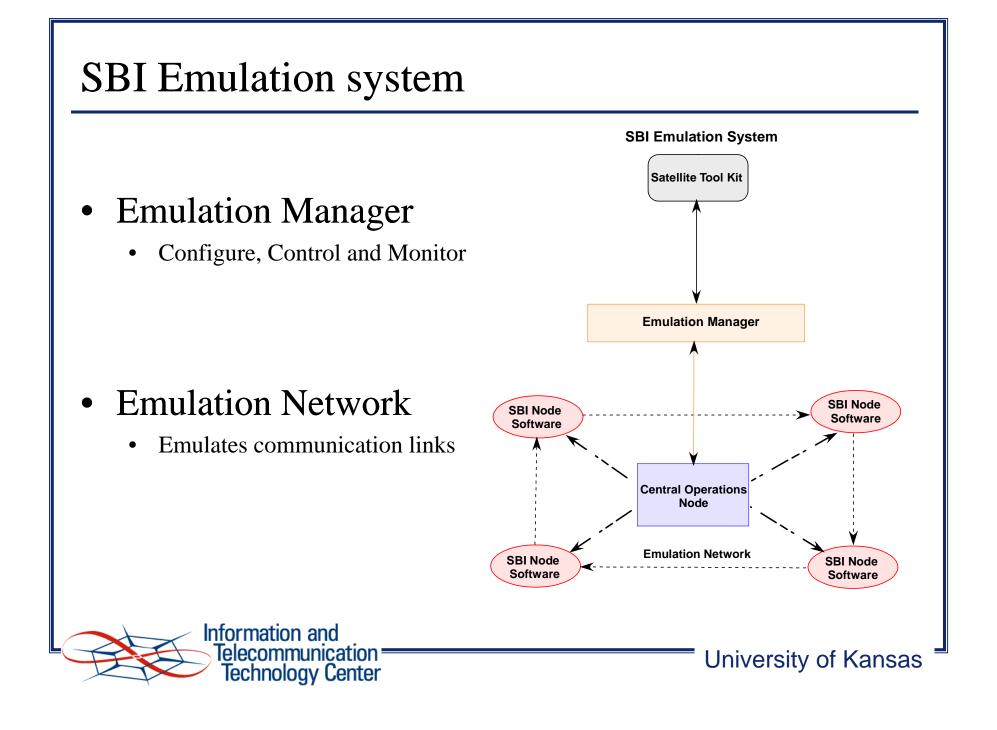
Introduction

- Earth Observing System (EOS) satellites are capable of receiving, recording and transmitting data
- EOS satellites gather data over specific regions of the Earth
- Data is stored in high capacity, solid state recorders
- Data is transmitted from the satellite to the ground station or to the TDRSS

TDRSS : Tracking & Data Relay Satellite System

Limitations

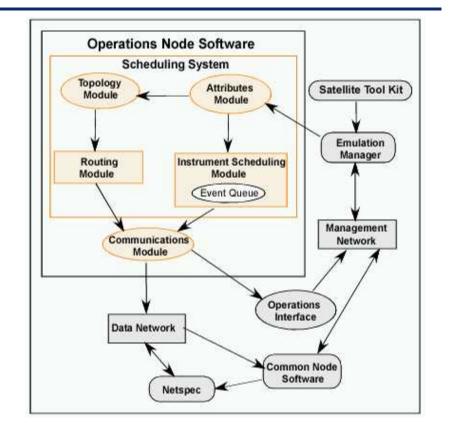
- Data needs to be stored until the satellite has *Line of Sight* with the ground station or TDRSS
- Non availability of near real time data
- Satellite is only capable of communicating with ground station or TDRSS
- Satellite communication systems are specific to individual satellites



Solution: SBI Approach

- Enable routing among satellites
- Scalability
- Special SBI satellites can be constructed and deployed when required
- Build realistic data traffic models of space-based applications for current / planned satellites
- Sat 1 Sat 2 Sa

• Emulated Environment

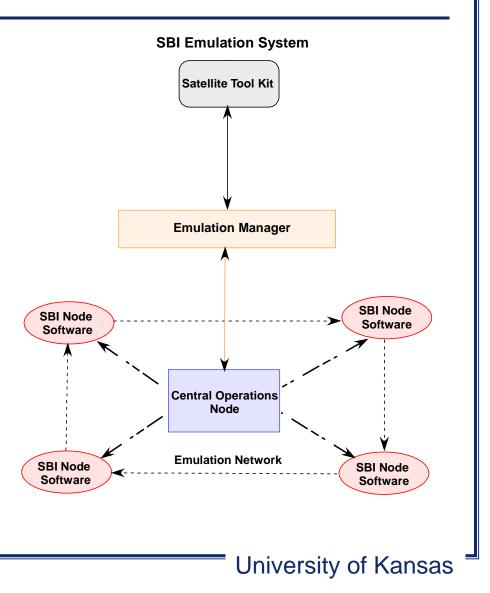


Operations Node Software

Constituent Modules

- Attributes Module
- Topology Module
- Routing Module
- Instrument Scheduling Module
- Communications Module

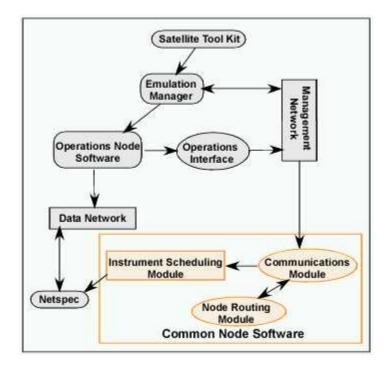
STK : Satellite Tool Kit



SBI Emulation system

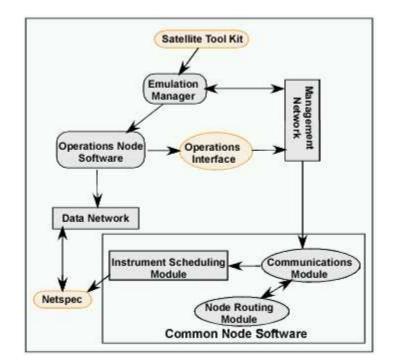
- Emulation Manager
 - Configure, Control and Monitor
- Emulation Network
 - Emulate communication links
- SBI Node
 - Represents a satellite or ground station

Information and


Telecommunication Technology Center

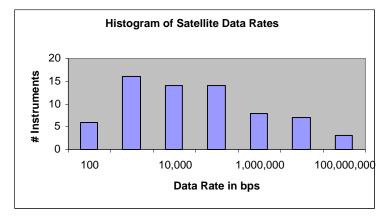
Common Node Software

Constituent Modules


- Communications Module
- Instrument Scheduling Module
- Node Routing Module

Other Software

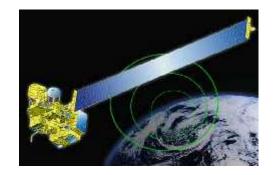
- Operations Interface
 - Performs S-Band channel functions using TCP
- Satellite Tool Kit
 - Emulates satellite environment
 - Provides animation capabilities
 - Provides data to schedule satellite instruments
- Netspec
 - Emulates satellite data



Satellite Data Models

- Data characteristics of 24 Satellites and 68 of their instruments have been studied
- 66 instruments gather spectral image data with Constant Bit Rate
- 2 instruments gather image data (e.g. Wide Field Camera of Picas so-Cenna satellite)
- Satellite Data models are emulated using KU's Netspec system
 - MPEG and bursty are the 2 traffic types used to emulate satellite data

Data	Data Rates			
From	То	Instruments		
100	1 Kbps	6		
1 Kbps	10 Kbps	16		
10 Kbps	100 Kbps	14		
100 Kbps	1 Mbps	14		
1 Mbps	10 Mbps	8		
10 Mbps	100 Mbps	7		
100 Mbps	1 Gbps	3		



• More than 75 % of the instruments have a data rate between 100 b ps - 10 Mbps

Instrument Scheduling

- Satellite instruments gather data on specific regions of the Earth
- Regions where satellites gather data:
 - Land
 - Ocean
 - Cryosphere / Ice
 - Atmosphere

• Data can be gathered in one or any combination of the above regions

Instrument Scheduling Contd...

- Satellite instruments fall into one of 3 scheduling types
 - Earth Surface measurements
 - Solar Occultation or Sunrise-Sunset measurements
 - Day / Night measurements

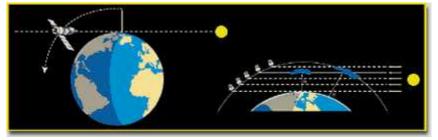
Measurement	# Instruments
Earth Surface Type	42
Sunrise-Sunset	6
Day / Night	20

Earth Surface Measurements

• Measurements & Applications

- Land mapping the Earth, vegetation distribution, volcanic activity (ASTER)
- Ocean weather conditions, ocean surface temperature, wind patterns (S eawind)
- Cryosphere albedo values, areal extent of snow and ice brought by winter storms and frigid temperatures (MODIS)
- Satellite / Instrument Characteristics
 - Orbit: Sun-synchronous and polar, sun-synchronous and circular, circular, elliptical
 - Orbital period: 90 115 minutes
 - Data rate: 1 Kbps 300 Mbps

ASTER - Advanced Spaceborne Thermal Emission & Reflection Radiometer MODIS - Moderate Resolution Imaging Spectroradiometer


Sunrise Sunset Measurements

• Measurements & Applications

- Measurement of vertical profile of ozone hole related components (ILAS)
- Identification of responses to episodic events such as volcanic eruptions (SAGE II)

• Satellite / Instrument Characteristics

- Orbit: Circular or near circular
- Orbital period: 90 105 minutes
- 32 to 28 measurements per 24 hour period
- Data rate: 1 Kbps 600 Kbps

ILAS - Improved Limb Atmospheric Spectrometer SAGE II - Stratospheric Aerosol & Gas Experiment II

Day / Night Measurements

• Measurements & Applications

- Pollution measurement in the troposphere (MOPITT)
- Sunlight scatter by the Earth surfaces and the atmosphere (MISR)
- Determination of aerosol properties (MISR)

• Satellite / Instrument Characteristics

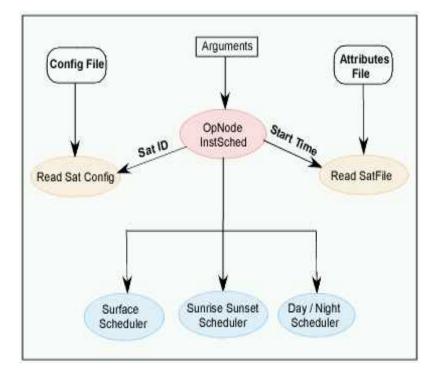
- Orbit: Sun-synchronous and polar, sun-synchronous and circular, circular
- Orbital period: 96 105 minutes
- Data rate: 1 Kbps 25 Mbps

MOPITT - Measurements Of Pollution In The Troposphere

MISR - Multi-angle Imaging Spectro - Radiometer

Earth Surface Database

- Necessity
- Database built from world map JPEG image file
- 4 Surface Types
 - Ice / Cryosphere
 - Water
 - Arid Land (Brown Regions)
 - Vegetative Land (Green Regions)
- Surface resolution: 0.5⁰ Latitude and 0.5⁰ Longitude

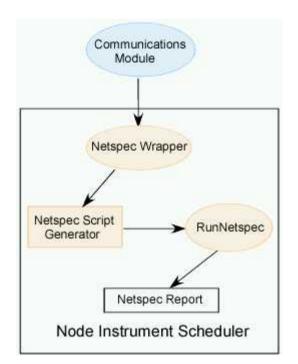

Operations Node Instrument Scheduler

Configuration File

- Scheduler ID
- Surface value at which the instrument goes ON
- Data characteristics (e.g. Bursty)
- Data Rate in Kbps

Attributes File

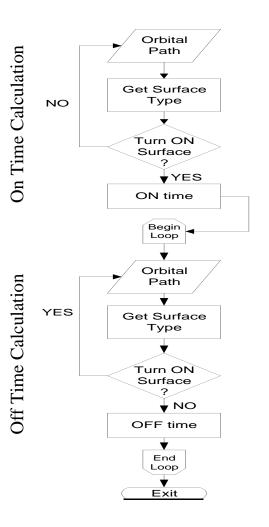
- Satellite orbital path
- Satellite daylight times



SBI Node Instrument Scheduler

- NetspecWrapper
 - Receives Netspec parameters from Communications module
 - Selects appropriate Netspec script generator
- Netspec Script Generator
 - Generate Netspec script
 - Types of data generation scripts
 - Burst
 - Queued Burst
 - MPEG
 - Video Teleconferencing
- RunNetspec
 - Executes generated Netspec script and stores it in the output file

Information and Telecommunication = Technology Center

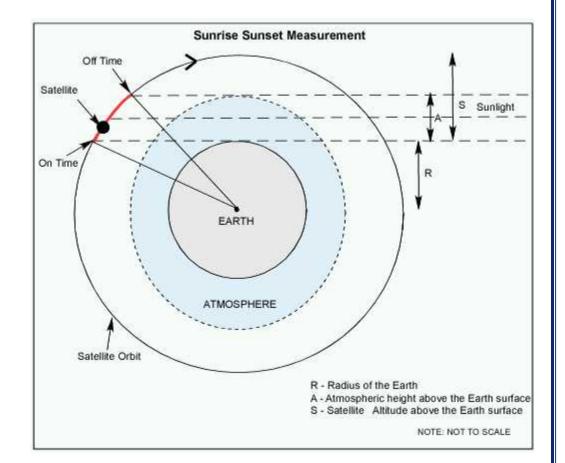

Schedulers

- Schedule satellite instruments for gathering data
- 3 types of satellite instrument schedulers
 - Earth surface based
 - Day / Night
 - Sunrise Sunset
- Satellite instrument is scheduled for one pair of ON and OFF times within one orbit from current position
- Turn On Surface Earth Surface above which the instrument turns ON

Surface based scheduler

- Scheduling
 - Earth surface / atmosphere below the satellite's current orbital path
- On time
 - Time at which the satellite passes over Turn On Surface
- Off time
 - Time at which the satellite passes over surface other than Turn On Surface

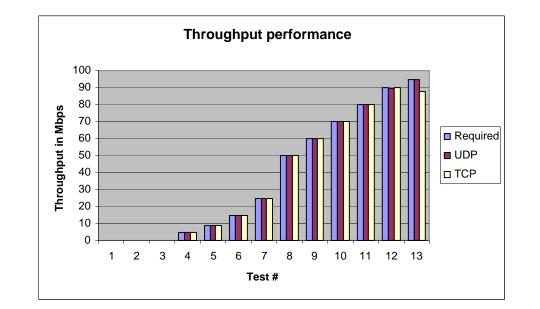
Day / Night Scheduler


- Scheduling
 - Day / Night
 - Earth surface / atmosphere below the satellite's current orbital path
- On time
 - Time at which the satellite passes over Turn On Surface during the day
- Off time
 - Time at which the satellite passes over a surface other than Turn On Surface
 - Time at which the satellite passes over a surface where it is night

Orbital Daylight **On Time Calculation** Path Times NO Get Surface Read Daylight NO Type File YES Turn ON Daylight Surface Time ? YES 2 ON time Begin Loop ¥ Daylight **Off Time Calculation** Orbital Times Path ★ Read Daylight Get Surface File Type YES YES Turn ON Daylight Surface Time ? 🖌 NO NO OFF time ¥. End Loop Exit

Sunrise Sunset Scheduler

- Scheduling done based on
 - Satellite Sunrise
 - Satellite Sunset
- On time
 - Beginning of Sunrise / Sunset
- Off time
 - End of Sunrise / Sunset



Tests and Results

Throughput Tests

- Scheduling done for single satellite instrument
- Tests done using both TCP and UDP

Test	Throughput in Mbps						
#	Required	UDP	TCP				
1	0.001	0.001	0.001				
2	0.01	0.01	0.01				
3	0.1	0.1	0.1				
4	5	4.991	4.994				
5	9	8.992	8.993				
6	15	14.975	14.985				
7	25	24.966	24.964				
8	50	49.955	49.955				
9	60	59.86	59.945				
10	70	69.824	69.924				
11	80	79.791	79.872				
12	90	89.605	89.712				
13	95	94.624	87.611				

Test Scenario1

- Simulation Start Time: 0 seconds (from current time)
- Sat 1
 - Instrument I1 Sunrise sunset measurement Data rate: 35 Mbps, Data Characteristic: Qburst
- Sat 2
 - Instrument I2 Measurement over Vegetative land Data Rate: 30 Mbps, Data Characteristic: Burst
 - Instrument I3 Measurement over Arid land only during the day
 Data Rate: 25 Mbps , Data Characteristic: Qburst

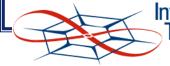
_	30 Mbps	
Sat 1 11	35 Mbps	■ 12 — — 4 Sat 2
	25 Mbps	13

Satellite	Instrument	Scheduler	Orbital Period	Altitude km	Surface to turn	Data Type		Scheduler Onset Time
			secs		ON			secs
sat 1	l1	Sunrise Sunset	5760	566	NA	Qburst	35 Mbps	0
sat 2	12	Earth surface	5760	566	Arid	Burst	30 Mbps	0
sat 2	13	Day / Night	5760	566	Veg	Qburst	25 Mbps	0

Information and Telecommunication -Technology Center

Test Scenario1 - Results

• Instrument ON and OFF times


Satellite	Instrument	Surface turned ON	ON Time secs	OFF Time secs
Sat 1	l1	NA	0	27.06903
Sat 2	12	Arid	1350.125	1621.748
Sat 2	13	Veg	1621.748	1645.714

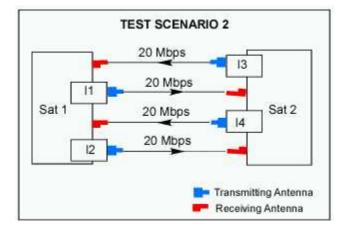
• TCP Results

		Dur	ation in sec	Throughput		
Satellite	Instrument	Expected	Calculated	Actual	Expected	Actual
				ТΧ		ТХ
Sat 1	l1	27.069	27	27.031	35 Mbps	34.96 Mbps
Sat 2	12	271.623	271	302.349	30 Mbps	26.89 Mbps
Sat 2	13	23.9667	24	24.01	25 Mbps	24.99 Mbps

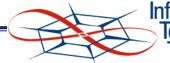
• UDP Results

		Dur	ation in sec	Throughput		
Satellite	Instrument	Expected	Calculated	Actual	Expected	Actual
				ТΧ		ТХ
Sat 1	l1	27.069	27	27.002	35 Mbps	34.998 Mbps
Sat 2	12	271.623	271	271.211	30 Mbps	29.978 Mbps
Sat 2	13	23.9667	24	24.02	25 Mbps	24.979 Mbps

Information and Telecommunication = Technology Center


Test Scenario 2

- Simulation Start Time: 0 seconds (from current time)
- Sat 1
 - Instrument I1 Sunrise sunset measurement Data rate: 20 Mbps, Data Characteristic: Qburst
 - Instrument I2 Measurement over Vegetation only during the day


Data Rate: 20 Mbps, Data Characteristic: Qburst

- Sat 2
 - Instrument I3 Measurement over Arid land Data Rate: 20 Mbps, Data Characteristic: Burst
 - Instrument I4 Measurement over Arid land only during the day

Data Rate: 20 Mbps , Data Characteristic: Qburst

			Orbital	Altitude	Surface	Data	Required	Scheduler
Satellite	Instrument	Scheduler	Period	km	to turn	Туре	Data Rate	Onset Time
			secs		ON			secs
Sat 1	l1	Sunrise Sunset	5760	566	NA	Qburst	20 Mbps	0
Sat 1	12	Day / Night	5760	566	Veg	Qburst	20 Mbps	0
Sat 2	13	Earth Surface	5760	566	Arid	Burst	20 Mbps	0
Sat 2	14	Day / Night	5760	566	Veg	Qburst	20 Mbps	0

Information and Telecommunication = Technology Center

Test Scenario2 - Results

• Instrument ON and OFF times


		Surface	ON	OFF
Satellite	Instrument	turned	Time	Time
		ON	secs	secs
Sat 1	1	NA	0	27.06903
Sat 1	12	Veg	1621.748	1645.714
Sat 2	13	Arid	1350.125	1621.748
Sat 2	14	Veg	1621.748	1645.714

• TCP Results

		Duration in seconds		onds	Throughput		
Satellite	Instrument	Expected	Calculated	Actual	Expected	Actual	
				ТΧ		ТХ	
Sat 1	l1	27.069	27	27.031	20 Mbps	19.977 Mbps	
Sat 1	12	23.9667	24	24.019	20 Mbps	19.984 Mbps	
Sat 2	13	271.623	271	303.739	20 Mbps	17.846 Mbps	
Sat 2	14	23.9667	24	24.04	20 Mbps	19.967 Mbps	

• UDP Results

		Dur	ation in sec	onds	Throughput		
Satellite	Instrument	Expected	Calculated	Actual	Expected	Actual	
				ТΧ		ТХ	
Sat 1	1	27.069	27	27.001	20 Mbps	20 Mbps	
Sat 1	12	23.9667	24	24.02	20 Mbps	19.983 Mbps	
Sat 2	13	271.623	271	271.511	20 Mbps	19.963 Mbps	
Sat 2	14	23.9667	24	24.029	20 Mbps	19.976 Mbps	

Information and Telecommunication = Technology Center

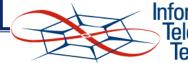
Other Traffic Types

• MPEG and Video Teleconferencing traffic types

#	Scheduler	Orbital Period secs	Altitude km	Surface to turn ON	Data Type	Required Data Rate	Scheduler Onset Time secs
1	Earth Surface	5760	566	Arid	MPEG	640 Kbps	0
2	Sunrise Sunset	5760	566	NA	MPEG	400 Kbps	0
3	Earth Surface	5760	566	Arid	VidTel	500 Kbps	5000
4	Day / Night	5760	566	Arid	VidTel	400 Kbps	0

• Instrument ON and OFF times

#	Surface turned	ON Time	OFF Time	
	ON	secs	secs	
1	Arid	1621.748	1645.714	
2	NA	0	27.06903	
3	Arid	5351.512	5455.368	
4	Arid	1621.748	1645.714	


Other Traffic Types Contd...

• TCP Results

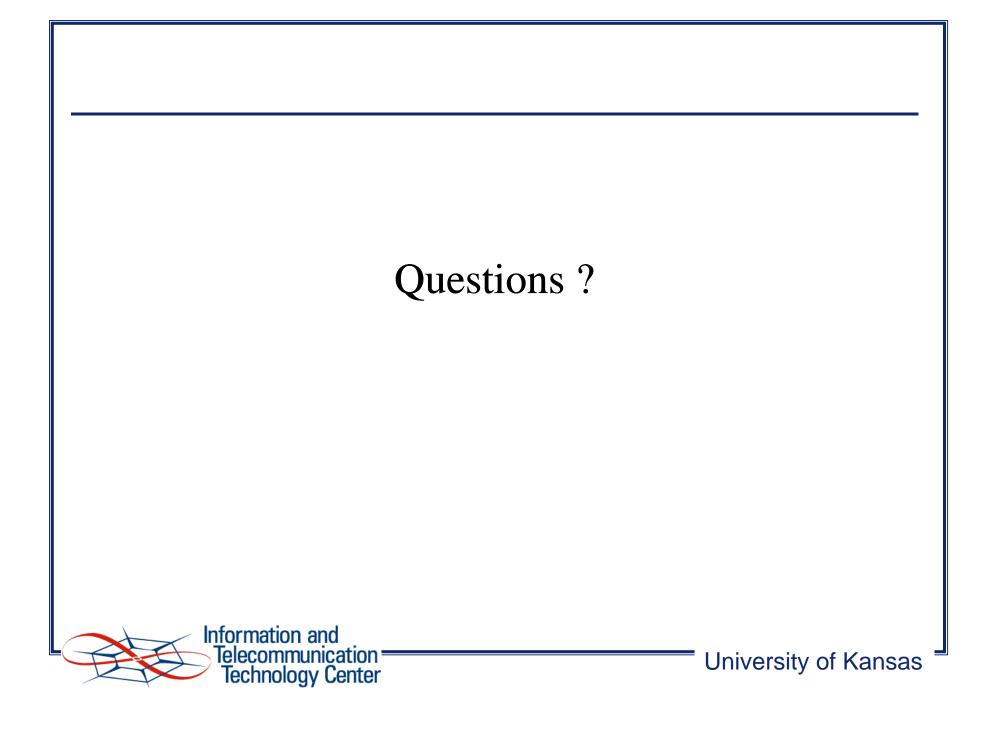
	Dur	ation in sec	Throughput		
#	Expected	Calculated	Actual	Expected	Actual
			ТΧ		ТХ
1	23.9667	24	31.401	640 Kbps	474 Kbps
2	27.0688	27	29.431	400 Kbps	351 Kbps
3	103.856	104	107.993	500 Kbps	489 Kbps
4	23.9668	24	25.87	400 Kbps	371 Kbps

• UDP Results

	Dur	ation in sec	Throughput		
#	Expected	Calculated	Actual	Expected	Actual
			ТΧ		ТХ
1	23.9667	24	31.404	640 Kbps	474 Kbps
2	27.0688	27	29.435	400 Kbps	351 Kbps
3	103.856	104	107.998	500 Kbps	489 Kbps
4	23.9668	24	25.867	400 Kbps	371 Kbps

Information and Telecommunication -Technology Center

Summary


- This work presents a design for emulating satellite instrument scheduling and data generation
 - Instruments can be scheduled based on their mode of operation
 - Different data characteristics can be emulated
 - Data transfer between satellites or satellite and ground station can be simulated

Future Work

- Schedule instruments by obtaining satellite configurations directly from STK
- Use a topology database of higher resolution (Current database resolution is 0.5 °)

