

# Performance Benchmarks for Passive UHF RFID Tags

Karthik Narayanan Moncombu Ramakrishnan

ITTC, RFID Alliance Lab, University of Kansas

## Outline

- RFID Introduction
- Need for Benchmarks
- Universe of RFID
- Passive RFID Working
- What is Performance in RFID ?
- Benchmarks Read Performance and Write Performance
- Interesting observation on tag-reader system
- Conclusion

# What is **RFID**?

- Radio frequency identification (RFID) concept originated from World War II
- Has been used for animal tracking, toll-collection, access control and security
- Has found use in automatic identification (Auto-ID) of consumer products and goods since 2000
- Current Auto-ID technologies bar codes, smart cards, voice recognition, biometric technologies, optical character recognition, RFID etc.

### **RFID vs. Barcode**

- Non line of sight
- Simultaneous identification
- Data storage
- Read / write
- Durability
- Not easy to replicate





## **Potential of RFID in Supply Chain**

### How RFID is used ?

- Unique ID on each item
- Track and trace through supply chain
  - Pallets (current)
  - Cases (current)
  - Items

### **Potential to businesses**

- Greater visibility through the supply chain
  - Real-time information
  - Fewer out-of-stocks
  - Lower inventory
- Reduced shrinkage
- Anti-counterfeiting
- Automatic faster checkouts





### **Mandates and Recommendations**



# **Need for Benchmarks**

- Aggressive mandates
- Ignorant market
- Need to separate facts from hype
- No current established performance benchmarks for RFID
- RFID Alliance Lab created to serve as a useful, credible and unbiased source of information for RFID products
- Performance not conformance

## ,

**Universe of RFID** 

- Chip / chipless tags
- Power

| Tag type     | Battery | Transmitter |
|--------------|---------|-------------|
| Active       | Yes     | Yes         |
| Semi-passive | Yes     | No          |
| Passive      | No      | No          |

• Frequency of operation (generally at various ISM bands)

| Frequency band               | Maximum read range* | Tag type |
|------------------------------|---------------------|----------|
| LF – 125 kHz / 134 kHz       | 2 feet              | Passive  |
| HF – 13.56 MHz               | 5 feet              | Passive  |
| UHF – 915 MHz                | 20 feet             | Passive  |
|                              | > 100 feet          | Active   |
| Microwave – 2.4 GHz, 5.8 GHz | Around 100 feet     | Active   |

\* Maximum read range increases with improvement in technology and changes in environment.



Chip tag



Passive RFID working





- 3. Transmit carrier
- 4. Receive response





Channel

- 1. Power up
- 2. Receive command & Interpret command
- 3. Backscatter response



## Sample UHF Tags and Readers

### Sample tags in commercial market



### Sample RFID readers





# **Challenges in UHF RFID**

- Performance factors tags, readers, and the environment (includes the channel)
- Effects of channel
  - Attenuation
  - Multi-path
  - Interference from readers and RF devices in ISM band
- Water / metal effects in UHF
- Interference from other tags in vicinity
- Standards

| i vicinity  |                      |  |
|-------------|----------------------|--|
| mmunication | Collision Resolution |  |

| Standard    | Capability   | Communication             | Collision Resolution |
|-------------|--------------|---------------------------|----------------------|
| EPC Class 0 | Read only    | Full duplex, bit by bit   | Binary tree approach |
| EPC Class 1 | Read / write | Half duplex, packet based | Wake, read, sleep    |

### Common functions

- Reading
- Writing / programming

To overcome challenges and understand performance in RFID, we need benchmarks

## Approach

- Identification of the characteristics of tags that need to be measured e.g. Distance, Read speed, Consistency etc.
- Benchmark for each characteristic defined as:
  - Objective to be measured
  - Test procedure that should be adopted. Also, contains the parameters / conditions under which measurement is made.

| Test Parameter                    | Value                            |
|-----------------------------------|----------------------------------|
| Environment                       | Anechoic Chamber                 |
| Reader Model                      | Factory Reader model             |
| Antenna Type                      | Bi-static and circular polarized |
| Number of Antennas                | 1                                |
| Separation between reader and tag | 3 feet                           |

- Test metrics
- Our experiment
  - Sample result
  - Interpretation of result and lessons learned



## **Benchmarks for Read Performance**

- Tags can occur in a variety of scenarios
  - Static / Motion
  - Isolation / Population
  - Free-air / In front of materials

| Benchmarks                                 | Measured characteristic |
|--------------------------------------------|-------------------------|
| Response rate vs. attenuation              | Distance                |
| Orientation sensitivity                    | Orientation             |
| Variance of tags                           | Consistency             |
| Read performance in front of metal / water | Material effects        |
| Read rates in isolation                    | Speed                   |
| Read rates in population                   | Throughput              |

# **Tag Performance vs. Distance**



#### **Test procedure**

- x should be such that the tag is in farfield
- Response rate =
  <u>Successful reads</u>
  Attempted reads
- Measure response rate as attenuation is increased in forward and back channel

#### **Test metric**

Response rate vs. attenuation

### Sample result for a commercial tag

- Three regions
  - Green strong in- field
  - Yellow weak in field
  - Red out of field
- For Class 0 tags, response rate in out of field > 0% "ghost reads" 0.1% of observed reads



# **Variance of Tag Performance**



- Variance in performance
  - Model to model
  - Tag to tag in the same model

#### **Test procedure**

 Measure response rate vs. attenuation for tags in a model at best orientation

#### **Test metric**

- Tags ranked from 0% (worst) to 100% (best) performing tag
- 1 Norm metric to compare and quantify two tags  $\min_{s} \|f_1(x) f_2(x + \delta)\|$ 
  - $f_1, f_2$  response rate vs. attenuation for tag 1, tag 2  $\delta$  - shift to minimize the area
- Measure 1 norm metric for middle 98% tags

#### Sample results

- Typical variance from a commercial tag model = 6.2 dB
- % dead and quiet tags up to maximum of 20 %

# **Read Rates in Isolation**

#### **Test procedure**

- Median tag, best orientation at a fixed distance
- Record the number of reads for a fixed duration of time

#### **Test metric**

 Read rate – number of reads per second

#### Sample results for three readers

- Two groups of Class 1 tags
  - Slow and fast
- Isolation read rates dependent on tagreader system
  - Similar trends across readers
  - Absolute values can vary to as much as 250 %
- Class 0 tags give consistent read rate



# **Read Rates in Population**

- Common multiple tag scenarios
  - Items in a container
  - Cases in a pallet
- Population constraints
  - Variety of scenarios
  - Placement of tags
  - Tag size and interference
- Three experiments
  - Class 0 ~115 tags
  - Class 1 ~ 140 tags
  - Item-level Class 0, 48 tags







## **Read Rates in Population – TTFR**

### **Population test metric 1**

 Time to first read (TTFR) – time it takes for the reader to read the n<sup>th</sup> new tag in population

### Sample results

- Mean TTFR across 10 repetitions on the same setup
- Class 1
  - Linear TTFR until 90 tags then exponential
- Class 0
  - Exponential past 70 tags
  - Much faster than Class 1





### Population test metric 2

 Individual tag read rate – number of reads of each tag per second in population

#### Sample results

- Inferences
  - Class 0 item and Class 0 read rate remains close to isolation case
  - Class 1 read rates drops considerably
- Speculation on plot nature
  - Most Class 0 and Class 1 tags in the setup are in weak-field region
  - Class 0 item strong-in field region

Class 0 scales better than Class 1 !!!



### Performance In Front of Metal – Distance

#### Material effects in front of metal / water

- Performance in distance
- Frequency response

#### **Test procedure**

- Tag at fixed separations from big sheet of metal / big body of water
- Measure the attenuation at which tag becomes unreadable

#### **Test metric**

 Separation in front of material vs. attenuation at which tag becomes unreadable

#### Sample results

- None of the tested tags worked in front of metal/water
- Apparent differences
  - Tag 1 performs much better than other tags at closer separation.
  - At greater separation, Tag 4 is the better tag





## Performance In Front of Metal – Frequency Response

#### **Test Metric**

 For every frequency, measure the attenuation at which response rate goes down to 0%

#### Sample Results

- Tag 1 and Tag 2 both work at all frequencies in free air
- Tag 1 works at ISM band in Japan whereas Tag 2 does not
- "Item level tags" have more frequency dependency compared to "Large tags"





## Interesting Observations – Channel Sensitivity

#### Objective

 To determine if forward channel attenuation can be used to simulate distance

#### **Test procedure**

- Place the tag at its best orientation separated at a fixed distance from the reader antenna
- Attenuate both the transmit and receive lines for different values
- Measure the response rate of the tag at each value

#### **Results**

- Large tags
  - No sensitivity to receive channel attenuation
  - Forward channel power transfer is the dominating factor i.e. transfer of power to tag chip
  - Forward link-limited system at the tested distance
- Item level tags
  - Considerable sensitivity to receive channel attenuation
  - Reader sensitivity to detect the tag response plays a major role in determining performance







# **Orientation Sensitivity**



### **Test procedure**

- Rotate tags in two planes in fixed steps
  - E-plane and H-plane of dipole
- Measure the attenuation at which tag becomes unreadable

### **Test metric**

 Attenuation at which response rate goes to 0% at each angle

### Sample result for two Class 0 tags

- H-plane similar for all tags
- Two prevalent E-plane patterns
  - Long narrow tags "Dipole"
  - ◆ Large square/triangular "Dual Dipole"

## **Write Performance**

### **Constraints in Writing to tags**

- Standards only some tags are writable
- Power requirement more power needed
- Only one tag should be present in the field
- More pronounced interference issues

### **Test procedure and metrics**

 Try writing tag for a fixed number of times and record the time and the success of each of the writes

### Lessons learned

- None of the tested tags were perfect
- Some tested tags were only 80% writable
- Write timings varied from 0.48 to 2.12 s

# **Open Questions**

- Reason for Class 0 scaling better than Class 1 tags
- Analog measure for gain of tags in front of materials
- Changes in impedance bandwidth of tags in front of materials
- Custom reader to eliminate the unknowns with the commercial readers – pros and cons
- Common benchmark for dynamic testing

## Conclusions

- First set of performance benchmarks for passive UHF RFID tags
  - Measures are relevant and intuitive to end-users
  - Scientific, repeatable way to compare performance of tags
- Observations often don't match hype
  - Today's RFID tags have read rates varying from as low as 20 tags/second to over 1,000 tags/second (quoted without reference)
  - We observed a range of 0 to 62
- Substantial differences between Class 0 and Class 1 tags
- Several interesting behavior with the tag-reader system
  - Variance of tag performance
  - Two sections in Class 1 tags Fast and slow
  - Frequency dependence of tags
  - Characteristics of RFID tag-reader system for large and item-level tags
- Benchmarks does not answer all the questions but provide baseline information from where the end-users can start.



# Thank you !!!