
The Remote Monad

By

Justin Dawson

Submitted to the Department of Electrical Engineering and Computer Science and the
Graduate Faculty of the University of Kansas

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Committee members

Dr. Andy Gill, Chair

Dr. Perry Alexander

Dr. Prasad Kulkarni

Dr. Bo Luo

Dr. Kyle Camarda

Date defended:

The Dissertation Committee for Justin Dawson certifies
that this is the approved version of the following dissertation :

The Remote Monad

Dr. Andy Gill, Chair

Date approved:

ii

Abstract

Remote Procedure Calls are an integral part of the internet of things and cloud

computing. However, remote procedures, by their very nature, have an expensive

overhead cost of a network round trip. There have been many optimizations to

amortize the network overhead cost, including asynchronous remote calls and

batching requests together.

In this dissertation, we present a principled way to batch procedure calls together,

called the Remote Monad. The support for monadic structures in languages such

as Haskell can be utilized to build a staging mechanism for chains of remote pro-

cedures. Our specific formulation of remote monads uses natural transformations

to make modular and composable network stacks which can automatically bun-

dle requests into packets by breaking up monadic actions into ideal packets. By

observing the properties of these primitive operations, we can leverage a number

of tactics to maximize the size of the packets.

We have created a framework which has been successfully used to implement the

industry standard JSON-RPC protocol, a graphical browser-based library, an

efficient byte string implementation, a library to communicate with an Arduino

board and database queries all of which have automatic bundling enabled. We

demonstrate that the result of this investigation is that the cost of implementing

bundling for remote monads can be amortized almost for free, when given a

user-supplied packet transportation mechanism.

iii

Acknowledgements

Isaac Newton once penned a letter which contained the phrase “If I have seen further

it is by standing on the shoulders of Giants”. In performing this research and writing this

dissertation, I have definitely been standing on the shoulders of giants as well as being held

up and supported from all sides.

First and foremost, I would like to thank my advisor, Andy Gill, for providing me with

guidance and a pathway to succeed when I had been stumbling through the first year and half

of graduate school without an advisor or any kind of direction. To say that I have learned

a lot from Andy is an understatement as I am finishing a PhD in functional programming

when 4-5 years ago I had never performed any research nor written a non-trivial program in

a functional language!

I’d like to thank thank Jeremy Gibbons, Simon Marlow, Garrett Morris, Edward Kmett

and Conal Elliot for the remote monad and natural transformation conversations with myself

and other members of the functional programming group at KU. These conversations helped

us nail down the particulars about the remote monad.

I’d also like to thank my peers, mentors and instructors past and present at KU: Perry,

Prasad, Bo, Paul, Mike, Adam, Mark, Ryan, Jason, Drew, David, Surya, Lu, Jamie, April

and Arunabha. I have learned much from each of you. The past 6 years have been bearable

and at times enjoyable because of our conversations, commiserations, classes and who can

forget the ping pong games. Thanks expecially to Mark - for fighting side by side as we

learned about the remote monad together and to Ryan and Aleksander for their work on the

blank canvas benchmarks.

Most importantly I want to thank my wife Tresann, and my children Ellie and Hank

for loving and supporting me and putting up with my late night hackathons and general

absentmindedness. I love you guys! I also would like to thank my parents, brother and

sister and all my inlaws for believing in me and for being wonderful examples to me. I really

couldn’t do it without you all!

This material is based upon work supported by the National Science Foundation under

Grant No. 1350901. Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation.

v

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Outline . 5

2 Background 6

2.1 Remote Procedure Calls . 6

2.1.1 Why execute something remotely? . 7

2.1.2 What does an RPC look like? . 8

2.2 Haskell . 10

2.2.1 Haskell vs Mainstream Imperative Languages 12

2.2.2 Purity and Side Effects . 13

2.2.3 First Class Control . 14

3 RPCs in Haskell 25

3.1 Domain Specific Languages . 25

3.1.1 Embedded DSL in Haskell . 26

3.2 Making a Local Program Remote . 28

3.3 Modeling RPC with GADTS . 33

3.3.1 GADTs . 33

3.3.2 HTML5 Canvas Example . 34

vi

4 Remote Primitives 37

4.1 Primitive Classification . 38

4.2 Using Primitives in Haskell . 40

4.3 Potential Bundling of Remote Primitives . 41

5 Remote Monads 43

5.1 Bundling Strategies . 43

5.2 Implementing the Remote Monad . 58

5.2.1 Natural Transformations . 58

5.2.2 Composable Network Stacks . 59

5.2.3 Practicing what it Preaches . 61

5.2.3.1 RemoteApplicative . 61

5.2.3.2 RemoteMonad . 66

5.2.4 Remote Monad Laws . 69

5.3 Extending the Remote Monad . 71

5.3.1 Remote Alternative . 71

5.3.1.1 Updating Procedure Type 75

5.3.1.2 Alternative Packets . 75

5.3.1.3 Serializing Exceptions . 76

5.3.2 Remote Logic . 76

5.4 Remote Monad and Monad Transformers . 82

5.5 Real World Scenarios . 85

5.5.1 ReaderT Monad . 86

5.5.2 Multiple Databases . 87

6 Case Studies 89

6.1 Case Study: Blank Canvas . 90

6.1.1 Canvas GADT . 91

vii

6.1.2 Communicating with the Web Browser 94

6.1.3 Bundling in blank-canvas . 95

6.1.4 Handling Events . 97

6.2 Case Study: remote-json . 98

6.2.1 Design of remote-json . 99

6.2.2 Sessions . 101

6.2.3 Comparison with other JSON-RPC libraries 103

6.3 Case Study: Remote Binary . 104

6.3.1 Remote Exceptions . 108

6.4 Case Study: Haskino . 108

6.5 Case Study: PlistBuddy . 112

6.6 Case Study: Haxl . 117

6.6.1 Supporting Haxl-style Primitives . 117

6.7 Observations . 121

7 Performance 122

7.1 Benchmarks . 122

7.2 Packet Shapes . 127

7.2.1 Bezier . 128

7.2.2 CirclesRandomSize . 129

7.2.3 CirclesUniformSize . 130

7.2.4 FillText . 131

7.2.5 ImageMark . 132

7.2.6 StaticAsteroids . 133

7.2.7 Rave . 134

7.2.8 IsPointInPath . 135

7.2.9 MeasureText . 136

7.2.10 ToDataURL . 137

viii

7.3 Applicative combination functions . 138

7.4 Other Systems . 140

7.5 Observations . 140

8 Related Work 145

8.1 Remote Procedure Calls in Haskell . 145

8.2 RPC in other languages . 146

9 Future Work and Conclusion 148

9.1 Future Work . 148

9.1.1 Monad Transformer Stack . 148

9.1.2 Bundle Size . 150

9.1.3 Remote Static . 150

9.2 Conclusion . 152

ix

List of Figures

5.1 Example of an Asynchronous Remote Procedure Call 46

5.2 Example of a Synchronous Remote Procedure Call 46

5.3 Example of a Weak Remote Monad . 48

5.4 Example of a Strong Remote Monad . 50

5.5 Example of a Remote Applicative Functor 52

6.1 remote-json Network Stack . 99

6.2 Remote Binary Network Stack . 108

6.3 Haskino Communications Stack . 111

7.1 ScreenShots of Benchmarks. From left to right: Bezier, CirclesRandomSize,

CirclesUniformSize, FillText, ImageMark, StaticAsteroids, Rave, IsPointIn-

Path, MeasureText, ToDataURL . 124

7.2 Effect of using SequenceA, Sequence and ApplicativeDo with Applicative

Bundling . 139

7.3 Performance Comparison of Bundling Strategies in Chrome v64.0.3282.186.

From top to bottom: weak, strong and applicative bundling strategies 141

7.4 Performance Comparison of Bundling Strategies in Safari v11.1. From top to

bottom: weak, strong and applicative bundling strategies 142

7.5 Performance Comparison of Bundling Strategies in Firefox v59.0.2. From top

to bottom: weak, strong and applicative bundling strategies 143

x

9.1 External examples of remote monad . 153

xi

List of Tables

4.1 Attributes of the different types of primitives 39

6.1 JavaScript API for HTML5 Canvas . 91

6.2 Hackage JSON-RPC Client Libraries . 103

6.3 PlistBuddy commands used to modify and read values in a plist file 112

6.4 List of operations that can be performed on a plist using PlistBuddy. 112

7.1 Performance Comparison of Bundling Strategies (Chrome v64.0.3282.186) . . 125

7.2 Weak Packet profile during benchmark tests 126

7.3 Strong Packet profile during benchmark tests 126

7.4 Applicative Packet profile during benchmark tests 127

7.5 Bezier Packet Profile during benchmark testing 128

7.6 CirclesRandomSize Packet profile from a single run of the test 129

7.7 CirclesUniformSize Packet profile from a single run of the test 130

7.8 FillText Packet profile from a single run of the test 131

7.9 ImageMark Packet profile from a single run of the test 132

7.10 StaticAsteroids Packet profile from a single run of the test 133

7.11 Rave Packet profile from a single run of the test 134

7.12 IsPointInPath Packet profile from a single run of the test 135

7.13 MeasureText Packet profile from a single run of the test 136

7.14 ToDataUrl Packet profile from a single run of the test 137

xii

7.15 Effects of ApplicativeDo extension on the number of primitives found in packet139

7.16 Performance Comparison of Bundling Strategies in Safari v11.1 140

7.17 Performance Comparison of Bundling Strategies in Firefox v59.0.2 144

xiii

Chapter 1

Introduction

The whole purpose of high-level programming languages is to have abstractions that allow

a user to describe the behavior of a program without having to think about the low-level

intricacies of the underlying hardware. The latest programming languages are closer to

human language than ever before which, in conjunction with the performance of the latest

hardware, allows us to solve problems that we could not have dreamed of solving years ago

because of their complexity.

As more and more companies offer both paid and unpaid access to their cloud computing

platform, supercomputers or other resources that would otherwise be inaccessible to the

average user, using Remote Procedure Calls [Nelson, 1981; Birrell & Nelson, 1984] has become

a valid strategy to improve the performance of computationally expensive tasks. One of

the downsides to using these remote services is the degradation of performance caused by

the added network cost associated with invoking the remote system. Depending on the

complexity of the task and the status of the surrounding network, this network cost can

cancel out any performance gained from using the remote service. This is especially the

case when less intense computations are now unable to take place locally because of where

the data is located. The network cost quickly adds up as the frequency of these smaller

operations increases.

1

Traditionally, as a program evolves over time, the goal of the programmer transitions

from reasoning about and coming up with a solution to a problem, to taking the solution

and making it as performant as possible. These increases in performance come from using

more efficient data structures, coming up with more efficient algorithms to solve a task,

caching frequently used data or leveraging remote machines with more horsepower to name

just a few. A common problem that occurs from improving the performance of code is that

the code becomes obfuscated as code with clear reasoning gets replaced with code that runs

faster, making subsequent edits prone to contain more bugs and wasted development time

as programmers try to remember how their code works and why it was done in that way.

Ideally, what we would like to have are performance gains without sacrificing the clarity of

the core logic of our program.

Batching remote service calls has been identified and used in many different languages

and situations to amortize this network cost [Shakib & Benson, 2001; Bogle & Liskov, 1994;

Microsystems, 1988]. The purpose of this dissertation is to bring automatic batching to the

Haskell programming language in a principled way by modifying the underlying applicative

functor and monad data structures, allowing us to have better-performing code without

requiring a large amount of refactoring.

Thesis Statement

A monad of remote procedure calls acts as an easy to construct, yet network in-
tensive, staging mechanism. The thesis of this dissertation is that we can modify
the monad to construct a lightweight staging mechanism that automatically trans-
forms many sequences of network-intensive monadic remote procedure calls into
batches of these calls. In this dissertation, we investigate two complementary tech-
nologies that make this lightweight remote monad possible: methods for systematic
bundling of certain sequences of remote calls, and a technique for structuring our
transformation components as composable network stacks.

It was not obvious at the start of this research, what kind of strategy would be the

best for factoring a monad into transmittable chunks. We have examined different possible

2

bundling strategies and propose that using applicative functors for the packets is the best

bundling strategy.

This dissertation focuses on bundling remote primitives together specifically in Haskell,

but we are able to do this bundling due to the first-class control structures used in Haskell.

The techniques herein could be applicable in other languages that also have these types of

control structures.

The initial goals of this dissertation’s research were to:

• investigate different batching techniques, using functional programming idioms such as

monad and applicative functors.

• explore the surrounding space of remote execution, including the subtleties that come

from moving a programs control flow to a remote location.

• create a modular and principled framework for remote execution in Haskell

• demonstrate the applicability of the framework to tackle a wide range of problems

through a variety of case studies.

1.1 Contributions

As a consequence of these goals, this dissertation makes the following contributions:

Investigation of different bundling strategies

Remote requests can be categorized as asynchronous or synchronous or even read-only

queries, with each one leading to different bundling strategies. Bundling requests lowers

the number of network transactions, thus amortizing the network overhead of sending data

across the network (Section 5.1).

3

Modular framework

Our framework uses a series of natural transformations connected together in composable

network stacks, allowing different layers to be replaced, added or removed. Different bundling

strategies can be exchanged as well as the transmission mechanism (e.g. use HTTP instead

of sockets). Intermediate computations, type conversions or other marshaling of data can

be added with relative ease (Section 5.2.2). By simply having a generalized modular design,

we are able to have reusable units of code that can be used for different applications, e.g. If

we have an application that communicates with a remote server through sockets, then when

writing a new application, we can reuse the socket communication layer of the network stack

and just change the endpoint we are trying to reach.

Remote Monad Problem Domain

The remote monad principles have many possible applications and are not restricted to one

type of problem. To demonstrate this we have built a framework, which embodies the remote

monad principles to tackle a wide variety of use cases. In Section 6, we discuss case studies

that:

• implement the JSON RPC protocol (remote-json)

• focus on being more efficient by sending byte strings instead of plain text as well as

focus on encoding remote failure (remote-binary)

• interact with an Arduino board (haskino)

• send JavaScript to be executed in a web browser for a drawing application (blank-

canvas)

• interact with a Plist database (PlistBuddy)

4

Applicative functors are ideal for transmission

Due to the structure of applicative functors, we can send multiple calls in one batch to

a remote service and later combine the results locally. Since monads are a superset of

applicative functors, by factoring the monad into applicative functors where possible, we

then have an API that can bundle monadic actions resulting in a lower network cost than

if we naively send the requests. By looking at the properties of the remote primitives, we

can increase the types of monadic statements that can be factored into applicative functors

when compared with looking at the syntactical structure alone.

1.2 Outline

Additionally, we will examine both remote procedure calls (RPCs) and the Haskell language

as a whole and how to model RPCs in Haskell as background concepts and foundations

for the research on remote monads and remote applicative functors (Section 2). We will

later look at some of the observations that we have made about remote primitives (Chapter

4) followed by the challenges and design considerations that went into creating the remote

libraries and the bundling strategies that were conceived (Chapter 5). Section 5.3 discusses

some possible extensions to the framework and how to extend the framework in general. In

Chapter 6, we will view some use cases for the framework, as well as share some performance

measurements of the different bundling strategies in Chapter 7. Finally, the related work

and conclusion are found in Chapters 8 and 9 respectively.

5

Chapter 2

Background

We will begin this background section with a look at remote procedure calls and some of their

optimizations, as well as some other relevant information for batching requests. We will then

visit the idea of first-class control, which was mentioned in the introduction as a requirement

needed to apply the techniques that we will use to automatically bundle requests. First-class

control means that the control flow of a program can be seen, touched, and passed around

to various functions. For this dissertation, we will be focused on how this can be done in

Haskell, as it meets these requirements, but any language that has first-class control can be

used with similar techniques. We will take a look at Haskell as a whole, discuss how effects

are cordoned off from the rest of the language and then later, we will look at how composing

these effects allows us to create a framework with automatic bundling. This section is meant

to give the reader a taste of how Haskell works and some of its features but it is in no way

a fully comprehensive look into Haskell. A more in-depth look at Haskell is left up to the

reader.

2.1 Remote Procedure Calls

A remote procedure call (RPC) [Nelson, 1981] is a means of causing a remote entity to

do work on the local machine’s behalf. To execute a remote procedure call, the user will

6

communicate to the server which function they would like the server to execute along with

any required arguments. Assuming that the request is formatted correctly, the server will

reply with the result of the computation.

Getting RPCs working in this day and age is pretty basic with all of the supporting

libraries and only requires us to have a handful of things in place:

• A remote machine listening for requests

• A local machine that has knowledge of the remote API and protocol to be used

• A network transmission mechanism

2.1.1 Why execute something remotely?

There are a number of reasons that we would want our code to run remotely instead of

on our local machine. In the market of laptops, for example, there has been a shift from

power-hungry machines with top of the line graphics cards and RAM, 3-4 GHz multi-core

processors, and terabytes of storage, which could rival the benchmarks of a normal desktop

computer, to netbooks which have processors that rarely break 2.0 GHz and hard drives with

a maximum size of 128 GB. These netbooks are made possible because of remote procedure

calls. Applications and other processes that are too heavyweight for these netbooks reside

remotely on machines that can handle the load. Even outside of netbooks, simulations and

parallel programming that could take days to run on a high-end desktop locally, can now be

executed in hours or even minutes when given to a cluster of compute nodes for execution.

If we do not have enough space on our local machine, we can have the data stored on a

remote server and use RPCs to access the data. In some cases, the data must reside remotely

and cannot be transmitted to our system. The requirement to store data remotely could be

because of security concerns or it could be that there is not a valid representation of the

remote data on the local machine. This might be because of language limitations of the

program running on the local machine or even hardware limitations. GPUs have been found

7

to be great at running matrix calculations. If I am needing to run extensive calculations on

matrices but my machine does not have a GPU, I can still create code that will execute the

calculations on a shared machine that does have a GPU. We can imagine wanting to examine

an intermediate representation of the data being used on the GPU, but that representation

would not mean anything on the local machine that does not have such hardware. Imagine

the difficulty of trying to serialize and send some remote structure to our local machine when

the structure is riddled with pointers to memory on the remote system. These situations

make it unwieldy to house information locally and require RPCs to be used.

2.1.2 What does an RPC look like?

High-level languages make RPCs look just like function calls. In the Java Remote Method

Invocation (RMI) [Waldo, 1998], for example, the remote server is viewed as an object with

a set of methods that can be called. The fact that network communication is occurring with

these calls is hidden from the user’s view.

The main difference between regular function calls and RPCs is that the arguments are

restricted to objects that can be serialized and have an equivalent representation on the

remote machine along with results that can be serialized and have a representation on the

local machine. If the client and server are written in the same language, then the serialization

and deserialization of the user data types are straightforward. If the client is written in a

different language from the server, a protocol must be established. In this dissertation, we

will look at some case studies that cover both situations.

As far as what is actually transmitted in an RPC, we have different formats depending

on the protocol. Here is an example that uses the XML-RPC specification:

8

<?xml version="1.0"?>
<methodCall>

<methodName>circleArea</methodName>
<params>

<param>
<value><double>2.41</double></value>

</param>
</params>

</methodCall>

Though the format for the different protocols are different, see Section 6.2 to compare with

the JSON-RPC format, most if not all of the components are present in each of the RPC

protocols:

• Method name to be called

• List of parameters (possibly with type information)

• Protocol version (if there is more than one version)

RPCs are widely used and have been at the center of much research to execute effi-

ciently[Spector, 1982; Shakib & Benson, 2001; Bogle & Liskov, 1994; Gifford & Glasser,

1988; Liskov & Shrira, 1988]. One of the most widely used optimizations is to support the

batching of requests. With multiple calls in a single request, the protocol has to decide if

the responses are going to be returned piecemeal or if the order is maintained or, in some

cases, remote servers will require a unique identifier with the request, allowing the server to

tag the response with an identifier. There are even some protocols that allow the server to

decide to execute requests in parallel when a batch of requests is received.

A number of errors could occur from attempting to make a remote procedure call. We

could have a malformed request error, which would occur when the agreed upon protocol is

not implemented properly. We would also get an error if we are requesting a function that

does not exist on the server, is an internal function or otherwise unavailable to be called.

9

These errors are in addition to the everyday errors that occur with any programming in

general.

In this dissertation, we will assume that we have a valid connection with the remote

server which excludes any connectivity errors such as “remote host not found” from the

list. Any remote procedure call frameworks will also need to handle these kinds of errors.

Because Haskell is considered a strongly typed language, the malformed request errors can

be lessened if not completely averted by the type-checker at compile time, when given a

well-defined specification for valid requests. We will also have to take a look at what error

handling looks like when a program that used to be running locally, is moved to a remote

location.

2.2 Haskell

Haskell is a strongly typed functional language. It contains all of the standard built-in types

that are in most, if not all, modern programming languages. Haskell has integers, doubles,

characters, strings, booleans, user-defined data types, etc. We then have other data types

that build upon the basic data types: lists of items of a certain type, tuples used to combine

data types together, hash maps, user-defined data types, etc. And finally, we have functions

that can take any number of arguments made from the data types already discussed or even

other functions themselves and result in a data type or a function itself. Let’s look at a

binary function add below:

add :: Int -> Int -> Int
add x y = x + y

A function name followed by :: delineates the type of a function in Haskell. Each parameter

is separated by -> where the last type is the resulting type for the function when fully

evaluated, also known in imperative languages as the type of the returning result. In the

function above, add will take two integers as input parameters and result in an integer.

Calling a function is as simple as stating the function name and passing arguments separated

10

by spaces.

> add 5 6
11

> add (add 1 4) (add 2 3)
10

One of the neat things about Haskell functions is that we can partially apply arguments

to a function, yielding a new function that requires one less argument than the original.

Without any extra machinery, we can create a function that is built upon add but only takes

one argument and increments that value by 1, simply by partially applying one argument to

add:

inc :: Int -> Int
inc = add 1

Notice that we went from a function of type Int -> Int -> Int to a function of type

Int -> Int. Instead of looking at add as a function that takes two integer arguments and

results in an integer, we can also say that add is a function that when given one integer

returns a function that when given another integer as an input argument will result in an

integer. The idea of partially applying arguments to functions is known as currying and

becomes useful in starting with a generalized function which can then be specialized as we

partially apply arguments.

Unlike most imperative languages, Haskell uses lazy evaluation. What this means is that

instead of evaluating expressions when they are assigned to variables, the expressions are

evaluated only when the program cannot proceed further without evaluation. Even when

the expressions are evaluated, it is only to a certain point. For example, if we had a variable

bound to a list of complex, time-consuming operations and we just need to get the length

of the list, then we can view the number of operations with actually executing them. Thus,

the time it takes to get the length of a list does not depend on what is being held in the list.

Another advantage of using lazy evaluation is having functions that use part of an infinite

structure without running out of memory. Iterating through a list becomes a view of the

11

current item and a single chunk of work that represents the next item and all the rest.

This method of programming, along with the idea of not having variable reassignment,

is what makes functional programming functional. We have functions that can be composed

together and executed in different orders without changing the program behavior or having

side-effects.

2.2.1 Haskell vs Mainstream Imperative Languages

Haskell differs from a standard imperative programming language, like Java or C, in a number

of ways. Mainstream imperative programs are made up of a sequence of expressions or

procedures which are executed sequentially and where each statement is able to change the

state of a program. Reordering statements would wreak havoc on the logic of an imperative

program as variables are reused and can take on different values at different points in the

program. Take a simple loop, from Java, as an example:

int val = 0;
val = 5;

for (int i = 0; i < 10; i++){
System.out.println("i =" + i);
methodCall(i,val);

}
...

At each iteration of the loop, the variable i has a new value, between 0 and 10. We are

also guaranteed that the loop will occur only after the line ‘val = 5‘ is executed.

On the other hand, Haskell treats variables as labels for immutable expressions. What this

means is that there is no reassignment of variables and we can, therefore, replace any instance

of a variable, with its value, and can expect the same result. This approach causes Haskell

and other similar functional programming languages to be much closer to the mathematical

foundations.

If we were looking at an algebraic expression or equation such as:

12

2πrh+ 2πr2

In mathematics, it would not make sense to have r equal to one thing on the left side of the

’+’ and then be something else on the other side, nor is there any syntax that we can use to

reassign a value part way through the expression.

2.2.2 Purity and Side Effects

But there are times that we need our programs to not be purely functional (side-effect

free), especially when interacting with the outside world (reading/writing to file systems,

communicating through networks, creating random numbers based on the system clock, etc).

Pure functional languages allow us to reason about a program and even have mathematical

proofs. We get a strong guarantee of determinicity when we prohibit our functions from

accessing the outside world or from affecting program state which can be examined later in

the program. The main problem with this is that we cannot solve many problems in the

real-world without having impure functions, or in other words, functions with side-effects.

In Haskell, side-effects are explicit. Functions which have side-effects reflect this in their

type. Domains in which side-effects can occur are called Monads. We will discuss the use

of monads as a method for control flow later in this section, for now, we will just talk

about them in the context of monads being able to house side-effects. The main monad in

Haskell that is used for side-effects is the input-output monad, also known as the IO monad.

Functions that do not have side-effects are classified as pure functions. Below is an example

of two functions. One which has side-effects and one which is pure:

addPure :: Int -> Int -> Int
addPure x y = x + y

addIO :: Int -> Int-> IO Int
addIO x y = do

putStrLn "Writing to file"
writeFile "tmp.txt" "side-effect"
return (x + y)

Just by looking at the type of addIO we can see that it could (and in this case does)

13

have side-effects because we see IO Int whereas with the addPure function we are simply

dealing with integers. Because we have restricted addPure’s access to the outside world, we

know that when given the same two parameters we will always end up with the same result.

As soon as a function is labeled as having access to IO we have to look at it as having an

extra parameter which is the current state of the world surrounding the program, which is

ever-changing.

Traditionally, functional programmers follow something similar to the principle of least

privilege, where functions are written to be as pure as possible and are only written in

the context of IO or some other monad when the effects are necessary. This leads to code

that, thanks to its determinicity, is less prone to errors and consequently easier to debug.

Attempting to write to a file in the addPure function would lead to an error at compile time

since it can only be executed in the IO monad. As shown in the addIO function above, we

use the do keyword followed by some monadic actions to operate in the monad. Because

these monadic actions can have side-effects, these actions are run sequentially. The return

at the end is not the same as seen in the imperative mainstream languages. Instead of ending

the function and returning the result, return in Haskell is packaging the pure value as a

monadic action.

2.2.3 First Class Control

We will now take a step back to look at a couple classes that define the control flow for a

program in Haskell. By implementing these classes, we can define a way to combine actions

within a data type. We will first look at Functors which allow us to access values that are

stored within some context, and we will later see some of the other first-class mechanisms

found in Haskell.

14

Functors

A functor can be looked at as a value wrapped in a context where the fmap function is used

to modify the value while maintaining the context. Here is the class definition:

class Functor f where
fmap :: (a -> b) -> f a -> f b

As an example of what a context around a value can be, the context that is present in

the Maybe data type gives the notion of whether a computation has failed or not. Another

way of thinking about contexts is as a box, it can hold something or it can be empty, with

the two constructors called Just and Nothing respectively.

data Maybe a = Just a | Nothing

The a in the type shows that Maybe is polymorphic and can be a box of Int, String or any

other type. Now if we wanted to use our normal integer functions to add 10 to a Maybe Int

like this:

> 10 + (Just 5)

we would end up with a type error because + only knows how to work over numbers, not a

number wrapped in a context, in this case, a Maybe. We can use fmap to allow us to lift a

function that normally works over numbers to now work over numbers that are held within

a context and keep the result within the context. Here is what that lift looks like for Maybe:

instance Functor Maybe where
fmap f (Just a) = Just (f a)
fmap f Nothing = Nothing

If we have an “empty box” or a context which shows that a failure has occurred, then we

keep that context, otherwise, if things have worked as expected thus far, then we will apply

the function to the present value.

15

> fmap (10 +) (Just 5)

Just 15

> fmap (10 +) Nothing

Nothing

We can imagine having a program that catches a divide by zero error and instead of just

throwing an exception, we mark the computation as invalid by having the result be Nothing,

ignoring any subsequent operations on the value.

But to be considered a true functor in the theoretical sense (and not just have an instance

declared), an instance of Functor needs to follow the two Functor Laws. These laws and the

future laws that we will discuss concerning first-class control in Haskell all have a general

theme. The first-class control flow mechanisms should not modify the user’s data but should

just be acting as plumbing to connect functions and values. In the same way that we want

plumbing in our homes to cause water to be accessible throughout the building but we do

not want the pipes to cause a change in our water.

Law 1. fmap id = id

The function used in conjunction with fmap is the only thing that should modify the

functor, fmap should not cause any side effects. The identity function, id, makes no change

to arguments that are given to it. When used in conjunction with fmap, the argument and

context remain unchanged.

Law 2. fmap (f . g) = (fmap f) . (fmap g)

This law states that if we use fmap with the composition of two functions, then it is the

same as applying the first function with fmap and later applying the second function with

fmap on the result.

If we test the first law with Maybe we get:

> id (Just 6)
Just 6
> fmap id (Just 6)
Just 6

16

The result is the same as the original value. To demonstrate the second law we have a

function even that will return True if the input is even and False otherwise, and another

function inc will increment its argument by 1.

> inc 4
5
> even 5
False
> fmap (even . inc) (Just 4)
Just False
> fmap even (fmap inc (Just 4))
Just False

We see that we end up with the same result. The instance of Functor for Maybe is not

surprising. It is simply applying a function inside the Just wrapper. Let’s look at an

example of a structure that implements the Functor class but does not adhere to the laws.

data Counter a = Counter (a,Int)
deriving Show

instance Functor Counter where
fmap f (Counter (x,i)) = Counter (f x, i + 1)

newCounter :: a -> Counter a
newCounter a = Counter (a,0)

In Counter we have an integer that gets incremented whenever fmap gets called. This could

be useful to store a counter for how many times this value has been modified. Unfortunately,

this does not keep either of the laws:

17

-- Law 1 test fmap id = id --
> let original = newCounter 5
> original
Counter (5,0)
> fmap id original
Counter (5,1) -- Counter (5,1) != Counter (5,0)
-- Law 2 test fmap (f .g) = fmap f (fmap g) --
> original
Counter (5,0)
> fmap (id . id) original
Counter (5,1)
> fmap id (fmap id original)
Counter (5,2) -- Counter (5,1) != Counter (5,2)

The main take away from this section is that we want ways of holding values and applying

functions within a context but not have any side-effects come from those mechanisms.

Monads

The monad is an element taken from category theory that is based on functors mapping a

category into itself. In Haskell, we can look at them as a class that we can implement to

combine actions together using bind (>>=) and lift values into the monad using return.

class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

instance Monad Maybe where

(Just x) >>= k = k x

Nothing >>= _ = Nothing

return = Just

The Maybe version of a monad is almost trivial as the left side of a bind (>>=) is just an

unboxing of the Maybe type and application to the function on the right-hand side. This

is trivial in the sense that it does not capture the implications of effects and when they

occur. Since monads are able to have side-effects, we can imagine the left side of a bind

is executing the monadic action including any accompanying side-effects before passing the

resulting value to the function on the right side of the bind. A series of operations combined

18

with bind leads to a sequential chain of operations, executing and passing the result to the

next action in the chain. There is also a second version of bind (>>) that ignores the result

of the left side. This operator is used when we would like the side-effect of an operation

without caring about its result. The example below takes some input from the user and then

prints out a greeting.

putStrLn "Enter Name: " >> getLine >>= \ x -> putStrLn ("Hello " x ++ "!")

The monad notation is not the easiest to read and is not much better than having a list

of function applications:

function1 (function2 arg1 (function3 (function4 arg2)))

This issue was remedied when do-notation was introduced to improve the usability of monads:

func :: m (Int,Int)
func = do op1

op2
x <- (op3 :: m Int)
y <- (op4 :: m Int)
return (x,y)

Do-notation is just syntactic sugar (equivalent to the long handed >>= notation listed above)

that allows the programmer to have each monadic action on a new line after the keyword

do. In do-notation, any time a result is not bound to a variable, >> is used, otherwise >>= is

used to store variables and continue on. Once again, return is not used in the same sense

as a function return in other languages. In this case, return lifts (x,y) from (Int,Int) to

be m (Int,Int). The example above using do-notation syntax would be translated to:

func = op1 >> op2 >> op3 >>= (\ x -> op4 >>= (\ y -> return (x,y)))

Just as there were laws with the Functor class there are laws about how monads should

behave:

19

Left Identity

return a >>= f ≡ f a

Right Identity

m >>= return≡ m

Associative

(m >>= f) >>= g ≡ m >>= \lam x -> f x >>= g

The first two laws govern the way that >>= works in conjunction with return. If we think of

return as wrapping up a value and >>= as unwrapping a value and passing it to a function,

then it makes sense to see that wrapping a value and immediately unwrapping it before

passing it on is the same as just passing the value to the function (described in the Left

Identity law). Likewise, if we are unwrapping a result just to wrap it back up, then its the

same as leaving it wrapped (Right Identity law). The main idea to take away from these

laws is that return and bind are just used as combinators and do not modify any of the

underlying data.

Monads appear to be the most commonly used control structure in Haskell for sequential-

ity and side-effects but there are other structures as well. The one that seems to be gaining

traction in the Haskell community is applicative functors.

Applicative Functors

The applicative functor is another of the first-class structures that is capable of handling the

control flow in Haskell but the differences between monads and applicative functors enable

us to apply different optimizations as we will later see in this dissertation.

data Functor f => Applicative f where
pure :: a -> f a
<*> :: f (a -> b) -> f a -> f b

The applicative pure has the same type as the monad return where we are lifting

a value into the applicative functor (or monad in the case of return) without any side-

effects. It turns out that Monad subsumes the ApplicativeFunctor meaning that to create

20

an instance of Monad we need to first have an instance of ApplicativeFunctor. The de-

fault for the return in the Monad is actually the pure function that was defined in the

ApplicativeFunctor instance.

Here are the laws for applicative functors:

Identity

pure id <*> v ≡ v

Homomorphism

pure f <*> pure x ≡ pure (f x)

Interchange

u <*> pure y ≡ pure ($ y) <*> u

Fmap

fmap f x ≡ pure f <*> x

Composition

pure (.) <*> u <*> v <*> w ≡ u <*> (v <*> w)

The Identity Law says that the applicative operators will not modify any of the data,

they only apply the function to the argument. The Homomorphism Law says that if we had

to lift both the function and the argument to the applicative functor data type, then it is the

same as if we made the function call and then lifted the result. The Interchange law gives us

the assurance that the order in which things are placed does not change the result. For those

newer to Haskell the ($ y) f is used to say that given a function y will be applied as an

argument to f and is equivalent to f y. The Fmap Law defines the relationship between the

applicative operators and fmap. And finally, the Composition Law says that we can compose

our applicative functor operators in the same way that we compose regular functions.

One of the difficulties with using the applicative functors in the past was just like the

monad, the syntax got in the way and it was difficult to write readable programs that were

connected through applicative functors. In 2016, however, Marlow et. al. [Marlow et al.,

2016] introduced do-notation for applicative functors using a GHC extension. This new

extension causes the do-notation to use applicative operations where possible but otherwise,

21

it will use the monad operations. This gives applicative functors the convenience of do-

notation and monads the benefit of using applicative functor operations where possible. If

we had the following do-notation with ApplicativeDo extension enabled we would have:

do
x <- A
y <- B
z <- C
return (f x y z)

(\(x, y, z) -> f x y z) <$> A <*> B <*> C

But if any of the operations depend on a previous result then we would have to incorporate

a bind:

do
x <- A
y <- B x
z <- C
return (f x y z)

(\(x,y) z -> f x y z) <$> (A >>= \ x-> B x >>= \ y -> return (x,y)) <*> C

This GHC extension takes place at compilation time to be able to check to see if a

bound variable is used in any of the subsequent calls or if they can be combined using

applicative operators instead of the monadic bind. Further discussions of other situations

when applicative operations can be used in place of binds are left as an exercise for the

reader.

One of the benefits of using an applicative functor instead of a monad is that the ar-

guments connected by <*> are independent, which becomes a natural place for parallelism

as long as the arguments are able to be run simultaneously. We are also always able to

compose Applicative functors, whereas to combine monads we would require the monad to

be a monad transformer. Monad transformers are able to be built on top of one another,

each with a special execution function to run each monad in turn. Monad transformers are

discussed in greater detail in Section 5.4.

22

Alternatives

Thus far we have discussed the first-class control mechanisms in Haskell, but we have not

yet covered how we can handle errors. The Alternative class is an applicative functor with

an added operation that gives us a way to capture errors and execute a backup command.

This is similar to a try-catch expression where empty is defining the error.

class Applicative f => Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a

Once again, the easiest way to see this operator in action is to look at the Maybe monad

because it has a clear way of us seeing that a failure occurred. Since anything that is an in-

stance of Alternative has to have an instance of Applicative we can add a couple numbers

together using applicative operators. Let’s look at the case where one of our numbers was

invalid upon retrieval, from a user or some other input, resulting in the following expression.

pure (+) <*> Just 5 <*> Nothing <|> Just 0

In this case, we are attempting to add 5 to a number that was invalid. Instead of just

resulting in a Nothing we are able to result in 0 and continue with the computation. The IO

instance uses exceptions to signal failure. Because IO has an Alternative instance, we can

catch the exceptions using <|>. Let’s say we want to read a variable from a configuration

file but we want to gracefully handle errors such as the file not existing or the variable not

being present in the file. In this scenario, we can perform code that may throw an exception

in either situation and use <|> to catch them and use our default value instead.

parseVar "port" <*> readFile local.conf" <|> pure 8000

The Alternatives behavior is easily seen in the Maybe instance:

instance Alternative Maybe where
empty = Nothing
Nothing <|> p = p
Just x <|> _ = Just x

23

or in more formal terms we have the following laws:

empty <|> x ≡ x x <|> empty ≡ x x <|> (y <|> z) ≡ (x <|> y) <|> z

Which show us that a failure (empty) on the left side causes us to use the right side of <|>

and ignore it if empty occurs on the right side as well as showing that <|> is an associative

operator. Now that we have discussed the control structures and one way of handling errors,

we will need to think about what the consequences are of moving these structures remotely

and the bundling strategies that take advantage of these control structures (Chapter 5).

24

Chapter 3

RPCs in Haskell

Because this dissertation is focused on using Haskell to perform RPCs in an efficient way,

this chapter will look into how we can create RPCs in Haskell. Here we will discuss how

we can create a Domain Specific Language (DSL) using generalized algebraic data types

(GADTs) to model RPCs in Haskell and give us the foundation to begin our remote monad

work.

3.1 Domain Specific Languages

In programming, there is a large range of general purpose languages such as Java, Haskell, C,

JavaScript, and Python. These languages are called “general purpose” because of the broad

types of problems that can be solved using these languages, the features of the language are

not specialized for problems within a certain domain. On the other side of this coin, we have

Domain Specific Languages such as SQL for database interaction, HTML and CSS for webpage

creation, make to build software, and lex and yacc to analyze and parse text for compiler

creation, to name a few. Each of these languages is meant to solve problems in a single

restricted domain.

Take a look at CSS as an example. CSS has a singular purpose of changing the look

and feel of elements in webpages. A programmer cannot try to solve just any problem with

25

CSS because it is not suited for things outside of this domain. DSLs are a nice way to

compartmentalize code. Imagine we have a web project which uses JavaScript, HTML and

CSS. Now if we had a bug with the way something looks, we know that we should first look

in our CSS code. If we have an erroneous file being created by our web application, then we

know that the CSS and HTML code are not to blame but that the bug most likely lies in

our JavaScript code.

There are two categories of DSLs: external DSls and internal DSLs which are also known

as embedded DSLs. External DSLs can have their own syntax and structure whereas an

embedded DSL is limited by what can be represented in the host language. The downside of

using an external DSL is that with the custom syntax, types, etc comes the need to build our

own parser and compiler whereas the embedded DSL can take advantage of the compiler,

data types and structures of the host language for free.

An RPC can be looked at as an extremely limited DSL. We can only do things that the

server allows, anything else is rejected. What we can do is create a DSL to model the remote

capabilities and when we evaluate the expressions, we are making a remote procedure call to

the listening server. Because we want to do some rapid prototyping, we will do an embedded

DSL with Haskell as our host language.

3.1.1 Embedded DSL in Haskell

In Haskell, there are a few ways of structuring computation, which is separated from the

actual execution of the computation. We can build up a computation into a well defined

structure, and later execute the structure to obtain our result. We can look at a math

equation as such a structure that can be executed:

3 ∗ (5 + 1)− 8/2

Following the standard order of operations (PEMDAS) we can evaluate the equation to be

14. PEMDAS is one interpretation of the above equation but maybe we want to change

26

the rules and interpret the equation in a different way, PEASMD. This would have us do

the multiplication and division at the very end giving us a resulting value of −3. A third

interpretation could be to rewrite the expression as text:

"three times open-parens five plus one close-parens minus eight divided by two"

This practice of separating the underlying data with its interpretation is very common in

programming. If we look at any application that has an underlying database, the User

Interface is simply an interpretation of the data stored in the database. As different versions

of the application become available, especially UI changes, we can see the changes simply as

a new interpretation of the data.

There are two types of embedded DSLs, namely shallow DSLs and deep DSLs. As we

build up a computation we can gradually evaluate the expressions as we come across them

(shallow), or we can build up an interim data structure, in the host language, that represents

the entire expression to later be evaluated. We will discuss the difference between these two

approaches in Section 3.2.

In seeing this common separation of the computation from the interpretation, the driving

question for this research was then, “Why not build the computation locally and then send

it remotely to be executed?”. We can take a program and build up the structure of the

computation and then instead of applying a standard interpretation which would occur

locally, our new interpretation is to interface with a remote system to execute the structure.

When speaking of remoteness, we can consider machines connected by a network or even on

the local machine but outside of the local runtime of the program.

If we look at a simple teletyping example from one of our papers [Dawson et al., 2017],

we can see two functions: one that obtains a character from the user, and one that prints a

character to the screen.

getChar :: IO Char
putChar :: Char -> IO ()

27

Instead of directly performing the action, we can create a data structure that mirrors our

two functions with smart constructors:

data R :: * -> *
GetChar :: R Char
PutChar :: Char -> R ()

getCharR :: R Char
getCharR = GetChar

putCharR :: Char -> R ()
putCharR = PutChar

At this point we represent the computation in the R data type, and we can then create a run

function that can interpret R in some monad of our choice for execution.

runR :: R a -> IO a
runR (GetChar) = getChar
runR (PutChar c) = putChar

Now to get this running on a remote system, we would just need a way to combine actions,

serialize them on the local machine, transmit the serialized action, and then have a way of

deserializing and executing the function remotely.

What we have just described are the components of a remote procedure call. Once again,

this is not a new concept and has been done in most languages, including Haskell[Bringert,

2016; Rupp, 2016; Clark, 2018].

We will first look at causing a program that normally executes locally to execute remotely

(Section 3.2), and then we will look into modeling the capabilities of an existing remote entity

and using RPCs to invoke those functions (Section 3.3).

3.2 Making a Local Program Remote

Haskell’s algebraic data types give us a natural way to break our program into modular pieces

and to move the execution out of our local system. Because of the modular design, we will be

28

able to add and remove different layers of computation, swap out the transmission mechanism

or even have an interpretation where we bundle requests in order to create different behaviors.

Let’s look at a trivial example of a calculator and show how we can break it up for remote

execution. Here we have a simple calculator that can add, subtract, and multiply.

add :: Int -> Int -> Int
add x y = x + y

sub :: Int -> Int -> Int
sub x y = x - y

mult :: Int -> Int -> Int
mult x y = x * y

-- 5 + (8 - 2) * 2
calculationExample1 = add 5 (mult (sub 8 2) 2)

main:: IO ()
main = print calculationExample1

> main
17

Currently, the above code is just running everything locally and computing the answer

immediately. To make this code more modular and prepare it for remote execution, we can

separate the building of the expression with the evaluation by using an algebraic data type.

This algebraic data type will have a constructor to mirror each of calculator functions as

well as a type which will hold a single number.

29

data Expr = I Int | Add Expr Expr | Sub Expr Expr | Mult Expr Expr
deriving Show

instance Num Expr where
(+) = Add
(-) = Sub
(*) = Mult
fromInteger = I . fromIntegral -- take a regular number into Expr

add:: Expr -> Expr -> Expr
add = Add

sub :: Expr -> Expr -> Expr
sub = Sub

mult :: Expr -> Expr -> Expr
mult = Mult

eval :: Expr -> Int
eval (I x) = x
eval (Add x y) = eval x + eval y
eval (Sub x y) = eval x - eval y
eval (Mult x y) = eval x * eval y

calculationExample1 = add 5 (mult (sub 8 2) 2)

main :: IO()
main = do print calculationExample1

print $ eval calculationExample1
> main
Add (I 5) (Mult (Sub (I 8) (I 2)) (I 2))
17

After introducing Expr, our add, sub, and mult functions are no longer performing com-

putations when called, but instead they build up the computation into an Expr. We use

the Num instance for convenience as it allows us to have our example unchanged. One of the

goals of our framework is to change the underlying components in a way that is invisible to

the programs built on top or to require very little change. Without the Num instance, our

30

calculation example would be forced to be of the following form:

calculationExample1’ = add (I 5) (mult (sub (I 8) (I 2)) (I 2))

To show the usefulness of creating the structure of the computation, consider what hap-

pens when we take our equation step by step through GHCI where Calculator1.hs contains

the calculator without structure and Calculator2.hs contains the calculator using Expr:

> :l Calculator1.hs
> let a = sub 8 2
> let b = mult a 2
> let c = add 5 b
> a
6
> b
12
> c
17
> :l Calculator2.hs
> let a = sub 8 2
> let b = mult a 2

> let c = add 5 b
> a
Sub (I 8) (I 2)
> b
Mult (Sub (I 8) (I 2)) (I 2)
> c
Add (I 5) (Mult (Sub (I 8) (I 2)) (I 2))
> eval a
6
> eval b
12
> eval c
17

Instead of losing the intermediate steps, we were able to add upon our current expression.

And now we can add a different interpretation. Let’s say we want our calculator to show

its work, so we add a new evaluation function evalS to show the string version of the

computation:

evalS :: Expr -> String
evalS (I x) = show x
evalS (Add x y) = "(" ++ evalS x ++ " + " ++ evalS y ++ ")"
evalS (Sub x y) = "(" ++ evalS x ++ " - " ++ evalS y ++ ")"
evalS (Mult x y) = "(" ++ evalS x ++ " * " ++ evalS y ++ ")"

main = do print $ evalS calculationExample1
print $ eval calculationExample1

Running our new main with both eval functions yields the following results:

> main
"(5 + ((8 - 2) * 2))"
17

31

We have successfully stored our computation as a structure that can be evaluated. Now to

get it running on a remote system we need to:

• serialize the computation

• send the serialized computation to a remote system

• remotely perform deserialization, evaluation and serialization of responses

• locally receive and deserialize the remote system’s response

In Haskell, each of the serialization and deserialization steps is already modular in the form

of creating serialization instances for the data type. In the case above, we are able to derive

the Show instance to serialize the computation to a string. We can likewise deserialize Expr

by deriving an instance for Read.

> let transmit = id -- place holder for transmission function
> let e = 5 + 2 :: Expr
> e
Add (I 5) (I 2)
> let s = transmit (show e) -- serialization and mock transmission
> s
"Add (I 5) (I 2)"
> let e’ = read s :: Expr -- remote deserialization
> e’
Add (I 5) (I 2)

In Section 5.2.1, we will see how the deserialization and serialization are natural trans-

formations from our data type, in this case from Expr to String and back again. If we

look at the above steps as natural transformations, we can then see that we can chain these

together to form a composable network stack. It is within this network stack that we can

add different mechanisms around the transport mechanism to bundle the requests through

the network in a principled way.

32

3.3 Modeling RPC with GADTS

In the previous section we looked at taking a program that normally runs locally and causing

it to run on a remote server. Here we will delve a little deeper by looking at connecting to

an already-existing server.

3.3.1 GADTs

Generalized algebraic data types (GADTs) [Peyton Jones et al., 2006] are used in domain

specific languages and become useful for type safety. We can build up a computation and

the type system will help us ensure that we get the correct resulting type when we evaluate

the computation.

It is a common practice in Haskell to structure code in these GADTs and then have an

evaluation function that will interpret or execute the GADT. In many applications, the eval-

uating function is a natural transformation from the GADT to the IO Monad. The benefits

of this structure is the ability to change the execution of the GADTs by simply changing the

evaluating function. We saw this with our calculator example where we evaluated to a string

vs evaluating to a number. We can look at another simple algebra GADT and its evaluation

function:

data R where
Say :: String -> R ()
Temperature :: R Int
Uptime :: String -> R Double

runR :: forall a . R a -> IO a
runR (Say s) = print s
runR (Temperature) = return 23
runR (Uptime s) = getUptime s

In creating an R type we can allow any user to create an R and we know that we will be

able to handle it. The user is unable to create an invalid R data type such as a Say with

a Double or some other data type, we can only have a String as the payload for a Say.

33

The type checker will keep the user honest and we will have type safety in our program at

compile time. Likewise, the type checker will keep the evaluation function from evaluating

Temperature to be a Double or any other data type that is not Int.

3.3.2 HTML5 Canvas Example

As an example, we will look at connecting to a remote server that has access to an HTML5

Canvas. The HTML5 Canvas object has a wide array of capabilities, which are enumerated

in Section 6.1, but for this section we will only access the subset of operations necessary to

draw rectangles, set the color and set line width.

Using a GADT to model these capabilities we have:

data JS a where
-- x1 y1 x2 y2
FillRect :: Int -> Int -> Int -> Int -> JS ()
DrawRect :: Int -> Int -> Int -> Int -> JS ()
SetColor :: Text -> JS ()
LineWidth :: Int -> JS ()

Now that we have modeled the procedure calls that we will be sending to our remote

server, we need a way of connecting these JS actions together, and to transmit the work so

we can draw a group of items.

To make life easier, we will introduce some smart constructors to build the JS constructors

to make it appear as function calls instead of building up a data type with a constructor.

This will also let us validate the information. In the HTML5 Canvas, we are able to draw at

any xy coordinates where the origin is found in the top left-hand corner of the canvas. Any

negative coordinates would then be off of the screen. With these smart constructors we can

force our drawings to be visible or any other requirement that we might have.

34

fillRect :: Int -> Int -> Int -> Int -> JS ()
drawRect :: Int -> Int -> Int -> Int -> JS ()
setColor :: Text -> JS ()
lineWidth :: Int -> JS ()
lineWidth

| val >= 1 = LineWidth val
| otherwise = error "line width must be greater than or equal to 1"

Now that we are armed with these smart constructors, we need to have a transmission

function to do the work of sending our data to the remote server as an RPC. We will call our

transmission function send and give it information about our server as well as the remote

function that we would like to call.

send :: Context -> JS a -> IO a

example1 :: Context -> IO ()
example1 ctx = do

send ctx $ setColor "blue"
send ctx $ fillRect 10 10 20 10
send ctx $ setColor "black"
send ctx $ lineWidth 3
send ctx $ drawRect 10 10 20 10

We can imagine that the send function would extract how to communicate with the server

and then serialize the JS object to something that conforms with the RPC protocol that the

server is using. The code above draws a blue rectangle with a black border on the remote

server but it is very tedious to have to put send ctx in front of each of the items we want

to execute, but more importantly, our code is not running very efficiently by sending each

of these items individually to the server. As it stands, if we were looking at these RPCs as

calls that were “remote” in the sense of being outside the runtime environment of the current

program, but still taking place on the local machine, then the lack of efficiency would not

be very noticeable. But the moment we have to boot up and tear down communications on

a network for each RPC, the network overhead incurred for each call makes this solution

nonviable, especially as the frequency of the remote calls increases.

35

The individual transmission of RPCs will herein be classified as the weak bundling strat-

egy. In order to have a stronger bundling strategy where we send multiple RPCs in a single

transmission, we need to have a closer look at the possible requests that we may have. In our

Canvas example, our supported functions do not require the remote server to respond back

with a result. For our RPCs we only desire to have a remote effect, in this case to draw an

item on the canvas. Because we don’t need a result, it is straightforward to deal with these

requests asynchronously and simply combine all our RPCs into a single request and continue

on with the program. In [Spector, 1982], Spector makes mention that with asynchronous

requests the server does not even need to respond, this notion helps us to lower the number

of communications between the client and the server and opens the door to bundling packets

together.

But what happens when we need to use synchronous requests? and do things change

if our future RPCs depend on the results of previous synchronous requests? When can we

bundle these remote primitive actions and when are we forced to transmit and wait for the

server’s response?

We could create a sendS function that takes a list of JS actions and returns a list of

results:

sendS :: [JS a] -> IO [a]

But this is not a general solution. If later we realized that we would like to use a tree or

some other container different than a list to hold our JS requests we would need to rewrite

the function. We will discuss these questions and find stronger bundling strategies with a

more general version of send in the next two chapters.

36

Chapter 4

Remote Primitives

In school growing up, after learning basic mathematical operations, my class was introduced

to the calculator. When we were then asked to do many operations by hand, a repeated

complaint from the class was, “Why can’t we just use a calculator? It can do this problem”.

The teacher’s response was, “You won’t always have a calculator with you, so you need to

know how to do these equations without one.”

In a day where cell phones are so ubiquitous, we indeed do always have a calculator with

us. Our society has gone from few room-sized computers, to even more powerful systems

that can fit in our pockets. Our music collections have gone from bookshelves full of records,

cassettes or CD’s to USB drives with 100s of mp3s and nowadays we have subscriptions to

music services where we have access to almost any song without actually owning the songs.

Even the apps on our phones have gone from being completely contained on the phone to

requiring internet access for any of it to function. In programming, we commonly use ssh

to run commands on other machines or create SQL queries that are to be executed on a

database that is hosted by a third party.

37

4.1 Primitive Classification

In many cases, our computers are comprised of multiple entities that can add functionality.

Whether that is hosting a database or some other background application as a service or

even using a GPU to do some matrix operations. So far, in looking at how we interact with

these other entities, regardless of whether it resides locally or on a remote machine, we have

been able to identify three types of primitives.

The three types of primitives are Commands, Procedures, and Queries. With these

classifications, we can make intelligent decisions on what we can batch together or what

needs to be sent as it is encountered, giving us an overall lower communication cost with the

“remote” entities.

Commands are primitives that have no result. These primitives are used for their effect

on the remote system instead of the result of some computation. These computations have

a resulting type of () in Haskell or void in other languages. Some basic examples of a

command would be the setting or changing the font, color or stroke type of a graphical

library, the incrementing of a remote counter or setting some other variable that resides

remotely, or any remote state change.

These primitives can be sent asynchronously since the local machine is not waiting for a

result. Commands cannot throw exceptions and any errors are ignored. All of the primitives

used in our Canvas example in Section 3.3.2 are commands.

Procedures are primitives that are used for both the effect on the remote system as well

as for the result of the action. Procedures can fail and are not sent asynchronously. These

primitives are easy to spot by what the program does after making the call. If there is a

branch or some work that is based on the result of the primitive, then it is most likely a

procedure. Some primitives can be classified as procedures while still returning () or void

as a result. In these cases, we want to know when the server has completed the task. These

procedures are less common but are used when we want to be sure that our effect has occurred

before continuing the program. A delay or sleep call would be this kind of primitive. The

38

Attribute Command Procedure Query
Changes State 3 3 7

Has Result 7 3 3

Can Fail 7 3 3

Asynchronous 3 7 7

Table 4.1: Attributes of the different types of primitives

result that we care about with this type of call is a temporal result instead of some return

value.

Queries are primitives that may or may not have a result but do not have an effect on

the remote system. These primitives are very close to procedures with the only difference

being that these primitives perform strictly read-only actions. If we have a set of primitives

that can be reordered and we still have the same behavior and result, then we are probably

dealing with queries. The standard example of a query primitive is a read-only call to a

table in a database. Just like procedures, these cannot be performed asynchronously and we

can receive a failure from the server when making the call.

It should be noted that it is up to the user to classify the primitives. If a call mostly

acts like a command but we would like to catch errors as they occur the user can simply

indicate that call as a procedure. On the flip-side, if we wanted the effect of a procedure but

didn’t care about receiving the result or catching any errors, then we could classify it as a

command.

Four questions arise from these characteristics that can help a user classify their primitive

actions:

• Does the action change the remote state?

• Does the action produce a result?

• Can the action raise an exception?

• Should the client wait for the action to finish?

39

After answering these questions we can look at Table 4.1 and find the recommended types

of primitives that will be present in our application.

4.2 Using Primitives in Haskell

Performing these primitives in a remote context requires us to use the IO monad or work in a

monad that is built on top of the IO monad since all input/output functionality is housed in

the IOmonad. As was mentioned in Section 2.2.3, there are two notations that are used when

working in monads to perform operations sequentially. do-notation is the more friendly

notation at least from a readability standpoint. Below we have a program that will greet a

user saying “Good Morning, <name>!” or “Good Afternoon, <name>!” depending on what

time it is.

main :: IO ()
main = do

putStr "Name: "
name <- getLine
now <- getCurrentTime
let TimeOfDay hour _ _ = localTimeOfDay now
let greeting = if hour < 12 then "Good Morning" else "Good Afternoon"
putStrLn $ greeting ++ ", " ++ name ++ "!"

When dealing with input and output, especially with user interaction, we need to preserve

the order of the commands. In do-notation we are able to have monadic actions on each

line. On some of the actions <- is present because the action returns a value that we will be

using later in the program, these indicate our procedures or queries as defined above. The

text to the left of <- is the variable name to which we bind the result. If we want the effect

of the call, but want to ignore the result we can either exclude the <- and variable name, or

we can explicitly say ignore this value by the following syntax:

_ <- getLine

In this case, we are taking a procedure and treating it as a command by ignoring the result.

40

All monadic actions are combined with >>= or >>. Once we have a definition for >>= any

custom data type can become a monad. What this means, is that if we modify the behavior

or optimize the way binds in a monad are used, we will be affecting any code that uses a

monad. Imagine having an optimization on a for or while loop in an imperative language.

Any code that uses these loops would achieve a speedup because of the optimization, without

a need to change the user’s code. In Haskell, by modifying the underlying monad to be one

that uses optimizations in the context of remote operations, we can end up with a program

that takes advantage of bundling without requiring the user to write code for that purpose.

4.3 Potential Bundling of Remote Primitives

In examining the properties of our primitives and the connecting operators in a monad there

are a number of observations that we can make with respect to bundling these primitives.

1. For each bind, there will be at least two packets involved.

2. If we are only using applicative combinators to combine the monadic actions (no binds

are present), then the elements of an applicative functor can all be sent in the same

packet. This is discussed in greater detail in the applicative bundling description in

Section 5.1

3. When a command is used on the left-hand side of a bind, we can replace the bind with

an applicative operator. e.g. command >>= \() -> ... ≡ command *> ...

4. When queries are used they can be reordered.

5. Applicative functors can be normalized to:

<$$>

[Packet] Post Processing Function

41

Observation (1) shows that a bind is going to signal the end of a potential batch of packets

as well as the start of another batch. This is because the right side of the bind relies on the

result of the left side of the bind. Without knowing the result of the left we do not know

what primitives we will be sending, thus we have to send two packets for each bind that we

encounter. Observation (2) shows that the because applicative arguments are independent

of each other, we can, therefore, send an entire applicative functor in a single packet. These

two observations lead us to observation (3) which says that there are times when we can

eliminate a >>= and turn it into an applicative operator. If we have a command, then we

know that it will result in (). If that is the case then we do not need to send the primitive

to the remote server in order to continue. We can simply pass in the result that we know

we are going to get and then continue. In this case, it is equivalent to using the applicative

*> operator in place of the bind.

Observation (4) is a little more subtle. Since queries are read-only and can be reordered,

then we can look forward at the computations and send anything that is not relying on other

primitives. As an example, we can look at the following situation:

(q1 >>= q2) <*> (q3 >>= q4)

≡

liftA2 (,) q1 q3 >>= \(r1,r2) -> q2 r1 <*> q4 r2

In this example, q2 and q4 are blocked until we know the result of q1 and q3 respectively,

but q1 and q3 do not rely on any previous results and are ready to be sent. We call this

concept the Haxl Lemma and will revisit it in greater detail in Section 6.6 of the case studies.

Observation (5) is a description of how applicative functors are able to be sent in a single

packet. If we have some f <*> g1 <*> g2, then the combining function f will remain on

the local machine while g1 and g2 will be executed remotely with the results being later

applied to f as a post-processing function.

42

Chapter 5

Remote Monads

A remote monad is a monad that takes a program of a certain shape, along with a transport

mechanism and runs pieces of the program remotely using a user-selected bundling strategy

to amortize the network cost. The shape that is needed is simply a separation between

the structure and execution of remote calls by using GADTs. The use of GADTs coupled

with a way of signalling which primitives should be treated as asynchronous commands or

synchronous procedures, can lead us to automatic bundling of the remote primitives. The

general idea is that a user can change the program’s underlying monad to use the remote

monad and, with minimal effort, be able to benefit from automatic bundling.

Along with the bundling strategies, we also need to understand what can happen when

there is a failure and how it should be handled, or in other words, we will look at what it

means to have remote control. We will first look at the different strategies and then discuss

some possible solutions for handling remote failure.

5.1 Bundling Strategies

The concept of bundling requests was not found in the first specification of RPCs but it

was one of the first optimizations that started to appear as RPCs began to be used [Shakib

& Benson, 2001; Bogle & Liskov, 1994; Gifford & Glasser, 1988]. Batching or bundling

43

requests was one of the additions of the second version of the RPC protocol specification

[Microsystems, 1988]. We will take a look at three basic bundling strategies for the remote-

monad: the weak, strong and applicative bundling strategies. These bundling strategies are

based on the properties and observations of commands and procedures which were described

previously in Chapter 4.

We will ignore queries at this time and only look at systems where commands and pro-

cedures are present. In the context of the different bundling strategies, any queries that

are found in a system will simply be treated as a procedure. A bundling strategy involving

queries is discussed later in Section 6.6, where their reordering ability introduces additional

bundling possibilities.

The reason for the different bundling strategies is largely based on the combinators that

are available in monads and applicative functors, which we will now discuss. To help us

visualize the different remote calls and bundling, we will look at simulated interactions with

an Internet of Things toaster.

Smart Toaster For our example, we can request that our toaster says a string, measure

the temperature or make toast for a given number of seconds. We could use the following

GADT to mirror our toaster capabilities:

data ToasterApi a where
Say :: String -> ToasterApi ()
Temperature :: ToasterApi Int
Toast :: Int -> ToasterApi ()

deriving (Show)

To handle the transmission of the ToasterApi as well as receive any responses to the requests,

we will use a data type called R with a function called send to do the heavy lifting. For

simplicity, we will transmit the ToasterApi primitives as strings by using the derived Show

instance. In lifting our ToasterApi into R we use sync or async to signal if send should

expect a response back from the toaster before continuing. In practice, our send function

would also have an extra parameter describing how to reach a remote device, but we will

44

assume that that information is hard-coded inside the send function as it does not add to

our current discussion.

say :: String -> R ()
say s = async (Say s)

temperature :: R Int
temperature = sync Temperature

toast :: Int -> R ()
toast i = sync Toast

send :: R a -> IO a

In the case of say, we only want the effect of saying something but we do not care about

when it finishes or about the result, so we can mark it as an asynchronous request (command)

using async to lift it into R. For temperature we care about the result and for toast we care

about when it finishes, so in those cases we use sync to mark them as synchronous requests

(procedures).

We will start by making an asynchronous request by having the toaster say “Would you

like some toast?”:

send $ say "Would you like some toast?"

Which results in the interaction captured in Figure 5.1 as a sequence diagram. In our se-

quence diagrams, asynchronous requests are depicted with an arrow in green and synchronous

requests are depicted in red as interactions between the local client on the left of the diagram

and the remote server on the right.

Now to see what synchronous requests look like let’s get the temperature of the toaster:

send $ temperature

With the sequence diagram shown in Figure 5.2

If we want to send multiple requests to our toaster in our current setup with ToasterApi

and R we will have the following:

45

Local Network Remote

GHCi send Command device

send
Say

"Say \"Would you like some toast?\""

()

Figure 5.1: Example of an Asynchronous Remote Procedure Call

Local Network Remote

GHCi send Procedure device

send
Temperature

"Temperature"
"56"

56
56

Figure 5.2: Example of a Synchronous Remote Procedure Call

send $ say "Good Morning!"
send $ say "Would you like some toast?"

Where two calls are being sent to our toaster. What we want to do is find a way to compose

or sequence the requests with a single call to send to make the remote request. Let’s first

tackle the composition of our ToasterApi primitives, and then we can figure out a better

bundling strategy.

Weak Bundling In Section 3.3.2, we defined weak bundling as the sending of our remote

primitives one at a time, without any bundling. As we see in the above toaster example, we

can get code into place to send requests to a remote toaster pretty quickly but composing

the primitives together under a single send, as well as adding bundling will take some extra

work. We can think of weak bundling as our ground zero or foundation for the remote monad

46

and the stronger bundling strategies. In the weak bundling, we will tackle the first problem

of composing our actions together by using a monad and get the general framework working

in a modular way to allow us to later add bundling and application-specific layers.

As we create the components of the framework to later leverage a better bundling, many

of the components will be trivial for the weak bundling strategy. The weak packet is an

example of this since the packet is really just a primitive wrapped in a data type but when

we look at other bundling strategies, the packet will be more complex and could contain

multiple primitives.

We will not look at the implementation details at this point, but by simply turning R into

a monad, by declaring an instance of Monad, we can then compose the ToasterApi actions

together and perform multiple actions with a single send:

GHCi> t <- send $ do
say "Would you like some toast?"
t <- temperature
say (show t ++ "F")
return t

when (t < 70) (send $ toast 120)

Figure 5.3 shows the sequence diagram for this example. We have not done any bundling

at this point. As we can see in the sequence diagram, we are still sending each primitive

individually to our toaster.

To further emphasize what weak bundling is and what it is not: weak bundling has the

general remote monad framework in place, where remote primitives go through the different

layers by being transformed into packets, serialized and transmitted, and finally, are exe-

cuted remotely, but does not have any network cost amortization. The packets for the weak

bundling are trivial, containing either a command or a procedure. Describing this as a reg-

ular expression we would have (C|P), where C represents a command, and P represents a

procedure.

The triviality and lack of amortization of the weak bundling strategy may cause questions

to arise about its usefulness. There are a couple of benefits of using this strategy:

47

Local Network Remote

GHCi send Remote device

send
say

"Say \"Would you like some toast?\""()
temperature

"Temperature"
"56"

56
say

"Say \"56F\""()
56

send
toast

"Toast 120"
"()"

()
()

Figure 5.3: Example of a Weak Remote Monad

• Baby Steps – In refactoring a program to use the remote monad, this strategy gives

us an easy landing point to test our refactoring without the need to debug or test the

behavior of the user’s program when batching is introduced.

• Guarantee of sequentiality – When a packet contains multiple items that are to be

executed remotely, many specifications allow the server to execute the items in the

batch in parallel. The JSON-RPC specification in particular says: “The Server MAY

process a batch RPC call as a set of concurrent tasks, processing them in any order and

with any width of parallelism.” Many race conditions could occur in this environment.

By downgrading our bundling strategy to the weak bundling, we could either identify

the problem or at least narrow down our search for the bug by eliminating this class

of errors.

48

Strong bundling By their very nature, commands can be sent asynchronously as we

are not expecting a result from the server. What this means is that there will never be a

command that is blocking another remote request. Normally, what we would do is fire off

a request asynchronously and continue. What we can do instead is batch any asynchronous

requests together and then transmit them when we come across a primitive that requires a

response from the server. We call this the strong bundling.

To put it more succinctly, strong bundling will bundle any number of commands together

and can be punctuated by at most 1 procedure. Once again, describing this using a regular

expression we have (C*P?).

In an earlier section, we discussed how in a monad, there is the notion of binding the

result of a computation to a variable using <- in do-notation or with >>= as shown below:

comp1 >>= \ x -> comp2 x

Where the left computation is executed and the result gets sent to the right hand side as

the variable x. How does the strong bundling handle this situation? Ideally, we would like

to send both comp1 and comp2 to the remote service in a single packet. The problem with

this is that we cannot send the computation on the right side of >>= until we have the result

of the left side, thus we are unable to bundle both sides of a bind into a single transmission.

But there is an exception to this rule. If the left-hand side of a bind is a command, then we

know, statically, that the result of the computation will be (). This allows us to apply the

result of the left-hand side to the function found on the right-hand side of >>= and we can

then send both sides in a single packet.

Using the same code that was used for the weak bundling above we can see in Figure

5.4 how the first asynchronous Say command is able to be bundled together and punctuated

by the synchronous Temperature procedure. Something that needed four packets to be sent

to the toaster is now able to do so in just three. It should be noted that if we had more

consecutive says, then the number of packets would not change in the strong bundling as

we can send any number of consecutive commands together.

49

Local Network Remote

GHCi send Remote device

send
say
()

temperature "Packet [Say \"Would you like some toast?\"]
Temperature"

"56"
56
say
()

"[Say \"56F\"]"
56

send
toast

"Packet [] (Toast 120)"
"()"

()
()

Figure 5.4: Example of a Strong Remote Monad

Applicative Bundling As a quick recap, in Haskell, not only can we compose actions

together using monads but we can also use applicative functors. With applicative functors,

the <*> operator is used to apply a function that is wrapped in an applicative context to

arguments that are also in applicative contexts. Here is its type:

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

The main difference here from the monad is that the arguments to be applied to the

function on the left are all independent of each other.

func <*> action1 <*> action2

In the above example, we can look at action1 and action2 as remote primitives. They will

be run remotely and then we can call func locally with the results as arguments. Because of

the way that applicative functors are structured, action2 has no way of using the result of

50

action1 because none of action1’s components are within scope. This independence allows

us to bundle both of the actions together and lends itself well to parallel operations on the

remote server, if desired.

Applicative Bundling is the most efficient, by packaging any number of commands and

procedures together by using the applicative construct, (C|P)* in regex. By definition,

monads are instances of applicative and since we can get the best bundling out of applicative

operations we try to treat the monad as an applicative as much as we can. One way that we

do this is by translating the >>monadic operator into the *> applicative operator which yields

the same behavior. Because of the power of the applicative functor in bundling, we have

created a remote applicative structure which can be used to enforce applicative combinations

instead of the monadic binds.

To show off the abilities of the applicative bundling, we modify our example to use

applicative operators.

GHCi> (t1,t2) <- send $
liftA2 (,)

(say "Good Morning!" *> temperature)
(say "Toasting..." *> toast 120 *> temperature)

Remote: Good Morning!
Remote: Toasting...
... sleeping for 120 seconds ...
GHCi> print (t1,t2)
(56,99)

Resulting in the sequence diagram in Figure 5.5.

To show the differences between the different bundling strategies while using an estab-

lished protocol, we will look at examples taken from the JSON-RPC case study, with each

of the bundling strategies being used with the same code:

51

Local Network Remote

Applicative Functor used to extract primitives.
(56∗, ()∗, and 99∗ are unevaluated thunks at return time.)

GHCi send Remote device

send
say
()

temperature
56∗
say
()

toast
()∗

temperature
99∗

"[Command (Say \"Good Morning\"),
Procedure Temperature,
Command (Say \"Toasting...\"),
Procedure (Toast 120),
Procedure Temperature]"

"[\"56\",\"()\",\"99\"]"

(56,99)
(Returned value used to tie the knot)

Figure 5.5: Example of a Remote Applicative Functor

example s = do (t,u) <- send s $ do
say "Hello, "
t <- temperature
say "World!"
u <- uptime "orange"
return (t,u)

print t
print u

The API used for this example is very similar to our toaster example with the addition of

uptime which is a synchronous procedure. The send function is different than we have seen

before as well. In the case study for JSON-RPC the send takes an extra input argument that

will describe which bundling strategy to use as well as information about the destination

server.

As mentioned earlier, we can distinguish the commands and procedures by looking at

52

what we do with the results. In the code above we can see that we do not store the result

from a call to say, but we do bind the results of uptime and temperature to variables to

be used later.

Weak Bundling Example

In this example and the subsequent examples, --> is used to show the data that is sent to

the server, whereas <-- is what the server sent back.

// (1)
--> {"jsonrpc": "2.0", "method": "say", "params": ["Hello, "]}
// No reply
// (2)
--> {"jsonrpc": "2.0", "method": "temperature", id: 1 }
<-- {"jsonrpc": "2.0", "result": 99, "id": 1}
// (3)
--> {"jsonrpc": "2.0", "method": "say", "params": ["World!"]}
// No reply
// (4)
--> {"jsonrpc": "2.0", "method": "uptime", "params": ["orange"], id: 1 }
<-- {"jsonrpc": "2.0", "result": 3.14, "id": 1}

Weak bundling yields 4 packets, one for each of the function calls. Notice that there is no

reply from the server in response to the say calls but we do see replies to the other calls.

This is the most accurate way to distinguish commands and procedures.

Strong Bundling Example

As a reminder, the strong bundling strategy is going to attempt to combine as many com-

mands together as possible with at most one procedure.

53

//(1)
--> [{"jsonrpc": "2.0", "method": "say", "params": ["Hello, "]}

, {"jsonrpc": "2.0", "method": "temperature", id: 1 }
]

<-- [{"jsonrpc": "2.0", "result": 99, "id": 1}
]

//(2)
--> [{"jsonrpc": "2.0", "method": "say", "params": ["World!"]}

, {"jsonrpc": "2.0", "method": "uptime", "params": ["orange"], id: 1 }
]

<-- [{"jsonrpc": "2.0", "result": 3.14, "id": 1}
]

Using the strong bundling strategy allows our example to use only 2 packets. To demon-

strate that we can have any number of commands before our procedure calls while still only

transmitting 2 packets, we will add some extra say commands before our temperature and

uptime procedures:

example = do (t,u) <- send s $ do
say "Hello, "
say "World! "
say "Hi, "
say "Earth! "
t <- temperature
say "Howdy, "
say "Mundo! "
say "Hey, "
say "Universe!"
u <- uptime "orange"
return (t,u)

print t
print u

which then yields:

54

//(1)
--> [{"jsonrpc": "2.0", "method": "say", "params": ["Hello, "]}

, {"jsonrpc": "2.0", "method": "say", "params": ["World! "]}
, {"jsonrpc": "2.0", "method": "say", "params": ["Hi, "]}
, {"jsonrpc": "2.0", "method": "say", "params": ["Earth! "]}
, {"jsonrpc": "2.0", "method": "temperature", id: 1 }
]

<-- [{"jsonrpc": "2.0", "result": 99, "id": 1}
]

//(2)
--> [{"jsonrpc": "2.0", "method": "say", "params": ["Howdy, "]}

, {"jsonrpc": "2.0", "method": "say", "params": ["Mundo! "]}
, {"jsonrpc": "2.0", "method": "say", "params": ["Hey, "]}
, {"jsonrpc": "2.0", "method": "say", "params": ["Universe!"]}
, {"jsonrpc": "2.0", "method": "uptime", "params": ["orange"], id: 1 }
]

<-- [{"jsonrpc": "2.0", "result": 3.14, "id": 1}
]

Applicative Bundling Example

To increase the possible concurrency and to further minimize the number of packets sent,

we can use applicative bundling for our example. However, the monadic structure of do-

notation needs to be rewritten to use applicative functors [McBride & Paterson, 2008]. This

can be done automatically in GHC 8.0 with the applicative-do extension, or by manually

using the applicative combinators. The net result is the same: we send only one packet now

containing the two commands, and two procedures:

--> [{"jsonrpc":"2.0","params":["Hello,"], "method":"say"}
, {"jsonrpc":"2.0","method":"temperature","id":1}
, {"jsonrpc":"2.0","params":["World!"], "method":"say"}
, {"jsonrpc":"2.0","params":["orange"], "method":"uptime","id":2}
]

<-- [{"result":65,"jsonrpc":"2.0","id":1}
, {"result":68.28,"jsonrpc":"2.0","id":2}
]

55

With this example, we were able to send everything in a single packet. This was possible

because the results of our primitives were not used in subsequent requests, the variables were

only used to build up the final result. This allowed us to eliminate the binds and use our

combining function on the results using applicative functors. If we changed our code to be:

example s = do (t,u) <- send s $ do
say "Hello!"
t <- temperature
say ("The temperature is: " ++ show t)
u <- uptime "orange"
return (t,u)

print t
print u

Then even with the applicative packet we will have to send 2 packets because we do not have

all the information necessary for the say that mentions the temperature:

//(1)
--> [{"jsonrpc": "2.0", "method": "say", "params": ["Hello!"]}

, {"jsonrpc": "2.0", "method": "temperature", id: 1 }
]

<-- [{"jsonrpc": "2.0", "result": 99, "id": 1}
]

//(2)
--> [{"jsonrpc": "2.0", "method": "say", "params": ["The temperature is: 99"]}

, {"jsonrpc": "2.0", "method": "uptime", "params": ["orange"], id: 1 }
]

<-- [{"jsonrpc": "2.0", "result": 3.14, "id": 1}
]

At this point we have only talked about the Remote Monad and how applicative functors

have the potential to allow us to send more primitives in a single packet. If we wanted to

enforce the use of applicative functors to get the best bundling, we could use the Remote

Applicative functor. The Remote Applicative has the same techniques as the Remote Monad

but everything is simpler because of the lack of bind. Since we very often need to use the

results in subsequent calls, we would use multiple sends every time a bind would need to

take place.

56

Each of these bundling strategies can be combined together with either the Remote

Applicative or with the Remote Monad, leading to 6 configurations for remote execution.

[[
Remote
Monad

]] [[
Remote
Monad

]] [[
Remote
Monad

]]
[[
Weak
Packet

]] [[
Strong
Packet

]] [[
Applicative
Packet

]]
[[

Remote
Applicative

]] [[
Remote

Applicative

]] [[
Remote

Applicative

]]
[[
Weak
Packet

]] [[
Strong
Packet

]] [[
Applicative
Packet

]]

(1) (2) (3)

(4) (5) (6)

Here are some observations about the many configurations:

• (1) and (4) have no network cost amortization and as such are only used if the user

needs to have a guarantee of sequential execution. The only difference between these

(1) and (4) would be the ability to use both monadic and applicative notation and

operators (1) or using only applicative operations (4).

• (2) and (5) have some bundling but in our research we have found that there is no ben-

efit to using the strong bundling strategy with the remote applicative when compared

with the applicative bundling strategy. This is due to the fact that the strong bundling

strategy was developed to handle the serialization of binds, which are not present in

applicative computations.

• (3) and (6) have the best bundling possible for both remote monad and remote ap-

plicative. Though in some cases, the remote applicative will have better bundling than

the remote monad if binds are used in the remote monad version of the computation.

This would only be the case if the ApplicativeDo flag was not enabled.

57

The modularity of the framework allows the user to pick and choose the configuration, and

easily change their mind later with minimal code changes.

5.2 Implementing the Remote Monad

Before covering the implementation details specific to the remote monad and remote ap-

plicative functors, we need to look at how natural transformations can be used to convert

data types and how these can be combined to have a chain of natural transformations, as

this is used extensively throughout the framework.

5.2.1 Natural Transformations

For this framework, we will be looking particularly at natural transformations over functors.

A natural transformation, put concisely, is a morphism from one functor to another. In

plain English, this means that we take a value that currently resides in some context and

we represent that value in a different context. If we look at a person living on Earth, we

can see our person as our value and “living on Earth” as the context. Now if we look at the

same person but we are looking at them in a different context, say “living on the moon”, we

can see that some of the attributes remain the same: their height, mass, hair color, etc. but

others are affected by the context: their weight, what they eat, how high they can jump,

etc. The mechanism of changing this context is a natural transformation.

In Haskell, we can express these natural transformations as a type synonym where we

are taking a functor f and transforming it into a different functor g:

type f ~> g = forall a . f a -> g a

We have our value of type a being in the context of f and then we result in a value of the

same type, but this time it is in the context of g.

Another way of looking at a natural transformation is an interpretation of f as g. We

can then chain these natural transformation togethers.

58

interpret :: (f ~> IO) -> (g ~> IO)

The above translates to “give me a way to interpret a value housed in f in the IO monad, then

I’ll give you a way to interpret a value housed in g in the IO monad”. In the remote monad

framework, we will see this as “show me how you want me to send a byte string across the

network, and I’ll give you a way to send remote monad packets across the network”. What is

happening under the hood is that we have mechanisms in place to translate a remote monad

into byte strings but we do not know how to send the byte strings or even where they should

be sent. Passing a way to interpret the byte strings, by means of transmission, fills in the

missing pieces to complete the execution.

As a side note, we are not just using natural transformations because they are helpful

mechanisms, they are necessary to hide the forall a from the type checker since we want

the a to remain the same throughout the chain of transformations. We only want to change

the information surrounding the a. As an example, an Int in one functor will still result

in an Int in the new functor. The reason why this is important is because our initial data

structure is mirroring a remote function. Say we want this function to return a String. We

want to transform this structure into something that can be transmitted and executed, but

regardless of all the hoops, hurdles and general munging of data that it might have to go

through, we still want a String to come back as the result, instead of some other data type.

Once we have a single natural transformation in place, we can chain them together to

mirror the process of going from a local representation of an RPC, to something that can

be serialized and transmitted for the calling of the RPC and then a similar chain when we

deserialize and interpret the result. The chaining of these natural transformations is called

a Composable Network Stack.

5.2.2 Composable Network Stacks

A composable network stack is a combination of several natural transformations over func-

tors, used to make up the different pieces of a network. The stack of natural transformations

59

is modular and allows us to add or remove different layers of computation making the frame-

work able to be applied to a variety of situations.

The way that composable network stacks are implemented is essentially a pipeline of

GADTs with the natural transformations used as the connectors. This yields a full compos-

able network stack which will have the following shape:

The remote server can build a ByteString interpreter when given a GADT evaluation

function

(R ~> IO) -> (ByteString ~> IO)

i.e. “Give me a way to interpret R and I’ll give you a way to interpret a ByteString

(since I know how to parse a ByteString into an R)”.

The transmission layer would handle ByteStrings:

(ByteString~> IO) -> (ByteString ~> IO)

i.e. “Give me a remote interpreter for ByteString and I’ll give you a local interpreter for

ByteString”.

And finally:

(ByteString ~> IO) -> (R ~> IO)

i.e. “Give me a local interpretation of ByteString and I’ll give you a way of interpreting

R.

Giving each of these steps a name, we can then fit them together as a pipeline:

decodeR :: (R ~> IO) -> (ByteString ~> IO)
transmitByteString :: (ByteString ~> IO) -> (ByteString ~> ByteString)
encodeR :: (ByteString ~> IO) -> (R ~> IO)

pipeline :: (R ~> IO)
pipeline = encodeR (transmitByteString (decodeR runR))

We end up with a function pipeline that can take any R as input and it will take care

of the serialization and remote execution. If we decided that we didn’t like the transmission

60

mechanism or that we wanted a different interpretation of R, then we can change out those

pieces of the pipeline with a new mechanism of the same type and not have to modify any

of the other pieces of the pipeline.

Now that we have looked at some bundling strategies as well as some general thoughts

about natural transformations, let’s look at the implementation of the remote monad and

remote applicative.

5.2.3 Practicing what it Preaches

In Section 3.1.1, we talked about taking a program and instead of evaluating an expression

immediately, we build up the computation into a structure that gets evaluated later. Instead

of 5 + 1 = 6 we have 5 + 1 = Add (I5) (I1), which we can later evaluate to be 6, some other

interpretation of the equation, or even apply some rewrite rules. User functions that are

moving from a local evaluation to somewhere outside of the runtime environment are forced

to have this separation to allow the controlling program to be running locally and to have

pieces executing remotely.

We likewise split the remote applicative and remote monad into a structure and an

evaluation function. We will start by looking at the less complex data type, the remote

applicative.

5.2.3.1 RemoteApplicative

Jumping into the remote applicative’s declaration we have the following data type:

data RemoteApplicative p a where
Primitive :: p a -> RemoteApplicative p a
Ap :: RemoteApplicative p (a -> b)

-> RemoteApplicative p a -> RemoteApplicative p b
Pure :: a -> RemoteApplicative p a

The RemoteApplicative is parameterized over the user’s GADT, allowing us to lift the

user’s data type into the RemoteApplicative and use the applicative operators to combine

61

the user’s remote calls. In our canvas example, the GADT housing the remote functions was

called JS. The remote applicative for that example would then look like

RemoteApplicative JS (). The RemoteApplicative constructors simply mirror the ap-

plicative operators as is shown in the instance of Applicative:

instance Applicative (RemoteApplicative p) where
pure = Pure
(<*>) = Ap

Any of the user’s remote functions get lifted into the RemoteApplicative using the Primitive

constructor with Ap being used to combine primitives by applying them to a function which

will usually be a local function that has been lifted by using Pure.

Assuming we have a user GADT describing the remote functions with smart constructors

that lift the primitives into the RemoteApplicative, we now have to factor RemoteApplicative

actions into packets and send the data remotely. Depending on the bundling strategy, we

want the packetization to happen differently. To handle this, we create a Haskell class

RunApplicative that is parameterized over our GADT and takes an evaluation function as

an argument:

class RunApplicative f where
runApplicative :: forall m prim . (f prim ~> m) -> (RemoteApplicative prim ~> m)

The first argument of the runApplicative function is a natural transformation from some

container of primitives (packets) to some monad (usually IO or a monad which has IO

abilities). Our runApplicative function will look at the RemoteApplicative that we have

built up and turn it into packets. When the packets are ready, the natural transformation

argument will then handle the serialization of packets and the transmission of the information

to the remote system.

Let’s look at running a trivial example of a program that will echo a string as given or

do so in all caps. We will start by having a description of the functions as well as a way to

execute them.

62

data Api a where
Echo :: String -> Api ()
Yell :: String -> Api ()

runApi :: Api a -> IO a
runApi (Echo s) = putStr s
runApi (Yell s) = putStr $ map toUpper s

Now we just need to lift Api into RemoteApplicative actions.

echo :: String -> RemoteApplicative Api ()
echo s = Primitive (Echo s)

yell :: String -> RemoteApplicative Api ()
yell s = Primitive (Yell s)

At this point we can build up a RemoteApplicative as follows:

> echo "can you hear me now?" *> yell "how about now!"

The only thing we have left is to break the remote applicative into packets and then transmit

data. The way that the bundling strategy is implemented is by having a different packet

type for each bundling strategy. Once we decide which bundling strategy we would like to

use, we create the natural transformation that knows how to handle the selected packet.

The type that this natural transformation should take is:

(PacketType UserGADT ~> m)

Since our runApplicative function is a class parameterized over the user GADT and the

packet type, we can trigger which bundling strategies to use to split up the actions based on

the packet type used in our packet handler.

Because of the structure of the composable network stacks, this transmission function

could actually just be the user’s GADT evaluation function applied to the user GADTs found

inside the packets instead of transmitting the request and handling the response.

Here are what the different packet types look like for each of the bundling strategies:

63

data WeakPacket (prim :: * -> *) (a :: *) where
Primitive :: prim a -> WeakPacket prim a

data StrongPacket (prim :: * -> *) (a :: *) where
Command :: prim () -> StrongPacket prim a -> StrongPacket prim a
Procedure :: prim a -> StrongPacket prim a
Done :: StrongPacket prim ()

data ApplicativePacket (prim :: * -> *) (a :: *) where
Primitive :: prim a -> ApplicativePacket prim a
Zip :: (x -> y -> z)

-> ApplicativePacket prim x
-> ApplicativePacket prim y -> ApplicativePacket prim z

Pure :: a -> ApplicativePacket prim a

instance KnownResult Api of
knownResult (Echo _s) = Just ()
knownResult (Yell _s) = Just ()

For the runApplicative to know how to split the Api actions into packets, we need to

specify if we know the end result of the action statically by using the KnownResult class.

If the result is known (a command) then the it will be Just a, where a is the static result,

if we do not know the result, then we put Nothing to signal that we will need to send the

primitive to discover the result. This logic is only used in the strong and applicative bundling

strategy but to fit in with the framework, the instance is needed even if the weak bundling

is selected.

To run our ‘echo’ example locally using the weak bundling strategy, we would connect

the functions as follows:

64

import Control.Natural (wrapNT, unwrapNT)
import Control.Remote.Applicative
import qualified Control.Remote.Packet.Weak as WP

evalPacket :: WP.WeakPacket Api a -> IO a
evalPacket (WP.Primitive p) = runApi p

send :: RemoteApplicative Api a -> IO a
send = unwrapNT $ runApplicative (wrapNT evalPacket)

main :: IO ()
main = send $ echo "You scream, I scream, we all scream for " *> yell "ice cream!"
-- GHCI --
> main
You scream, I scream, we all scream for ICE CREAM!

A great demonstration of the modularity of the framework is that if we wanted to change

our bundling strategy for this example, then we would simply change our packet handler,

evalPacket, to handle a StrongPacket or an ApplicativePacket. If we wanted to send

it to a remote system we would change evalPacket to serialize and transmit the data

and receive a response if needed. Sections 6.2 and 6.3 describe libraries which use JSON

and ByteStrings respectively to serialize packets with the user defining the corresponding

instances to serialize and interpret the user’s actions.

Something of note in the ApplicativePacket is its similarity to an applicative functor. In

reality, the ApplicativePacket is an instance of applicative functor where the <*> operator

maps to Zip. The Zip construct was chosen over Ap as it fit nicely with the pragmatic details

of the library. The combining function, the first argument of Zip, is omitted when serializing

the packet because the function will be applied locally to the returning results of the remote

primitives. Remotely, when we receive an applicative packet we deserialize the Zip but we

no longer have information about the function. We can then place a post-processing or

serialization function in this slot on the remote side that executes before transmitting the

result back to the client machine.

65

To further demonstrate this point, imagine we have established a protocol where the

remote server puts the results of remote computations in a tuple before serializing them to

a byte string. On the local side we have

add <$> remoteAction x <*> remoteAction y

For simplicity, we will assume that remoteAction yields a single primitive instead of a more

complex structure. The above code will result in the following ApplicativePacket:

Zip add (Primitive (remoteAction x)) (Primitive (remoteAction y))

Then the two primitives will be serialized and sent with some indicator that this is a Zip.

Our deserialization for Zip can then look like:

res <- get
case res of

1 -> do -- indicator of zip packet
x <- get -- grab first argument
y <- get -- grab second argument
return $ Zip (\ a b -> (a,b)) x y

When the Zip is interpreted on the remote server, we then just need to apply the function

that is the first argument and then the serialization function and we will comply with the

protocol.

A version using Ap was also investigated, but was more cumbersome when it came to

building the resulting packet in comparison with Zip, so we sidestepped these issues by

choosing the Zip construct.

The biggest thing to know about these packets is that with the structure of the applicative

functor in having a local function being applied to any number of remote primitives, it makes

the applicative functor an ideal packet for transmitting remote primitives. This point was

also independently reached in parallel by Jeremy Gibbons in [Gibbons, 2016].

5.2.3.2 RemoteMonad

Now we can move outward to the Remote Monad. In Section 5.1 and the previous section,

we discussed how the applicative bundling is the most efficient bundling strategy. Dividing

66

the RemoteApplicative into ApplicativePackets is a straightforward mapping. For the

RemoteMonad, splitting a monad into ApplicativePackets means that we want to treat

things as applicative operations as much as we can to make the direct mapping and only use

monadic operations when we are forced to do so. Thus we end up with the following data

type for the RemoteMonad with the Applicative and Monad instances:

data RemoteMonad p a where
Appl :: RemoteApplicative p a ->

RemoteMonad p a
Bind :: RemoteMonad p a

-> (a -> RemoteMonad p b)
-> RemoteMonad p b

Ap’ :: RemoteMonad p (a -> b) ->
RemoteMonad p a -> RemoteMonad p b

instance Applicative (RemoteMonad p) where
pure a = Appl (pure a)
Appl f <*> Appl g = Appl (f <*> g)
f <*> g = Ap’ f g

instance Monad (RemoteMonad p) where
return = pure
m >>= k = Bind m k
m1 >> m2 = m1 *> m2

The relationship between RemoteMonad and RemoteApplicative is a subtle one. The

RemoteMonad is either a computation that is a RemoteApplicative, wrapped in the Appl

constructor or it is a bind between applicative actions and is wrapped in the Ap’ constructor.

The definition of >> also shows how we try to make things applicative as often as we can

by mapping it to the *> applicative operator that has the same type. As mentioned in the

theory of the remote monad, the way that we can get the best efficiency of transmitting

monads is by maximizing the amount of code that can be represented as applicative functors

and by minimizing the connecting binds.

The way that we use the RemoteMonad to select the bundling strategy as well as running

the monad for the result is the same as the RemoteApplicative. We are able to use the

67

same packets and we have a similar run function called runMonad to execute our monad:

class RunMonad f where
runMonad :: (f p ~> m) -> (RemoteMonad p ~> m)

It is inside the runMonad function that the different tricks about eliminating binds, where

possible, is implemented. To get the echo/yell example that was using the remote applicative

working with the remote monad, we literally only need to change RemoteApplicative to

RemoteMonad and everything will work and have the same behavior:

import Control.Natural
import Control.Remote.Monad
import qualified Control.Remote.Packet.Weak as WP

echo :: String -> RemoteMonad Api ()
echo = primitive . Echo

yell :: String -> RemoteMonad Api ()
yell = primitive . Yell

evalPacket :: WP.WeakPacket Api a -> IO a
evalPacket (WP.Primitive p) = runApi p

send :: RemoteMonad Api a -> IO a
send = unwrapNT $ runMonad (wrapNT evalPacket)

main:: IO ()
main = send $

echo "You scream, I scream, we all scream for "
*> yell "ice cream"

-- GHCI --
> main
You scream, I scream, we all scream for ICE CREAM!

If we wanted to change our bundling strategy, we would just have to change evalPacket to

handle a different packet type which is the same as we would do with the remote applicative.

68

5.2.4 Remote Monad Laws

Just as we looked at the laws governing the applicative functor and monad as well as the

other control structures in Haskell, let’s look at the laws governing the remote monad. As

these laws are not specific for the remote monad or remote applicative but describe the

behavior of sending things remotely and bundling, we will use a send function to describe a

runMonad or runApplicative function that has been passed a packet handler.

We propose using the monad-transformer lift laws [Liang et al., 1995; Gill & Paterson,

2017], also known as the monad homomorphism laws, as our remote monad laws because we

are lifting the Remote computation to the remote site, by Local effect.

send (return a) = return a (5.1)

send (m »= k) = send m »= (send . k) (5.2)

Assuming these laws, the monad laws, and the laws relating functors and applicative functors

to monads, the following morphism laws can be derived:

send (pure a) = pure a (5.3)

send (m1 <*> m2) = send m1 <*> send m2 (5.4)

send (fmap f m) = fmap f (send m) (5.5)

Laws (5.1) and (5.3) state that a send has no effect for pure computations. Laws (5.2) and

(5.4) state that packets of remote commands and procedures preserve the ordering of their

effects, and can be split and joined into different sized packets without side effects. Law

(5.5) is a reflection of the fact that send captures a natural transformation.

69

These laws have equivalencies that are looking at the result of these equations. But as

we are talking about bundling requests, it is worth noting that just because these statements

result in the same value, does not mean that they achieved the result using the same number

of packets. The first few laws describe what is actually happening in the library, things

that do not need to be evaluated on the server are not sent. On the other hand, law (5.2)

is splitting requests into multiple sends. We are able to split monads into packets and we

can lower the number of packets by eliminating binds, but this all occurs within a single

send. When there are multiple sends, that are not just using pure, we have to have at least

one packet per send. This is because we are jumping in and out of the RemoteMonad. To

illustrate this point imagine we have the following main method taken from Law (5.2) using

do-notation:

main:: IO ()
main = do
a <- send m :: IO Int
() <- send (k a) :: IO ()
return ()

where
m :: RemoteMonad UserGADT Int
k :: Int -> RemoteMonad UserGADT ()

In this example, we have work that needs to be done remotely, m, and a function, k, that

takes the result of m as input and results in more work that might need to be done remotely.

As we can see from the type information with the code, the bind from send m to a is actually

an IO bind instead of a remote monad bind. All of the theory about automatically bundling

efficiently resides inside our remote monad and remote applicative structures. As soon as

we leave the remote monad or remote applicative context, we can no longer eliminate binds

or apply any of the other techniques to make things more efficient. This means that even if

m was a command that normally could be combined with a remote primitive, found in the

result of k a, we would send m by itself.

70

5.3 Extending the Remote Monad

The goal of the remote monad framework is to find ways to automatically batch remote

requests. We have discussed how we can batch requests together depending on if their result

is known, or if we are combining things together in a way that can be optimized. We can

further amortize the network cost by placing choice logic on the remote system. In particular,

we can cause if-else statements, that rely on remote values, to reside remotely as well as have

remote loops and Haskell’s alternative construct (<|>).

There are a couple of ways that we can move these decisions remotely. Instead of mak-

ing extra transmissions to get a remote value and then depending on that value, send the

next remote value that needs to be executed. The first extension that we will look at is

extending the remote monad and remote applicative to include data types that encapsulate

the alternative construct <|>. Next, we will look at how a user could include remote if-else

statements or remote loops through the user functions that are marked as remote via the

GADT. Each of the extension methods that we are going to describe will require user access

to modify code running on the server, due to the fact that we are sending information that

may or may not be executed. This deviates from the normal batching behavior of sending a

list of actions to the server that all need to be executed unconditionally.

5.3.1 Remote Alternative

Adding support for the remote alternative is more complicated than what it would seem

at a first glance. The alternative construct <|> is used to attempt one computation and

then, if failure is encountered, run the second computation. Instead of transmitting the first

computation remotely and receiving a failure and requiring the second computation to be

transmitted, we can send both computations to the server in a single packet. Supporting that

logic to run remotely requires us to not only think about what should be considered a failure

and how we should handle it, but also to make decisions about local failure versus remote

71

failure and the consequences of those decisions. Here we will discuss not only handling the

alternative operator in the remote applicative and remote monad contexts but we will also

be discussing how things are affected when we are looking at the different bundling strategies

in conjunction with this new operator. How does the behavior change when most of the logic

is happening locally versus having the logic as well as the actions happening remotely?

In order to get alternatives working for the remote-monad library we need to expand the

RemoteMonad and RemoteApplicative constructors to include constructors for empty and

for alt which will take the two remote primitives as arguments. Making the RemoteMonad

and the RemoteApplicative instances of the Alternative class is just a map into these

constructors.

data RemoteApplicative prim a where
Primitive :: prim a -> RemoteApplicative prim a
Ap :: RemoteApplicative prim (a -> b)

-> RemoteApplicative prim a
-> RemoteApplicative prim b

Pure :: a -> RemoteApplicative prim a
Alt :: RemoteApplicative prim a

-> RemoteApplicative prim a
-> RemoteApplicative prim a

Empty :: RemoteApplicative prim a

instance Alternative (RemoteApplicative p) where
empty = Empty
Empty <|> p = p
m1 <|> m2 = Alt m1 m2

Just like we had an Ap in the RemoteApplicative and a Ap’ in the RemoteMonad to help us

know whether or not a bind was present in the computation, we also have the equivalent for

Alt and Empty. This distinction between computations with bind present or not is used to

help us on deciding which bundling rules we are to follow inside the runMonad function.

72

data RemoteMonad p a where
Appl :: RemoteApplicative p a -> RemoteMonad p a
Bind :: RemoteMonad p a -> (a -> RemoteMonad p b) -> RemoteMonad p b
Ap’ :: RemoteMonad p (a -> b) -> RemoteMonad p a -> RemoteMonad p b
Alt’ :: RemoteMonad p a -> RemoteMonad p a -> RemoteMonad p a
Empty’ :: RemoteMonad p a

instance Alternative (RemoteMonad p) where
empty = Empty’
Empty’ <|> p = p
Appl g <|> Appl h = Appl (g <|> h)
m1 <|> m2 = Alt’ m1 m2

To get the alternative working with the existing packet strategies, the Alt construct is

handled locally. Here is an example we will use to examine the effects of this construct.

(command1 >> command2 >> empty >> commandX) <|> command3

If the above code is run with the weak bundling strategy then command1 and command2 are

each sent to the remote server before the empty (failure) is encountered, and because there

was a failure in the first set of actions, commandX is ignored and command3 is then sent.

We cause the bundling strategies to adhere to the following restriction:

Bundling Strategies Bundling strategies are used to modify the way that primitives are

transmitted, but the number and type of these primitives must remain unchanged across

the different strategies.

In this example, command1 and command2 are a part of the computation on the left side

of the alternative, which as a whole is a failing computation. This computation will either

be ignored, or will, in the worst case scenario, need to be backtracked to get the server back

to a valid state. In this example, it would be possible for the strong or applicative strategies

to avoid sending parts of the failing computation by removing them from the send queue

when the failure is encountered. Here is how that would look in our example above:

73

(command1 >> command2 >> empty >> commandX) <|> command3
queued commands: []
action: queue command1

(command1 >> command2 >> empty >> commandX) <|> command3
queued commands: [command1]
action: queue command2

(command1 >> command2 >> empty >> commandX) <|> command3
queued commands: [command1, command2]
action : dequeue previous commands and ignore next commands until <|>

is reached

(command1 >> command2 >> empty >> commandX) <|> command3
queued commands: []
action: queue command3

queued commands: [command3]
action: send queued commands

But by making this optimization, we would then lose the guarantee that changing

bundling strategies will not have an effect on the logic of the program. The commands

that would be sent before the failure could change the state of the program, potentially

impacting the final command command3.

Thus far, the use of the Alternative construct has been in a local sense, using empty

to signal a failure. In real-world applications the server could have errors that we would

want to capture and handle without subsequent communication. We would want the remote

system to recognize the failure, to recover, and then attempt to call the right-hand side of

the <|> operation. There are three approaches that can be used to handle server failure.

• Change the type of procedures to encapsulate failure.

• Create a new bundling strategy, using a new packet type, to tell the server what to do

in case of an error.

• All exceptions on the server can be caught, serialized and sent to the client who will

74

then recreate and throw the exception on the client machine.

5.3.1.1 Updating Procedure Type

Notice that we are only updating the type of our procedures and not updating the type of

the commands. The client is not listening for any return values from a command because

the response is always (). To handle a failing command, we would require a separate thread

to listen for errors from the server, or have the server log errors in a way that can later

be queried by the client program. Both of these options greatly increase the complexity.

Instead, we follow the JSON-RPC 2.0 specification which states:

Notifications are not confirmable by definition since they do not have a Response

object to be returned. As such, the Client would not be aware of any errors.

where Notifications in the JSON-RPC protocol are equivalent to our commands.

With procedures, the user could change their top-level GADT to be UserGADT (f a)

instead of just UserGADT a, where f is a data type that encapsulates error. then change

the return type of the server code. Maybe or Either are possible data types that would

be probable options for f. Another option would be to build on top of the remote-monad

library and lift all of the user’s GADTs to be Prim (Maybe a) and then place a layer before

the server to catch any errors and wrap them into the f data type. The benefit of the second

option is that the user GADTs and the server evaluation functions remain unchanged.

5.3.1.2 Alternative Packets

The creation of Alternative Packets will allow us to run the <|> operator remotely. The

alternative packet augments the applicative packet strategy with the notion of handling a

failure. The packet has the same constructors as the ApplicativePacket with the addition

of Alt and Empty constructors.

The runMonad and runApplicative functions will map directly from the RemoteMonad or

RemoteApplicative alternative constructors to the AlternativePacket constructors. The

75

main computation is sent to the server along with the ‘in case of failure’ computation in a

single packet allowing the server to attempt an action and upon failure, attempt the second

action without any additional network interactions. If both of the computations sent in the

AlternativePacket are capable of failing then the user would need to use one of the other

methods in conjunction with alternative packets. Traditionally, the second computation is a

safer version of the first computation that cannot or is less likely to fail, but it is not always

the case.

5.3.1.3 Serializing Exceptions

Another option for handling a remote failure is to add a layer around the remote evaluation

function to catch any exceptions that may occur. The server can then serialize the exception

and send it back to the client. In this case, the client would need to look at each response as

either the result of the requested computation or a serialized exception. The remote-binary

library provides an example of serializing any exceptions that occur on the remote server,

and further discussion is found in Section 6.3.1.

5.3.2 Remote Logic

We just looked at what it would take to extend the constructors of the RemoteMonad and

RemoteApplicative and add a new packet structure to send things efficiently, now let’s look

at another way of taking our logic remotely by adding to the remote functions described in

the user’s GADT. As an example to help us demonstrate this method, imagine that we would

like to have a smart garden that has sensors to check the health of the garden with some

visual representation, a light or an LED screen, that would give us alerts or status updates

at a glance. We would have some server, connected to a moisture sensor for our garden, that

will be periodically checking to see if the plants are too dry (reading of 0 - 2), well-watered

(reading of 3 - 6) or over-watered (reading of 7 - 9). The plants we are dealing with are very

sensitive and we would like an accurate view of their health. The visual indicator should

76

change each time the moisture result changes and we would like to send an alert to the

owner’s phone when it is imperative to water the plants (1 or lower), or if the plants are

beginning to flood (8 or higher). This example also serves as an extra example for how to

create a service using the remote-monad library.

Let’s create our GADT to describe our remote functions:

data Light = Red | Orange | Yellow -- 0 - 2
| YellowGreen | LightGreen | ForestGreen | BlueGreen -- 3 - 6
| Blue | Purple | FlashWhite -- 7 - 9

deriving (Show, Enum)

data SmartGarden a where
SenseMoisture :: SmartGarden Int
UpdateLight :: Light -> SmartGarden ()
SendAlert :: String -> SmartGarden ()

instance KnownResult SmartGarden where
knownResult SenseMoisture = Nothing
knownResult (UpdateLight _) = Just ()
knownResult (SendAlert _) = Just ()

execSG :: SmartGarden a -> IO a
-- interaction with sensor

execSG SenseMoisture = getStdRandom $ randomR (0,9)
-- interaction with light indicator

execSG (UpdateLight l) = putStrLn $ "Light Indicator: " ++ show l
-- alert sent to a user device

execSG (SendAlert s) = putStrLn $ "Alert! " ++ s

We have our set of user functions that can measure the moisture of the plants, update our

visual indicator and we also have the ability to send alerts to a user. For simplicity we

substitute a random number generator and print statements in place of interactions with

real hardware components.

Now that we have our API set up, we will setup some smart constructors to lift our

remote primitives into the RemoteMonad, define our run function and then have our program

logic:

77

--smart constructors
sense :: RemoteMonad SmartGarden Int
sense = primitive SenseMoisture

update :: Light -> RemoteMonad SmartGarden ()
update l = primitive (UpdateLight l)

alert :: String -> RemoteMonad SmartGarden ()
alert msg = primitive (SendAlert msg)

-- Bundling Strategy selection
runWP :: WP.WeakPacket SmartGarden a -> IO a
runWP (WP.Primitive sg) = execSG sg

send :: RemoteMonad SmartGarden a -> IO a
send = unwrapNT $ runMonad (wrapNT runWP)

-- program logic
main :: IO ()
main = send $ loop (-1)

where
loop oldLevel = do
level <- sense
update (toEnum level)
if oldLevel >= 0 && level /= oldLevel then

do
case toEnum level of
Red -> alert "Your garden is completely dry!"
Orange -> if oldLevel > level then

alert "Your garden is almost dry!"
else

return ()
FlashWhite -> alert ("Your plants are getting over-watered,"

++ " turn off the water!")
_ -> return ()

io $ threadDelay 1000000
loop level

else
do
io $ threadDelay 1000000
loop level

78

Once again we are handling everything locally for our discussion but we could change the

runWP to transmit the packet instead of calling the evaluation function directly. In this

example, our entire logic is found within the loop so moving our loop to the remote server

logic will make all the local logic become remote. We can imagine a select number of

computationally expensive loops, either expensive because of the remote operations or by

the quantity of the remote operations, being pulled to the remote location while other logic

is left to be handled locally.

Here is what it would look like to move our loop to the remote location.

data SmartGarden a where
SenseMoisture :: SmartGarden Int
UpdateLight :: Light -> SmartGarden ()
SendAlert :: String -> SmartGarden ()
LoopIt :: Int -> SmartGarden ()

instance KnownResult SmartGarden where
knownResult SenseMoisture = Nothing
knownResult (UpdateLight _) = Just ()
knownResult (SendAlert _) = Just ()
knownResult (LoopIt _) = Just ()

sense :: RemoteMonad SmartGarden Int
sense = primitive SenseMoisture

update :: Light -> RemoteMonad SmartGarden ()
update l = primitive (UpdateLight l)

alert :: String -> RemoteMonad SmartGarden ()
alert msg = primitive (SendAlert msg)

loopIt :: Int -> RemoteMonad SmartGarden ()
loopIt i = primitive (LoopIt i)

79

execSG :: SmartGarden a -> IO a
-- interaction with sensor

execSG SenseMoisture = getStdRandom $ randomR (0,9)
-- interaction with light indicator

execSG (UpdateLight l) = putStrLn $ "Light Indicator: " ++ show l
-- alert sent to a user device

execSG (SendAlert s) = putStrLn $ "Alert! " ++ s
execSG (LoopIt oldLevel) = do

level <- execSG SenseMoisture
execSG $ UpdateLight (toEnum level)
if oldLevel >= 0 && level /= oldLevel then

do
case toEnum level of
Red -> execSG $ SendAlert "Your garden is completely dry!"
Orange -> if oldLevel > level then

execSG $ SendAlert "Your garden is almost dry!"
else
return ()

FlashWhite -> execSG $ SendAlert
("Your plants are getting over-watered,"
++ " turn off the water!")

_ -> return ()
threadDelay 1000000
execSG $ LoopIt level

else
do
threadDelay 1000000
execSG $ LoopIt level

runWP :: WP.WeakPacket SmartGarden a -> IO a
runWP (WP.Primitive sg) = execSG sg

send :: RemoteMonad SmartGarden a -> IO a
send = unwrapNT $ runMonad (wrapNT runWP)

main :: IO ()
main = send $ loopIt (-1)

The loops that we are talking about above have more of an imperative style of loops.

80

In Haskell, the functions that have a loop-like behavior use one of the fold variants or use

map. In the original Haxl paper [Marlow et al., 2014], the authors mention that a common

way of doing bulk operations is through the use of mapM and sequence. They also mention

that at the time of the paper (2014) sequence and mapM used monadic binds as the internal

operations to complete the bulk of operations. To maximize the bundling they assigned the

more widely used mapM and sequence functions to their applicative counterparts traverse

and sequenceA respectively.

Fortunately, as of March 2015 the mapM and sequence where changed to be implemented

in terms of the applicative versions. What this means is that with our applicative bundling

we can take a list of RemoteMonad actions and combine them all with applicative actions,

resulting in larger applicative packets. Imagine we have a list of user ids locally and we need

to get the user profile information for each of these users to populate a friend list on a social

networking site.

data UserService a where
GetUserInfo :: UserId -> UserService UserProfile
GetFriends :: UserId -> UserService [UserId]

getUserInfo :: UserId -> RemoteMonad UserService UserProfile
getUserInfo uid = primitive $ GetUserInfo uid

getFriends :: UserId -> RemoteMonad UserService [UserId]
getFriends uid = primitive $ GetFriends uid

-- transmission method to call remote services
runAppPacket :: ApplicativePacket UserService a -> IO a

send :: RemoteMonad UserService a -> IO a
send = unwrapNT $ runMonad (wrapNT runAppPacket)

main :: IO ()
main = do

let currentUser = UserId "892f3fe7-d42e-42c8-aae4-e2687422d558"
uids <- getFriends currentUser
profiles <- sequence $ mapM getUserInfo uids

81

In the example above, if we imagine we had someone with 100 friends on the networking

site we would not want to make a hundred individual remote requests to populate the

user’s friends list with those users’ information. But because sequence and mapM are using

applicative functor operators we can send all 100 items in a single bulk request using the

ApplicativePacket. Because we are making our optimizations at the applicative level, the

user’s code get’s efficient packaging without having to worry about it since the underlying

code is using applicative!

5.4 Remote Monad and Monad Transformers

In general, monads are created with a single purpose in mind. The Reader monad, for

example, was created to allow a program to have access to read-only data. The State

monad, as another example, was created to allow functions to carry around state as the

process continues.

Monad transformers were created to compose these capabilities into a single monad with

a lift function to connect the different layers.

lift:: m a -> t m a

To use monad transformers, we start with some base monad to which we add extra

capabilities by layering monad transformers. There is no limit to the number of transformers

that can be placed on top of one another.

As an example, we can look at using the State monad transformer (StateT) to add state

to the IO monad:

counter :: StateT Int IO ()
counter = do

s <- get
lift $ putStrLn $ show s ++ " is my current state."
put (s + 1)

With the StateT Int IO monad, we are able to call functions belonging to the State

monad, such as get, as if we were in the State monad but we can also call an IO function

82

by lifting that function to be of the right type. A different way of thinking about it is that

we use lift to peel away each layer of the monad transformer stack, allowing us to call any

functions belonging to the next outermost layer. In our above example, the outer layer is of

type StateT so we have access to State functions. If we use lift once then the state layer

is removed and we can now call IO functions

Below, we will add another monad transformer to have a combination of the Reader,

State and IO monads. Since the outermost monad is the Reader monad, we can call ask

without using lift. Calling lift one time will expose the State monad functions, and we

can perform IO functions by calling lift a second time.

a :: ReaderT String (StateT Int IO) ()
a = do

s <- lift get -- get state information
r <- ask -- ask for read-only information
lift $ lift $ putStrLn $ "Here we are: " ++ show s ++ " read-only info: " ++ r
lift $ put (s + 1) -- put new state

fib’ :: ReaderT String (StateT (Int, Int) IO) ()
fib’= do

(n1,n2) <- lift get
r <- ask
lift $ lift $ putStrLn $

"Here we are: " ++ show (n1 + n2) ++ " read-only info: " ++ r
lift $ put (n2,n2+n1)

fib :: Int -> ReaderT String (StateT (Int, Int) IO) ()
fib n = sequence_ $ replicate n fib’

We implemented the Fibonacci sequence by storing the next two numbers to be added in

the program state, and have the Reader monad used solely for demonstration purposes. We

then execute these transformers one at a time by calling the corresponding run functions:

> execStateT (runReaderT (fib 5) "read-only config") (0,1)

As we built the remote monad, a natural question came about: Can we create the

remote monad as a monad transformer? Imagine taking any monad and instantly adding

83

a mechanism that can add automatic bundling to our connection to a remote resource! In

researching remote monads, we came to the conclusion that yes, we can make the remote

monad be a monad transformer but there were subtle caveats which could cause the user

to have issues that would be very difficult to debug. These caveats led our group to decide

against making a remote monad transformer.

Overall, the remote monad appears to work as a monad transformer but as we look at

how monad transformers are used in practice, the potential issues begin to manifest them-

selves. A monad transformer stack can have any number of transformers including multiple

transformers of the same type. This works fine for having multiple ReaderT or StateT

transformers in the stack, but in the case of remote monads, we are delaying computation

but have the need to preserve ordering. What happens if we have multiple layers of remote

monad transformers connected to the same resource? The ordering is then no longer guar-

anteed and the program has now opened the door to a host of bugs that would have the

same characteristics as race-condition errors.

Another thing to consider is the fact that if we are using the state or reader monad

transformers or some other monad transformer, then any time we bind a value to be used

in our computation introduces a break in our bundling. If we needed to use state for all of

our procedures, then this would inhibit our ability to make applicative packets as there will

be a bind present after each procedure. This would cause the applicative bundling to be

equivalent to the strong bundling as far as the packet distribution is concerned.

After discovering these two things, we feel that if a remote monad is desired in a monad

transformer stack, then it should be used as the base monad. This would require one minor

change to the library. In practice, the majority of monad transformer stacks contain the IO

monad as the base or have the base monad an instance of MonadIO which allows IO actions to

take place in the base monad. These IO actions would be taking place on the local machine

and not sent to the remote server. Logging to a file or to the console is a great example of

why we would want local IO in our monad and not just used when sending the primitives.

84

To make RemoteMonad an instance of MonadIO we add a new constructor:

data RemoteMonad p a where
Appl :: RemoteApplicative p a -> RemoteMonad p a
Bind :: RemoteMonad p a -> (a -> RemoteMonad p b) -> RemoteMonad p b
Ap’ :: RemoteMonad p (a -> b) -> RemoteMonad p a -> RemoteMonad p b
IOAction :: IO a -> RemoteMonad p a

We then change our runMonad function to specify that the natural transformation from

RemoteMonad to some other monad requires it to be an instance of MonadIO. The MonadIO

instance gives us a way to say, lift until the IO layer is reached and can be executed, the

function is called liftIO.

Having the IOAction constructor is meant to distinguish any local IO actions from the

actions that occur on the remote server. This could still allow multiple connections to the

same resource through the local IO actions and the remote monad layer, but with this setup

it is harder for a user to stumble into this class of errors on accident when compared to a

remote monad transformer.

5.5 Real World Scenarios

In many real-world scenarios, a monad stack of transformers is used to create a monad that

is tailored to handle the specific task for which the application was created. As an example,

we can imagine a ReaderT monad transformer to give access to configuration settings, as well

as an ExceptT to handle errors and possibly a WriterT transformer for logs. For simplicity

we will have our customized monad use the ExceptT and ReaderT monad on top of IO:

type MyMonad a = ReaderT Config (EitherT CustomErrorType IO) a

As mentioned in the previous section, if the remote monad is used in a monad transformer

stack, then it must be used as a base. We will now look at the effect of having it as the base

of a transformer stack as well as how to use the remote monad when connecting to multiple

databases or external resources.

85

5.5.1 ReaderT Monad

Having a ReaderT monad in the stack allows us to query the configuration Config at any

time when we are in a function that has type MyMonad a where a can be any return value.

Let’s look at an example of a stuffed animal dog that can talk. With this dog, we can

program the child’s name which it then uses to say three things: “I love you, Ellie.”, “Ellie,

would you like to play?” and “Goodnight, Ellie!”. We will store the child’s name in the

Reader context and we can have the following functions:

type Name = String
type Config = Name

speak :: String -> IO () -- split string into words and play audio for each word

love :: MyMonad ()
love = do

name <- ask
lift $ speak $ "I love you, "++ name

play :: MyMonad ()
play = do

name <- ask
lift $ speak $ name ++ ", would you like to play?"

sleep :: MyMonad ()
sleep = do

name <- ask
lift $ speak $ "Goodnight, "++ name

runMyMonad :: Config -> MyMonad a -> IO (Either CustomErrorType a)
runMyMonad c m = runExceptT . runReaderT c $ m

Now in converting this to a remote monad, we use a GADT that contains each of the phrases

and declare our evaluation function interp:

86

data Phrases a where
Love :: Phrases ()
Play :: Phrases ()
Sleep :: Phrases ()

love, play, sleep :: Phrases
love = Love
play = Play
sleep = Sleep

interp :: Name -> WeakPacket Phrases a -> IO a
interp name (Primitive Love) = speak $ "I love you, "++ name
interp name (Primitive Play) = speak $ name ++ ", would you like to play?"
interp name (Primitive Sleep) = speak $ "Goodnight, "++ name

When we break up the actions into GADTs and an evaluation function, we can just add

the configuration setting to the interp function removing the entire ReaderT monad. Yes,

we could have done that with the previous way but we would have to add it to each of the

love, play, and sleep functions. If we were to refactor our read-only data we would have to

do it in each of those cases instead of in one place. In this case, our interp function would

be the only function that would use the configuration setting in the ReaderT transformer and

so we are either passing the setting once to the runReaderT function or once to the interp

function. By passing the setting once to the interp function and removing the ReaderT, we

remove the need to use a whole layer of lifts needed which in this example removes all the

lifts for the program.

5.5.2 Multiple Databases

In real world applications, one of the most important things is performance. In many ap-

plications, there are different shapes and types of data for a single application. We have

data that will be frequently accessed and needs to have a quick access time, but we also

have data that is not as heavily used but we are required to sort the data based on different

attributes. To have the most performant code, we might decide that the frequently accessed

87

data should be stored in an in-memory database such as Redis and that the sortable data

should be stored in a SQL or NOSQL database.

The whole idea of bundling requests requires that they be sent to the same location. If

two packets are headed in different directions, there are no tricks to perform to bundle them

together. This section gives an example of how we can still use the remote monad in this

case, bundling where possible.

When we have primitives that are going in different directions we can create separate

GADTs for each of our operations based on the destination and then have a main GADT

that will contain all the destination specific GADTs. Here is what that would look like if we

were wanting to connect to an SQL database and a Redis database.

data RedisFunctions a where
getFollowers :: UUID -> RedisFunctions [UUID]
getFavorites :: UUID -> RedisFunctions [UUID]

data SQLFunctions a where
getProfileInfo :: UUID -> SQLFunctions ProfileInfo
getAlbumsByArtist :: ArtistName -> SQLFunctions [Album]

data AllFunctions a where
redisF :: RedisFunctions a -> AllFunctions a
sqlF :: SQLFunctions a -> AllFunctions a

interp :: ApplicativePacket AllFunctions a -> IO a

Our interp function will then have a staging function that could build up and batch requests

that are going to the same destination. We can imagine an n-tuple in this case that has the

queued commands and procedures for each of the n destinations of the remote primitives.

88

Chapter 6

Case Studies

After covering the theory of remote monads in previous chapters, we will now look at several

case studies that are built upon the remote monad library. These case studies vary from

implementing an established RPC protocol, to transforming our primitives into a different

programming language for evaluation, to interacting with a local database in the form of

Plists. These case studies are identified below:

• blank-canvas - Haskell to HTML5 Canvas library

• remote-json - Remote JSON RPC implementation

• remote-binary - More efficient RPC library using byte strings

• haskino - Haskell to Arduino library

• PlistBuddy - Plist file editor communicating with an interactive shell called Plist-

Buddy

We will also look at one case study of Facebook’s Haxl library which does not use the

remote-monad library but does use the ideas of the remote monad. This library is a remote

monad that is specialized in the domain where all procedures are read-only queries, which

allows us to include another bundling strategy.

89

The goal of this chapter is to show how general remote monads can be, to give the

reader a sense of the common elements needed to use the remote monad, as well as to view

the different layers that can be placed in the network stacks to result in a specific desired

behavior. We will start with an in-depth look at how blank-canvas is built using the

remote-monad framework, and follow it with a basic look at remote monad specific points

of the other case studies.

6.1 Case Study: Blank Canvas

Blank Canvas is a Haskell binding to the browser’s complete HTML5 Canvas library that

supports the weak, strong and applicative bundling strategies of the remote monad. The re-

mote part of this library is the interaction with a canvas object in the browser via JavaScript.

The canvas element, present in HTML5, has 6 categories of functions as shown in Table 6.1.

With these functions, we can draw text, curves, lines, paths or images, to name just a few

of the capabilities. When given a Canvas object, we can get the context of the object and

call its various methods. Here’s what we need to do to give our Haskell program access to

the Canvas object:

• Create a GADT to mirror the Canvas abilities that we would like to call

• Translate the Haskell GADT into JavaScript

• Connect our Haskell program to the browser with a mechanism to execute the sent

JavaScript code

Besides the fact that our serialization layer is not just encoding our GADT to bits but

instead is serializing to a different language, this setup is similar to what we have seen thus

far in the small examples that we used to look at the theory of the remote monad. Something

that we did not mention above, but will need to support, is the fact that a user can interact

with the browser by creating events that should be sent to our Haskell program. These

90

Table 6.1: JavaScript API for HTML5 Canvas

Transformation
void save()
void restore()
void scale(float x,float y)
void rotate(float angle)
void translate(float x,float y)
void transform(float m11,float m12,float m21,float m22,float dx,float dy)
void setTransform(float m11,float m12,float m21,float m22,float dx,float dy)

Text
void fillText(string text,float x,float y,[Optional] float maxWidth)
void strokeText(string text,float x,float y,[Optional] float maxWidth)

TextMetrics measureText(string text)

Paths
void beginPath()
void fill()
void stroke()
void clip()
void moveTo(float x,float y)
void lineTo(float x,float y)
void quadraticCurveTo(float cpx,float cpy,float x,float y)
void bezierCurveTo(float cp1x,float cp1y,float cp2x,float cp2y,float x,float y)
void arcTo(float x1,float y1,float x2,float y2,float radius)
void arc(float x,float y,float radius,float startAngle,float endAngle,boolean d)
void rect(float x,float y,float w,float h)

boolean isPointInPath(float x,float y)

Fonts, colors, styles and shadows (attributes)
globalAlpha float globalCompositeOperation string
lineWidth float lineCap string
lineJoin string miterLimit float
strokeStyle any fillStyle any
shadowOffsetX float shadowOffsetY float
shadowBlur float shadowColor string
font string textAlign string
textBaseline string

Drawing
void drawImage(Object image,float dx,float dy, [Optional] . . .)
void clearRect(float x,float y,float w,float h)
void fillRect(float x,float y,float w,float h)
void strokeRect(float x,float y,float w,float h)

Style Attributes
CanvasGradient createLinearGradient(float x0,float y0,float x1,float y1)
CanvasGradient createRadialGradient(float x0,float y0,float r0,float x1,float y1,float r1)
CanvasPattern createPattern(Object image,string repetition)

Images
string toDataURL([Optional] string type, [Variadic] any args)

ImageData createImageData(float sw, float sh)
ImageData getImageData(float sx, float sy, float sw, float sh)

void putImageData(ImageData imagedata, float dx, float dy, [Optional] . . .)

events take the shape of key presses or mouse events that we would like to affect what we

draw.

6.1.1 Canvas GADT

After we get the context from the canvas object we can call the different methods and set

the variables shown in Table 6.1. Here is a subset of what this looks like as a simple data

type:

data Method a where
Arc :: (Double, Double, Double, Radians, Radians, Bool) -> Method ()
BeginPath :: Method ()
BezierCurveTo :: (Double, Double, Double, Double, Double, Double) -> Method ()
ClearRect :: (Double, Double, Double, Double) -> Method ()
FillRect :: (Double, Double, Double, Double) -> Method ()
FillText :: (Text, Double, Double) -> Method ()
Rect :: (Double, Double, Double, Double) -> Method ()
Scale :: (Interval, Interval) -> Method ()
TextAlign :: TextAnchorAlignment -> Method ()
ToDataURL :: Method Text
MeasureText :: Text -> Method TextMetrics
IsPointInPath :: (Double, Double)-> Method Bool
...

91

Now that we have built out the data type that mirrors the corresponding canvas functions,

we will need to create a JavaScript representation of each of these Haskell objects.

instance InstrShow Method where
showi (Arc (a1,a2,a3,a4,a5,a6)) = "arc("

<> jsDouble a1 <> singleton ’,’ <> jsDouble a2 <> singleton ’,’
<> jsDouble a3 <> singleton ’,’ <> jsDouble a4 <> singleton ’,’
<> jsDouble a5 <> singleton ’,’ <> jsBool a6 <> singleton ’)’

showi BeginPath = "beginPath()"
showi (BezierCurveTo (a1,a2,a3,a4,a5,a6)) = "bezierCurveTo("

<> jsDouble a1 <> singleton ’,’ <> jsDouble a2 <> singleton ’,’
<> jsDouble a3 <> singleton ’,’ <> jsDouble a4 <> singleton ’,’
<> jsDouble a5 <> singleton ’,’ <> jsDouble a6 <> singleton ’)’

showi (ClearRect (a1,a2,a3,a4)) = "clearRect("
<> jsDouble a1 <> singleton ’,’ <> jsDouble a2 <> singleton ’,’
<> jsDouble a3 <> singleton ’,’ <> jsDouble a4 <> singleton ’)’

showi (ToDataURL) = "canvas.toDataURL()"
...

Each of the constructors in Method is going to take the form of ctx.method(args) for

the methods or ctx.var = val to set the variables. The InstrShow only includes the actual

method or the right side of the ctx object, as the full variable assignment or method call

will be built up later.

When programming in the browser, it is helpful, if not necessary, to use other JavaScript

functions that are not associated with the canvas object. For example, our debugging will

go much smoother if we are able to use JavaScript’s console.log() method. So let’s create

an additional data type that will house any other JavaScript methods to which we would

like access, whether that is a top-level method or one that belongs to a different object. For

now, we will just have the constructor that will give us access to the console log command:

data Command =
forall msg . JSArg msg => Log msg

instance InstrShow Command where
showi (Log msg) = "console.log(" <> showiJS msg <> singleton ’)’

where the JSArg indicates that we have a JavaScript representation of the Haskell data type.

92

If we look at Table 6.1 again, we can see that almost all of the methods are returning

void, but for the gradient and pattern methods, we return a new object that has its own

methods and can later be applied to our context stroke, text, and fill styles. The problem is

that we do not have a meaningful representation in Haskell for these pattern and gradient

objects. What we need to do is have a way of storing a variable remotely and return back a

reference to that variable to be used later. Here is a JavaScript example of what we would

like to recreate:

var c = document.getElementById("myCanvas");
var ctx = c.getContext("2d");

// Create gradient
var grd = ctx.createLinearGradient(0,0,200,0);
grd.addColorStop(0,"red");
grd.addColorStop(1,"blue");

// Fill with gradient
ctx.fillStyle = grd;
ctx.fillRect(10,10,150,80);

The return of our createLinearGradient creates a JavaScript object with methods that

can later be called. Let’s create a third data type to describe these types of interactions:

data PseudoProcedure :: * -> * where
CreateLinearGradient :: (Double,Double,Double,Double)

-> PseudoProcedure CanvasGradient
CreateRadialGradient :: (Double,Double,Double,Double,Double,Double)

-> PseudoProcedure CanvasGradient
CreatePattern :: Image image => (image, RepeatDirection)

-> PseudoProcedure CanvasPattern

Where CanvasGradient and CanvasPattern are just wrappers around Int to help us with

variable naming. The JavaScript translation at this point is still just the basics of the call

and does not include where the method belongs:

93

instance InstrShow (PseudoProcedure a) where
showi (CreateLinearGradient (x0,y0,x1,y1)) = "createLinearGradient("

<> jsDouble x0 <> singleton ’,’ <> jsDouble y0 <> singleton ’,’
<> jsDouble x1 <> singleton ’,’ <> jsDouble y1 <> singleton ’)’

showi (CreateRadialGradient (x0,y0,r0,x1,y1,r1)) = "createRadialGradient("
<> jsDouble x0 <> singleton ’,’ <> jsDouble y0 <> singleton ’,’
<> jsDouble r0 <> singleton ’,’
<> jsDouble x1 <> singleton ’,’ <> jsDouble y1 <> singleton ’,’
<> jsDouble r1 <> singleton ’)’

showi (CreatePattern (img,dir)) = "createPattern("
<> jsImage img <> singleton ’,’ <> jsRepeatDirection dir <> singleton ’)’

With these three data types we can combine them all to have the GADT that will be

used to parameterize the remote monad.

data Prim :: * -> * where
Method :: Method -> CanvasContext -> Prim ()
Command :: Command -> Prim ()
PseudoProcedure :: InstrShow a => PseudoProcedure a

-> a -> CanvasContext -> Prim ()

Now we can combine our previous instances of InstrShow together into Prim to get the full

JavaScript methods and variables.

instance InstrShow a => InstrShow (Prim a) where
showi (PseudoProcedure f i c) = showi i <> singleton ’=’ <> jsCanvasContext c

<> singleton ’.’ <> showi f
showi (Method m x) = jsCanvasContext x <> singleton ’.’ <> showi m
showi (Command c _) = showi c

6.1.2 Communicating with the Web Browser

Since we can now generate JavaScript from our Haskell data types, we just need to create

a way to communicate with the browser to execute our JavaScript as well as a way to have

dual communication for replies and to handle events that are generated by the client via the

browser.

Luckily for us, there is a JavaScript function called eval that will take some text and

execute it as JavaScript code.

94

> eval ("var c = 4 + 1; console.log(\"4 + 1 = \" + c)")
4 + 1 = 5

WebSockets [Fette, 2011] is a protocol that allows us to have full communication between

the client and the server. Before this technology, programs would have to poll the server to

check for changes. Now instead of doing a busy wait, our Haskell program can just connect

to the server and listen for any events that may be generated.

For the browser side of things, our Haskell program will serve up an HTML document

that contains a canvas object, and some JavaScript functions to help with the setup. Below

we have some fragments that are found in the HTML document. These fragments set up

the WebSocket which will evaluate the JavaScript text that the Haskell program will send

as well as send responses back for procedures by having a reply promise.

...
jsb = new WebSocket(’ws://localhost:’+location.port+’/’);
jsb.onmessage = function(evt){

var reply = function(n,obj){
Promise.all(obj).then(function(obj){
jsb.send(JSON.stringify([n].concat(obj)));

});
};

eval(’(function(){’ + evt.data + ’})()’);
};

The way that we will be sending back the results to procedures is by saving the result to

variables and when the procedures are finished we can query the variables and send them

back through the WebSocket.

6.1.3 Bundling in blank-canvas

The blank-canvas library supports the weak, strong and applicative bundling. To take ad-

vantage of the remote-monad framework’s automatic bundling we need to define a KnownResult

instance for our primitives as well as smart constructors to lift it into the RemoteMonad.

95

instance KnownResult Prim
knownResult Method {} = Just ()
knownResult Command {} = Just ()
knownResult PseudoProcedure {} = Just ()
knownResult Query {} = Nothing

arc :: (Double, Double, Double, Radians, Radians, Bool) -> Canvas ()
arc = primitive . Method . Arc

In order to make life easier for the KnownResult instance, we separated the commands

andprocedures from Method by placing the procedures, like IsPointInPath, into a Query

data type. This way we do not have to list every single primitive but can pattern match

on the encapsulating constructors. This also greatly simplifies any future functionality that

could be added.

To finish the bundling for this case study, we need to define our send method which will

combine our JavaScript text together and send them through the WebSocket to the web

browser.

After the underlying monad has split the actions into packets, the send method will take

that packet and serialize it to JavaScript text. If our packet only contains commands, then

we can simply call our showi functions on the primitives and separate them with a semi-

colon. In the case that we come across procedures or variables are being set, we parse out the

future variable names and then we append a call to the reply function, with those variable

names to the JavaScript text. With the call to reply, we include a nonce to help us grab

the correct results for the corresponding request. When Haskell program receives data from

the client’s browser via the WebSocket, we store the results in a map where the nonce is a

key. Then we can parse the reply by checking the map for the nonce that we sent with our

requests.

96

6.1.4 Handling Events

In blank-canvas there are a number of configuration options that allow us to set the port,

the bundling strategy, debug or profiling flags. In those options, there is also a way that

we can specify which events we want sent to our Haskell program. By using WebSockets to

communicate with the web browser, we can register for the events and when they occur we

build up an object that can be deserialized into Haskell.

function Trigger(evt) {
var o = {};
o.metaKey = e.metaKey;
o.type = e.type;
...
jsb.send(JSON.stringify(o));

}
function register(name) {

$(document).bind(name,Trigger);
}

On the Haskell side of things, we store the events that take place in a thread-safe queue

and then we can call a wait or flush function to block until an event enters the queue or to

pull all the events in the queue (if any) respectively. Here is an example of a function that

will draw a square in the middle of the screen and then if a user clicks the mouse on the

canvas, then it will draw another square at the cursor location.

97

main = blankCanvas 3000 events = ["mousedown"] $ \ context -> do
let loop (x,y)= do

send context $ do
save()
translate (x,y)
beginPath()
moveTo(-100,-100)
lineTo(-100,100)
lineTo(100,100)
lineTo(100,-100)
closePath()
lineWidth 10
stroke()
restore()

event <- wait context
case ePageXY event of

Nothing -> loop (x,y)
Just (x’,y’) -> loop (x’,y’)

let (w,h) = (width context, height context)
loop (w / 2, h / 2)

More examples of blank-canvas are found in Chapter 7, as the comparisons between the

different bundling strategies were made from the blank-canvas benchmarks.

6.2 Case Study: remote-json

As our first case study, we take a well-established protocol, JSON-RPC [Group et al., 2012],

and use the remote monad as the interface to this protocol. JSON-RPC is a simple proto-

col for remote procedure calls, typically over HTTP, supporting both synchronous remote

methods calls and asynchronous notifications.

To give an example of the protocol from the JSON-RPC specification, consider calling a

method subtract, with the arguments 42 and 23. The following transaction would occur:

98

Client Server

[[RPC]]

[[RemoteMonad]]

[[Packet]] [[Call]]

[[SendAPI]] [[ReceiveAPI]]

Figure 6.1: remote-json Network Stack

--> {"jsonrpc": "2.0", "method": "subtract",
"params": [42, 23], "id": 1}

<-- {"jsonrpc": "2.0", "result": 19, "id": 1}

Following the notation from the JSON-RPC specification, --> is the data sent from client

to server, and <-- is the server’s response. The packets being sent in either direction are

simple JSON objects.

The fact that the JSON-RPC protocol supports batching and is easy to debug, because

of the easy to read JSON structures, makes it an obvious choice for a case study of the

remote monad. Furthermore, by using JSON-RPC we can implement our clients in Haskell,

and use existing JSON-RPC services written using any language or framework.

To investigate the generality of our remote monad framework, we implemented a complete

JSON-RPC stack, both client and server, called remote-json which is available on Hackage.

The network stack of this library is in Figure 6.1.

6.2.1 Design of remote-json

We start our design using the RPCmonad, which is a newtype wrapper around a RemoteMonad.

The JSON-RPC, like the remote monad design pattern, has two types of calls, methods (that

have a result), and notifications (which never have a result). JSON-RPC methods and no-

tifications map directly on remote monad procedures and commands, though in practice,

99

notifications are rarely seen in JSON-RPC APIs.

-- The monad
newtype RPC a = RPC (RemoteMonad Prim a)

deriving (Monad, Applicative, Functor)

-- Primitive Types
data Prim :: * where

Notification :: Text -> Args -> Prim ()
Method :: FromJSON a => Text -> Args -> Prim a

data Args where
List :: [Value] -> Args
None :: -> Args

--specify commands and procedures
instance KnownResult Prim where

knownResult Notification = Just ()
knownResult Method = Nothing

-- the remote send
send :: Session -> RPC a -> IO a

This API gives an (aeson) Value-based access to JSON-RPC. JSON-RPC’s Methods do

have one difference from the remote monad’s procedures. Methods in JSON-RPC use an

id to tag a result so that responses can be matched up with the requests. Because of the

modular network stack, we can put an extra layer that adds the unique id when we send the

request. For the weak and strong bundling strategies, we are sending at most one procedure,

which means the unique id is not used or can trivially be set to be 1 each request. For the

applicative bundling, each applicative packet will have a processing function that uses state

to keep track of the next available id, as well as a layer to translate a packet of primitives

into JSON batches:

100

go:: forall a . AP.ApplicativePacket Prim a
-> State IDTag ([JSONCall], HM.HashMap IDTag Value -> IO a)

data JSONCall :: * where
NotificationCall :: Prim a -> JSONCall
MethodCall :: ToJSON a => Prim a -> Value -> JSONCall

instance ToJSON JSONCall where
toJSON (MethodCall (Method nm args) tag) = object $

["jsonrpc" .= ("2.0" :: Text)
, "method" .= nm
, "id" .= tag
] ++ case args of

None -> []
_ -> ["params" .= args]

toJSON (NotificationCall (Notification nm args)) = object $
["jsonrpc" .= ("2.0" :: Text)
, "method" .= nm
] ++ case args of

None -> []
_ -> ["params" .= args]

6.2.2 Sessions

In the remote-json framework we use sessions to describe which bundling strategy to use

in communicating with the server. These sessions will also account for how we are sending

the values synchronously or asynchronously. We can create a JSON-RPC instance using

weakSession, strongSession or applicativeSession. Each of these takes an encoding of

how to send Values to a remote server, and returns a Session.

weakSession :: (SendAPI :~> IO) -> Session
strongSession :: (SendAPI :~> IO) -> Session
applicativeSession :: (SendAPI :~> IO) -> Session

Because we want to allow the user to mark an RPC as a synchronous or asynchronous

communication of JSON. We add a wrapper SendAPI that designates the Values to be sent

101

as an asynchronous request or synchronous.

data SendAPI :: * -> * where
Sync :: Value -> SendAPI Value
Async :: Value -> SendAPI ()

So, calling send with the RPC monadic remote commands and a given Session will bundle

the monad into packets specified by the Session, and then call the transmission function

found in the session with the values either wrapped with Sync or ASync.

We can write our own matcher for SendAPI, or use remote-json-client, which provides

a function that, when given a URL, returns the SendAPI to IO natural transformation using

the wreq library.

clientSendAPI :: String -> (SendAPI :~> IO)

Putting this together, we get

main :: IO ()
main = do

let s = applicativeSession
(clientSendAPI "http://www.wibble.com/wobble")

(t,u) <- send s $ do
say "Hello, "
t <- temperature
say "World!"
u <- uptime "orange"
return (t,u)

putStrLn "Temperature: " ++ show t
putStrLn "Orange Uptime: " ++ show u

With this example, it is clear that we are sending to a particular website without any extra

code about bundling obfuscating the main logic of the program. We could make calls to

another remote server and even use a different bundling strategy with those interactions by

using send with a different session.

102

Package Bundling Server LOC Version
jsonrpc-conduit List 4 178 0.3.0
json-rpc-client Applicative 191 0.2.4.0
hs-json-rpc 237 0.0.0.1
colchis 4 283 0.2.0.3
remote-json Monad 4 416 0.2
json-rpc List 4 681 0.7.1.1
jmacro-rpc List 4 754 0.3.2

Table 6.2: Hackage JSON-RPC Client Libraries

main :: IO ()
main = do

let wibble = applicativeSession
(clientSendAPI "http://www.wibble.com/wobble")

let weather = weakSession
(clientSendAPI "http://weather.example.com")

(t,u) <- send wibble $ do
say "Hello, "
t <- temperature
say "World!"
u <- uptime "orange"
return (t,u)

w <- send weather $ do
_ <- setLocation "Lawrence,KS"
w <- getWeatherAlerts

putStrLn "Temperature: " ++ show t
putStrLn "Orange Uptime: " ++ show u
putStrLn "Weather Alerts for Lawrence, KS: " ++ show w

6.2.3 Comparison with other JSON-RPC libraries

The remote-json library is small, complete, and has the useful feature of automatic bundling

because of the usage of the remote monad design pattern. In order to better understand the

impact of the remote monad abstraction, we have compared our remote-json library with

other JSON-RPC client libraries available on Hackage. Table 6.2 summarizes our findings.

We use the cloc tool to count lines of Haskell code, and have manually inspected haddock

103

and the source to determine functionality.

Our JSON-RPC library is the only library to support monadic code directly. Interestingly,

there is an existing library,json-rpc-client that did support the applicative interface. A

number of libraries support manual bundling using lists, where the user would need to

explicitly extract the result from a list.

6.3 Case Study: Remote Binary

The remote-binary library is an instance of the remote-monad that focuses on efficiency.

Instead of allowing the user to pick the bundling strategy and sending the packets as strings,

the remote-binary library will send GADTs as applicative packets and send a binary encod-

ing of the packets, instead of plain text, over a user-specified network transport mechanism.

To demonstrate this transformation using remote-binary, let’s take a simple stack ex-

ample and cause it to run remotely:

data Prim :: * where
Push :: Int -> Prim ()
Pop :: Prim Int

deriving (Show)

evalPrim :: Prim a -> State [Int] a
evalPrim (Push n) = modify (n:)
evalPrim (Pop) = do

st <- get
case st of

[] -> error "Can’t pop an empty stack"
(x:xs) -> do

put xs
return x

Here we have a very simple stack example running locally using a GADT and an evalu-

ation function to perform the stack operations. In order to execute this remotely using

remote-binary, we need to:

104

• show which primitives are commands and which ones are procedures using the

KnownResult class

• specify a binary encoding for our Push and Pop methods

• specify a transport mechanism to send them to the server

instance KnownResult Prim where
knownResult (Push _) = Just () -- command (we know the result statically)
knownResult Pop = Nothing -- procedure

By their very nature, we see that remote-monad procedures return some value a, which

means we also need to supply the server a way to encode the resulting value so it can

transmit the result back to our local process in the correct encoding.

The BinaryQ class will be used for the binary encoding:

class BinaryQ p where
putQ :: p a -> Put
getQ :: Get (Fmap p Put)
interpQ :: p a -> Get a

data Fmap f a where
Fmap :: (a -> b) -> f a -> Fmap f b

instance Functor (Fmap f) where
fmap f (Fmap g h) = Fmap (f . g) h

putQ is used locally to encode the GADT prior to transmission and getQ is used remotely to

decode the transmitted GADT. The getQ function will also provide the server the mechanism

for encoding the evaluated result. This mechanism uses a new data type called Fmap to house

the decoded data type as well as the function to apply to the result of the computation The

interpQ function is used on the local side to interpret the result of the remote evaluation,

using the sent packet as the witness to ensure the correct type is decoded. In the stack

example above, if the interpQ function has an encoded value with a witness packet that

105

contains the Pop operation, then it would know that it should be decoding the value as an

Int because of the GADTs type.

The remote-binary library provides the BinaryQ instances for the different remote

monad packets. Additionally, the packets require the user’s GADT to be an instance of

BinaryQ in order to encode it with the packet and to encode any results to be returned.

Below are the instances for our example:

instance BinaryQ Prim where
getQ = do i <- get

case i :: Word8 of
0 -> do

j <- get
return $ Fmap put (Push j)

1 -> return $ Fmap put Pop
_ -> error "Expected a Prim but got something else"

putQ (Push n) = do
put (0 :: Word8)
put n

putQ (Pop)= put (1 :: Word8)

interpQ (Push _) = return ()
interpQ (Pop) = get

In our example we have two constructors for the Prim user GADT. For the local encoding,

we can put a 0 to indicate that we have encountered a Push constructor and 1 for a Pop

constructor. Then on the remote decoding, we check for a 0 or a 1 to know if we should be

building up a Push object or Pop object.

Since Pop returns an Int, and Int is already an instance of Binary, we can just use

Binary’s put function for the encoding strategy for the result in the Fmap type and get for

the interpretation of the result.

Now that we have a way of encoding packets of our Prim, we can use natural transforma-

tions to take our transport function, which can send byte strings, and create a function that

can bundle our RemoteMonad into applicative packets and then send them as byte strings to

the remote server.

106

To complete the network stack, on the server side we need a mechanism to receive and

decode byte strings, to evaluate our GADT when wrapped in an Applicative packet, and

reply with the encoded result. We chose the Applicative bundling strategy to give us the

most efficient bundling strategy.For our current example, we have decided to use sockets

for the transportation layer.

The simplest packet in the remote monad is the WeakPacket, containing a single Prim

construct. If we create a function that works over a Prim that is wrapped in a WeakPacket

then we can promote it to a function that works over ApplicativePackets by using the

exported promote function. This promote function is not specific to remote-binary but is

defined in the remote-monad framework. By using promote we only have to worry about

how to handle a single primitive but this would prohibit us from doing things in parallel as

we would be evaluating each primitive individually.

--Dispatches Prims to evaluation function
-- uses TMVar to be thread-safe
dispatchWP :: (TMVar [Int])->

WeakPacket Prim a -> IO a

--Lift into a natural transformation
--and promote to handle ApplicativePacket
runAppPacket:: TMVar [Int] ->
(ApplicativePacket Prim :~> IO)
runAppPacket var = promote $ nat (dispatchWP var)

The remote-binary library has a server function that wraps around our applicative

packet handler and takes care of the result serialization:

server :: (BinaryQ p)=> (AP.ApplicativePacket p :~> IO) -> (SendAPI :~> IO)

We can use the runAppPacket function with the exported server function with the socket

creation and handling of requests to complete the network stack for the server. The full

network stack is in figure 6.2.

107

Client Server

[[RemoteMonad]]

[[ApplicativePacket]]
[[

Fmap
ApplicativePacket

]]
[[SendAPI]] [[SendAPI]]

Figure 6.2: Remote Binary Network Stack

6.3.1 Remote Exceptions

The way that we handle exceptions in remote-binary is by putting a layer before the

server code which will catch any exceptions. This layer is found in the server function.

If an exception was thrown from the server evaluation code, then we convert that to a

RemoteBinaryException which takes the exception text as an input parameter. By adding

an instance of Binary to RemoteBinaryException we can send the exception back to the

local process and then allow the user to catch the exception. The server function precedes

each result with an error byte which will tell the client to either decode the result or an

exception.

By doing this, we eliminate the ability for the local code to catch specific exceptions since

all exceptions will then be RemoteBinaryExceptions. If the user desires this capability, then

they can simply write a read instance to parse the displayException text back into an

exception.

6.4 Case Study: Haskino

The Haskino library allows a programmer to use Haskell to program the Arduino series

of micro-controller boards, in both a tethered mode for easy debugging and an untethered

mode for standalone operation. The tethered mode uses a byte code interpreter running

108

on the Arduino, while the standalone mode compiles the monadic Haskell code to C, which

is then linked with a small runtime system. Haskino was originally written with its own

implementation of the remote monad design pattern [Grebe & Gill, 2016] as the remote-

monad library was being created and the remote monad ideas were just taking shape. The

original author has since ported the Haskino package to use the remote monad package

instead, making use of the applicative packet [Grebe & Gill, 2017]. The communication

stack of this library is in Figure 6.3.

The porting of the Haskino library to use the remote monad package took approximately

10 hours, demonstrating the relative ease of use of the package. The Haskino library in-

stantiates domain-specific commands and procedures as ArduinoPrimitives. There are

over 50 commands and over 300 procedures within this library, a bulk of which are if-then-

else statements covering different types or iteration expressions. For the tethered, inter-

preted mode, the sendApp function sends an Arduino monad to a tethered Arduino over an

ArduinoConnection. An ArduinoConnection is an abstract handle to the remote Arduino,

similar to the Session structure of the remote-json library. The sendApp uses the runAP

function to package the monad into byte code which may be run on the remote Arduino

board by the interpreter.

-- The monad
newtype Arduino a = Arduino (RemoteMonad ArduinoPrimitive a)

deriving (Functor, Applicative, Monad)

-- The remote send
sendApp :: ArduinoConnection -> Arduino a -> IO a
sendApp c (Arduino m) = (run $ runMonad $ nat (runAP c)) m

-- Translate to bytecode
runAP :: ArduinoConnection -> ApplicativePacket ArduinoPrimitive a -> IO a

The Haskino DSL consists of a deep embedding which includes conditionals, loops, and

threads, requiring entire code blocks to be run remotely. Haskino implements these as

109

commands, which take another Arduino monad as a parameter to the command as shown

in the examples below.

loopE :: Arduino () -> Arduino ()
ifThenElse :: Expr Bool -> Arduino ()

-> Arduino () -> Arduino ()
createTaskE :: Expr Word8 -> Arduino ()

-> Arduino ()

The embedded code blocks in these commands are encoded differently, not requiring

bundling, but instead encoding the entire monad into one binary stream. Porting to use the

remote monad library was straightforward here as well. A packageCodeBlock function takes

the Arduino monad and returns a ByteString with the encoded code block. Internally, it

calls packMonad andpackApplicative functions that reify the internal structure that consists

of RemoteMonads and RemoteApplicatives into the Haskino protocols code block format.

Finally, the Haskino compiler performs a reification similar to packageCodeBlock, instead

transforming the remote monad into C code as opposed to Haskino protocol byte code.

We will finish this case study with an example of a haskino program which uses the

Arduino as a night light that also plays songs. This Haskell should be very familiar to those

who have programmed using an Arduino.

110

Host Arduino Board

[[Arduino]]

[[RemoteMonad]]

[[ApplicativePacket]] [[Interpreter]]

Figure 6.3: Haskino Communications Stack

--- pin numbers for components
photocell :: Word8
led :: Word8
buzzer :: Word8

nightLight :: Arduino ()
nightLight = do

setPinMode buzzer OUTPUT
setPinMode led OUTPUT
loop $ do
l <- analogRead photoCell
-- turn on the LED and play a song if the room is dark
if l < 500 then --

do
digitalWrite led True
leanOnMeSong

else
digitalWrite led False

nightLightExample :: IO ()
nightLightExample = withArduino True "/dev/cu.usbmodem1421" nightLight

leanOnMeSong :: Arduino () -- series of tones and pauses to create song

111

Table 6.3: PlistBuddy commands used to modify and read values in a plist file

PlistBuddy Commands
Help Prints this information
Exit Exits the program. Changes are not saved to the file.
Save Saves the current changes to the file.

Revert Reloads the last saved version of the file.
Clear type Clears out all existing entries, and creates a root of type=type.

Print [entry] Prints value of entry. If an entry is not specified, prints entire file.
Set entry value Sets the value at entry to value.

Add entry type [value] Adds entry with type type and optional value value.
Copy entrySrc entryDst Copies the entrySrc property to entryDst.

Delete entry Deletes entry from the plist.
Merge file [entry] Adds the contents of plist file to entry.

Table 6.4: List of operations that can be performed on a plist using PlistBuddy.

6.5 Case Study: PlistBuddy

Property list files, most commonly seen in macOS and iOS, are files that store user or

application settings with the file name extension .plist. These files store the objects in an

XML or JSON format. There is a command line utility called PlistBuddy which gives the

user an interactive shell to read and write values in these plists.

The functional group at KU created a Haskell library that could send commands to the

interactive shell, which fits nicely with the remote monad principles. This usage of the

remote monad can be looked at as using the remote monad to connect to a database. Table

6.4 shows the available actions as shown in the OSX 10.9 man page. Encoding these actions

into a GADT structure is a straightforward task:

112

data PlistPrimitive a where
Help :: PlistPrimitive Text
Exit :: PlistPrimitive ()
Save :: PlistPrimitive ()
Revert :: PlistPrimitive ()
Clear :: Value -> PlistPrimitive ()
Get :: [Text] -> PlistPrimitive Value
Set :: [Text] -> Value -> PlistPrimitive ()
Add :: [Text] -> Value -> PlistPrimitive ()
Delete :: [Text] -> PlistPrimitive ()
ImportData :: [Text] -> ByteString -> Trail -> PlistPrimitive ()
MergeDate :: [Text] -> UTCTime -> Trail -> PlistPrimitive ()

The only difference between our GADT and the PlistBuddy man page is that Print has been

changed to Get in the GADT since we want to obtain the result of the key instead of just

printing the value to the screen. As most of the operations are writing to a file, we know the

result will be () except in the case of Help and Get commands which will return some text.

our KnownResult instance will then mark Help and Get as procedures, and everything else

as commands.

instance KnownResult PlistPrimitive where
knownResult x =

case x of
Help -> Nothing
Get -> Nothing
Exit -> Just ()
Save -> Just ()
Revert -> Just ()
Clear -> Just ()
Set -> Just ()
Add -> Just ()
Delete -> Just ()
ImportData -> Just ()
MergeDate -> Just ()

Since the PlistBuddy is an interactive shell, the “remote” transport mechanism is sim-

ply our Haskell program opening a pseudo-terminal to the plistbuddy process and sending

113

commands the same way that a user would.

openPlist :: FilePath -> IO Plist
openPlist fileName = handleIOErrors $ do

(pty,ph) <- spawnWithPty
Nothing
False
"/usr/libexec/PlistBuddy"
["-x",fileName]
(80,24)

return $ Plist pty ph

command :: Plist -> ByteString -> IO ByteString
command plist input = do
writePty pty (input <> "\n")
r <- recvReply pty
return r

where
pty = plist_pty plist

send :: Plist -> PlistBuddy a -> IO a
send dev m = do
res <- runExceptT $ unwrapNT (runMonad (wrapNT (sendW dev))) m
case res of

Left (PlistError e) -> throw $ PlistBuddyException e
Right a -> pure a

In the above code sendW is an implementation using the Weak Packet, but we could use any

other packet to bundle together commands. To bundle with a different packet, we would

simply build up the byte string for each primitive, separated with a newline character. Here

is an example of a program that is running PlistBuddy:

114

main = do
device <- openPlist "example/example.plist"
t <- getCurrentTime
send device $ do
add ["EnvironmentName"] (String "Dev")
add ["APIBaseURL"] (String "http://example.com")
add ["ServiceErrorDomain"] (String "http://error.example.com")
add ["RTCICEServerURLs"] (Array [])
add ["RTCICEServerURLs","0"] (String "stun:stun.example.com")
add ["RTCICEServerURLs","1"] (String "turn:turn.example.com")
add ["WebSocketAPIVersion"] (Real 0.5)
add ["allAccessAPIURL"] (Dict [])
add ["allAccessAPIURL", "ChatEndpoint"] (String "http://chat.example.com")
add ["allAccessAPIURL", "MappingEndpoint"] (String "http://example.com/map")
add ["allAccessAPIURL", "ChatPort"] (Integer 3015)
save

return ()

This example would then yield the following file:

115

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>APIBaseURL</key>
<string>http://example.com</string>
<key>Bool</key>
<true/>
<key>Date</key>
<date>2017-12-19T02:01:54Z</date>
<key>Dict</key>
<dict/>
<key>EnvironmentName</key>
<string>Dev</string>
<key>Integer</key>
<integer>5</integer>
<key>RTCICEServerURLs</key>
<array>

<string>stun:stun.example.com</string>
<string>turn:turn.example.com</string>

</array>
<key>Real </key>
<real>4.5</real>
<key>ServiceErrorDomain</key>
<string>http://error.example.com</string>
<key>String</key>
<string>tester</string>
<key>WebSocketAPIVersion</key>
<real>0.5</real>
<key>allAccessAPIURL</key>
<dict>

<key>ChatEndpoint</key>
<string>http://chat.example.com</string>
<key>ChatPort</key>
<integer>3015</integer>
<key>MappingEndpoint</key>
<string>http://example.com/map</string>

</dict>
</dict>
</plist>

116

6.6 Case Study: Haxl

Up until this point, we have discussed how we can classify remote primitives as commands,

procedures, and queries and how based on their classification, we can use different techniques

to bundle them together to avoid the network cost associated with each call. But we have

delayed discussing read-only queries and how that fits in with bundling requests. In this

section, we will look at how systems that use read-only queries are able to bundle more

aggressively due to the nature of the request. This technique was first brought forth by

Simon Marlow and his group at Facebook in the form of a Haskell library called Haxl. The

way that Haxl splits up a monad into batches of items can be viewed as a specific instance

of the more general remote monad theory contained in this dissertation.

6.6.1 Supporting Haxl-style Primitives

Haxl [Marlow et al., 2014] is a Haskell library developed and used by Facebook for high-

performance access to remote services. The Haxl library was created at Facebook to classify

actions and content as spam or as abusive with regard to Facebook’s terms of service. The

logic that determines if something is abusive is encapsulated in many different rules and

needs to be run quickly in order to be useful for the scale of Facebook’s environment. Haxl’s

main contribution is the fact that it can figure out which rules and tests can be run in

parallel to make decisions about the action or content. Haxl contains other useful techniques

to exploit concurrency where it is able, such as caching results, and can also dump cached

results to a file to reproduce the environment surrounding bugs as they are encountered.

In this section, we will only look at the parts of Haxl that are aimed at bundling remote

requests and how these components compare and contrast with the remote-monad library

as well as run through some examples. We will also look at creating a version of Haxl using

the remote monad framework to show that Haxl is an instance of the remote monad ideas.

There are two main differences between remote monads and Haxl.

117

• Remote monads split primitives into commands and procedures, while in Haxl, as

originally presented, all primitives are read-only queries. These queries are cached

by design in Haxl to always give the same answer to the same question, and like

procedures, they give results.

• Remote monads are geared towards remote procedure calls that have side effects, and

as such, commands and procedures are always executed in the given order. However,

Haxl is in a domain where the primitives are effect-free, allowing for more concurrency

through the reordering of primitives.

Supporting queries gives us the following network component:[[
Monad

< Queries >

]]
[[
ApplicativeFunctor

< Queries >

]]

The ability to reorder means that Haxl can perform bundling in circumstances in which

remote monads require multiple packets. Consider the following expression tree, where Qn

denotes a Haxl query, and also a remote monad style procedure:

<∗>

>>=

Q1 Q2

λ

>>=

Q3 Q4

λ

• In our remote monad implementation, we will send 3 (applicative) packets: [Q1], [Q2

& Q3] and [Q4], where the packets are separated by the monadic binds.

• Haxl will send [Q1 & Q3], then [Q2 & Q4], combining the left-hand side of both binds

into one packet and later sending the right-hand side.

118

Haxl determines where the data dependencies are between the different actions and send-

ing the actions that have all the information needed to be evaluated. Haxl does this by doing

a breadth-first search along the structure, finding actions that are not depending on any other

unfinished work. The first action found after a <*>, as an example, would always be consid-

ered as ready to be sent as it never relies on other data by the very nature of the applicative

structure.

We can add Haxl bundling to our framework by having a new bundling strategy that is

based on the assumptions found in what we call the Haxl Lemma.

Haxl Lemma

If all primitives are queries, then they can be reordered to maximize applicative functor

bundling. The key transformation can be expressed as

(q1 >>= k1) <*> (q2 >>= k2)

≡

(,) <$> q1 <*> q1 >>= \(r1,r2) -> k1 r1 <*> k2 r2

When using the ApplicativeDo GHC extension we actually have something very similar

occur, from which both libraries are able to benefit. If we have the following do-notation:

do x <- fetchSomething
y <- fetchSomethingElse
z <- someComputation x y

...

The extension does its work at compile time, so it is able to determine that x is not used

in the fetchSomethingElse operation. With that discovery, the extension can then rewrite

the program to be the following:

(x,y) <- (,) <$> fetchSomething <*> fetchSomethingElse
z <- someComputation x y

To support Haxl’s style of rewrites and reordering, we can simply create a new more

119

aggressive bundling strategy through the runMonad evaluation function which will apply

new rules based on the new assumptions.

Since the Haxl methodology is still using applicative functors to be transmitted we can

reuse our ApplicativePacket and just wrap a newtype around it to trigger the correspond-

ing runMonad function.

newtype QApplicativePacket (q :: * -> *) (a :: *)
= QApplicativePacket (ApplicativePacket q a)

We then provide an additional overloading for runMonad, parameterized over

QApplicativePackets, that utilizes the Haxl lemma to reorder primitives to maximize the

bundling of queries. Since we can already send an entire applicative functor in a single packet,

the reordering only happens when binds are involved. Looking back at our RemoteMonad

constructors, we have the Ap’ constructor which is used to tell us that we have an applicative

functor operation but that there are binds found therein. What we are then able to do is

pattern match on that constructor and then apply a rewrite rule to cause the bundling to

happen.

Here is what one of the rewrite rules looks like:

helper :: RemoteMonad prim a -> RemoteMonad prim a
helper (Ap’ (Bind m1 k1) (Bind m2 k2)) =

liftA2 (,) (helper m1) (helper m2) >>= (\ (x1,x2) ->
helper (k1 x1) <*> helper (k2 x2))

This rule should look familiar as it is the rule demonstrated with the description of the Haxl

lemma. The other rules are used to correctly handle the different variations of the data

structures.

There have been at least 8 clones of Haxl made using Scala [clu, 2018; fet, 2018b], Pure-

Script [fet, 2018a], Clojure [mus, 2018; ura, 2018], C# [hax, 2018], and another Haskell

version but built using Free Applicative Functors [Fancher, 2016]. Since we have shown that

Haxl is an instance of remote monad specialized over read-only queries, the existence of these

120

libraries show that remote monad ideas can be performed in languages outside of Haskell as

well as the usefulness of these concepts.

6.7 Observations

With these case studies, we have seen the remote monad parameterized over a wide array

of APIs that have different needs and domains but have a common aim of interacting with

a remote entity, making this a valid abstraction to be employed in many environments and

situations. To use the remote-monad library one would just have to create a GADT that

mirrors the remote calls, have some serialization and transmission functions and then, if the

server is also being created, a packet handler. As we saw from the Haxl case study, there are

a number of programs out there that are instances of the remote monad, with some using

weak strategies or something stronger.

121

Chapter 7

Performance

As a demonstration of the performance difference between the bundling strategies, we will

look at some benchmark tests of the blank-canvas library and compare the time for each of

the bundling strategies. These benchmarks were originally created to test the performance

and abilities of blank-canvas when the ideas of the remote monad were in their infancy.

What this means is that most of the tests were created under the assumption that the strong

bundling was the best that we could do. Since the ‘blank-canvas‘ library is heavily centered

on commands, there were only a few of the test cases that needed an updated to let the

applicative bundling really shine. Some comparisons of rewriting the test cases are found in

Section 7.3.

7.1 Benchmarks

Before jumping into the results, here is the list of benchmarks run:

• Bezier - draw filled polygons comprised of 5 bezier curves 100 times

• CirclesRandomSize - draw circles of random sizes 1,000 times

• CirclesUniformSize - draw circles of the same size 1,000 times

• FillText - draw short words 1,000 times

122

• ImageMark - draw a randomly stretched and rotated image 1,000 times

• StaticAsteroids - draw asteroids (6 point polygons) 1,000 times

• Rave - draw the linear gradient of 6 different colors 100 times

• IsPointInPath - draw a random rectangle and plot 10 random points, if a point is found

inside the rectangle, then the point is red or if not, then the point is green. This is

done 100 times

• MeasureText - Measure the length of text with a given format and font. Each text has

2,000 10-letter words.

• ToDataURL - draw a cloud with bezier curves and then print part of the data URI,

which contains the encoded representation of the image, 30 times.

Screenshots of these benchmarks are shown in Figure 7.1

Each of these benchmarks is run multiple times by the criterion Haskell library and

run to obtain the linear regression. The main numbers in this chapter are taken from runs

done in the Chrome web browser on a machine running Mac OSX with the canvas having a

width and height of 800 and 600 pixels respectively. To view the different bundling strategies

running on the Safari, Chrome and Firefox web browsers see Section 7.4.

The first seven tests are running blank-canvas operations that have no return result,

or in other words, they are running remote commands. IsPointInPath, MeasureText, and

ToDataURL, on the other hand, are making calls to the remote server and are expecting a

result. What this means is that when we use weak-bundling for blank-canvas we should

expect a performance hit globally when compared with using some other bundling strategy

but that the performance difference between the strong bundling and the applicative bundling

will not be apparent until the IsPointInPath, MeasureText and ToDataURL functions are

being used.

123

Figure 7.1: ScreenShots of Benchmarks. From left to right: Bezier, CirclesRandomSize, Cir-
clesUniformSize, FillText, ImageMark, StaticAsteroids, Rave, IsPointInPath, MeasureText,
ToDataURL

124

Benchmark Weak (ms) Strong (ms) Applicative (ms)
Bezier 113.7 71.4 80.0
CirclesRandomSize 138.5 52.2 59.6
CirclesUniformSize 134.9 48.5 55.6
FillText 150.4 75.6 87.4
ImageMark 184.7 70.2 76.0
StaticAsteroids 374.3 112.4 128.2
Rave 48.8 20.9 26.0
IsPointInPath 447.8 359.1 199.3
MeasureText 682.9 689.2 142.8
ToDataURL 211.1 208.2 238.9

Table 7.1: Performance Comparison of Bundling Strategies (Chrome v64.0.3282.186)

Something that should be taken into consideration when looking at these numbers is that

the benchmarks aren’t normalized with each other, meaning that some benchmarks could be

doing more work or less work than the others. What we want to focus on is the difference

between weak, strong and applicative bundling when the same test case is run. All of the

numbers are taken with the Haskell code and the browser residing on the same machine to

minimize the skewing of data because of ever-changing network conditions. The differences

between the different bundling strategies would then be magnified if we added network delay

for each packet sent.

Table 7.1 shows a comparison between the execution time of the different bundling strate-

gies. As expected we can see the weak bundling is anywhere between 2-6 times slower than

the strong and applicative bundling strategies. Let’s look at what is inside the packets as

the speedup directly correlates with the number of packets sent.

Something that is a little unexpected in looking at the performance numbers is that

there are times when the strong bundling is slightly faster than the applicative bundling,

even though they are sending the same number of packets. It turns out that this is the only

time when the applicative bundling strategy is slower than the strong bundling. Because

the applicative bundling is more complex than the strong bundling, the extra work needed

to build up a packet adds a small amount of overhead. This overhead is only noticeable,

when the two strategies are sending the same number packets. To be specific, because of

125

Total Packets Commands per Packet Procedures per Packet
50616 0 1

1027172 1 0

Table 7.2: Weak Packet profile during benchmark tests

Total packets Commands per Packet Procedures per Packet
46456 0 1

16 2 1
1632 3 1

16 14 1
464 17 1

1600 41 1
92 1200 1
79 1300 1
56 3000 1

184 5000 1
56 6000 1
29 9992 1

Table 7.3: Strong Packet profile during benchmark tests

the structure of applicative functors, extra work is needed to apply the results of the remote

actions to the local combining function when compared with the other bundling strategies.

Overall, the extra cost of creating applicative packets is minimal when compared with the

magnitude of the performance gains that we can see when the applicative bundling is able to

lower then number of packets, most notably seen with the MeasureText and IsPointInPath

benchmarks.

There may be some situations in which bundling requests does not give the best perfor-

mance when looking at the ratio between the computation cost and the network latency. We

observe that when network costs dominate remote procedure costs, batching immediately

dispatchable procedures will almost always be better than the weak remote monad. We

leave the investigation of when the weak remote monad, or similar, performs better than the

bundling strategies, as future work.

126

Total Number of Packets Commands per Packet Procedures per Packet
68 0 1
22 2 2000
38 3 1

1600 3 10
16 14 1

464 17 1
1600 41 1

56 1200 1
79 1300 1
46 3000 1

159 5000 1
46 6000 1
29 9992 1

Table 7.4: Applicative Packet profile during benchmark tests

7.2 Packet Shapes

Running blank-canvas’ benchmarks tests with the packet profiling flag allows us to see the

distribution of the packets for these test sets. If we look at the distribution of the packets

in the weak bundling, found in Table 7.2, we can see that after running all the benchmarks

we sent 50,616 packets that had a single procedure and 1,027,172 packets that contained

a single command, yielding 1,077,788 total packets. Compare this to the strong bundling

packet distribution in Table 7.3 which only sent a total of 52,824 packets and the applicative

bundling profile in Table 7.4 which only sent 4,223 packets. It is no wonder that we have

a speedup of 2-6 times faster when we use the strong or applicative bundling strategies

than if we used the weak bundling strategy. These performance numbers are looking at an

API that is heavily leaning towards commands over procedures. These results could vary

depending on the API primitives as well as how the data is used. Recently, blank-canvas

was updated from making HTTP requests to use WebSockets as the communication layer

between the Haskell program and the web browser. Because the HTTP requests are slower

when compared with WebSockets the difference between the weak and the other bundling

strategies much more pronounced with a speed up of 6-8 times faster when using the strong

or applicative bundling. Utilizing this faster transmission mechanism narrowed the gap

127

Weak Strong Applicative
Commands Procedures # Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet Packets per packet per packet
1 0 1 1 1300 1 1 1300 1

1300 1 0

Table 7.5: Bezier Packet Profile during benchmark testing

between the different strategies.

7.2.1 Bezier

benchmark :: CanvasBenchmark
benchmark ctx = do

bzs <- replicateM numBezier $ replicateM numCurves $ (,,,,,)
<$> randomXCoord ctx
<*> randomYCoord ctx
<*> randomXCoord ctx
<*> randomYCoord ctx
<*> randomXCoord ctx
<*> randomYCoord ctx

send ctx $ forM_ bzs drawCurves

drawCurves :: [Bezier] -> Canvas ()
drawCurves bzs = do

beginPath();
let (_, _, _, _, x, y) = last bzs
moveTo(x, y);
forM_ bzs bezierCurveTo

closePath();
lineWidth(5);
fillStyle("#8ED6FF");
fill();
strokeStyle("blue");
stroke();

128

Weak Strong Applicative
Commands Procedures # Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet Packets per packet per packet
1 0 1 1 5000 1 1 5000 1

5000 1 0

Table 7.6: CirclesRandomSize Packet profile from a single run of the test

7.2.2 CirclesRandomSize

benchmark :: CanvasBenchmark
benchmark ctx = do

xs <- replicateM 1000 $ randomXCoord ctx
ys <- replicateM 1000 $ randomYCoord ctx
rs <- replicateM 1000 $ randomRIO (1, 50)

send ctx $ sequence_ [showBall (x, y) r col
| x <- xs
| y <- ys
| r <- rs
| col <- cycle ["red","blue","green"]
]

showBall :: Point -> Double -> Text -> Canvas ()
showBall (x, y) r col = do

beginPath();
fillStyle(col);
arc(x, y, r, 0, pi*2, False);
closePath();
fill();

129

Weak Strong Applicative
Commands Procedures # Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet Packets per packet per packet
1 0 1 1 5000 1 1 5000 1

5000 1 0

Table 7.7: CirclesUniformSize Packet profile from a single run of the test

7.2.3 CirclesUniformSize

benchmark :: CanvasBenchmark
benchmark ctx = do

xs <- replicateM 1000 $ randomXCoord ctx
ys <- replicateM 1000 $ randomYCoord ctx
send ctx $ sequence_ [showBall (x, y) col

| x <- xs
| y <- ys
| col <- cycle ["red","blue","green"]
]

showBall :: Point -> Text -> Canvas ()
showBall (x, y) col = do

beginPath();
fillStyle(col);
arc(x, y, 25, 0, pi*2, False);
closePath();
fill();

130

Weak Strong Applicative
Commands Procedures # Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet Packets per packet per packet
1 0 1 1 3000 1 1 3000 1

3000 1 0

Table 7.8: FillText Packet profile from a single run of the test

7.2.4 FillText

benchmark :: CanvasBenchmark
benchmark ctx = do

xs <- replicateM 1000 $ randomXCoord ctx
ys <- replicateM 1000 $ randomYCoord ctx
ws <- cycle <$> replicateM 1000 randomWord
send ctx $ sequence_ [showText (x, y) word

| x <- xs
| y <- ys
| word <- ws
]

showText :: Point -> Text -> Canvas ()
showText (x, y) txt = do

fillStyle("black");
font("10pt Calibri");
fillText(txt, x, y);

131

Weak Strong Applicative
Commands Procedures # Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet Packets per packet per packet
2 0 1 1 0 1 1 0 1

6000 1 0 1 6000 1 1 6000 1

Table 7.9: ImageMark Packet profile from a single run of the test

7.2.5 ImageMark

benchmark :: CanvasBenchmark
benchmark ctx = do

xs <- replicateM 1000 $ randomXCoord ctx
ys <- replicateM 1000 $ randomYCoord ctx
ws <- replicateM 1000 $ randomXCoord ctx
hs <- replicateM 1000 $ randomYCoord ctx
thetas <- replicateM 1000 $ randomRIO (0, 2*pi)
send ctx $ do

img <- newImage image
sequence_ [drawTheImage (x,y,w,h) theta img

| x <- xs
| y <- ys
| w <- ws
| h <- hs
| theta <- thetas
]

drawTheImage :: Path -> Angle -> CanvasImage -> Canvas ()
drawTheImage (x,y,w,h) theta img = do

beginPath();
save();
rotate(theta);
drawImageSize(img, x - (w/2), y - (w/2), w, h);
closePath();
restore();

132

Weak Strong Applicative
Commands Procedures # Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet Packets per packet per packet
1 0 1 1 9992 1 1 9992 1

9992 1 0

Table 7.10: StaticAsteroids Packet profile from a single run of the test

7.2.6 StaticAsteroids

benchmark :: CanvasBenchmark
benchmark ctx = do

xs <- replicateM 1000 $ randomXCoord ctx
ys <- replicateM 1000 $ randomYCoord ctx
dxs <- replicateM 1000 $ randomRIO (-15, 15)
dys <- replicateM 1000 $ randomRIO (-15, 15)
send ctx $ do

clearCanvas
sequence_ [showAsteroid (x,y) (mkPts (x,y) ds)

| x <- xs
| y <- ys
| ds <- cycle $ splitEvery 6 $ zip dxs dys
]

showAsteroid :: Point -> [Point] -> Canvas ()
showAsteroid (x,y) pts = do

beginPath()
moveTo (x,y)
mapM_ lineTo pts
closePath()
stroke()

133

Weak Strong Applicative
Commands Procedures # Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet Packets per packet per packet
1 0 1 1 1200 1 1 1200 1

1200 1 0

Table 7.11: Rave Packet profile from a single run of the test

7.2.7 Rave

benchmark :: CanvasBenchmark
benchmark ctx = do

let w = width ctx
h = height ctx
dy = h / fromIntegral numGradients
ys = [0, dy .. h - dy]

rgbsList <- replicateM numGradients . replicateM numColors $
S.rgb <$> randomIO <*> randomIO <*> randomIO

send ctx $ sequence_ [drawGradient (0, y, w, dy) rgbs
| y <- ys
| rgbs <- rgbsList
]

drawGradient :: CanvasColor c => Path -> [c] -> Canvas ()
drawGradient (gx0, gy0, gx1, gy1) cs = do

beginPath();
rect(gx0, gy0, gx1, gy1);
grd <- createLinearGradient(gx0, gy0, gx1, gy0+gy1);
let cMaxIndex = genericLength cs - 1
forWithKey_ cs $ ı c ->

grd # S.addColorStop (fromIntegral i/cMaxIndex, c);
S.fillStyle(grd);
fill();
closePath();

134

Weak Strong Applicative
Commands Procedures # Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet Packets per packet per packet
1100 0 1 900 0 1 100 3 10
4400 1 0 100 3 1 100 41 1

100 41 1

Table 7.12: IsPointInPath Packet profile from a single run of the test

7.2.8 IsPointInPath

benchmark :: CanvasBenchmark
benchmark ctx = sequence_ [internal ctx | _ <- [1..rounds]]

internal :: CanvasBenchmark
internal ctx = do

pathX1 <- randomXCoord ctx
pathX2 <- randomXCoord ctx
pathY1 <- randomYCoord ctx
pathY2 <- randomYCoord ctx
points <- replicateM pointsPerPath $ (,) <$> randomXCoord ctx <*> randomYCoord ctx
send ctx $ sequence_ [isInPath (pathX1, pathX2, pathY1, pathY2) points]

isInPath :: Path -> [Point] -> Canvas ()
isInPath (pathX, pathY, pathW, pathH) points = do

strokeStyle("blue");
beginPath();
rect(pathX, pathY, pathW, pathH);
cmds <- sequence [do

b <- isPointInPath(x, y);
return $ do

beginPath();
fillStyle(if b then "red" else "green");
arc(x, y, pointRadius, 0, pi*2, False);
fill();

| (x, y) <- points
]

stroke();
sequence_ cmds

135

Weak Strong Applicative
Commands Procedures # Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet Packets per packet per packet
2002 0 1 2000 0 1 1 0 1

5 1 0 1 2 1 1 2 2000
1 3 1 1 3 1

Table 7.13: MeasureText Packet profile from a single run of the test

7.2.9 MeasureText

benchmark :: CanvasBenchmark
benchmark ctx = do

ws <- replicateM 2000 randomWord
wds <- send ctx $ do

fillStyle("black")
font("10pt Calibri")
forM ws measureText

x <- randomXCoord ctx
y <- randomYCoord ctx

send ctx $ do
fillStyle("black");
font("10pt Calibri");
fillText(T.pack $ show $ sum [v | TextMetrics v <- wds], x, y);

return ()

136

Weak Strong Applicative
Commands Procedures # Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet Packets per packet per packet
31 0 1 1 3 1 1 3 1

510 1 0 1 14 1 1 14 1
29 17 1 29 17 1

Table 7.14: ToDataUrl Packet profile from a single run of the test

7.2.10 ToDataURL

benchmark :: CanvasBenchmark
benchmark ctx = do

rs <- replicateM 30 $ randomRIO (0,100)
send ctx $ sequence_ [picture r | r <- rs]

picture :: Double -> Canvas ()
picture x = do

clearCanvas
beginPath();
moveTo(170 + x, 80);
bezierCurveTo(130 + x, 100, 130 + x, 150, 230 + x, 150);
bezierCurveTo(250 + x, 180, 320 + x, 180, 340 + x, 150);
bezierCurveTo(420 + x, 150, 420 + x, 120, 390 + x, 100);
bezierCurveTo(430 + x, 40, 370 + x, 30, 340 + x, 50);
bezierCurveTo(320 + x, 5, 250 + x, 20, 250 + x, 50);
bezierCurveTo(200 + x, 5, 150 + x, 20, 170 + x, 80);
closePath();
lineWidth 5;
strokeStyle "blue";
stroke();
cloud <- toDataURL();
fillStyle("black");
font "18pt Calibri"
fillText(T.pack $ show $ T.take 50 $ cloud, 10, 300)

137

7.3 Applicative combination functions

In this dissertation, we see that monadic binds force us to terminate and send our currently

batched set of primitives. One of the techniques that we talked about in an earlier section

is updating our code to use more applicative functor combinators instead of the monadic

binds. In the past, this could be done by exchanging the more commonly used monadic

functions such as sequence or forM with their applicative counterparts, sequenceA and for

respectively. These applicative counterparts achieved the same result but went about it using

applicative combinators instead of monadic binds. As was mentioned in Section 5.3.2, these

monadic mappings over lists have now been rewritten to use the applicative versions. What

this means is that for our examples, using sequenceA vs sequence or forM vs for will have

no difference in our packet composition, therefore, no speedup is gained.

What we can do is either rewrite computations by hand or turn on the ApplicativeDo

compiler flag, and if there are any binds that are not required, then we should be able to get

rid of them. We must remember that in many cases the binds are necessary and cannot be

eliminated. Figure 7.2 shows the timing comparisons between sequence and sequenceA with

the ApplicativeDo flag both on and off for each. Table 7.15 further verifies that sequence

and sequenceA are equivalent as they have identical packet contents.

For this comparison, we will only be looking at the test cases which are looking at

the IsPointInPath, ToDataUrl and MeasureText functions as they rely more heavily on

returning results.

What we can see from these comparisons is that turning on the ApplicativeDo flag

results in a speedup of almost 2 times what our original code could perform. In the cases of

MeasureText and ToDataURL, however, we do not see a noticeable change as the standard

deviations between the different cases overlap. This is also confirmed by the fact that these

cases have identical packet contents.

In the IsPointInPath test case, we see that 900 procedures that were being sent by

themselves were able to be bundled together once the ApplicativeDo flag was applied.

138

Figure 7.2: Effect of using SequenceA, Sequence and ApplicativeDo with Applicative
Bundling

Benchmark Sequence/SequenceA ApplicativeDo
Commands Procedures # Commands Procedures

Packets per packet per packet Packets per packet per packet

IsPointInPath
900 0 1 100 3 10
100 3 1 100 41 1
100 41 1

ToDataURL
1 3 1 1 3 1
1 14 1 1 14 1

29 17 1 29 17 1

MeasureText
1 0 1 1 0 1
1 2 2000 1 2 2000
1 3 1 1 3 1

Table 7.15: Effects of ApplicativeDo extension on the number of primitives found in packet

139

Benchmark Weak (ms) Strong (ms) Applicative (ms)
Bezier 85.5 53.9 54.6
CirclesRandomSize 166.4 58.0 59.7
CirclesUniformSize 169.8 55.7 55.0
FillText 187.6 46.3 48.2
ImageMark 288.9 70.6 75.6
StaticAsteroids 416.5 128.4 130.8
Rave 68.2 23.1 22.9
IsPointInPath 1744.1 835.3.0 834.0
MeasureText 655.3 659.6 61.0
ToDataURL 507.1 315.1 294.1

Table 7.16: Performance Comparison of Bundling Strategies in Safari v11.1

It is possible that the ToDataUrl and MeasureText test cases could be rearranged to get

an additional speedup with the applicative bundling but that the techniques used by the

ApplicativeDo flag were unable to improve upon it.

7.4 Other Systems

We can see that some of the ways that different browsers handle the JavaScript coming from

blank-canvas have very different timings when combined with the bundling strategies as

well. The Safari browser results found in Table 7.16 and Figure 7.4, show that we have an

average speedup of 2-4 times when comparing the strong or applicative bundling strategies

with the weak strategy and a 10 times increase in speed when looking at the MeasureText

test. The test that takes the longest for Safari is the IsPointInPath test, by a significant

margin. Whereas for Firefox measurements in Table 7.17 and Figure 7.5, ToDataURL does

not seem to change across the bundling strategies and MeasureText is the longest test in

the weak with the applicative bundling running 14 times faster.

7.5 Observations

Overall, the performance numbers support our theory that the applicative bundling stands

head and shoulders above the weak in all cases, and above the strong when applicative

140

Figure 7.3: Performance Comparison of Bundling Strategies in Chrome v64.0.3282.186. From
top to bottom: weak, strong and applicative bundling strategies

141

Figure 7.4: Performance Comparison of Bundling Strategies in Safari v11.1. From top to
bottom: weak, strong and applicative bundling strategies

142

Figure 7.5: Performance Comparison of Bundling Strategies in Firefox v59.0.2. From top to
bottom: weak, strong and applicative bundling strategies

143

Benchmark Weak (ms) Strong (ms) Applicative (ms)
Bezier 184.0 117.9 124.8
CirclesRandomSize 344.3 48.1 50.5
CirclesUniformSize 349.4 44.5 45.5
FillText 311.8 99.3 136.0
ImageMark 408.6 61.2 59.5
StaticAsteroids 628.7 106.2 131.6
Rave 87.2 23.9 30.5
IsPointInPath 1028.9 596.9 312.0
MeasureText 1443.5 1091.6 100.6
ToDataURL 736.1 744.8 749.6

Table 7.17: Performance Comparison of Bundling Strategies in Firefox v59.0.2

structures are able to be used with procedures. It appears that if we were forced to do binds

after every procedure that doing the strong bundling would be faster than applicative, with

it being a simpler packet structure, but the small overhead that is needed to build up the

applicative packet is definitely not a downside enough to choose a different bundling over

the applicative bundling in general.

144

Chapter 8

Related Work

8.1 Remote Procedure Calls in Haskell

Haxl [Marlow et al., 2014] is a Haskell framework developed by Facebook that was created

in order to batch requests to a database on a remote server. The server would receive the

requests and then run them concurrently. This concurrency was made possible because the

requests were all queries, thus the state of the database would remain unchanged without

respect to the order of the requests. A more in-depth look at Haxl is found in Section 6.6.

Jeremy Gibbons [Gibbons, 2016] recently discussed using the Free Applicative Functor

[Capriotti & Kaposi, 2014] in Haskell to batch requests to a remote server. In his paper,

he confirmed our findings that the applicative functor construct is better suited for the

transmission and execution of remote actions than the monad. His paper was based off our

original Remote Monad paper where he simplified the mechanisms of batching requests by

allowing the Free monad and Free applicative functor to do much of the work instead of

creating each of the constructors from scratch.

Cloud Haskell [Epstein et al., 2011] is an implementation of Erlang-style concurrent

and distributed programming in Haskell. This solution uses the GHC static keyword

in conjunction with Template Haskell in order to send explicit Erlang-style messages to

distributed processes on the network. There are a few transport mechanisms that have been

145

created for Cloud Haskell including TCP, CCI, and an in-memory implementation. Cloud

Haskell allows a free-form remote call, whereas with the remote monad, the user explicitly

and systematically creates the connections from the client to the server.

The remote monad can be defined as a Domain Specific Language (DSL) for the commu-

nication between client and server. There are both shallow embedded DSLs [Hudak, 1998;

Leijen & Meijer, 1999] where the execution is handled immediately and deeply embedded

DSLs [Elliott et al., 2003; Gill, 2014] where the computation is built up as a structure which

then can be passed to an evaluator function. Since we have an evaluator running on a

server, anything using the remote-monad framework would be considered a deeply embed-

ded DSL. Van Deuresen et al. show the widespread use of DSLs by compiling an annotated

bibliography of 75 publications in the area of DSLs [Van Deursen et al., 2000].

8.2 RPC in other languages

In Java, there has been work [Pitt & McNiff, 2001; Maassen et al., 2001] done on performing

remote procedure calls in an object-oriented way. These remote method invocations (RMI)

require both the client and the server to be running Java programs. The server sends

references to its objects to the client and the client is then able to call the object’s methods.

Achten and Plasmeijer discuss how remote procedure calls can be leveraged to change

Clean’s interleaved Event IO system into a concurrent system, inside clean [Achten & Plas-

meijer, 1995]. Van Weelden and Plasmeijer created a mechanism using techniques, similar

to what was used for Cloud Haskell, that would allow the serialization of functions in Clean

[Van Weelden & Plasmeijer, 2002].

Miller, Haller, and Odersky created a closure-like abstraction called spores in Scala

[Miller et al., 2014]. They showed how most closures in Scala could be converted into a

spore which provided more type-checking of the captured variables. This caused spores

to have more guarantees when used in concurrent or distributed settings. Haller and Miller

followed up that work with another paper [Haller & Miller, 2016] describing an asynchronous

146

distributed programming model which could safely pass closures by adding restrictions which

would avoid many common errors.

The research found in [Birrell & Nelson, 1984] showed that RPCs have a clean and simple

semantics and that procedure calls are simple enough to be used effectively in communica-

tion. They also acknowledged the fact that if the RPC’s communication cost was too high,

“applications that might otherwise get developed would be distorted by [the application de-

signer’s] desire to avoid communicating.” In handling remote exceptions Birrell and Nelson

described a process similar to the way that our Remote Binary package handles exceptions,

where communication from a server is either a result of some computation or it is a serialized

exception that gets recreated on the local machine.

In [Shakib & Benson, 2001], the authors found that “calls that do not require an imme-

diate response are delayed until a call needing a response is generated, batching multiple

calls together.” They also found that servers can be more efficient with batched requests,

particularly when performing computations on the same object since the server can fetch the

object into memory once and then perform multiple operations instead of possibly fetching

the object each time a call is made.

[Bogle & Liskov, 1994] wrote his Master’s thesis about using futures to minimize the

overhead of expensive cross-domain calls. At the time of Bogle’s thesis, futures were used as

a mechanism to allow for parallel computing, so that a thread or process could know that a

value is being computed. Bogle used futures as a way of deferring computations and later

bundling them together. In his system, there were two types of results, handles to shared

objects in the database and built-in values such as integers, characters, booleans, etc. The

cross-domain calls that would result in handles, would be deferred until a call that resulted

in a built-in value would be reached. The way that Bogle handled exceptions was by having

the server keep track of any exceptions and have a call that the client could query for any

exceptions that occurred since the last check. These checks would cause any deferred futures

to be sent and have the drawback of not knowing about any errors until making the request.

147

Chapter 9

Future Work and Conclusion

9.1 Future Work

In exploring the remote monad there were a couple of other avenues of research that presented

themselves but that ultimately, fell outside of the bounds of this dissertation.

9.1.1 Monad Transformer Stack

In Section 5.4, we discussed having the remote monad as a monad transformer. The research

showed that it was possible to treat the remote monad as a monad transformer but that it

would be unknown how multiple remote monads in a transformer stack would interact with

each other. Abandoning this part of the research might not be the correct choice based solely

on the strange errors that could occur. Having multiple remote monads in the stack could

be a solution to the problem of interacting with multiple remote entities instead of having a

conglomerate GADT, we could have a separate remote monad for each destination.

As a related note, in working with blank-canvas we originally had a monad transformer

stack built with the RemoteMonad as its base. The stack consisted of a Reader monad to

store the configuration options and a State monad which was used to keep track of the used

variable names for data that needed to be stored in variables on the remote server. The weak

148

and strong bundling strategies work as expected in this setup, but because of the extra binds

that are introduced by this monad stack in the examples we tried, the applicative packets

used in the applicative bundling were no different from the strong bundling where only one

procedure is transmitted per packet instead of the ability to put multiple procedures in a

packet. This was happening because of the use of the State monad to create valid variable

names during the packet creation phase. Each time a procedure was needing to be sent, we

would query the state for the next available variable name and bind that result to be used

later. We were able to get around this by making a deep embedding of the State and Reader

monad which is evaluated after the packet preparation is complete.

In the monad transformer stack, the binds used to get the configuration or the state

would bubble through to the remote monad binds. Something that would be interesting

to look at would be what local binds should look like vs remote binds, or in other words,

binds that involve remote primitives vs binds that do not require a request outside the local

runtime. The subtlety that comes from this is if we have the following:

send $ do
remoteCommand1
remoteCommand2
localCommand
remoteCommand3
remoteProcedure1

If we are using the weak bundling, then things are simple, as you come across a remote

primitive or a local primitive you just perform the work. But when we are bundling items,

we do not have a semantics about when we should perform the local work. If we were using

the strong or applicative bundling strategies we could bundle each of the remote primitives

together. But in that case, do you perform the local work when you come across it? or

later when the batch is sent to the remote server? How would this affect the behavior of the

program? By using the remote monad as the base of a monad transformer stack, and adding

our IOAction construct, we run into similar questions about when the local IO should be

performed. It would be interesting to see how the various options affect a program and what

149

the semantics would look like.

9.1.2 Bundle Size

In this dissertation, we did not address how to handle infinite structures or situations where

we do not reach the point of actually sending the requests but instead continue to bundle the

requests. In order to alleviate the possibility of never making calls to the remote resource

and running into memory errors, we can imagine having an options sent with our runMonad

function in which we could specify the maximum number of requests to bundle. When

the maximum number of requests is reached, we can then pass our queued requests to the

transmission function and then continue processing the requests.

9.1.3 Remote Static

In the beginning stages of looking at the remote monad and remote applicative functors we

thought that there might be some promise in using static pointers [Peyton Jones, 2014] to

serialize functions and closures to execute in a remote location.

Currently a downside to using the Remote Monad is the need to split up the program into

commands and procedures and by using GADTs. Serializing these functions and function

applications by using the static keyword would cause the remote monad library to stand

closer to the Cloud Haskell library, which creates static pointers to data for distributed

programming.

Below is an example of how the static keyword is used. The first half is only using

the GHC.StaticPtr package where the second half is using a library that was developed for

Cloud Haskell [Epstein et al., 2011] called distributed-closure.

150

fib :: Int -> Int
fib n

| n > 1 = (fib (n-1)) + (fib (n-2))
| n <= 1 && n >= 0 = n

fibPtr :: StaticPtr (Int -> Int)
fibPtr = static fib

main :: IO ()
main = do
-- client sends static ptr to remote server

let bs = encode $ staticKey fibPtr

-- server dereferences function and applies it to int
f <- unsafeLookupStaticPtr (decode bs)
case f of
Just func -> print $ (deRefStaticPtr func :: Int -> Int) 5
Nothing -> error "Unable to lookup static ptr"

-- client sends function and argument together to be executed
let fibC = closure fibPtr
let totc = cap fibC (closure $ static 8)
-- server executes closure
print $ unclosure (decode (encode totc)::Closure Int)

In this example, we are performing all the steps locally but each of the needed steps are

present, we would just need a transmission mechanism. Notice how we did not need to create

a GADT and separate the building up of fib from its evaluation.

The challenge in both of these examples is that in order to dereference the static pointer

or to execute the closure, we need to know the type. We could solve this by having a table

that has the function pointers and their type, which might be already be stored at a lower

level, or somehow use Template Haskell to assist. Polymorphic functions will be the most

difficult to handle, and it might be the case that we are unable to do so. The goal would be

to handle any function.

Ultimately, this direction of research fell outside of the bounds of this dissertation, but

151

it would still be an interesting avenue to explore.

9.2 Conclusion

As programming has evolved over time there have been many situations where solutions for

a wide array of applications take a similar approach. Sometimes these came about from

necessity because of the selected programming language, other times they came about from

programmers finding the best solution for a particular problem after years of work and being

able to recognize problems that have the same shape. What we end up with is a design

pattern [Gamma et al., 1995] that abstracts a way of solving a particular program from

the program specifics of an application. These design patterns can often cross language

boundaries and are usually found throughout the community before they are formalized or

even named.

In addition to the case studies we have covered in this dissertation, below is a list of

Haskell libraries that are instances of the remote monad (by way of using the ideas, not

using the described framework) with the type information of the corresponding send-like

functions shown in Figure 9.1.

• Haxl [Facebook, 2017] – Library for concurrent data accesses

• MongoDB [Hannan, 2018]– client used to connect to MongoDB server

• UI.NCurses [Millikin, 2016]– Haskell binding to GNU ncurses for terminal interactions

• Accelerate [McDonell, 2018]– Embedded array language for computations for high-

performance computing

• threepenny-gui [Apfelmus, 2017]– Haskell to HTML/JavaScript GUI using browser

• Haste.App [Ekblad, 2017]– Haskell to JavaScript compiler

152

Haxl
runHaxl::

UI.NCurses
runCurses:: Curses a -> IO a

accelerate
run:: Arrays a => Acc a -> a

threepenny-gui
runUI :: Window -> UI a -> IO a

Haste.App
onServer :: Binary a => Remote (Server a) -> Client a

MongoDB
access :: MonadIO m => Pipe -> AccessMode -> Database -> Action m a -> m a

Figure 9.1: External examples of remote monad

Each of these libraries use monads to stage requests and call out to a “remote” entity to get

results using a natural transformation from the staging monad to IO or some other monad.

There is a large number of monad tutorials out there ranging from describing monads as

a cloud or as a burrito to an in-depth look at the theory behind them. There is a wiki page

[mon, 2018] that has links to over 35 different tutorials to help people understand monads.

The problem is that users have a hard time understanding what a monad is and how to use

it, and later it finally clicks, only after using and experimenting with monads. Naturally, we

think that if we were given that final piece in the beginning, then we would have understood

monads right off the bat, which leads to yet another tutorial. But to understand monads,

one has to use and experiment with them and gradually discover all the pieces needed. Once

understanding has been achieved it seems obvious.

Now that we have looked at the ideas behind the remote monad, it likewise seems very

obvious that we can make different bundling choices depending on the attributes of remote

primitives, or that applicative functors make a great packet for transmission, or that we can

chain natural transformations to make a modular composable network stack. But at the

beginning of the research which has led to this dissertation, there were many libraries that

made use of natural transformations to go from one functor space to another as evaluation

functions. There were many applications that would make use of RPCs, either for perfor-

153

mance reasons or to gain access to a rare resource. And even with all these authors working

in the same space, the community at large had not put a finger on the abstraction or have

an understanding of how this mechanism should behave in general.

We can cause a monad to run remotely by separating the structure and the evaluation of

the monadic actions by using GADTs. Then after classifying the actions based on possible

side-effects and returning results, if any, we can apply different techniques to bundle the

requests and amortize the unavoidable network cost incurred from making remote requests.

If we know the result of a request statically, then we can bundle the request until we reach a

request that statically has an unknown result, and then we communicate a batch of requests

to the remote service.

Monadic binds make bundling requests difficult if not impossible as future requests rely on

the result of previous requests. To avoid this, we can factor a monad into a set of applicative

functors that are connected by any necessary monadic binds. Applicative functors, at least

at this time, seem to be the best structure to use for packets, as they are a natural fit for

sending independent actions and handle the post-processing functionality needed for network

requests. As we go from a GADT of remote primitive actions to a monad, and later break

the monad into transmittable packets, natural transformations became a key mechanism

to represent each of the stages. By chaining natural transformations together we can add

and remove different layers to handle any application-specific details or to comply with a

particular protocol.

The theory that these bundling strategies can give noticeable speedup is confirmed by the

performance measurements that were presented for a number of blank-canvas benchmarks.

Thus, remote monads and applicative functors are viable choices to add automatic bundling

with minor changes needed to the user’s program logic.

154

References

(2018). C# library - haxlsharp. https://github.com/joashc/HaxlSharp. [Online; accessed

2-Apr-2018].

(2018). Clojure library - muse. https://github.com/kachayev/muse. [Online; accessed

2-Apr-2018].

(2018). Clojure library - urania. http://funcool.github.io/urania/latest/. [Online;

accessed 2-Apr-2018].

(2018). Monad tutorials timeline. https://wiki.haskell.org/Monad_tutorials_

timeline. [Online; accessed 2-Apr-2018].

(2018a). Purescript library - fetch. https://pursuit.purescript.org/packages/

purescript-fetch/. [Online; accessed 2-Apr-2018].

(2018). Scala library - clump. https://index.scala-lang.org/getclump/clump/clump-scala.

[Online; accessed 2-Apr-2018].

(2018b). Scala library - fetch. https://index.scala-lang.org/47deg/fetch/. [Online;

accessed 2-Apr-2018].

Achten, P. & Plasmeijer, R. (1995). Concurrent interactive processes in a pure functional

language. In Proceedings Computing Science in the Netherlands, CSN, volume 95 (pp.

27–28).

155

https://github.com/joashc/HaxlSharp
https://github.com/kachayev/muse
http://funcool.github.io/urania/latest/
https://wiki.haskell.org/Monad_tutorials_timeline
https://wiki.haskell.org/Monad_tutorials_timeline
https://pursuit.purescript.org/packages/purescript-fetch/
https://pursuit.purescript.org/packages/purescript-fetch/
https://index.scala-lang.org/47deg/fetch/

Apfelmus, H. (2017). Hackage package threepenny-gui-0.8.2.3.

Birrell, A. D. & Nelson, B. J. (1984). Implementing remote procedure calls. ACM Transac-

tions on Computer Systems (TOCS), 2(1), 39–59.

Bogle, P. & Liskov, B. (1994). Reducing cross domain call overhead using batched futures,

volume 29. ACM.

Bringert, B. (2016). Hackage package haxr-0.2.16.

Capriotti, P. & Kaposi, A. (2014). Free applicative functors. arXiv preprint arXiv:1403.0749.

Clark, A. (2018). Hackage package websockets-rpc-0.7.1.1.

Dawson, J., Grebe, M., & Gill, A. (2017). Composable network stacks and remote monads.

In Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell, Haskell

2017 (pp. 86–97). New York, NY, USA: ACM.

Ekblad, A. (2017). Hackage package haste-compiler-0.5.5.1.

Elliott, C., Finne, S., & de Moor, O. (2003). Compiling embedded languages. Journal of

Functional Programming, 13(3), 455–481.

Epstein, J., Black, A. P., & Peyton-Jones, S. (2011). Towards haskell in the cloud. In ACM

SIGPLAN Notices, volume 46 (pp. 118–129).: ACM.

Facebook, I. (2017). Hackage package haxl-0.5.1.0.

Fancher, W. (2016). Hackage package fraxl-0.1.0.0.

Fette, I. (2011). The websocket protocol.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman Publish-

ing Co., Inc.

156

Gibbons, J. (2016). Free delivery (functional pearl). In Haskell Symposium: ACM.

Gifford, D. K. & Glasser, N. (1988). Remote pipes and procedures for efficient distributed

communication. ACM Transactions on Computer Systems (TOCS), 6(3), 258–283.

Gill, A. (2014). Domain-specific languages and code synthesis using haskell. Queue, 12(4),

30.

Gill, A. & Paterson, R. (2017). Hackage package transformers-0.5.5.0.

Grebe, M. & Gill, A. (2016). Haskino: A remote monad for programming the arduino. In

International Symposium on Practical Aspects of Declarative Languages (pp. 153–168).:

Springer.

Grebe, M. & Gill, A. (2017). Threading the arduino with haskell. Post-Proceedings of Trends

in Functional Programming.

Group, J.-R. W. et al. (2012). Json-rpc 2.0 specification.

Haller, P. & Miller, H. (2016). Distributed programming via safe closure passing. arXiv

preprint arXiv:1602.03598.

Hannan, T. (2018). Hackage package mongodb-2.3.0.5.

Hudak, P. (1998). Modular domain specific languages and tools. In International Conference

on Software Reuse (pp. 134–142).: IEEE Press.

Leijen, D. & Meijer, E. (1999). Domain specific embedded compilers. In Conference on

Domain-Specific Languages (pp. 109–122).: ACM.

Liang, S., Hudak, P., & Jones, M. (1995). Monad transformers and modular interpreters. In

Symposium on Principles of Programming Languages (pp. 333–343).: ACM.

Liskov, B. & Shrira, L. (1988). Promises: linguistic support for efficient asynchronous pro-

cedure calls in distributed systems, volume 23. ACM.

157

Maassen, J., Van Nieuwpoort, R., Veldema, R., Bal, H., Kielmann, T., Jacobs, C., & Hofman,

R. (2001). Efficient java rmi for parallel programming. ACM Transactions on Programming

Languages and Systems, 23(6), 747–775.

Marlow, S., Brandy, L., Coens, J., & Purdy, J. (2014). There is no fork: An abstraction for

efficient, concurrent, and concise data access. In International Conference on Functional

Programming (pp. 325–337).: ACM.

Marlow, S., Peyton Jones, S., Kmett, E., & Mokhov, A. (2016). Desugaring haskell’s do-

notation into applicative operations. In Proceedings of the 9th International Symposium

on Haskell, Haskell 2016 (pp. 92–104). New York, NY, USA: ACM.

McBride, C. & Paterson, R. (2008). Applicative programming with effects. Journal of

Functional Programming, 18, 1–13.

McDonell, T. L. (2018). Hackage package accelerate-llvm-ptx-1.1.0.1.

Microsystems, S. (1988). RPC: Remote Procedure Call Protocol Specification: Version 2.

Technical report, RFC 1057.

Miller, H., Haller, P., & Odersky, M. (2014). Spores: A type-based foundation for closures

in the age of concurrency and distribution. In European Conference on Object-Oriented

Programming (pp. 308–333).: Springer.

Millikin, J. (2016). Hackage package ncurses-0.2.16.

Nelson, B. J. (1981). Remote procedure call. Technical report, Carnegie-Mellon Univ. Dept.

Comput. Sci.

Peyton Jones, S. (2014). Static pointers and serialization. https://ghc.haskell.org/

trac/ghc/blog/simonpj/StaticPointers. Accessed: 2016-11-16.

Peyton Jones, S., Vytiniotis, D., Weirich, S., & Washburn, G. (2006). Simple unification-

based type inference for gadts. In ICFP ’06: Proceedings of the eleventh ACM SIGPLAN

158

https://ghc.haskell.org/trac/ghc/blog/simonpj/StaticPointers
https://ghc.haskell.org/trac/ghc/blog/simonpj/StaticPointers

International Conference on Functional Programming (pp. 50–61). New York, NY, USA:

ACM.

Pitt, E. & McNiff, K. (2001). Java. rmi: The Remote Method Invocation Guide. Addison-

Wesley Longman Publishing Co., Inc.

Rupp, J.-P. (2016). Hackage package json-rpc-0.7.1.1.

Shakib, D. A. & Benson, M. L. (2001). Multiple procedure calls in a single request. US

Patent 6,321,274.

Spector, A. Z. (1982). Performing remote operations efficiently on a local computer network.

Communications of the ACM, 25(4), 246–260.

Van Deursen, A., Klint, P., & Visser, J. (2000). Domain-specific languages: An annotated

bibliography. Sigplan Notices, 35(6), 26–36.

Van Weelden, A. & Plasmeijer, R. (2002). Towards a strongly typed functional operating

system. In Symposium on Implementation and Application of Functional Languages (pp.

215–231).: Springer.

Waldo, J. (1998). Remote procedure calls and java remote method invocation. IEEE con-

currency, 6(3), 5–7.

159

	Introduction
	Contributions
	Outline

	Background
	Remote Procedure Calls
	Why execute something remotely?
	What does an RPC look like?

	Haskell
	Haskell vs Mainstream Imperative Languages
	Purity and Side Effects
	First Class Control

	RPCs in Haskell
	Domain Specific Languages
	Embedded DSL in Haskell

	Making a Local Program Remote
	Modeling RPC with GADTS
	GADTs
	HTML5 Canvas Example

	Remote Primitives
	Primitive Classification
	Using Primitives in Haskell
	Potential Bundling of Remote Primitives

	Remote Monads
	Bundling Strategies
	Implementing the Remote Monad
	Natural Transformations
	Composable Network Stacks
	Practicing what it Preaches
	RemoteApplicative
	RemoteMonad

	Remote Monad Laws

	Extending the Remote Monad
	Remote Alternative
	Updating Procedure Type
	Alternative Packets
	Serializing Exceptions

	Remote Logic

	Remote Monad and Monad Transformers
	Real World Scenarios
	ReaderT Monad
	Multiple Databases

	Case Studies
	Case Study: Blank Canvas
	Canvas GADT
	Communicating with the Web Browser
	Bundling in blank-canvas
	Handling Events

	Case Study: remote-json
	Design of remote-json
	Sessions
	Comparison with other JSON-RPC libraries

	Case Study: Remote Binary
	Remote Exceptions

	Case Study: Haskino
	Case Study: PlistBuddy
	Case Study: Haxl
	Supporting Haxl-style Primitives

	Observations

	Performance
	Benchmarks
	Packet Shapes
	Bezier
	CirclesRandomSize
	CirclesUniformSize
	FillText
	ImageMark
	StaticAsteroids
	Rave
	IsPointInPath
	MeasureText
	ToDataURL

	Applicative combination functions
	Other Systems
	Observations

	Related Work
	Remote Procedure Calls in Haskell
	RPC in other languages

	Future Work and Conclusion
	Future Work
	Monad Transformer Stack
	Bundle Size
	Remote Static

	Conclusion

