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Abstract 
Since the invention of television, and later the Internet, the amount of video content 

available has been growing rapidly.  The great mass of visual material is an 

invaluable source of information, but its usefulness is limited by the available means 

of accessing and tailoring it to the needs of an individual.  Long experience with text 

as a medium of conveying information allowed us to develop relatively effective 

methods of dealing with textual data.  Unfortunately, the currently available 

techniques of accessing and processing video data are largely inadequate to the needs 

of its potential users.  Hence video material remains a valuable but grossly untapped 

resource. 

In the domain of video news sources, this problem is especially severe.  Television 

news stations broadcast continuous up-to-the-minute information from around the 

globe.  For any individual viewer, only small portions of this news stream is of 

interest, yet currently no methods exist which would allow him to filter and monitor 

only the interesting news.   

In this dissertation, we demonstrate a solution to this problem by exploiting the 

repetitive character of the video news broadcast to create a story tracking algorithm.  

We observe that news stations often reuse the same video footage when reporting on 

the development of a story.  We use this information to detect repetitions of the video 

footage and utilize this information for story tracking.  To achieve this purpose in live 

video news broadcasts, we develop a real-time video sequence matching technique 

capable of identifying very short and only partially repeated sequences.  We also 
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introduce improvements in existing temporal video segmentation methods, which 

allow us to more accurately detect short video shots. 

The story tracking technique presented in this dissertation is complementary to 

existing textual topic detection and tracking methods and could be used in 

conjunction with them to improve the overall performance. 
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Chapter  1  

Introduction 

1.1 Motivation 

As the advent of print in the fifteenth century offered a widespread access to 

information and caused a proliferation of printed material, the invention of the 

television set, and later the Internet, initiated an explosion in the amount of video 

content available.  And if the proverb “a picture is worth a thousand words”  is right, 

the mass of information contained in this visual material should by far surpass that 

available through only textual sources. 

In practice, however, the useful amount of information from any source depends on 

how easily that information can be accessed and trimmed to the needs of an 

individual.  Many centuries of experience with text as a medium of conveying 

information allowed us to develop relatively effective methods of accessing and 

processing textual data.  Unfortunately, the currently available techniques of 

accessing and processing video data are largely inadequate to the needs of its 

potential users.  Hence, video material remains a valuable but grossly untapped 

resource. 



 2 

This state of the matters is especially pronounced in the realm of news.  Multiple 

television news channels, as well as various Internet news sources, broadcast 

continuous up-to-the-minute information from around the globe.  Theoretically then, 

virtually anyone could have instantaneous access to the latest news at almost any 

time.  In practice, this would require constant monitoring of all available news 

sources, which is humanly impossible.  Moreover, continuous viewing of news 

sources would prove very time-inefficient, as a vast majority of information they 

contain is of little or no interest to the user and the ratio of truly new information in 

the news is fairly small. 

Therefore, it is needed to develop methods of effective access to video news.  These 

techniques should allow the human user to specify the scope of interest, and report to 

him only the news related to that interest.  They should also eliminate all redundant 

material, and present only the actual new information.  A system with such capability 

could find application not only in personal use, but also in areas such as national 

security, or automatic archive and library creation. 

In this dissertation, we focus on the domain of television news broadcasts.  As stated 

above, television news stories have a very repetitive character.  Breaking news occurs 

only so often, yet news channels broadcast continuously. The rest of the regular 

programming has to be filled with information that has been reported earlier in 

previously recorded video footage.  Furthermore, even when reporting on new story 

developments, the old footage is re-broadcast to provide context. 

Hence, the continuous stream of video news broadcast contains a substantial amount 

of repeated material.  Frequently however, repeated portions are not duplicated in 

their entirety.  Rather, an event that was described at length in the morning news may 

be only briefly mentioned in the afternoon edition.  Thus, the accompanying video 

material must be truncated.  It is also conceivable that a video sequence will be 

extended in subsequent programs, for instance, an event described in headline news 

may be examined in detail later.  Therefore, when searching for repeated video 
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material, one must account for such changes in length and composition of the relevant 

portions. 

It is also important to note that, although the video footage may be repeated, it is 

often accompanied by new audio and closed captions.  This happens when the same 

event is reported live by a different anchor person in a different news program, or 

even by the same anchor person using different words.  Consequently, while 

examining news broadcast for repetitions, one must consider video signal separately 

from audio and closed captions. 

Whatever the nature and composition of the repeated material, the fact that it is 

duplicated indicates that the different portions of the story containing it are most 

likely related.  In our dissertation, we propose to use repeated video footage as an 

indication of the relationship between events reported in the news.  We design, 

implement, and evaluate an algorithm for story tracking in video news broadcasts 

based on detection of repetitions in the video stream. 

1.2 Problem Definition and Proposed Solution 

In this dissertation, we aim to provide a solution for the problem of effective access to 

news video broadcast addressing the following scenario.  A person watches the 

morning news edition, and with assistance of a computer identifies interesting stories.  

The story tracking system independently tracks the development of these stories 

throughout the day.  In the evening, the user is provided with a summary of the 

relevant news. 

To accomplish this goal, we must tackle a number of problems and provide solutions 

which will become the major components of the story tracking system.  First, we 

must monitor a live video broadcast and divide it into shots, the basic units of video 

production.  Second, we need to identify video footage that is reused by the news 

station to provide visual clues to the viewers.  Third, we must devise methods of 
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building a story around the repeated footage.  And finally, we need to create 

techniques of meaningful presentation of the story to the viewer. 

In the process of dealing with these challenges, we touch on several areas of the broad 

domain of video retrieval.  Therefore, before embarking on a detailed description of 

our story tracking techniques, we first give a brief overview of the research in the 

related fields.  More detailed discussion is presented in the corresponding chapters. 

1.3 Related work 

Temporal Segmentation 

The video stream which reaches viewers in the form of a television broadcast is a 

composition of video material coming from multiple sources and arranged by the 

producer or editor.  The most basic components of the broadcast are sequences of 

video frames captured from a single camera, called shots.  In the production process, 

video shots from different cameras recorded at different times, are combined into a 

single video sequence by means of shot transitions.  Thus, the final product is a 

continuous video stream whose original structure is not directly available.  The 

recovery of this structure by dividing the continuous stream of video frames into the 

original shots, is the fundamental step in any kind of processing video content, and is 

the subject of temporal video segmentation. 

Temporal video segmentation methods aim to detect shot transitions inserted by the 

producer, and so detect the boundaries of the original shots comprising the video.  

Today, thanks to the advances in computer and video production technology, a 

number of editing effects, and hence, shot transitions are available.  The majority of 

editing effects used can be classified into three basic categories: cuts, fades, and 

dissolves, but recently television stations employ an increasing number of more 

sophisticated computer-generated effects. 
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The field of video segmentation is relatively mature and has been researched for well 

over ten years.  The resulting methods concentrate primarily on detection of the three 

basic types of transitions, and generally ignore the computer-generated effects.  The 

fundamental idea of transition detection results from the assumption that certain 

characteristics of video are different during shot transitions than within the shots.  

Therefore, transition detection techniques select certain features of video frames and 

analyze their properties over time.  If a characteristic pattern is recognized, shot 

transition is reported. 

A variety of image and video sequence features, such as color histogram, edges, or 

motion have been used in a number of transition detection methods.  Although the 

overall performance for simple transitions, such as cuts is excellent, the detection of 

gradual transitions, especially dissolves, certainly leaves room for improvement.   

Considering that television news stations tend to use more sophisticated transition 

effects, we seek to improve on the existing segmentation methods.  In Chapter 2 we 

present a real-time temporal segmentation algorithm based on color moments as 

compact video frame feature.  The evaluation experiments demonstrate that our 

approach achieves cut and fade detection performance equivalent to other methods 

presented in literature, and is superior in detection of dissolves. 

Video Retrieval 

As indicated earlier, we are interested in detecting repetitions in the live video news 

broadcast in order to use this information in our story tracking technique.  Though our 

goal is to detect exact copies of the same video footage, this task is closely related to 

assessing video sequence similarity.  Much of the research in the field has focused on 

search for conceptually similar material: given, say, an image or video clip of a 

sailing boat, any clips of sailing might be regarded as a match. In this work, we are 

primarily interested in a different type of similarity, which may be described as 

matching of co-derivatives. Thus, two distinct types of video similarity may be 

recognized: 
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1. Semantic similarity.  Two video sequences are semantically similar if they 

represent or describe the same or similar concept. 

2. Co-derivative similarity.  Two video clips are co-derivatives if they have been 

derived from the same original video sequence. 

Semantic similarity has been the focus of considerable research efforts generally 

classified as content-based video retrieval.  Matching and retrieval of co-derivatives 

has been explored in other domains, such as text, but the problem has received little 

attention in the realm of multimedia. 

The semantic video retrieval is generally shaped by the cognitive gap separating 

humans from machines.  Conceptual content of video, intuitively recognized by the 

humans, is inherently difficult to obtain by computers.  As a result, existing semantic 

video retrieval systems resort to defining human information need in terms of lower 

level machine-accessible features, such as colors, textures, etc.  Alternatively, manual 

annotations of video may be used, but they do not scale well with the rapid expansion 

of available video material. 

In certain domains of video retrieval, such as news broadcasts, additional information 

regarding the semantic meaning is contained in metadata, such as accompanying 

audio or closed captions.  With the help of automated speech recognition methods, 

the audio signal may be transcribed into a textual form, and as such may be analyzed 

using textual information retrieval methods.  Since these methods have been 

researched for many years, they often provide an attractive alternative to relatively 

new techniques of visual information retrieval. 

In the last few years, initial efforts have begun to derive semantic concepts from 

video by applying certain machine learning techniques.  The methods developed have 

been shown to work reasonably well in limited contexts, but they remain in their very 

early stages, and do not offer viable solutions to more general problems of semantic 

video retrieval. 
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While semantic video retrieval has been researched for a number of years, matching 

and retrieval of co-derivative video material is a new field, and so far has received 

little attention in the research community.  Recently, some work has been done to 

identify commercials in television broadcasts.  Introductory research into recognizing 

co-derivative video sequences from different sources has also been reported.  

Detection of co-derivative similarity could find a number of applications, such as 

copyright management, video compression, or – as shown in this dissertation – news 

story tracking. 

In this dissertation, we are interested in detecting repeated video sequences in live 

video news broadcasts.  This task offers a number of challenges, such as recognition 

of similarity in the presence of on-screen captions, detection of repetitions between 

very short sequences, as well as identification of only partially matching video clips.  

In Chapter 3, we describe our method of repeated video sequence detection, which 

addresses these problems.  We demonstrate experimentally that our technique 

successfully identifies repetitions in a typical television news broadcast. 

Story Tracking 

The main goal of this dissertation is to design and develop methods of story tracking 

in live video news broadcasts.  The problem of story tracking is relatively new, and 

was first posed in the domain of textual information retrieval as part of the Topic 

Detection and Tracking (TDT) initiative in 1997.  According to the original authors: 

“ TDT is a research program investigating methods for automatically 

organizing news stories by the events that they discuss. TDT includes 

several evaluation tasks, each of which explores one aspect of that 

organization – i.e., splitting a continuous stream of news into stories 

that are about a single topic (“ segmentation"), gathering stories into 

groups that each discuss a single topic (“ detection"), identifying the 

onset of a new topic in the news (“ first story detection"), and 
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exploiting user feedback to monitor a stream of news for additional 

stories on a specified topic (“ tracking” ).”  

As in any new field of study, the general taxonomy is not fully developed and certain 

concepts are not precisely defined.  In addition, the different tasks of TDT are very 

closely intertwined.  As a result, the problem of story tracking addressed in this 

dissertation, as defined earlier in this chapter, spans two TDT tasks, i.e. detection and 

tracking.  We also believe that the phrase “story tracking”  is more suitable for our 

work than “ topic tracking” , and we provide detailed definitions of our understanding 

of the basic concepts of event, story, and topic in the introduction to Chapter 5. 

In the years since the inception of TDT, a number of topic detection and tracking 

techniques have been proposed.  Their performance on textual news sources has been 

found to be satisfactory, but leaves room for additional improvement.  Topic 

detection and tracking does not restrict its attention to only textual news sources, and 

its methods can be applied to the transcripts of video news broadcasts obtained from 

closed captions or through automated speech recognition.  However, these methods 

rely entirely on text, and completely ignore the rich layer of visual information 

present in the video stream.   

In recent years, initial research has been done on incorporating elements of visual 

information into organization of video news.  Visual features have been used to 

improve alignment of textual transcripts of news broadcasts by means of shot 

classification.  Basic image features of video background have also been used to 

identify scene location in a limited database.  Overall, however, the visual content of 

news broadcasts is vastly underutilized, and has never been exploited for the purposes 

of story tracking. 

In this dissertation, we demonstrate that it is possible to use only visual content of 

news broadcasts in order to effectively track stories over time.  In Chapter 4, we 

describe the design, implementation and evaluation of a video-based story tracking 

system. 
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1.4 Organization 

This dissertation is organized as follows.  Chapter 2 presents our temporal video 

segmentation method.  In this chapter, we first review shot detection techniques 

available in literature.  Then we discuss improvements introduced in this work, and 

evaluate the performance of our method.  Finally, we compare our results with those 

reported by other researchers, and demonstrate the superiority of our technique. 

Chapter 3 is devoted to the problem of repeated sequence detection.  This chapter 

starts with a brief discussion of the specific challenges involved in detecting 

repetitions for purposes of story tracking in video news.  Subsequently, we present a 

number of video sequence similarity metrics and assess their suitability for detection 

of very short and only partially repeated video clips.  We then introduce two basic 

repeated sequence detection algorithms, and show that they could not be applied to 

real-time detection.  We follow by presenting a heuristic shot filtering technique, 

which greatly reduces the average execution time of repetition detection.  At the end 

of the chapter we experimentally verify the effectiveness of our approach. 

Chapter 4 introduces our story tracking method based on repetitions of video 

material.  In this chapter, we first define the fundamental concepts of story tracking in 

video.  We then present our algorithm of story tracking using repeated shot detection, 

and demonstrate its effectiveness experimentally.  Manual and automatic story 

tracking are performed on a typical video news broadcast and their results are 

compared.  This chapter also discusses potential improvements to story tracking 

based on shot classification and introduces two approaches to story presentation. 

Finally, Chapter 5 presents the summary of the research contributions discussed in 

this dissertation and enumerates suggestions for future research in this area. 
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Chapter  2  

Temporal Segmentation 

2.1 Introduction 

In the production process of any video news broadcast, the producer or editor 

combines and arranges video material coming from multiple sources.  The original 

video sequences captured by different cameras at different times – some live, some 

prerecorded – are blended into a single long sequence of video frames which is 

broadcast by a television station.  Thus, when the news broadcast reaches its viewers, 

its original structure is not obscured by a variety of editing effects.  The recovery of 

this structure, i.e. the task of dividing the continuous stream of video frames into the 

original components, is the fundamental step in any kind of video content processing, 

and is the subject of temporal video segmentation, also known as video shot detection 

or transition detection.  Thus, temporal video segmentation is an important element of 

story tracking in video news broadcasts.   

In this chapter, we present the problem of temporal video segmentation, and discuss 

specific challenges pertaining to story tracking in the domain of video news.  We 

review certain existing solutions, and propose an effective algorithm of shot detection 
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in video news broadcasts.  First, however, we provide an overview of terminology 

used in the field. 

The task of temporal video segmentation is to recover the original structure of a video 

stream as a composition of shots.  A shot is defined as a sequence of successive video 

frames taken from one camera.  In the production process, individual shots are 

combined to form a video sequence using a variety of editing techniques.  Any 

sequence of frames resulting from video editing is called a shot transition. 

Today, thanks to the advances in computer and video production technology, a 

number of editing effects and, hence, shot transitions are available. All of them can be 

organized into a few basic classes [Lie01a, Ham95] based on 2D image 

transformations applied.  The following classes may be distinguished: 

i. Identity Class: Neither of the two shots involved is modified, and no additional 

edit frames are added.  Only hard cuts qualify for this class. 

ii. Spatial Class: Some spatial transformations are applied to the two shots 

involved.  Wipes, page turns, slides, and iris effects fall into this category. 

iii. Chromatic Class: Some color space transformations are applied to the two shots 

involved.  These include fade and dissolve effects. 

iv. Spatio-Chromatic Class: Some spatial as well as some color space 

transformations are applied to the two shots involved.  All morphing 

effects fall into this category.  Note that in practice often all effects in the 

spatial class in principle fall into the spatio-chromatic class since some 

chromatic transformations are always applied at the boundary between the 

pixels of the first and second shot such as anti-aliasing, smoothing or 

shading operations. 

An alternative shot transition classification scheme presented in [Lie01b] is based on 

the spatial and temporal separation of the two shots involved (see Table 1).  For 

instance, for hard cuts and fades the two sequences involved are temporally and 



 12 

spatially well-separated. Their detection comes down to identifying that the video 

signal is abruptly governed by a new statistical process, as in the case of hard cuts, or 

that the video signal has been scaled by some mathematically simple and well-defined 

function, as in the case of fades. For wipes, the two video sequences involved in the 

transition are spatially well-separated at all times.  This is not the case for dissolves. 

At any time, the two video sequences are temporally as well as spatially intermingled, 

requiring dissolve detection algorithms to deal with a two source problem. 

The two involved sequences are 

Type of transition spatially separated temporally separated 

Hard cut Yes Yes 

Fade Yes Yes 

Wipe, Door, Slide Yes No 

Dissolve No No 

Table 1 Transition classification scheme for  transition detection 

Although several kinds of shot transitions are available, only three basic types-cuts, 

fades, and dissolves-constitute a large majority of all transitions seen in real world 

video streams.  Each of those transition types corresponds to a production process 

which can be modeled mathematically.  We can consider a video sequence as a three 

dimensional intensity function I(x,y,t), which assigns an intensity value to every pixel 

in every video frame.  During a transition, the intensity function can be viewed as a 

superposition of the functions corresponding to the two shots involved:  I1(x,y,t), 

I2(x,y,t).  If we assume that the function arguments are continuous, we can describe 

each transition type by the mathematical model of the intensity function during the 

transition sequence: 

i. Cut is a direct concatenation of two shots not involving any transitional frames, 

and so the transition sequence is empty. 

ii. Fade involves only one shot and is a sequence of frames I(t,x,y) of duration T 

resulting from scaling pixel intensities of the sequence I1(t,x,y) by a 
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temporally monotone function f(t):  

 ],0[),,,()(),,( 1 TtyxtItfyxtI ∈⋅=  

iii. Dissolve is a sequence I(t,x,y) of duration T resulting from combining two video 

sequences I1(t,x,y) and I2(t,x,y), where the first sequence is fading out 

while the second is fading in:  

 ],0[),,,()(),,()(),,( 2211 TtyxtItfyxtItfyxtI ∈⋅+⋅=  

These models allow us to predict certain characteristics of the intensity function 

during shot transitions, and became the foundation of the research in temporal video 

segmentation. 

An overview of the related work in this area is presented in section 2.2.  The 

remainder of this chapter is organized as follows.  Section 2.3 discusses the 

challenges of shot detection in the domain of video news.  In section 2.4, we present 

the evaluation methodology used to assess the performance of the transition detection 

techniques.  We propose and evaluate two different transition detection algorithms in 

sections 2.5 and 2.6.  Section 2.7 contains a summary of our findings and our 

conclusions. 

2.2 Related Work 

The field of video segmentation is relatively mature and has been researched for over 

ten years.  Numerous algorithms have been created and their performance is 

acceptable for general purpose video segmentation. However, no single technique 

exists that would provide 100% segmentation accuracy for all types of transitions in 

all kinds of video sequences.  Presented below is a brief summary of the most 

effective segmentation methods with the emphasis on those especially suitable for the 

task of story tracking in video. 

The fundamental idea of transition detection stems from the assumption that certain 

characteristics of video are different during shot transitions than within the shots.  In 
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the previous section, we showed mathematical models of the effects of the three basic 

transitions on the pixels in the video frames.  These effects are reflected in the global 

features of video frames, such as color composition, number of edges, or motion 

continuity.  Researchers have exploited this fact to create detection methods for the 

basic types of transitions.  The existing detection techniques use one or more video 

frame features and analyze their properties over time.  If a pattern typical of one of 

the transition types is recognized, then the transition is reported.  Since the temporal 

feature patterns are quite different for different types of transitions, most of the 

detection techniques are tailored to a specific type of transition.  The following 

sections present an overview of the detection methods. 

2.2.1 Cut detection 

A hard cut produces a temporal discontinuity in the video stream, which manifests 

itself as a radical change in the time series of a video frame feature.  Thus cuts may 

be discovered by looking for large difference in the frame feature between 

consecutive frames. Existing algorithms use this fact to detect hard cuts by 

identifying isolated peaks in the feature difference time series. 

The most effective algorithms use color histograms [Nag92, Lie99, Gar00, Tru00a], 

edge pixels [Zab95, Zab99] and motion [Aku92, Dai95, Lup98, Sha95] as video 

frame features.  Once the feature is selected, cut detection consists in identifying 

feature differences large enough to be considered cuts.  This is accomplished by 

selecting a discontinuity threshold.  A cut is then declared each time the feature 

difference exceeds the given threshold. 

A common problem with having only one global threshold is that it is impossible in 

practice to find one value that fits all kinds of video material [Lie99].  Therefore 

different techniques have been used to provide adaptive threshold [Tru00a] that 

adjusts to the type of video material currently being processed. 
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In general, the histogram-based methods prove to be simple, yet very effective.  The 

more sophisticated edge- or motion-based techniques do not offer significant 

performance gains [Lie01a].  The accuracy and performance of various hard cut 

detection algorithms has been thoroughly studied and can be found in [Bor96, Dai95, 

Gar00]. 

2.2.2 Fade detection 

Fades correspond to a gradual transition from a given shot to a monochrome (usually 

black) screen or vice versa.  Two effective approaches to detecting this type of 

transition are described by Lienhart [Lie01a].  One is based on the observation that 

fades show as a gradual and steady decrease/increase in the color variance of video 

frames.  The other uses the observation that during a fade edges of objects in the 

frame tend to become weaker (fade-out) or stronger (fade-in).  The former was 

introduced independently by Lienhart [Lie99] and Alattar [Ala97], and later 

combined and extended by Truong at al. [Tru00a]. The latter is presented in [Zab95, 

Zab99].  Their comparison has been performed and its results reported in [Lie99, 

Lup98].  Both of these studies show that the edge-based method did not perform as 

well as the color variance approach.  It has also been demonstrated that fade detection 

using the color variance method yields very high accuracy. 

2.2.3 Dissolve detection 

The problem of dissolve detection is by far the most challenging in the domain of 

video segmentation due to the lack of either spatial or temporal separation of the two 

shots involved.  The issue is further complicated by motion in the shots being 

combined.  The effects of motion and dissolve on several characteristics of video 

frames are virtually indistinguishable. 

Lienhart [Lie01a] presents a number of dissolve detection techniques.  The first group 

of techniques attempts to recognize dissolves by examining temporal change of pixel 

colors.  These methods rely on the observation that during a dissolve with little or no 
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motion most of the pixels change approximately linearly over time [Ham95].  

Unfortunately, this approach is very sensitive to motion, and in the presence of it 

behaves poorly. 

The second group uses changes in the time series of video frame color variance.  

Alattar [Ala93] noticed that the color variance curve during an ideal dissolve has a 

parabolic shape.  This observation has been further exploited in [Fer99, Tru00a, 

Tru00b] and proved to be reasonably effective. 

Lienhart also reports two edge-based methods introduced and examined in [Zab95, 

Zab99, Lie99].  He states, however, that these techniques produce an unacceptably 

high false alarm rate. 

Finally, a multi-resolution pattern recognition approach was introduced in [Lie01b].  

Lienhart uses a neural network method, which is reported to be very effective on a 

wide range of dissolves.  It is shown to be very effective on even difficult and unusual 

dissolve sets.  However, this method is computationally intensive and requires 

extensive training which is prohibitive in the processing of continuous, live video 

broadcasts. 

2.2.4 Compressed domain methods 

With recent popularization of digital video sources (DVD, digital cable, etc.), some 

researchers proposed methods of shot transition detection in the compressed (MPEG) 

domain.  In comparison to detection in uncompressed domain, segmentation of 

MPEG video streams has the advantage of motion estimation already encoded in the 

stream.  Performing such estimation for purposes of segmentation of a live video 

stream is currently too computationally expensive. 

An evaluation of currently available MPEG segmentation techniques can be found in 

[Kop98, Kas98].  In this work we elect not to consider compressed domain 

segmentation methods.  This choice offers freedom from the intricacies of various 
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video compression formats, as well as independence of the encoding quality offered 

by different encoders. 

2.3 Temporal Segmentation for  Video News 

Broadcasts 

Video news broadcasts differ considerably from other types of video.  They typically 

contain a limited number of shot types, such as anchor person, studio, or report from 

the field.  Often the core of the news content is communicated verbally.  Therefore, 

the stations strive to make the broadcast more visually appealing, by introducing 

sophisticated effects, such as moving or morphing borders, computerized transitions, 

picture-in-picture effects with icons corresponding to currently discussed events, as 

well as multiple camera shots in one frame.  In addition, they frequently display a 

caption bar at the bottom of the screen to provide textual cues as to what is being 

discussed, as well as brief summaries. These specialized effects make transition 

detection a difficult task. Although transitions between live coverage (studio, anchors, 

etc.) are usually relatively simple (i.e. cuts), this is not the case for prerecorded 

material.  Such footage is combined with the rest of the broadcast primarily by means 

of dissolves.  Since detection of repeated video footage is the primary focus of this 

work as the foundation for story tracking, accurate dissolve detection is very 

important to us.  The importance of accurate transition detection is emphasized by the 

fact that repeated news clips are often short and constitute only a small portion of the 

overall video. In addition, the clips of interest tend to contain considerable motion, as 

they are often filmed by hand at an off-site location. 

Transition detection is further complicated by on-screen captions and the live 

broadcast indicator.  Since these elements tend to be displayed in bright colors and 

sharp contrast in order to stand out from the rest of the screen content, they alter 

significantly the color composition of video frames.  Additionally, the content of the 

bottom caption changes frequently during shots, causing abrupt changes in color 
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composition.  Similarly, the live footage indicator often appears or disappears in the 

middle of gradual transitions, such as when the video transitions from an anchor 

person to some prerecorded footage.  These effects tend to obscure changes in video 

frames when an actual transition occurs, and therefore make the temporal 

segmentation task more difficult. 

Modern news video broadcasts also abound in computer generated transition effects, 

aimed at making the visual content more appealing. Such effects come in a large 

variety of flavors, and there is no good general method of consistently detecting them 

all.  Fortunately this does not affect our research significantly, as these transitions 

occur mainly in promos and commercials, not in the actual news footage.  This allows 

us to largely ignore them in this work. 

All of the above discussed aspects of video news make the task of temporal 

segmentation in this domain challenging.  Therefore, in our research on story tracking 

we needed to create transition detection methods capable of working effectively in 

video news.  Since transition detection is only the first step in the story tracking 

process, which needs to be performed on a live news broadcast, it is important that 

our techniques be very fast. 

As described earlier (see section 2.1), temporal segmentation relies primarily on 

choosing a feature or set of features of video frames and analyzing their behavior over 

time in order to detect patterns characteristic of the three main types of transitions.  In 

this work, we chose the three primary color moments (mean, standard deviation and 

skew) as the frame feature.  The mean, standard deviation, and skew of a color image 

are calculated as follows. 
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and  
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Color moment frame representation is the basis of two different temporal 

segmentation algorithms developed in this work.  The first method, the cross-

difference algorithm, relies on moment differences between video frames to detect all 

types of transitions.  The second technique uses mathematical models of different 

transition types.  The cross-difference algorithm was developed first and proved to be 

effective in cut detection.  However, its performance for gradual transitions was 

unsatisfying.  Therefore, to improve the accuracy of gradual transition detection, we 

developed the transition-model approach extending previous work in the field.  Both 

methods are discussed in detail in sections 2.5 and 2.6, but first we describe the 

evaluation methodology. 

2.4 Evaluation Methodology 

Experimental Data 

In order to evaluate performance of our temporal segmentation algorithms we 

recorded a one-hour block of typical news broadcast obtained from CNN News. The 

video clip was compressed using Windows Media Encoder 9.0 and saved in the 

Windows Media Format with video size of 160 x 120 pixels. 

The video clip was then manually inspected and annotated with shot transitions. Four 

different types of transitions were distinguished: cuts, fades, dissolves, other 

transitions. The first three types follow their respective definitions presented earlier, 

and the last category is comprised of all transitions that do not fit any of the previous 

types. For every transition the start and end frames were recorded, where the start and 

end frames are defined as the first and last video frame for which the effects of the 
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transition are discernable by the human eye. In the case of cuts, the frame before the 

cut was taken as the start frame, and the frame after, as the end frame. 

The video clip consisted of several shots of news content, such as studio shots, 

outdoors shots, anchor person shots, as well as several commercials and promotional 

clips. The clip contained a total of 971 transitions, of which 618 were cuts, 84 were 

fades, 189 dissolves, and 70 were other transitions. Clearly the sharp cut is the 

dominant type of transition used, but there is a surprisingly high number of dissolves. 

In a few cases of commercials and promos the video material was entirely computer 

generated, and therefore could not be objectively divided into shots and transitions. 

We decided to exclude this part altogether, because segmentation results from this 

material would be highly subjective. 

Finally, in order to reduce the impact of on-screen captions and the live footage 

indicator, we analyzed the video source to determine their location and size across the 

entire clip.  We determined that the bottom caption – if present – occupies, at most, 

the bottom 25% of the screen.  We also found that the live indicator always appears in 

the top left corner of the screen, and is limited to at most 10% of the screen size.  

Given this information, we chose to exclude these areas of the screen from frame 

feature calculation entirely, regardless of whether a given frame contained an on-

screen caption or live indicator. 

Evaluation Methodology 

Automated transition detection was performed on the same one-hour segment of 

video broadcast. Results of the automated detection were compared to those of 

manual segmentation in order to find matching pairs. A pair of transitions could be 

considered matching if they are of the same type and their start and end frames are the 

same. Such a definition, however, is often too strict, as automatically detected 

transitions, especially gradual (i.e. fades, dissolves, and other) may differ in length 

from the manually annotated. Such a difference remains without significant impact on 

the quality of temporal segmentation. Therefore, we adopted a modified definition of 
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matching transitions.  We say that two transitions match if they are of the same type 

and if they overlap.   

Matching transitions are found by searching for a manual transition (mt) of matching 

type for every automatically detected transition (at).  If at overlaps more than one mt, 

then we choose the manual transition with the same type, and report a match.  If the 

transition types do not match, we pick the first manual transition which overlaps, and 

declare a mismatch.  Finally, if no mt overlaps the current at, we declare a false 

alarm.  Once this process is completed, all remaining manual transitions that have not 

been matched are reported as missed. 

We then evaluate the transition detection performance in terms of the standard recall 

and precision measures defined as follows: 
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In addition to these standard performance measures, we introduce a utility function, 

which aggregates recall and precision into a single performance estimator.  The utility 

function is a weighted sum of recall and precision, and controls the desired tradeoff 

between their values, as presented in (9). 
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precisionrecall utility ⋅−+⋅= )1( αα  (9) 

This aggregated value, which is often referred to as f-measure in the information 

retrieval literature, allows us to objectively determine what set of parameters gives 

the best performance. 

2.5 Moment cross-difference algor ithm 

Overview 

In view of our initial assumptions about video transitions in news broadcasts, we first 

developed a transition detection algorithm for all types of transitions based on the 

following observations. Generally, two frames within one clip, especially in close 

proximity to each other, are very similar in appearance.  Two frames from two 

different adjacent clips are considerably different. 

We can also assume that different frames have different sets of moments, and similar 

frames have similar sets of moments. Although this assumption does not hold true in 

all cases, it is true for an overwhelming majority of practical situations.  Therefore, in 

a simple approach we compare color moments of every two consecutive frames and 

declare a transition if they differ sufficiently. We could select a difference threshold, 

compute the difference between the corresponding sets of moments, and declare a 

transition if the difference exceeds the threshold.  Depending on the two clips in 

question, the difference may be very large or fairly small, which makes it difficult to 

choose a single difference threshold for an entire video broadcast. 

This method could work for cuts, but would be inadequate for gradual transition 

detection.  By the very definition of gradual transitions, consecutive frames during the 

transition change gradually.  Hence, the differences between them are slight, and are 

only apparent for the frames before and after the transition.  In order to identify such 

transitions, we could compare frames a certain distance away from each other.   
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However, if the shots themselves contain motion or other rapid changes, then frames 

sufficiently distant from each other will exhibit substantial differences in moments, 

and therefore will trigger transition detection. This would lead to a high rate of false 

alarms. 

To account for this, but still recognize gradual transitions, we created a detection 

algorithm which attempts to compensate for the changes in color moments due to 

motion in shots.  The following section describes the algorithm. 

Algorithm 

We rely again on the fundamental assumption that the frames of the shot before a 

transition are similar between themselves, as are the frames of the shot after the 

transition.  In the presence of motion in the shots, the similarities are somewhat 

diminished, and the frames taken from the same shot may be different.  Considering 

this, we attempt to find pairs of consecutive frames which differ substantially from 

each other.   To achieve this, we define the concept of cross-difference as the average 

moment difference of every pair of frames within a certain window spanning the 

current frame less the average moment difference of every pair of frames to the left of 

the current frame and to the right of the current frame. 
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Thus, if little motion is present, and the frames to the left (right) of the current frame 

are very similar, but the frame pairs from the left and right are considerably different, 

the value of cross-difference is high.  However, if motion causes frames to differ 
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significantly on either side of the current frame, the value of cross-difference will be 

lowered accordingly. 

In order to detect transitions, we compute a cross-difference for every frame in video, 

using a window of certain size 2w + 1.  If so computed cross-difference is maximal 

within the window and exceeds a predefined threshold (t), then we declare a 

transition.  This algorithm is presented in pseudo code in Figure 1.  
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Function CrossDifference(frame) 
 crossDiff = 0.0; 
 ForEach pair of frames f1 and f2 in [frame – wndwSize, frame + wndwSize] 
  diff = AbsMomentDiff(f1, f2); 
  If (f1 <= frame And f2 <= frame) Or (f1 >= frame And f2 >= frame) 
   crossDiff = crossDiff - diff; 
  Else 
   crossDiff = crossDiff + diff; 
  EndIf 
 EndFor 
 return crossDiff / numberOfPairs; 
EndFunction 
 
Function CalculateCrossDifferences 
 ForEach frame in VideoClip 
  frameDiff[frame] = CrossDifference(frame); 
 EndFor 
EndFunction 
 
Function DetectGenericTransitions 
 ForEach frame in VideoClip 
  If frameDiff[frame] is maximum in [frame – srchWndwSize, frame + srchWndwSize] 
   If frameDiff[frame] > MinCrossDiffThreshold 
    genericTransitions[frame] = True; 
   Else 
    genericTransitions[frame] = False; 
   EndIf 
  EndIf 
 EndFor 
EndFunction 

Figure 1 Gener ic Transition Detection Algor ithm 

Experimental Results 

We first evaluate the overall performance of the algorithm irrespective of the types of 

transitions. In this case, any automatically detected generic transition can match any 
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type of the manually detected transitions. Recall is therefore defined as the ratio of 

the number all matching generic transitions to the number of all manually detected 

transitions, and precision – as the ratio of the number of matching generic transitions 

to the number of all automatically reported transitions. 

%100⋅
+

==
generic
miss

generic
correct

generic
correctgeneric

NN

N
Rrecall  (11) 

%100⋅
+

==
generic
false

generic
correct

generic
correctgeneric

NN

N
Pprecision  (12) 

Although the algorithm is controlled by two parameters, i.e. window size (w) and 

cross-difference threshold (t), its performance is practically independent of the first 

parameter. This is illustrated in Figure 2, which shows the recall and precision as a 

function of the window size. Clearly, the utility function remains essentially flat with 

increasing window size. In view of this fact, we chose w = 5 for further experiments. 

Consequently, performance of the algorithm depends only on the cross-difference 

threshold. The value of this parameter is used globally for the entire video clip. A 

graph of recall and precision as a function of the cross-difference threshold is 

presented in Figure 3. A typical recall vs. precision tradeoff is clearly visible. As the 

threshold increases, so does precision at the expense of recall. For the extreme value 

of the threshold (10.0) the algorithm achieves over 95% precision, but recall drops to 

a mere 35%. Conversely, for a threshold equal to 0.0, recall approaches 95%, but 

precision decreases to almost 10%. 

The algorithm never achieves 100% recall due to the requirement that the cross-

difference at a given frame was maximal within a certain search window. Thus, if 

multiple transitions occur in quick succession, such that the distance between them is 

less than the size of the search window, only one of them – the one with maximal 

cross-difference – will be reported. 
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Overall: Recall and Precision
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Figure 2 Recall and precision of gener ic transition detection as a function of the window size 
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Figure 3 Recall and precision of gener ic transition detection as a function of  the cross-difference 

threshold 

In order to learn more about the performance of the algorithm for different types of 

transitions we conducted another experiment in which we reported detection results 
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for cuts, fades, and dissolves separately. These results will serve as a baseline 

performance for evaluation of other detection methods. 

Since the manually detected transitions have been annotated as cuts, fades, and 

dissolves, we can determine cut (or fade, or dissolve) recall as the ratio of the number 

all automatic transitions matched to manually annotated cuts (or fades, or dissolves) 

to the number of all manually annotated cuts (or fades, or dissolves). 

utscallofnumber

cutsdetectedofnumber
Rrecall cut

cut ==  (13) 

fadesallofnumber

fadesdetectedofnumber
Rrecall fade

fade ==  (14) 

dissolvesallofnumber

dissolvesdetectedofnumber
Rrecall dissolve

dissolve ==  (15) 

Precision, however, cannot be directly evaluated, as the algorithm does not 

differentiate between types of transitions, and hence it is impossible to determine how 

many cuts (or fades, or dissolves) have been falsely reported. In order to present some 

measure of precision we resorted to estimation. We took the total number of false 

alarms reported by the algorithm and divided it among the different transition types in 

proportion to their share in the total number of transitions. We therefore assume that 

the distribution of the different types of false alarms is the same as the distribution of 

the types of transitions in the clip. 
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Cut Detection: Recall and Precision
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Figure 4 Recall and precision of the gener ic transition detection as a function of cross-difference 

threshold for  cuts 

Fade Detection: Recall and Precision
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Figure 5 Recall and precision of the gener ic transition detection as a function of cross-difference 

threshold for  fades 
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Dissolve Detection: Recall and Precision
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Figure 6 Recall and precision of the gener ic transition detection as a function of cross-difference 

threshold for  dissolves 

The graphs above show the algorithm’s recall and precision as functions of the cross-

difference threshold.  Again, the typical trade-off between these two performance 

measures is apparent. 

Since cuts are by far the most frequent type of transitions in the video material used, 

the detection performance for this type follows the overall trend. As shown on the 

graphs above (Figure 4, Figure 5, and Figure 6), a reasonably high recall and 

precision of around 80% can be achieved with cross-difference threshold between 3.0 

and 4.0. As the threshold increases past this point, so does precision at the expense of 

the drop in recall.  The utility function indicates that any threshold value between 3.0 

and 4.0 yields the same overall performance. 

The algorithm’s performance for fades and dissolves follows the same pattern. The 

highest values of the combined utility are reached for threshold between 3.0 and 4.0.  

The algorithm detects fades with over 80% recall and precision, but performs worse 

in dissolve detection, achieving below 80% recall and precision.  In addition, the 

precision curve of dissolve detection levels off just above 80%, and further increasing 
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the cross-difference threshold does not improve precision.  This demonstrates that the 

cross-difference is not a sufficient dissolve indicator. 

Analysis 

In this section, we analyze the results of the experiments performed, to obtain 

additional insight into the strengths and weaknesses of the cross-difference algorithm. 

The algorithm performs well detecting cuts in the absence of significant motion.  This 

situation is demonstrated in Figure 7.  As shown on the graph of color mean (Figure 

8), a clear discontinuity is present when the cut occurs.  The same discontinuity 

manifests itself as a narrow peak in cross-difference around the cut frame (Figure 9). 

 
Figure 7 Simple cut with little motion 
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Figure 8 Mean curve for  a simple cut with little motion 
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Figure 9 Cross-difference curve for  a simple cut with little motion 

Gradual transitions, especially dissolves prove more challenging.  As shown in Figure 

10 through Figure 15, the peak in cross-difference is not as clearly defined for such 

transitions, and generally tends to be smoother and more spread out.  This is the result 

of the gradual nature of the transitions, which means that for any frame during the 

transition the differences computed between pairs of frames to the left (right) of the 

current frame are not negligible, and may be close in magnitude to the differences 

computed across the current frame.  Hence, the cross-difference even at the highest 

point of the peak may not reach the predetermined threshold, which leads to a missed 

transition. 

It will be shown later, that the same transition becomes very apparent when color 

moments are analyzed with respect to the mathematical model of gradual transitions. 

 
Figure 10 Example of a cor rectly detected dissolve 
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Figure 11 Mean curves for  a cor rectly detected dissolve 
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Figure 12 Cross-difference curve for  a cor rectly detected dissolve 

 
Figure 13 Example of a missed dissolve 



 33 

0

10

20

30

40

50

60

70

80

90

45
69

4

45
69

7

45
70

0

45
70

3

45
70

6

45
70

9

45
71

2

45
71

5

45
71

8

45
72

1

45
72

4

45
72

7

45
73

0

45
73

3

45
73

6

45
73

9

45
74

2

45
74

5

45
74

8

45
75

1

45
75

4

45
75

7

45
76

0

45
76

3

45
76

6

45
76

9

45
77

2

45
77

5

45
77

8

45
78

1

45
78

4

Red

Green

Blue

 
Figure 14 Mean curves for  a sample missed dissolve 
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Figure 15 Small peak in cross-difference for  a sample missed dissolve 

Another problem the algorithm faces is manifested in shots containing significant 

motion, caused either by large moving objects, or by the motion of the camera, such 

as when the camera operator follows a walking person, as shown in Figure 16.  

During such sequences, color moment differences between consecutive frames may 
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be considerable, and the difference between frames a certain distance apart tends to 

be quite large.  This produces peaks in the cross-difference curve similar to those 

resulting from gradual transitions (see Figure 18).  If the peak exceeds the 

predetermined threshold, a false transition will be reported. 

 

 
Figure 16 Example of motion sequence which tr iggers a false transition repor t 
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Figure 17 Mean curves for  a sample motion sequence 
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Figure 18 Cross-difference curve of a sample motion sequence 

Finally, the algorithm requires that the cross-difference be maximal within the 

window in order to detect a transition.  It follows then that if two or more transitions 

occur within the size of the window, at most one of them will be detected.  Figure 21 

presents an example, in which a fade directly following a cut is dominated by the 

latter in term of cross-difference, and therefore is not detected by the algorithm. 

 
Figure 19 Example of a fade missed due to the proximity of a cut 
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Figure 20 Mean curve for  a sample missed fade 
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Figure 21 Cross-difference curve for  a sample missed fade 

Conclusions 

Despite its simplicity the cross-difference algorithm performs reasonably well for all 

of the basic transition types, achieving around 80% recall and precision.  On the other 
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hand, it suffers from two major shortcomings.  First, its requirement that the cross-

difference of the transition frame be maximal within the window of 2w+1 frames 

forces it to reject transitions which occur less than w frames apart.  Although this is 

not a very frequent occurrence, it does deteriorate performance. 

The second problem involves the method’s inability to distinguish well between 

gradual transitions and effects of motion.  No setting of the cross-difference threshold 

provides a good separation between those two cases.  Consequently, for any setting of 

this single parameter the algorithm either reports a large number of false positives 

triggered by motion, or misses a large number of gradual transitions. 

Finally, the cross-difference method does not provide any way to determine precise 

boundaries of gradual transitions.  Rather, it determines the transition on a single 

frame with maximal value of cross-difference.  Since this frame is not guaranteed to 

fall in the center of the gradual transition most of the transition frames may end up 

included in the shot directly preceding or succeeding the transition.  Such inclusion 

may have an adverse effect on repeated footage detection (see Chapter 3). 

As discussed in section 2.3, precise temporal segmentation is important for purposes 

of story tracking in video.  Considering that our method of story tracking relies on 

detecting repeated video material, which is often surrounded and separated by 

dissolves, we should try to create better methods of temporal segmentation, especially 

focusing on improving dissolve detection.  To this end, we decided to explore 

transition detection methods based on mathematical models of transitions in video 

(see section 2.1). 

2.6 Transition model algor ithm 

This temporal segmentation method aims to detect different types of transitions 

separately.  For each transition type a mathematical model representing the transition 

is chosen (see section 2.1) and some of its properties are determined.  The detection 
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method for a given transition type consists in identifying characteristic patterns in the 

time-series of video frame features corresponding to the model of the transition type.  

Results of the individual transition type detection are then combined to form the 

overall temporal segmentation of the video stream. 

Three main types of transitions are detected: cuts, fades and dissolves.  All other 

transitions, which result from applying some computer generated effects to the video 

stream, are typically ignored.  This is due to a wide variety of such effects used in 

modern video broadcasts, which make it virtually impossible for any single method to 

identify them consistently.  The following sections describe individual transition type 

detection methods we developed, and discuss their performance on the experimental 

data set. 

2.6.1 Cut detection 

Overview 

Cuts are the simplest type of shot transition and occur when the last frame of one shot 

is followed immediately by the first frame of the next shot. Thus, a cut does not 

consist of any frames, but rather occurs between frames. Assuming (as we have 

before) that frames belonging to the same shot tend to be similar to one another, and 

frames taken from different shots are generally dissimilar, we can infer that the frame 

feature (here color moments) of the last frame of the shot before a cut, and the frame 

feature of the first frame of the following shot will also be dissimilar.  Therefore, in 

general, cuts manifest themselves as discontinuities in the feature representation of 

video frames, and can be detected by computing the difference in frame feature(s) 

(here: color moments) of every pair of consecutive frames, and declaring a cut when 

this value exceeds a certain threshold. This is well illustrated in Figure 22 through 

Figure 24. 
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Figure 22 Example of a simple cut with little motion 
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Figure 23 Mean curves for  a sample cut with little motion 
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Figure 24 Frame moment difference for  a simple cut with little motion 
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Clearly the moment difference at frame 2665 stands out from the surrounding frames. 

In this case, a simple threshold of 5.0 would isolate the cut frame from all other 

frames. Such a static threshold would work well across the entire video broadcast, if 

all shots in the broadcast were of similar nature.  In practice, news videos contain a 

variety of shots ranging from often fast changing and intense-motion commercials to 

relatively static studio and anchor person shots. In some of them cuts are marked by 

only a very small change in color moments, such as in Figure 25 through Figure 27 

below at frame 46034.  In others, motion contained in the video footage causes color 

moments to change significantly even within a single shot.  Consequently, one global 

threshold is not flexible enough to account for all different types of shots, and a 

method based on an adaptive threshold is needed. 

 
Figure 25 Example of a cut with a small change in color  moments 
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Figure 26 Mean curves for  a sample cut with a small change in color  moments 
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Figure 27 Frame moment difference for  a sample cut with a small change in color  moments 

Truong et al [Tru00a] propose to detect spikes in frame feature difference using an 

adaptive threshold based on an average amount of change within a certain number of 

frames from the current frame. In their method, the authors utilize luminance 

histogram as the frame feature and calculate histogram differences of every pair of 

consecutive frames.  They impose a window of 2w + 1 frames around every frame in 

video, and for every such window compute the mean histogram difference, excluding 

the center frame.  A cut is reported if the following two conditions on histogram 

difference at the center frame hold: 

1. The difference is maximal in the window. 

2. The difference exceeds the dynamically adapted threshold, which is obtained 

by multiplying the mean histogram difference by a certain coefficient 

determined experimentally. 

In addition, Truong observes that in the complete absence of motion the mean 

histogram difference is very close to zero, thus leading to the second condition being 

satisfied by center frames of even very small histogram difference, which do not 

represent cuts.  In the domain of news, this is a fairly common occurrence during 
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sequences showing anchor persons.  To guard against reporting such frames as cut 

frames, Truong et al. introduce a residual histogram difference by adding a small 

value to the histogram difference at every frame. 

Since the authors report high performance of their method on a variety of video 

sources, including news, we decided to start the development of our cut detection 

algorithm with their method.  Truong’s method is independent of the frame feature 

selected, which allowed us to implement and test it using color moments instead of 

histograms for frame feature. 

The advantage of using an adaptive threshold is apparent in the following graphs.  

Figure 28 shows the values of frame feature difference directly, while Figure 29 

presents the ratio of the feature difference and the adaptive threshold.  In the graphs, 

the difference values for cut frames (true positives) are shown as positive bars, while 

the values for all other frames (false positives) are depicted as negative bars.  

Introducing a threshold of some value into the first figure, we would report a cut 

whenever this threshold is exceeded.  In the second figure, a cut is declared if the 

ratio at the given frame exceeds 1.0.  Clearly, the adaptive threshold provides better 

separation of cut and non-cut frames.  Choosing any constant threshold in the left-

hand side graph would lead to either missing several cuts or reporting a large number 

of false positives.  On the contrary, only very few false alarms have a cut ratio which 

exceeds 1.0.  Thus reporting cuts at frames whose ratio exceeds 1.0 should yield high 

precision and recall. 
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Color Moment Differences
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Figure 28 Frame moment difference values for  true cuts and false positives 

Adjusted Color Moment Differences
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Figure 29 Frame moment difference values with adaptive threshold for  true cuts and false 

positives  

Truong et al. report very high performance (recall 98.5%, precision 98.5%) of their 

algorithm on news video streams [Tru00a]. We ran their algorithm on our test data, 

but were unable to reproduce their results.  The performance we measured was recall 
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91.5% and precision 90%. This discrepancy is most likely caused by the difference in 

the news source used for experiments.  Therefore, in order to provide performance 

comparison between Truong’s algorithm and the method developed in our work, we 

evaluated both using the data set and methodology presented in section 2.4. 

In working with Truong’s algorithm we discovered two shortcomings. First, the 

algorithm requires that the moment difference of the current frame were a maximum 

within a window of 2w+1 frames. Consequently, the method systematically misses 

some cuts, if they occur less than w frames apart. Shots so short occur rarely, except 

in commercials.  However, sometimes one shot cuts to black for just a couple of 

frames and then another cuts back from black. Out of two such cuts, at most one will 

be detected by the algorithm. 

Second, Truong’s method does not account for changes in feature difference across 

the window.  We observed that even if color moment differences between 

consecutive frames in the window are significant, but do not vary much, a single 

frame with somewhat higher difference can be easily identified, and often represents 

a cut. 

Therefore, we suggest a more statistically grounded approach.  We propose that 

analyzing statistical properties of color moment differences may yield additional 

insight into distinguishing between motion induced changes and cuts.  Specifically, 

we introduce standard deviation of color moment difference as the measure of 

consistency of color moment differences across the window.  If the value of standard 

deviation is small, we can report cuts on frames with moment difference exceeding 

the mean by a smaller amount. 

Algorithm 

This section describes in detail the cut detection algorithm. The algorithm consists of 

three fundamental steps. 
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1. First, we compute color moment differences between every pair of 

consecutive frames in the video clip. We adjust the differences by adding a 

small (residual) difference to avoid false alarms in still frame sequences. 

2. In the second step, we select a window of 2w + 1 frames around every frame 

in the video clip, and compute statistics of the moment differences within the 

window.  Statistics are represented by the mean and standard deviation 

calculated over the frames in the window excluding the center frame. 

3. Finally, in the last step we calculate the value of the adaptive threshold for this 

window and compute the ratio of the moment difference of the center frame to 

the threshold. If the ratio exceeds 1.0 we declare a cut.  The adaptive threshold 

is calculated as a weighted sum of mean and standard deviation of moment 

differences. The weights applied are obtained experimentally. 

Figure 30 presents the cut detection algorithm in pseudo code. 

� � ��
�������������������

Function CalculateDifferences 
 ForEach frame in VideoClip 
  frameDiff[frame] = AbsMomentDiff(f1, f2) + residualDiff;  
 EndFor 
EndFunction 
 
Function CalculateDifferenceStatistics 
 ForEach frame in VideoClip 
  mean[frame] = Mean(frameDiff[frame–w]:frameDiff[frame–1], 
      frameDiff[frame+1]:frameDiff[frame+w]); 
  stdDev[frame] = StdDev(frameDiff[frame–w]:frameDiff[frame–1], 
      frameDiff[frame+1]:frameDiff[frame+w]); 
 EndFor 
EndFunction 
 
Function DetectCuts 
 CalculateDifferences(); 
 CalculateDifferenceStatistics(); 
 ForEach frame in VideoClip 
  threshold = mw * mean[frame] + sw * stdDev[frame]; 
  cuts[frame] = frameDiff[frame] / threshold > 1.0; 
 EndFor 
EndFunction 

Figure 30 Cut detection algor ithm 



 46 

The algorithm is controlled by four parameters, of which the first two must be 

determined a priori, and the remaining ones can be obtained experimentally: 

1) window size (w) 

2) residual moment difference (d) 

3) moment difference mean coefficient (mw) 

4) moment difference standard deviation coefficient (sw) 

The main advantage of this algorithm is that no requirement is placed on the current 

frame to have the maximal moment difference within the window. 

Experimental Results 

In order to evaluate the cut detection algorithm, we examine its performance over the 

experimental data set described in section 2.4 using the same methodology.  In 

addition, for comparison purposes, we evaluate performance of the Truong’s 

algorithm on our experimental data. 

Truong’s algorithm is controlled by three parameters: window size (w), residual 

difference adjustment (d), and difference ratio threshold (t). The first two should be 

determined a priori, and we chose them to be the same as for our cut detection 

algorithm in order to make the results comparable. The values used were w = 5 and 

d = 1.0. 

We measured recall and precision of the algorithm for the value of difference ratio 

threshold varying between 0.0 and 5.0.  Results of this experiment are presented in 

Table 2 and Figure 31.  It is apparent from the graph of recall and precision that the 

optimal combination of the two according to the utility function chosen is achieved 

for threshold 3.0, where both measures are close to 91%. 
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Threshold Match Mismatch False Alarm Missed Recall Precision Utility 

0.0 557 130 8335 29 95.1% 6.3% 50.66% 

0.5 557 130 8335 29 95.1% 6.3% 50.66% 

1.0 557 130 7448 29 95.1% 7.0% 51.00% 

1.5 556 92 1199 30 94.9% 31.7% 63.28% 

2.0 552 70 217 34 94.2% 71.8% 82.99% 

2.5 545 46 89 41 93.0% 86.0% 89.48% 

3.0 536 31 58 50 91.5% 90.2% 90.85% 

3.5 516 23 38 70 88.1% 93.1% 90.60% 

4.0 486 17 22 100 82.9% 95.7% 89.30% 

4.5 461 14 12 125 78.7% 97.5% 88.07% 

5.0 434 13 9 152 74.1% 98.0% 86.01% 

Table 2 Truong’s cut detection per formance as a function of the difference ratio threshold 

Cut Detection: Recall and Precision
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Figure 31 Recall and precision of Truong’s cut detection algor ithm as a function of the difference 

ratio threshold 

It is important to note that even for threshold of 0.0, the algorithm does not yield 

100% recall. This is due to the requirement that the moment difference at a cut frame 

be the maximum difference within the window of 2w + 1 frames.  Therefore, out of 

every two (or more) cuts occurring less than w apart, at most one will be detected.  
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Since the value of recall at threshold 0.0 is 95.1%, we conclude that 5% of all cuts in 

our experimental video clip must occur within w = 5 frames of other cuts.  This 

number is not negligible, and certainly leaves room for improvement. 

The same experiment was performed using our cut detection method, and the results 

obtained will be discussed below. 

% 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

0.5 50.39 49.84 49.39 49.26 48.97 47.76 46.26 2.91 0.00 0.00 

1.0 51.05 51.99 53.86 59.98 76.12 90.58 84.29 0.00 0.00 0.00 

1.5 62.62 71.51 81.91 90.12 92.09 87.80 58.87 0.00 0.00 0.00 

2.0 81.18 87.19 90.98 92.20 88.90 78.98 51.45 0.00 0.00 0.00 

2.5 88.74 90.99 91.37 89.56 83.97 71.42 0.00 0.00 0.00 0.00 

3.0 90.94 91.24 89.88 85.80 78.29 62.97 0.00 0.00 0.00 0.00 

3.5 91.01 89.73 86.87 81.90 73.37 58.45 0.00 0.00 0.00 0.00 

4.0 89.63 88.01 83.53 78.11 68.52 55.12 0.00 0.00 0.00 0.00 

4.5 88.47 85.51 80.48 74.57 63.65 53.07 0.00 0.00 0.00 0.00 

5.0 86.42 82.39 78.35 71.84 60.32 51.88 0.00 0.00 0.00 0.00 

Table 3 Cut detection per formance as a function of mean and standard deviation coefficients 

Table 3 shows the values of the utility function for different combinations of the 

weighting coefficients of mean and standard deviation. The values shown in bold face 

are maximal in their respective columns. It can be seen that the overall best 

performance achieved with mw = 2.0 and sw = 1.5 is better than the best performance 

attainable with sw = 0.0 (with mw = 3.5). This demonstrates that introducing standard 

deviation into the base of difference ratio improves the algorithm’s performance.  In 

addition, the comparison of the best value of utility of our algorithm (92.20%) with 

that of Truong’s method (90.85%) shows that our algorithm performs better by a 

factor of 1.35%. 

Figure 32 shows the plot of recall and precision for mean coefficient of 1.5 and 

standard deviation coefficient varying between 0.0 and 4.5.  Overall with the optimal 

choice of all parameters, we were able to achieve recall and precision of 90% and 

above. 
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Cut Detection: Recall and Precision
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Figure 32 Cut detection per formance as a function of the standard deviation coefficient with 

mean coefficient equal 1.5 

Analysis of results 

As described above, the cut detection algorithm performs very well across the whole 

video clip used in the experiments. Below, we will present examples of different 

contexts in which cuts appeared in the experimental video, and we will analyze the 

behavior of the algorithm. 

A large portion of news video broadcasts consists of studio and anchor person shots, 

which are usually several seconds in length, and tend to contain little motion or 

otherwise change. Therefore, the color moments for these shots remain very stable 

and exhibit little variation. When a cut occurs, it manifests itself as a significant jump 

in the moment values (see Figure 34). Given very small differences between frames 

within the shots around it, the moment difference for the cut frame clearly dominates, 

and can be easily detected, as shown in Figure 35. 

 
Figure 33 Example of a cor rectly detected cut with little motion and large change in moments 
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Figure 34 Mean curves for  the sample cut 
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Figure 35 Adapted moment difference values for  the sample cut 

Such easy to spot changes in color moments can be accurately detected even by the 

trivial global threshold algorithm.  The advantage of using adaptive threshold instead 

is demonstrated in Figure 40.  Here the color moment change accompanying the cut 

at frame 46034 is hardly detectible even to the human eye (see Figure 37).  Only after 
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zooming in on details (Figure 38) do we notice the change primarily in the red 

channel.  But a quick glance at the adjusted moment difference plot (Figure 39), as 

well as the difference ratio graph (Figure 40), makes the transition very apparent. 

 
Figure 36 Example of a cor rectly detected cut with a small change in moments 
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Figure 37 Mean curves for  the sample cut 
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Figure 38 Enlarged mean curves for  the sample cut 
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Figure 39 Adapted moment difference values for  the sample cut 
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Figure 40 Moment difference ratio values for  the sample cut 

The cut detection task becomes more complicated in the presence of very short shots, 

especially if they contain rapid motion. The following example presents such a 

situation (see Figure 41 through Figure 44). The algorithm still performs reasonably 

well, detecting cuts at frames 21111, 21120, and 21139.  The cut at frame 21106, 

however, goes unreported.  The change in color moments due to this cut is visibly 

dominated by the nearby cut at frame 21111, which induces large mean and standard 

deviation. 

Such missed cuts do not hinder us in our task of story tracking, as such short shots 

occur very rarely in actual news footage, and are present mostly in commercials and 

promotional clips. 

 

 

 
Figure 41 Example of a sequence of very shor t shots 
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Figure 42 Mean curves for  the sample sequence with shor t shots 
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Figure 43 Adapted moment difference for  the sample sequence with shor t shots 
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Figure 44 Moment difference ratio values for  the sample sequence with shor t shots 

The issue we were more interested in addressing with our approach was that of a shot 

ending with a cut to black followed by a shot starting very shortly afterwards with a 

cut from black, as presented in Figure 48. Here, both cuts are manifested by large 

moment differences, often of similar value (see Figure 46).  Truong’s algorithm 

systematically misses at least one of the cuts because of the requirement that the cut 

frame have the maximum difference value within the window.  Our algorithm 

performs better in this case, allowing both cuts to be detected (see Figure 48).  

Whether both cuts will be detected depends on the values of mean and standard 

deviation of moment differences around them.  Generally, if these differences are of 

similar magnitude, they are both correctly detected. 

 
Figure 45 Example of a sequence with two cuts in close proximity 
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Figure 46 Mean curves for  the sequence with two cuts in close proximity 
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Figure 47 Adapted moment difference values for  the sequence with two cuts in close proximity 
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Figure 48 Moment difference ratios for  the sequence with two cuts in close proximity 

Our algorithm does not address the issue of cuts in the presence of rapid motion.  A 

small percentage of cuts were missed due to the impact of motion, especially when 

the objects in motion appear close to the camera and obscure a large portion of the 

screen. When this happens the frame to frame moment differences are significant 

even between frames belonging to the same shot. Consequently, the frame difference 

for the cut frame does not considerably exceed differences for the surrounding 

frames, and is dominated by the weighted sum of mean and standard deviation.  This 

is apparent in Figure 52 at frame 21455. 

There appears to be nothing in the color moments domain alone that could alleviate 

this problem.  Fortunately, this issue affects only a very small portion of video news 

footage. 

 
Figure 49 Example of a cut in a sequence with rapid motion 



 58 

0

20

40

60

80

100

120

21
40

0

21
40

3

21
40

6

21
40

9

21
41

2

21
41

5

21
41

8

21
42

1

21
42

4

21
42

7

21
43

0

21
43

3

21
43

6

21
43

9

21
44

2

21
44

5

21
44

8

21
45

1

21
45

4

21
45

7

21
46

0

21
46

3

21
46

6

21
46

9

21
47

2

21
47

5

21
47

8

21
48

1

21
48

4

21
48

7

21
49

0

21
49

3

21
49

6

21
49

9

Red

Green

Blue

 
Figure 50 Mean curves for  the sample sequence with rapid motion 
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Figure 51 Adapted moment differences for  the sample sequence with rapid motion 
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Figure 52 Moment difference ratios for  the sample sequence with rapid motion 

We observed a few occurrences of a curious artifact of video compression, which 

causes a single cut to be distributed over two frames (see Figure 53 through Figure 

56). If this occurs, the difference values for both frames are high and may exceed the 

dynamic threshold.  As a result, they may both be reported as cuts.  This could be 

alleviated by requiring that the cut frame have a locally maximal value of moment 

difference, which would allow for only one of the two frames to be declared as cut.  

Currently, our transition matching method takes care of this issue.  The manually 

annotated cuts use the frame before the cut as the start, and the frames after as the 

end, of the transition.  Hence, if both frames are reported as cuts, they will overlap the 

same single manually annotated transition. 

 
Figure 53 Example of a cut distor ted by video compression 
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Figure 54 Mean curves for  a sequence with a cut distor ted by video compression 
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Figure 55 Adapted moment differences for  a sequence with a cut distor ted by video compression 
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Figure 56 Moment difference ratios for  a sequence with a cut distor ted by video compression 

 
Figure 57 Example of a camera flash interpreted as a cut 
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Figure 58 Mean curves for  the sequence with a camera flash 
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Figure 59 Adapted moment differences for  the sample sequence with a camera flash 
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Figure 60 Moment difference ratios for  the sample sequence with a camera flash 

We have also identified camera flashes as a source of consistent false alarms raised 

by our algorithm.  During a flash, the pixel intensity of the frame radically increases 

and then drops, as shown in Figure 58.  This causes a significant change in color 

moments, and triggers cut detection.  This problem could be addressed by comparing 
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frames immediately before and after such a spike in moments.  If their color moment 

values are similar, then the cut could be rejected as a false positive.  This approach 

would work well for relatively still video sequences.  In the presence of motion, 

however, frames before and after the flash may be dissimilar and the flash will still be 

reported as a cut. 

Conclusions 

The experimental results and discussion presented above leads to conclude that the 

cut detection algorithm we adopted performs very well for video news broadcasts. Its 

performance is somewhat degraded in the presence of very short shots containing 

rapid motion, but this rarely occurs in the actual news footage, and hence remains 

without significant impact on our work. 

2.6.2 Fade detection 

Overview 

As discussed in the introduction (section 2.1) fades are sequences of frames whose 

intensity gradually increases from black or decreases to black in time.  Consequently, 

fade detection consists in recognizing sequences of monochrome frames (mostly 

black), and accurately marking the fade out and fade in slopes around them. The first 

task is relatively simple, when one observes that monochrome frames, regardless of 

their color, have practically zero variance, due to the fact that all pixels in the frame 

are of the same color. The second part presents more of a challenge. Given the start 

and end of the monochrome sequence, we must determine whether the sequence is 

preceded by a fade-out and whether it is succeeded by a fade-in.  Once this is 

established we need to accurately determine the first frame of the fade-out and the last 

frame of the fade-in, i.e. at which point these transitions terminate and the actual 

shots begin. 
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It can be shown, that while the intensity of the pixels decreases gradually during fade 

out and increases gradually during fade in, so does the color standard deviation of the 

entire frames.  In the ideal case, where the shot fading out or in contains no motion or 

any other change, the decrease or increase in standard deviation would be exactly 

linear. In practice, it tends to deviate somewhat from this theoretic model.  Therefore, 

the existing fade detection methods seek to establish how well a given frame 

sequence matches the model. 

Lienhart [Lie01a] proposes to use linear regression to assess how well the curve of 

standard deviation during fade in/out fits the linear model.  While linear regression is 

a very good measure of linearity, it does not offer a satisfactory solution to the 

problem of detecting fade boundaries.  Due to the nature of linear regression, if the 

number of frames that fit the linear model is large (i.e. the fade is relatively long), 

introduction of an additional point which does not fit the model well does not 

significantly perturb the slope and correlation. Therefore, a number of shot frames 

may be added to the curve, before the algorithm declares the end of a fade. 

Truong et al. [Tru00a] used the second derivative of color variance to detect fade 

boundaries.  They observed that the fade boundaries are accompanied by large spikes 

of second derivative curve.  Indeed, an abrupt change in the slope of the variance 

curve at the beginning and end of a fade causes a large change in the first derivative, 

and consequently a large value of the second derivative.  The same holds true for the 

curve of color standard deviation, which is shown in Figure 61 through Figure 64 

(frames 21237 and 21253). 

Truong argues that fades can be detected accurately by searching for such spikes 

around monochrome frame sequences.  In their fade detection method they impose 

two additional conditions: 

1. First derivative of color mean is relatively constant and does not change sign 

during the fade sequence. 
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2. The color variance of the frame immediately preceding a fade-out and the 

frame immediately succeeding a fade-in are above certain threshold. 

 

 
Figure 61 Example of a fade-out and fade-in sequence 
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Figure 62 Standard deviation curves for  the sample fade sequence 
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Figure 63 Smoothed second der ivative of standard deviation for  the sample fade sequence 

0

1

2

3

4

5

6

7

8

9

10

21
21

6

21
21

9

21
22

2

21
22

5

21
22

8

21
23

1

21
23

4

21
23

7

21
24

0

21
24

3

21
24

6

21
24

9

21
25

2

21
25

5

21
25

8

21
26

1

21
26

4

21
26

7

21
27

0

21
27

3

21
27

6

21
27

9

21
28

2

21
28

5

21
28

8

21
29

1

21
29

4

21
29

7

21
30

0

21
30

3

21
30

6

Linear Regression Slope

Slope Difference

 
Figure 64 Slope difference vs. linear  regression slope for  the sample fade sequence 

In this work, we chose a different approach, though also based on the maxima of 

second derivative of standard deviation.  We approximate the second derivative of 

standard deviation as a difference in the smoothed first derivative.  The smoothing 

operation is performed separately for frames before and after a given frame in the 
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potential fade sequence, so that we can reduce the effects of motion, while retaining 

the clarity of the extreme values of second derivative. 

For every frame in the fade sequence we calculate the average first derivative over a 

certain number of frames prior to the current frame, and call this value the inner 

slope. We also calculate the average first derivative of a certain number of subsequent 

frames, and call it the outer slope. 

In order to find the end point of the fade, we search for the frame at which the 

difference between the inner slope and the outer slope is maximal (i.e. the maximum 

of second derivative).  This point corresponds very precisely to the end of fade in/out. 

This solution is superior to using linear regression proposed in [Lie99] in two 

respects. First, it is computationally very simple, as it does not require computing 

powers and square roots. More importantly, it provides a precise cutoff point for the 

end of the transition.  Figure 61 and Figure 65 show two typical combinations of 

fade-out and fade-in. In the former, both transitions are relatively short and their 

standard deviation curves are fairly steep. In the latter, the transitions are slow and 

smooth, yielding a more gradually decreasing and increasing curve. It is evident from 

the graphs in Figure 64 and Figure 68 that the slope obtained from linear regression 

drops off gradually, especially for slow transitions. In extreme cases, the difference in 

slope from one frame to another is virtually unnoticeable. This makes it difficult to 

detect the precise frame on which the transition terminates.  Conversely, the slope 

difference obtained in our method shows a clear maximum at precisely the transition 

boundary. Hence, detecting these maxima guarantees high precision in fade boundary 

detection. 
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Figure 65 Example of a sequence with slow fade-out and fade-in 
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Figure 66 Standard deviation curves for  the slow fade sequence 
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Figure 67 Smoothed second der ivative for  the slow fade sequence 
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Figure 68 Slope difference vs. linear  regression slope for  the slow fade sequence 

We believe that the additional conditions introduced by Truong may be eliminated, 

thus simplifying the fade detection, and reducing the potential for missing some fades 

which may not satisfy these criteria.  We note that any sequence of monochrome 

frames must be preceded and succeeded by a transition.  Clearly, three types of 
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transitions could be involved: cut, fade, or special effect.  Since detecting a special 

effect transition is generally a good thing, we will not attempt to prevent our method 

from reporting them as fades.  Given that, the fade detection can be reduced to 

distinguishing between cuts and fades.  Our algorithm presented in the next section 

builds on this observation. 

Algorithm 

In this section, we describe in detail the fade detection method we developed. The 

algorithm consists of three major steps. First, we detect if the current frame marks the 

beginning of a sequence of monochrome frames. Then, we check whether the 

monochrome sequence is surrounded by linear slopes in standard deviation 

corresponding to fade-out and fade-in. And finally, we determine whether the slopes 

detected match certain predetermined criteria. 

In the first step, we compare the three values of standard deviation for red, green, and 

blue against a monochrome frame threshold.  We have experimentally established the 

optimal threshold value at 15.0. If all three standard deviation values fall below this 

threshold we consider the current frame monochrome, and mark it as the beginning of 

the monochrome sequence. We then proceed to test subsequent frames in the same 

manner until we reach a frame which is not monochrome. The last monochrome 

frame marks the end of the monochrome sequence. 

Given the start and end of the monochrome sequence we analyze the frames before its 

start and after its end, to find a potential fade-out and fade-in.  For this purpose, we 

calculate the inner and outer slope for every frame up to 60 frames away from the 

start (end), and as long as the inner slope exceeds the minimal fade slope threshold.  

We choose the frame for which the slope difference reaches maximum to be the start 

(end) of the fade-out (fade-in). 

Finally, we determine if the potential fades satisfy the following criteria: 
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a) The ratio of the total standard deviation difference between the start and end 

of the fade to the maximal standard deviation difference between any 

consecutive frames during the potential fade exceeds certain threshold, which 

we call slope dominance threshold. 

b) The slope of the standard deviation curve is between the minimum and 

maximum acceptable values, named minimal and maximal fade slope, 

respectively. 

Figure 69 shows the algorithm in pseudo code. 

� 	� ��
�������������������

Function IsFrameMonochrome(int frame) 
 return RedStdDev(frame) < monoFrameThreshold And 
  GreenStdDev(frame) < monoFrameThreshold And 
  BlueStdDev(frame) < monoFrameThreshold 
EndFunction 
 
Function FindMonochromeSpanEnd(int frame) 
 endFrame = frame; 
 While (IsFrameMonochrome(endFrame)) 
  endFrame++; 
 EndWhile 
 return endFrame 
EndFunction 
 
Function CalcSlope(int startFrame, int endFrame) 
 float slope = 0.0; 
 For int frame = startFrame To endFrame 
  slope += Abs(AvgStdDev(frame) – AvgStdDev(frame-1)); 
 EndFor 
 slope = slope / (endFrame – startFrame + 1); 
EndFunction 
 
Function FindFadeOut(int monoStartFrame, int monoEndFrame) 
 climbing = True; 
 frame = monoStartFrame; 
 While innerSlope > innerSlopeThresh Or climbing 
  innerSlope = CalcSlope(frame, frame + innerSlopeSize) 
  outerSlope = CalcSlope(frame – outerSlopeSize, frame) 
 
  If innerSlope – outerSlope > maxSlopeDiff 
    maxSlopeDiff = innerSlope – outerSlope 
    maxSlopeFrame = frame 
  EndIf 
 
  If innerSlope > outerSlope  
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   climbing = False 
  EndIf 
 
   frame++; 
 EndWhile 
 
  fadeOutStart = monoStart; 
  fadeOutEnd = monoStart 
   
  If innerSlope between minSlopeThresh And maxSlopeThresh 
   If innerSlope dominates maxFrameDiff 
    fadeOutStart = maxSlopeFrame 
    fadeOutEnd = monoStartFrame 
   EndIf 
  EndIf 
EndFunction 
 
Function FindFadeIn(int monoStartFrame, int monoEndFrame) 
 Proceed analogically to FindFadeOut; 
EndFunction 
 
Function DetectFades 
 ForEach frame in VideoClip 
  If Not IsFrameMonochrome(frame) continue; 
    
   monoStartFrame = frame; 
   monoEndFrame = FindMonochromeSpanEnd(monoStartFrame) 
    
   fadeOutStart, fadeOutEnd = FindFadeOut(monoStartFrame, monoEndFrame) 
   fadeInStart, fadeInEnd = FindFadeIn(monoStartFrame, monoEndFrame) 
 
  If Not FadeOutMeetsCriteria 
   fadeOutStart = fadeOutEnd 
  EndIf 
  If Not FadeInMeetsCriteria 
   fadeInStart = fadeInEnd 
  EndIf 
 
  If (fadeOutStart != fadeOutEnd) 
   fades[fadeOutStart] = fadeStartTag 
   fades[fadeOutEnd] = fadeEndTag  
  EndIf 
  If (fadeInStart != fadeInEnd) 
   fades[fadeInStart] = fadeStartTag 
   fades[fadeInEnd] = fadeEndTag  
  EndIf 
 
  frame = fadeInEnd; 
 EndFor 
EndFunction 

Figure 69 Fade detection algor ithm 
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Experimental Results 

The fade detection algorithm is controlled by four parameters listed below. 

1. Maximum detectable fade length.  This parameter determines how far from 

the start (end) of a monochrome sequence the algorithm searches for a fade 

boundary.  The value of this parameter can be essentially arbitrary, and should 

be determined a priori.  It should be large enough to accommodate the longest 

fade expected in the video sequence.  We used 60 frames, or about 2 seconds, 

for the maximum fade length. 

2. Minimal fade slope threshold.  The value of this parameter controls the 

minimum slope of the standard deviation curve during a fade.  If the inner 

slope falls below this value, the algorithm stops its search for the maximum 

slope difference.  Also, if the overall slope of the curve, between the start 

(end) of the monochrome sequence and the start (end) of the potential fade out 

(in) is below this threshold, the fade will not be reported.  The optimal value 

of this parameter should be determined experimentally. 

3. Maximal fade slope threshold.  This parameter serves as a sanity check on the 

steepness of the standard deviation curve during a potential fade.  If the 

overall slope of the potential fade sequence exceeds this threshold, the 

sequence is not reported as a fade.  The value of the threshold should be 

determined a priori, and should be relatively large.  We selected 50.0 as the 

maximal fade slope threshold in the following experiments. 

4. Slope dominance threshold.  This threshold protects against detecting cuts to 

and from monochrome frames as fade-ins or fade-outs.  The value of this 

parameter determines the minimum ratio of the overall difference in standard 

deviation between the start and end of a potential fade sequence to the 

maximal standard deviation difference between any two consecutive frames in 

that sequence.  If the ratio does not reach this threshold, then the sequence is 
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not reported as a fade. The optimal value of this parameter should be 

determined experimentally. 

In order to evaluate the fade detection performance, we performed a set of 

experiments using the data and methodology described in section 2.4.  We varied the 

values of minimal fade slope threshold and slope dominance threshold, to determine 

their optimal values and maximal achievable performance.  The results are presented 

in Figure 70, Figure 71 and Table 4. 

Fade Detection: Recall and Precision
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Figure 70 Fade detection per formance as a function of the minimum slope threshold 
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Fade Detection: Recall and Precision
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Figure 71 Fade detection per formance as a function of the slope dominance threshold 

Minimal Slope Recall Precision Utility 

0.0 92.9% 97.5% 95.18% 

0.5 92.9% 97.5% 95.18% 

1.0 90.5% 98.7% 94.59% 

1.5 82.1% 98.6% 90.36% 

2.0 71.4% 98.4% 84.89% 

2.5 67.9% 98.3% 83.07% 

3.0 64.3% 98.2% 81.23% 

3.5 58.3% 100.0% 79.17% 

4.0 57.1% 100.0% 78.57% 

4.5 51.2% 100.0% 75.60% 

5.0 47.6% 100.0% 73.81% 

Table 4 Fade detection per formance as a function of the minimal slope threshold 

The experiments show high values of recall and precision reaching 92.9% and 97.5% 

respectively. Figure 71 shows the significance of the slope dominance threshold.  If 

we do not require that the total difference be at least 1.0 times greater than the 

maximum consecutive frame difference, then some cuts are detected as fades, and 
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overall precision deteriorates.  Otherwise, precision remains practically flat with the 

increase of both parameters, but recall decreases.  

Figure 70 demonstrates that increasing the value of minimum slope threshold past 1.0 

causes a visible decrease in recall.  This indicates that many fades are relatively flat 

with a slope of 1.0 or less.  In fact, the threshold value of 0.0 yields the highest 

overall value of utility, the same as for threshold of 0.5.  We consider 0.5 to be an 

optimal value, as it may guard against reporting certain false positives. 

Our results are comparable with those reported by Truong [Tru00a] for news 

sequences (recall 92.5% and precision 96.1%).  In addition, further analysis will show 

that the fades our method actually missed are quite questionable. Some of them do 

not start or end with a strictly monochrome frame.  Others do not fade gradually to a 

monochrome frame, but rather abruptly drop to it, more in the manner of a cut.  If we 

eliminate such pseudo-fades, our method achieves 100% recall on the experimental 

data set. 

The pseudo-fades which drop suddenly to a monochrome frame could be considered 

cuts.  Our fade detection method could be adapted to report such transitions, and in 

the overall temporal video segmentation, cuts could be inserted if they have not been 

detected by the cut detection method. 

The following section presents a detailed discussion of the fade detection experiments 

results. 

Analysis 

As noted earlier, our method consistently misses two types of pseudo-fades.  The first 

one consists in a sequence of frames that starts to gradually fade out, but at a certain 

frame drops directly to monochrome, as illustrated in Figure 72.  This poses a 

problem, because the maximum difference in the standard deviation slope (Figure 74) 

is found at this drop-off frame and the fade looks like a cut, i.e. it consists of a single 

large difference between consecutive frames. In this example, although the fade 
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stretches from frame 39019 to 39024, the sudden drop in standard deviation causes 

the maximum of the second derivative to fall on frame 39023.  Therefore, this frame 

is recognized as the start of fade-out and the slope does not dominate the consecutive 

frame difference. 

 
Figure 72 Example of a fade-out sequence ending with an abrupt cut to black 
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Figure 73 Standard deviation curves for  the fade-out ending with an abrupt cut to black 
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Figure 74 Slope difference of standard deviation for  the fade-out ending with an abrupt cut to 

black 

The other type of pseudo-fade not detected by our method is a fade-like sequence of 

frames which does not start or end with a truly monochrome frame, as in Figure 75.  

In this sequence, the value of standard deviation of the blue component at frame 

20880 equals 16.0 and slightly exceeds the chosen monochrome threshold of 15.0 

(Figure 76).  Consequently, our algorithm does not find any monochrome frames, and 

does not attempt to detect potential fades surrounding it. 

 
Figure 75 Example of a pseudo fade-in sequence which does not star t with a monochrome frame 
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Figure 76 Standard deviation curves for  the pseudo fade-in sequence 
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Figure 77 Slope difference of the standard deviation for  the pseudo fade-in sequence 

Finally, our method reports fade-ins and fade-outs at beginnings and ends of some 

computer generated transitions (see Figure 78).  Such pseudo-fades do not count as 

false positives in our evaluation methodology, because they overlap a manually 

annotated transition, in accordance with definition in section 2.4.  In fact, this 
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behavior should be considered beneficial, as it helps distinguish at least some shots 

separated by such complex transitions. 

 
Figure 78 Example of a special effect sequence detected as a fade 
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Figure 79 Standard deviation curves for  the sample special effect sequence 
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Figure 80 Standard deviation slope difference for  the sample special effect sequence 

Conclusions 

The fade detection algorithm presented in this section is based on the average 

standard deviation of pixels in video frames.  Our method is very simple, uses only 

two criteria on standard deviation, and achieves a very high performance level of 

recall and precision close to 100%. 

Our approach to detecting fade boundaries is an improvement over the linear 

regression method proposed by Lienhart [Lie99], and is similar to the one introduced 

by Truong et al. [Tru00a].  Unlike Truong, we do not require color mean to change 

linearly, but rather introduce a condition which guards against cuts being detected as 

fades.  Our algorithm performs equivalently to the methods developed by Lienhart 

and Truong. 
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2.6.3 Dissolve detection 

Overview 

Next to computer generated special effects, dissolves are the most difficult transitions 

to detect.  As presented earlier, no spatial or temporal separation exists between the 

shots surrounding this type of transition.  

In essence, dissolves are very similar in nature to fades.  In fact, a fade can be thought 

of as a special kind of dissolve in which one of the shots involved consists of only 

black (monochrome) frames.  We demonstrated earlier that fades can be detected 

effectively and accurately, by looking for certain typical features surrounding 

sequences of monochrome frames.  Unfortunately, dissolve detection does not share 

the luxury of such well-defined initial conditions, and we cannot resort to detecting 

monochrome frames to trigger transition detection. 

Dissolves are created by fading one shot to black while the next shot is faded in from 

black.  In order to achieve this, pixel intensities of frames in shot A are modified by a 

monotonically decreasing function fA, and pixel intensities of frames in shot B are 

modified by a monotonically increasing function fB. At any frame during the 

transition, the intensity of every pixel is defined as the sum of the original intensities 

of that pixel in shot A and B. 

Many researchers derived different characteristics of dissolve frame sequences, and 

built detection methods around them.  These were described briefly in section 2.2.3.  

A method presented by Truong et al. [Tru00a] achieves the highest reported 

performance.  Since their method relies on variance, which is readily available to us 

as the square of standard deviation, it became a good starting point for the 

development of our algorithm. 

It can be shown that if the variances of shots A and B are constant, then the color 

variance of frames over time during transition should have a parabolic shape. This 

corresponds to the decrease in color intensity which occurs during fade-out of shot A 
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and fade-in of shot B.  In practice, this idealized shape is somewhat perturbed by 

change (such as motion) within shots. Figure 81 shows a dissolve between two 

relatively static shots of similar variance.  For such a transition, the parabolic shape of 

variance curve is apparent (see Figure 82). 

 

 
Figure 81 Example of a dissolve between shots of similar  var iances 
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Figure 82 Var iance curve for  the sample dissolve between shots of similar  var iances 

On the other hand, if the two shots involved have significantly different variances, 

then the parabolic shape of the variance curve becomes asymmetric, and is more 

difficult to identify.  This situation often happens when a studio shot transitions into a 

field shot (see Figure 83).  The former is filmed indoor, presents a close-up of anchor 

persons and contains several distinct objects of high color intensity, while the latter 

has been taken outside and may have been recorded in poor lighting conditions.  Such 

asymmetry in the variance curve (see Figure 84) leads to difficulty in detecting the 

minimum, which usually is the starting point for dissolve detection.  In the extreme 
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case, such as is shown in Figure 85, the parabola of the variance curve does not 

appear at all, and therefore no minimum exists during a dissolve (Figure 86). 

 

 
Figure 83 Example of a dissolve between shots of different var iances 
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Figure 84 Var iance curve for  a dissolve between shots of different var iances 

 

 
Figure 85 Example of a dissolve between shots with extremely different var iances 
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Figure 86 Var iance curve for  a dissolve between shots with extremely different var iances 

Television news stations tend to use dissolves to introduce prerecorded footage, as 

well as separate individual shots of that footage.  Frequently, a sequence of live studio 

shots presenting an anchor person introduces the story, followed by a dissolve and a 

sequence of prerecorded shots, connected by dissolves.  Finally, at the end of the 

prerecorded sequence, another dissolve brings back the anchor person in the studio.  

As we argued earlier, such prerecorded footage is essential to our task of story 

tracking, because it contains the visual clues connecting episodes of the same story.  

It follows that precise dissolve detection is very important in this work. 

The task is complicated by the nature of the prerecorded video material.  First, as we 

noted, the lower quality of the video, such as light exposure, causes difficulty in 

recognizing transitions between studio shots and field shots.  In addition, field shots 

are often recorded from a hand-held camera, and contain rapid motion, due to the 

movement of either the camera, or the objects in view.  Finally, the view is often 

temporarily occluded by persons passing directly in front of the camera.  The effects 

of such occurrences on frame variance are very similar to the ones caused by 

dissolves, as it is shown in Figure 87.  In both cases, the color variance function 
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gradually decreases, reaches a minimum (at maximum occlusion, or maximally 

monochrome background) and then gradually recovers. 

 

 
Figure 87 Example of a camera motion which produces a dissolve-like shape of var iance curve 
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Figure 88 Var iance curve for  the sample camera motion sequence 

The best dissolve detection performance reported in literature is reported by Truong 

et al. [Tru00a] who claim recall and precision of approximately 65% for news 

sequences.  Considering the importance of precise dissolve detection in our work, we 

need to create an algorithm which performs better.  We decided to begin with 

Truong’s method, analyze it in detail, and improve upon it.   

Essentially, his approach focuses on identifying trigger points for all potential 

dissolves and applying multiple conditions separating actual dissolves from effects of 

motion and noise.  Truong introduces the following set of conditions: 
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1. The variances of the two shots surrounding a potential dissolve must exceed a 

predetermined threshold. 

2. The first order difference of the variance must have two negative spikes on 

either side of the potential dissolve.  The minimal values should exceed a 

given threshold. 

3. The variance differences between the bottom of the variance curve and the left 

and right ends of the dissolve must exceed another threshold whose value is 

proportional to the variance of the corresponding shot. 

4. Average variance difference between start (end) and the bottom of the curve 

should exceed half the average variance at the start and end of the potential 

dissolve. 

All of the above conditions were derived algebraically from the mathematical model 

of an idealized dissolve.  Subsequently, however, Truong relaxed some of them in 

order to deal with real world data.  We examine Truong’s conditions on our 

experimental data, and make improvements where needed.  First, we assume that 

dissolve sequences must have certain minimal length.  In our experimental data we 

found that virtually all dissolves contained at least five frames, and assume this value 

as the required minimal length.  Although shorter dissolve sequences do exist, they 

are extremely rare.  In addition, the color moment differences between consecutive 

frames of such short dissolves are very large, which leads to their detection as cuts. 

 



 88 

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00 7000.00 8000.00 9000.00 10000.00

Model Dissolves Actual Dissolves Minimum Maximum

 
Figure 89 Differences between the star t and the bottom of the var iance curve dur ing dissolve as a 

function of the var iance of the star t frame 
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Figure 90 Differences between the end and the bottom of the var iance curve dur ing dissolve as a 

function of the var iance of the end frame 

Figure 89 and Figure 90 show plots of variance differences between the bottom of the 

variance curve and its start and end, respectively.  The plots show that the theoretical 

predictions made by Truong do not match the actual values very well.  Most of the 
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time the model overestimates the difference between the minimum and either start or 

end of the dissolve.  As a result, we adjusted the cut-off line proposed by Truong to 

accommodate the lower difference values. 
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Figure 91 Differences between the star t and the bottom of the var iance curve dur ing dissolves 

and non-dissolve sequences as a function of the var iance of the star t frame 
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Figure 92 Differences between the end and the bottom of the var iance curve dur ing dissolves and 

non-dissolve sequences as a function of the var iance of the end frame 
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The plots in Figure 91 and Figure 92 show the variance difference values for the 

actual dissolves along with the values for false positives.  It is apparent that the actual 

dissolves do not differ significantly from the false alarms, as their corresponding 

points are clearly intermixed.  We can observe, however, that the vast majority of 

false positives have very low difference values.  Therefore, we can introduce a 

threshold line of a very small slope, proportional to the variance of the corresponding 

shot.  Such a cut-off allows us to eliminate the majority of false alarms, while 

excluding only a small number of actual dissolves.  We found the slope value of 

0.075 to be effective for our experimental data. 
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Figure 93 M inima of first der ivative of var iance at the star t of a potential dissolve 
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Figure 94 M inima of first der ivative of var iance at the end of a potential dissolve 

Again, no separation is offered by the condition on the minima of the first order 

variance difference.  In fact, the plots in Figure 93 and Figure 94 show that there is no 

way to separate the actual dissolves from the false positives which remain after the 

previous condition has been applied.  Therefore, we elect not to use this condition in 

our algorithm. 

Then, we examine the condition of average difference in variance.  Figure 95 shows 

that this condition offers some degree of separation.  Truong proposes a linear 

threshold dependent on the average variance at start and end.  While this works, a 

constant threshold offers better overall improvement, if we measure improvement as 

the ratio of increase in precision to decrease in recall. 
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Figure 95 Average var iance difference as a function of the average var iance at both ends of a 

potential dissolve 

After all of the conditions proposed by Truong have been applied, a large number of 

false positives remain.  In an effort to reduce this number, we analyze the 

characteristic features of the color mean of video frames during a dissolve.  It can be 

shown that during an idealized dissolve the mean values of individual color 

components change linearly from the mean of the shot before the dissolve, to the 

mean of the shot after the dissolve. 

We also observe that false alarms are often caused (and impossible to distinguish 

from dissolves based on variance alone) by large objects passing before the camera, 

or in the background.  If such an object is relatively dark and monochrome, then it 

causes a gradual decrease in variance as it comes into view, followed by a gradual 

increase as it leaves the view.  This also induces a gradual decrease in color mean. 
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Figure 96 Aberration of the mean curve its linear  interpolation for  true dissolves 
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Figure 97 Aberration of the mean curve its linear  interpolation for  non-dissolve sequences 

We use these observations to add a new criterion for dissolve detection. We compare 

the value of mean at the center of the potential dissolve to the minimum of the values 

at the start and end of the dissolve.  We require that the center value exceed the 

minimum by an amount proportional to the absolute difference between the mean at 
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the start and the end of the dissolve.  The graphs in Figure 98 through Figure 100 

present the value of this difference as a function of the total difference between the 

means of the two shots involved. 
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Figure 98 Center  mean difference of the red component 
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Figure 99 Center  mean difference of the green component 
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Figure 100 Center  mean difference of the blue component 

Algorithm 

In this section, we describe in detail the dissolve detection algorithm.  Due to a large 

number of criteria used by the algorithm, as well as a variety of calculated values, 

presenting the algorithm in pseudo code would be impractical.  Instead, we provide a 

detailed list of steps taken by the algorithm. 

For every frame in the video clip, perform the following steps. 

1) Check if the average standard deviation of the current frame is minimal within +/- 

2 frames.  If it is, proceed to step 2.  Otherwise, move on to the next frame. 

2) Make sure the standard deviation of the current frame exceeds the monochrome 

threshold of 15.0.  If it does, proceed to step 3.  Otherwise, move on to the next 

frame. 

3) Establish a window of 90 frames around the current frame.  For every frame in the 

window: 

a) Calculate average color variance as the square of the average standard 

deviation. 
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b) Calculate first order variance difference, by taking the difference in variance 

between frame i and i-1. 

c) Compute first derivative of variance by smoothing the first order difference 

using weighted average with mask [1, 2, 4, 2, 1]. 

4) Starting at the current frame find the first minimum of first derivative of variance 

to the left (dVarMin), and the first maximum to the right (dVarMax).  Mark their 

respective frame numbers as dVarMinFrm and dVarMaxFrm, and calculate the 

center frame (centerFrm) as the average of the two. 

5) Calculate the second derivative of variance as the difference between average first 

variances of 3 frames to the right and to the left of frame i. 

6) Find the first minimum of second derivative to the right of dVarMax and to the 

left of dVarMin. Mark their respective frames as dissolveStartFrm and 

dissolveEndFrm. 

7) Calculate variance differences between the dissolveStartFrm and current frame 

(startVarDiff), as well as dissolveEndFrm and current frame (endVarDiff).  

Compute the average variance difference (avgVarDiff) as the average of 

startVarDiff and endVarDiff. 

8) Test if the sequence of frames between dissolveStartFrm and dissolveEndFrm 

meets the following criteria.  If all conditions hold, declare a dissolve and move 

on to the first frame after dissolveEndFrm.  Otherwise, move on to the next frame. 

a) Dissolve length (dissolveEndFrm – dissolveStartFrm + 1) exceeds 5 frames. 

b) Start variance difference and end variance difference exceed their respective 

thresholds: 

i) startVarDiff >= 0.075 *  startVar 

ii) endVarDiff >= 0.075 *  endVar 

c) Average variance difference is greater or equal to 500.0. 
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d) The value of mean for every color component of centerFrm exceeds its 

respective threshold 

i) ThreshC = 0.15 *  Abs(dissolveStartMean – dissolveEndMean) – 0.5 

ii) MeanC >= Min(Mean(dissolveStartFrm), Mean(dissolveEndFrm)) + 

ThreshC 

e) Mean aberration for every color component is less than or equal to 20.0 

Experimental Results 

In this section, we present and discuss the results obtained by using our dissolve 

detection algorithm on the experimental data.  Due to a large number of parameters 

controlling the algorithm we decided not to optimize the value of each parameter by 

performing detection with a range of values.  Instead, we analyzed the graphical 

representation of each parameter, as shown earlier in this section.  We believe that 

further adjustment of the parameters to obtain somewhat better results, although 

possible, would likely lead to over fitting of the model to the experimental data. 

Moreover, we present and discuss the performance gain offered by each of the 

conditions introduced earlier.  Table 5 summarizes the results. 

It is easy to see that dissolve detection lacks the benefit of monochrome frames which 

triggered the fade detection algorithm.  Dissolve detection algorithm is initiated for 

every minimum of standard deviation.  Evidently, due to motion and general changes 

on screen, video sequences contain an enormous number of such minima.  Reporting 

each of them as a dissolve would lead to very poor precision.  Therefore, a dissolve 

detection algorithm must apply additional criteria to reduce the number of false 

positives, and improve precision. 
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Condition Match False Alarm Missed Recall Precision Utility 

Minimum Variance 186 5786 3 98.4% 3.1% 50.76% 

Minimum Length 185 3410 4 97.9% 5.1% 51.51% 

Min Bottom Variance 184 3345 5 97.4% 5.2% 51.28% 

Start/End Variance Diff 170 194 19 89.9% 46.7% 68.33% 

Average Variance Diff 164 95 25 86.8% 63.3% 75.05% 

Center Mean 158 45 31 83.6% 77.8% 80.72% 

Mean Aberration 157 42 32 83.1% 78.9% 80.98% 

Table 5 Dissolve detection per formance with increasing cr iter ia set 

We first restricted the length of dissolves we would like to detect by introducing a 

minimum threshold of 5 frames.  Dissolves shorter than this do occur, but were very 

rare.  Table 5 shows that imposing the minimum length threshold made the algorithm 

miss just one additional dissolve in our experimental data, decreasing recall by 0.5 %.  

Conversely, increase in precision due to this condition is almost twofold. 

Subsequently we required that the bottom frame of every dissolve had the standard 

deviation of at least 15.0.  This requirement is consistent with the one applied in fade 

detection to recognize monochrome frame.  Hence, this condition eliminates fades 

that may have otherwise been recognized as dissolves.  The effect of this restriction is 

demonstrated in Figure 91 and Figure 92 as the straight line of larger slope.  Clearly, 

we can eliminate several false positives, with only minimal loss of actual dissolves. 

In the next step, we apply the criterion on start and end variance difference proposed 

by Truong et al.  Upon examination of Figure 91 and Figure 92 as well as numerical 

optimization, we arrived at the optimal threshold line y = 0.075 * x.  It is apparent 

that the slope of this line is significantly lower than the value 0.25 suggested by 

Truong.  This adjustment is necessary to account for the discrepancy between the 

theoretical model and empirical data.  Limiting dissolve detection to only such 

sequences whose variance difference between start and bottom, as well as end and 

bottom frames falls above the chosen threshold line dramatically increases precision, 
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which now exceeds 45%.  On the other hand, we needed to accept a 7.5% drop in 

recall. 

From this point on, we need to considerably reduce the number of false positives in 

order to achieve acceptable precision, but we cannot afford to lose much more recall, 

as it is already down to below 90%.  Therefore, as discussed earlier, we reject 

Truong’s condition on minimum and maximum of the first derivative of variance.  

Any gain in precision from using it would come at the price of substantially reduced 

recall (see discussion earlier in this section).  Hence, we move on to the average 

variance difference threshold.  Analyzing the plot in Figure 95, we determined that 

the cutoff value of 500.0 offers a very good separation of false positives from 

dissolves.  Applying this threshold, we can reduce the number of false positives by 

50%, while missing only 6 additional dissolves.  This leads to a recall and precision 

of 86.8% and 63.3%, respectively.  Careful examination of the same graph reveals 

that the threshold value could be increased to 550.0 in order to reduce the number of 

false alarms.  It would, however, most likely lead to over fitting of the model to the 

experimental data, and would ultimately result in decreased performance for other 

video sequences. 

We note that using a constant threshold for the average variance difference produces 

much better results than applying any type of threshold proportional to the average 

start and end frame variance, which Truong proposes.  Figure 94 demonstrates that 

any line of slope greater than 0.0 which eliminates a substantial number of false 

positives, simultaneously excludes a large number of true dissolves. 

Precision of 63.3% offered by the current set of conditions is far from satisfying.  

Therefore, we attempt to improve its value further, by employing the criterion of 

mean linearity during dissolve.  Figure 98 through Figure 100 show clearly that for 

many false positives, the values of mean of individual color channels drop below the 

minimum values at the beginning and the end of the sequence.  Whereas, during true 

dissolves the mean changes approximately linearly from start to end.  We choose to 

impose a threshold on the value of the mean at the center of a potential dissolve 
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proportional to the absolute mean difference between the start and end frame.  

Specifically, we use the line y = 0.15 *  x – 0.5, which has been determined 

experimentally to give optimal results.  This reduces the number of false positives by 

over 50% while excluding 6 additional dissolves, yielding recall of 83.6% and 

precision of 77.8%. 

Finally, we limit on mean aberration, i.e. the distance between the actual mean curve 

and the linear interpolation between the values at the start and the end of a potential 

dissolve.  The graphs of mean aberration for red, green, and blue channels, for both 

true dissolves and false positives, are presented in Figure 96 and Figure 97, 

respectively.  From the two graphs, we can obtain the value of 20.0 as a good 

threshold.  Three more false positives can be eliminated by applying this threshold. 

Performance improvements due to all of the restricting conditions discussed in this 

section are shown graphically in Figure 101.  Utilizing all of these conditions our 

algorithm achieves an overall recall of 83.1% with 78.9% precision, which constitutes 

a substantial improvement over results presented in literature. 
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Figure 101 Dissolve detection per formance with increasing number  of cr iter ia applied 
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Conclusions 

In this section, we presented a dissolve detection algorithm based on mean and 

variance of color components of video frames.  Our method is rooted in the approach 

proposed by Truong et al. [Tru00a], but contains several improvements. 

Our contribution has two aspects.  First, we conducted a detailed analysis of the 

model of the dissolve transition and confronted it with empirical data.  We present 

criteria used by Truong and evaluate them with respect to our experimental data.  As 

a result of this evaluation we drop one of criteria as not useful, and modify another to 

achieve better performance.  Second, we introduce two additional criteria, derived 

from the properties of color mean, which vastly reduce the number of false alarms, 

and thus increase precision. 

2.6.4 Combining transition detection algor ithms 

In this section we first present the combined performance of our temporal 

segmentation algorithm.  The summary of recall and precision of the detection 

techniques for all three types of transitions is presented in Table 6.  These results 

were obtained for the experimental 1-hour sequence with the optimal set of 

parameters. 

 Match False Alarm Missed Recall Precision Utility 

Cuts 528 31 59 90% 94% 92% 

Fades 78 2 6 93% 98% 95% 

Dissolves 157 42 32 83% 79% 81% 

Total    89% 91% 90% 

Table 6 Combined temporal segmentation per formance on the 1-hour  exper imental sequence 

In order to verify the performance of our method we chose a different 10-minute 

sequence of CNN News and ran the transition detection algorithm with the same set 

of parameter values.  The results of this experiment show (see Table 7) that our 

technique attains similar and better performance in detection of cuts and dissolves.  

Fade detection achieves 100% recall, but its precision is lower than on the original 
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sequence.  The test sequence contained only three actual fades, while also including 

two unusual clips in which a camera pan produced a fade-like effect.  These two clips 

were erroneously detected as fades, and their impact on precision was exaggerated by 

the small number of actual fades.  In a larger group of fades we expect a high 

precision value.   

The two experiments conducted allow us to conclude that our temporal segmentation 

technique works consistently well on different news video sequences. 

 Match False Alarm Missed Recall Precision Utility 

Cuts 46 2 0 100% 96% 98% 

Fades 3 2 0 100% 60% 80% 

Dissolves 28 3 2 93% 90% 92% 

Total    97% 92% 95% 

Table 7 Combined temporal segmentation per formance on a 10-minute test sequence 

After all individual types of transitions have been detected, there remains one final 

step before the temporal segmentation is fully accomplished.  The disparate sets of 

transition frames must be combined, so that a consistent set of shot frames can be 

established.  Since transition detection for cuts, fades, and dissolves is performed 

independently, it is possible that some frames marked as belonging to one type of 

transition are also denoted as belonging to another type.  All such conflicts must be 

resolved before the temporal segmentation is completed. 

Our approach to transition conflict resolution consists in assigning priorities to 

different types of transitions according to our confidence in their respective detection 

method.  Due to a high performance of our cut detection method, we give cuts the 

highest priority.  Fades receive a medium priority, and finally dissolves have low 

priority.  If any two transitions of different types overlap, we keep only the one with 

higher priority, while ignoring the other. 

The remaining transition frames are combined to form a single set T.  The set of all 

frames that do not belong to T forms the set of shot frames S.  These two sets define 

the final temporal segmentation of the video clip. 
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2.7 Conclusions 

In this chapter, we described the problem of temporal video segmentation with 

emphasis on its application to video news broadcasts.  We presented some approaches 

available in literature and proposed two of our own solutions.  Both solutions were 

based on color moments as video frame representation, and adhere to our requirement 

of real-time execution.  We tested both algorithms on a one hour block of video from 

a typical day of CNN News broadcast and analyzed their performance. 

First, we introduced a simple algorithm, which attempted to detect all types of 

transitions using one method consisting in assessing a cross-difference between video 

frames up to a certain distance apart.  We analyzed its performance on the 

experimental data, and concluded that due to inter-frame differences caused by noise 

and motion, the algorithm cannot achieve acceptable levels of recall and precision. 

In order to provide a better distinction between the effects of noise (or motion), and 

actual transitions, we adopted a method based on transition model.  This method aims 

to detect different types of transitions by identifying certain characteristics of frame 

sequences, which can be derived from the transition models.  The algorithm was 

tested on the experimental data, and achieved very good performance, especially for 

cut and fade detection.  For these two types of transitions, both recall and precision 

exceeded 90%.  Dissolve detection proved to be the most challenging, and the 

algorithm attained a recall and precision of approximately 80%. 

Our contribution to the field of temporal video segmentation is twofold.  First, we 

introduce an effective temporal segmentation method based entirely on color 

moments.  This unique approach offers a very compact representation of video, as we 

only need to store and process nine floating point numbers for every frame.  Using 

this representation we created a very fast one-pass algorithm, which executes in a 

fraction of real time, and performs at least as well as other approaches presented in 

literature. 



 104 

Second, we proposed several improvements in cut and dissolve detection.  We 

introduced a statistically grounded approach to cut detection, which eliminates some 

systemic problems with existing algorithms and offers improved performance.  We 

also introduced a few additional criteria for dissolve detection, as well as analyzed 

and modified certain existing conditions.  Application of these additional and 

modified conditions produced a substantially improved performance of dissolve 

detection (15% increase in recall and precision). 

In the following chapters, we will use the temporal video segmentation as a stepping 

stone to detecting repeated shots and combining them into stories.  Therefore, the 

quality of transition detection will have direct impact on the quality of story tracking 

we perform.  Our story tracking method is based on detecting repeated footage used 

by news station to provide visual background for the story.  In the process of 

developing and testing our temporal segmentation methods, we observed that such 

footage is often introduced and separated by dissolves.  Thus, the improvements to 

dissolve detection were essential for the remainder of our work.  On the other hand, 

the 80% recall and precision of dissolve detection may still prove insufficient for a 

reliable repeated footage detection. 

.
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Chapter  3  

Repeated Video Sequence Detection 

3.1 Introduction 

As it was discussed in Chapter 1, modern television news stations often reuse video 

footage when relating a news story.  As the story develops and new segments are 

shown by the station, often the same footage is displayed.  This means that a number 

of video clips presented at some point in time are later repeated as a whole or in part.  

Detection of such repetitions is a good indication that two news segments are in fact 

related and convey the same story.  It is the focus of our work to detect repeated video 

footage and use this information to track the development of news stories. 

In this chapter, we present the problem of repeated footage detection as it pertains to 

the task of story tracking.  We discuss challenges involved in identifying fully or 

partially repeated video sequences, and present a number of methods for effective 

detection of repeated video material. 
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3.1.1 Problem Definition 

First, we introduce some basic terminology and notation.  Throughout this chapter we 

frequently refer to video sequences, subsequences, clips, and shots.  In order to avoid 

confusion, we provide their precise definitions. 

 

Definition 1:  A video sequence S of length NS is a sequence of NS consecutive video 

frames: 

SNfffS ,,, 21
�=

 

The length of the video sequence is denoted by |S|. 

 

Thus, f t denotes the t-th frame in a video sequence and is equivalent to S(t).  In the 

context in which video frames are considered independently of any video sequence 

the superscript is omitted.  In addition, if more than one video sequence is considered, 

frames belonging to different sequences are distinguished by the subscript, for 

instance fa denotes a frame from sequence Sa.  Finally, in certain situations it is useful 

to consider a video sequence as a four-dimensional intensity function I(t,x,y,c) which 

assigns a value to every component – red, green, and blue – of every pixel in every 

frame of the sequence.  Summarizing, we can write  
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Definition 2:  A subsequence S g,h of the video sequence S is a sequence of consecutive 

video frames from S: 
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The terms video sequence and video clip are synonymous and are used 

interchangeably in this chapter.  On the other hand a video shot, whose definition was 
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provided in the previous chapter, is a video sequence that was taken from a single 

camera working continuously, in a single span of time.  Equivalently, a shot is a video 

sequence which contains no transition frames. 

In this chapter, we examine methods of detecting occurrences of video sequences 

(query sequences) in other video sequences (source sequences).  In order to 

accurately define the problem at hand, we distinguish two classes of repeated 

sequence detection: 

1. Single repetition detection.  In this task, we are interested in finding a query 

sequence (usually short) in a long source sequence.  The query sequence 

usually contains a small number of shots, and may represent a commercial, for 

instance. 

2. Exhaustive repetition detection.  The goal of this task is to detect all 

repetitions of all subsequences of a given long video sequence.  In this case, 

the query and source sequence may be the same, and may come from a live 

broadcast.  As a result, the detection algorithm must run in real-time. 

These two classes correspond to the following definitions. 

 

Definition 3: Let S and Q be sequences of video frames of length NS and NQ, 

respectively.  The task of single repeated footage detection consists in identifying all 

subsequences of S k,k+n of the source sequence S, such that Q matches S k,k+n
 and 

n = NQ.  The task of exhaustive repeated footage detection consists in identifying all 

subsequences Q g,g+n of Q, such that there exists a subsequence S k,k+n of S which 

matches Q 
k,k+n. 

 

The concept of matching video sequences will be discussed in depth in section 3.2.3.  

For now, we can assume that sequences of frames that match are simply identical.  

The notion of frame sequence identity appears intuitive, but requires a formal 

definition, which will be given later in section 3.2.1. 
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Each type of repeated sequence detection task may have two additional aspects, 

which influence the choice and performance of detection techniques. 

1. Temporal segmentation.  The results of temporal segmentation of video 

sequences Q and S may be available, thus providing a list of shots contained 

in both sequences. 

2. Partial repetition.  One may be interested in identifying partial repetitions of 

the query sequence Q (for single detection task) or partial repetition of the 

clips in Q (for exhaustive detection task). 

The techniques used for repetition detection depend on the class of detection task 

involved, as well as the two aspects listed above.  Naturally, exhaustive detection is 

much more demanding than single detection.  Both tasks are simplified by the 

presence of the shot structure of Q and S, and different approaches are required for 

complete and partial detection.  Further details regarding repeated footage detection 

algorithms will be given in section 3.3. 

In this work, we are primarily interested in repeated sequence detection as an element 

of a method for story tracking in live video news broadcasts.  Therefore, our detection 

methods must solve the problem of exhaustive detection, in which the query 

sequences Q and S are the same. 

3.1.2 Related Work 

The problem of repeated video sequence detection falls within the scope of the 

broader domain of video retrieval, which is concerned (in the most general sense) 

with identifying video material relevant to some information need.  Much of the 

research on video retrieval has focused on search for conceptually similar material.  

For example, when given an image or video clip of a sailing boat, any clips of sailing 

might be regarded as a match. A standard method for addressing this task is to use 

image comparison techniques to seek frames with similar content.  In contrast, a 

different type of similarity is considered when searching for clips with the same 
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footage – other footage on a similar topic is not a match. For example, given material 

from the movie “Apollo 13” , news footage of the Apollo program is not a match, nor 

is material from “The Right Stuff” . However, the “Apollo 13”  material is a match in 

widescreen, standard format, or after removal of the color signal. This task can be 

described as matching of co-derivatives. Thus, two distinct types of video similarity 

may be distinguished: 

1. Semantic similarity.  Two video sequences are semantically similar if they 

represent or describe the same or similar concept. 

2. Co-derivative similarity.  Two video clips are co-derivatives if they have been 

derived from the same original video sequence. 

Semantic similarity has been the focus of considerable research efforts generally 

classified as content-based video retrieval.  Matching and retrieval of co-derivatives 

has been explored in other domains, such as text [Man94, Shi95], but the problem has 

received little attention in the multimedia domain. 

Semantic Video Retrieval  

Semantic video retrieval comprises efforts in a broad area of research concerned with 

providing people with effective and intuitive access to information contained in 

video.  In order to make video intuitively available, video retrieval systems must 

respond to the information need of their users expressed in terms of high level 

concepts natural to human beings.  This, in turn, requires that video be first 

automatically processed and appropriately organized.  Therefore, research in the area 

may be further classified into the following categories. 

i. Video comprehension, which comprises efforts to understand the semantic 

content of video material and capture the intuitive notion of what the 

video is “about” . 

ii. Video organization, which deals with issues of recognizing certain structural 

properties of video material, such as related video clips, spatial and 
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temporal relations in video, etc.  Video organization also investigates 

mechanisms of efficient video storage. 

iii. Video retrieval, which attempts to provide methods of effective and intuitive 

searching and browsing of video content. 

All of the research categories above are closely related.  Naturally, no effective video 

retrieval method can be proposed without some degree of video comprehension.  

Similarly, video retrieval systems must, in most cases, be coupled with some 

underlying video organization and storage. 

It has long been known that a cognitive gap exists between humans and machines.  

The conceptual reasoning and semantic understanding which comes naturally to the 

former, is generally unavailable to the latter.  This problem is addressed by the 

research in the field of video comprehension, which aims to enable computers to 

process visual information according to its semantic content.  This ultimate goal can 

only be accomplished gradually, and video must be analyzed on multiple levels of 

“comprehension”  [Pet01]: 

i. Raw video material and metadata:  At this level, only raw video units (frames) 

and some metadata, such as video stream format, frame-rate, and 

resolution, are available. 

ii. Basic visual features:  Here belong certain statistical features of the video 

stream, such as color content and distribution, shapes, textures, and 

motion. 

iii. Conceptual content:  This level corresponds closely to human understanding.  

The video content is described in terms of objects, persons, and events, 

At the current stage of development in video comprehension, the raw video material 

and metadata are easily obtainable from practically every video stream.  Basic visual 

features can generally also be extracted automatically without human assistance.  

However, the conceptual content extraction requires some level of human interaction.  
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In recent years, some advances have been made in obtaining limited semantic content 

from video [Nap00a, Nap03], but the available methods are far from automatically 

extracting the large variety of concepts accessible intuitively to humans. 

Due to the limitations in automated video comprehension, the research in the field of 

video retrieval relies on lower level video features or metadata associated with the 

video.  A number of video retrieval systems are built around basic video features, 

such as color, texture, or motion (VisualSEEk [Smi96], Virage [Ham97], VideoQ 

[Cha98]).  Such systems require their user to formulate their information need, as a 

query expressed in terms of the basic features, which is not intuitive to a human user.  

Moreover, searches performed using such queries tend to retrieve diverse and 

conceptually unrelated video clips.  Other systems exist, which utilize manually 

created annotations.  Searching in such a system is more intuitive, but limited to the 

information provided manually.  Considering that the annotation process is tedious 

and time consuming, such markups tend to be very brief, and thus do not represent 

the depth of the video content.  Lately, advances in automatic speech recognition 

allowed for the text retrieval techniques to be used in video [Pet96, Hac00, Hua00]. 

With the advances in video retrieval, it became important to provide a standardized 

performance measurement of video indexing and retrieval systems.  Efforts in this 

area were initiated in 2001 as part of the TREC Video Track (TRECVID).  

TRECVID workshop provides a large corpus of video material from a variety of news 

sources.  It also offers a consistent performance evaluation methodology for a number 

of video retrieval tasks.  In the last two years, TRECVID emphasized the issues of 

extraction of high level video features, as well as retrieval based on high level 

concepts [Hau03, Nap03b]. 

All three aspects of the semantic video retrieval research are combined in an effort to 

create comprehensive Digital Video Libraries, which in turn are part of the broader 

Digital Libraries Initiative funded jointly by several national institutions.  The main 

research project in this area is Carnegie Mellon University’s Informedia project 
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[InfWeb], which – in addition to video retrieval – also explores automated speech 

recognition and annotation, as well as effective means of video presentation. 

Co-Derivative Video Retrieval 

The domain of co-derivative video retrieval is relatively new and has not been 

extensively studied.  The research efforts in the field concentrate primarily around 

detection of occurrences of known commercials.   

Gauch [GauWeb] developed a commercial authentication system (VidWatch).  This 

system monitors two continuous live video streams in order to determine whether the 

video content provided for distribution by its owners reaches the audience unchanged.  

Gauch uses color moments to represent video frames.  Given information about the 

airing times for any given commercial, VidWatch compares the two video sequences 

at those times and detects potential discrepancies, by comparing the moment 

representations of their corresponding frames.  The system achieves very high 

accuracy and has been deployed commercially at a major U.S. television broadcasting 

company. 

Pua [Pua02, Pua04] describes a real-time video sequence identification and tracking 

system, which detects repeated video sequences in a continuous live video stream.  

Like Gauch, Pua also uses color moments for video frame representation and 

matching.  In order to achieve real-time performance, Pua employs a video frame 

hashing technique to reduce the number of sequence comparisons.  His technique was 

tested on television broadcasts from two different documentary channels, and 

produced recall and precision rates of over 90%.  Pua also demonstrates that correct 

identification and removal of repeated video sequences can lead to significant 

compression of video archives. 

Hoad and Zobel [Hoa03a, Hoa03b] focus on identifying repeated video material 

which may have undergone certain degradation or modification, such as a change in 

brightness or contrast, and difference in frame rate or frame resolution.  They develop 

three different video similarity detection methods and evaluate their robustness to 
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such changes.  The first of their methods compares video clips according to the 

pattern of cuts.  If the positions of cuts in the two clips are identical, then the clips are 

considered matching.  This method requires that the clips contained at least 5 to 10 

cuts.  The second approach relies on tracking movement of the centroid of the 

brightest or darkest pixels across video frames.  For every frame in a video clip, a 

centroid of the lightest 5% or darkest 5% of the pixels is computed, and its 

displacement from frame to frame is stored as the magnitude of the vector containing 

the respective centroid positions.  Identification of matching video clips then consists 

in comparing their sequences of vector magnitudes.  Finally, the last method uses 

changes in color between frames as the clip signature, and compares the sequences of 

changes in order to find matching clips. 

Hoad and Zobel tested their methods on a relatively small data sets of about 3 hours 

of video.  The tests consisted of detecting repetitions of a commercial in the video 

stream, after the original has been perturbed in a variety of ways.  The experiments 

showed that the centroid approach was most robust to video degradation, but even 

this method was unable to cope with all types of modifications. 

In this work, we employ repeated video sequence detection as the central stage in a 

broader task of story tracking in television news broadcasts.  As such, our goals are 

similar to Pua’s, but accomplishing them in the context of news broadcasts provides 

numerous additional challenges.  The domain of television news also substantially 

limits the applicability of the methods developed by Hoad and Zobel. 

3.1.3 Contr ibution 

In this work, we focus on detection of repeated video footage in live broadcasts of 

modern television news stations for purposes of story tracking.  This task is 

considerably more complex than the problems presented in literature so far.  The 

video footage reused by the television stations is usually quite limited, and tends to be 

interspersed piece-wise between live studio shots.  As a result, video sequences which 

must be detected in order to link segments of the same story are very short, often 
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restricted to individual shots only a few seconds in length.  This fact substantially 

reduces applicability and performance of many video sequence matching methods.  

For instance, the cut pattern method presented by Hoad and Zobel is clearly useless 

for matching individual shots, which by definition contain no cuts or other transitions. 

The limited sequence length places increased requirements on temporal video 

segmentation.  Imprecision and errors in shot detection are of little impact if repeated 

sequences are several shots long, but become very problematic when repetitions 

involve only individual shots.  Pua’s system relies on a very simple segmentation 

technique, which proves sufficient for the detection of long video sequences his 

system deals with.  The same segmentation method would render our detection task 

impossible. 

In addition, new video footage is often shown not as a whole, but rather in parts 

whose length is adjusted according to the demands of the live news programming.  

Consequently, video sequences which need to be compared and matched frequently 

differ in length and may contain very little overlap.  This issue has not been addressed 

at all by the research in the field. 

Finally, news broadcasts are composed, in large part, of the video shots taken in a 

studio and contain one or more anchor persons directly facing the camera.  Such 

video sequences tend to be relatively static, and in general quite similar to one 

another.  This also limits the choice of video matching techniques that may be used 

for repetition detection in news videos. 

Summarizing, we can identify four major challenges and areas where improvements 

are needed: 

1. Detection of very short video clips, which may consist of only a single shot 

not exceeding a few seconds in length. 

2. Detection of partially repeated sequences. 

3. Video similarity techniques capable of dealing with studio sequences.  
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4. Real-time execution for exhaustive repetition detection. 

In this chapter, we address these challenges.  First, we analyze issues and develop 

mechanisms for detection of very short video clips.  Then we provide solutions for 

the problem of partial clip repetition.   We introduce a number of video sequence 

similarity metrics, and examine their application to repeated clip detection.  For very 

short clips, the question of precise temporal segmentation becomes very important.  

Although we introduced improvements in temporal segmentation in the previous 

chapter, the automated shot detection is not perfectly accurate.  In this chapter, we 

analyze the impact of imperfect segmentation on detection of repeated footage. 

Since we are interested in live real-time detection of repeated material, we focus on 

improving detection speed.  We analyze the heuristic approach introduced by Pua, 

and make improvements in quantization and hashing, as well as adapt the solution to 

detection of partial sequence repetition. 

3.1.4 Chapter  Organization 

The remainder of this chapter is organized as follows.  Section 3.2 introduces the 

notion of video sequence similarity as the foundation for the repeated footage 

detection.  The concept is then formalized by a number of frame and sequence 

similarity metrics.  This section is closed by a discussion of the application of these 

metrics to the problem of complete and partial sequence repetition detection.  An 

overview of the algorithmic methods of repeated sequence detection is presented in 

section 3.3.  The following two sections (3.4 and 3.5) describe, in detail, detection 

techniques in the absence and presence of the shot structure of the query and source 

sequences.  The heuristic repetition detection approach is introduced in section 3.6.  

The section first presents the idea of color moment quantization, and discusses its 

implications for sequence similarity.  Later the hashing technique for color moments 

is presented, and followed by the details of the heuristic video sequence repetition 

detection algorithm.  Evaluation of the detection methods developed in this chapter is 

given in section 3.7.  The chapter closes with concluding remarks in section 0. 
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3.2 Video Clip Similar ity Metr ics 

3.2.1 Overview 

The notion of video clip similarity and identity appears intuitively straightforward.  

Two video clips are similar or identical if they appear so to the human eye.  Such a 

naïve definition, however, is insufficient for automatic detection of repeated video 

footage, and a more formal notion of similarity and identity must be developed.  In 

this section, we introduce a number of similarity and identity metrics and discuss their 

advantages and shortcomings.  First, we precisely define the notion of clip identity, 

which is followed by a number of practical measures of frame similarity.  We close 

by discussing several clip similarity metrics derived from frame similarity. 

Before we can detect repeated footage, we need to formally establish the notion of 

video footage repetition.  Intuitively, we could define video footage repetition as the 

appearance of the same video clip at two different times in a video sequence.  While 

this concept seems clear, it leaves open the question of “sameness”  of two video clips.  

From the human perspective, we can assess “sameness”  as identical content in terms 

of objects, persons, background, camera angle, etc.  Such description, however, lacks 

precision needed for automated detection methods. 

In this work, we will adopt the following definition of “sameness” : 

Definition 4: Two video clips are the same (identical) if they were taken from the 

same camera, at the same location and in the same time span. 

Hence, we can recognize identical video clips if we know exactly where and when the 

individual clips were filmed.  Unfortunately, we do not generally have direct access 

to this type of information, and so making a direct determination whether any given 

two clips are identical using this definition is impossible.  Consequently, we need to 

develop concepts of clip identity which closely reflect Definition 4, and yet can be 

directly verified using only the two video clips involved.  The remainder of this 

section presents and discusses several alternatives. 
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Given two video clips Sa and Sb of length N, a straightforward definition of identity 

could be formulated as follows. 

 

Definition 5: Two video clips Sa and Sb of length N are identical if their 

corresponding pixels of the corresponding frames are identical, i.e. the values of their 

primary color components are equal: 

( ) ( )cyxtIcyxtIcyxNt ba ,,,,,,:,,,...,1 =∀=∀ . 

 

In order to determine whether two clips are identical, one could compare every pixel 

of every frame of Sa to the corresponding pixel of the corresponding frame of Sb.  

Such notion of clip similarity, though valid, is impractical due to extremely long 

computation time and lack of robustness to noise.  Obviously, even clips of relatively 

small length contain a very large number of pixels, and direct pixel comparison would 

require a very large number of operations.  Moreover, in most practical applications, 

clips compared contain a certain amount of noise, which alters color components of 

individual pixels.  Therefore, we need to develop a more robust and computationally 

simpler definition of video clip identity. 

To accomplish this goal, we develop a number of video clip similarity metrics, which 

allow us to determine how close in appearance any two clips are.  The definition of 

clip identity can then be derived as sufficient similarity, i.e. two video clips are 

identical if they are sufficiently similar. 

In the remainder of this section, we will frequently make use of color moments: mean 

(M), standard deviation (S) and skew (K), which were defined in section 2.3.  Earlier 

in this work, we used pixel color components in the range of 0 to 255, and 

consequently assumed color moments to have the same range.  In this section, we will 

adopt a range of 0 to 1, which simplifies some of the definitions. 
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3.2.2 Frame Similar ity Metr ics 

Individual Frame Similarity Metrics 

We generally express clip similarity based on the similarity of their corresponding 

frames.  The definition above implicitly contains a straightforward notion of frame 

similarity.  Specifically, it deems two frames identical if their corresponding pixels 

are identical.  This could be extended to define frame similarity. 

 

Definition 6: Similarity of two frames fa and fb is inversely proportional to the 

average pixel-wise difference between them: 

( ) ( )baba fflDiffFrameAvgPxffFrmSim ,1, −=α , (16) 

where  

( ) ( ) ( )−=
xyc

baba cyxtIcyxtI
N

fflDiffFrameAvgPx ,,,,,,
3

1
, . (17) 

 

This notion of frame similarity has a number of shortcomings.  First, it is 

computationally intensive, as it requires a number of operations equal to the number 

of pixels in the frames compared.  More importantly, it is very sensitive to even slight 

distortions of the compared frames.  For instance, if one of the frames was shifted by 

even one pixel with respect to the other, the resulting value of frame similarity may 

be large, thus implying that the frames are dissimilar. 

In order to alleviate this problem, we can represent video frames by means of global 

image features.  A global feature characterizes certain statistical property of an image, 

such overall brightness or color composition, and is therefore more robust to local 

changes and noise.  Research in the fields of image processing and retrieval has 

produced several global features, such as color histogram, texture, or color moments.  

All these features could be considered intra-image characteristics, as they represent an 
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image by its internal properties.  In addition, if an image is part of a video sequence, 

and is preceded and succeeded by other images, inter-image features may be 

determined.  Most notably, one can estimate apparent motion between consecutive 

images.  Any of such features (or a combination thereof) may be used in measuring 

frame similarity.  The use of specific features depends on the application, and may be 

determined by the computational complexity of the feature calculation.  In the domain 

of video retrieval, this aspect becomes particularly important, as the number of 

individual images is very large.  In this work we aim to detect repeated footage in a 

live video broadcast, and so must be able to compute frame features in real time.  

Therefore, we focus on the computationally simple features, such as color histogram 

and color moments. 

Color histogram representation divides the spectrum of values of primary color 

components (usually the range of 0 to 255) into a number of smaller ranges, called 

histogram buckets.  The color histogram is the set of values representing the number 

of pixels in the video frame whose color components belong to the corresponding 

buckets.  The size of the set of values is determined by the number of buckets.  The 

color moments representation may be thought of as an approximation of the color 

histogram.  The three primary moments: mean, standard deviation and skew are 

computed for each of the three color components: red, green and blue.  Each set of 

moments describes a statistical distribution uniquely determined by their values, and 

approximates the histogram for the respective color component.  Due to the nature of 

approximation, the color moment representation introduces certain error, as depicted 

in Figure 102.  On the other hand, color moments require only nine numbers to 

represent a video frame, which is considerably more compact than the color 

histogram representation.  Considering this fact, we chose color moments as frame 

representation. 
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Figure 102 An actual histogram and its approximation by a normal distr ibution with mean = 10 

and standard deviation = 30. 

Based on the choice of color moments for frame representation, we introduce the 

following definition of frame similarity. 

 

Definition 7: Similarity of two frames fa and fb is inversely proportional the average 

color moment difference between them. 

( ) ( )baba ffmentDiffFrameAvgMoffFrmSim ,1, −=β  (18) 

 

Definition 8: Let Vx be the vector of color moments of frame fx: 

(b)K (g),K (r),K (b), S(g), S(r), S(b), M(g), M(r),M  V xxxxxxxxxx =  

The average color moment difference is given by the following equation: 

( ) ( )bapba VVLffmentDiffFrameAvgMo ,
9

1
, =  (19) 

where Lp is the chosen distance metric given by  
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( ) ( ) p

i

p

ibiabap VVVVL

1
9

1
,,, ��

���� −=
=

 (20) 

 

Global frame feature representations have one potential shortcoming.  Since they 

represent the entire image by a small set of numbers, they certainly are incapable of 

capturing every detail of the image content.  Consequently, it may be possible for 

pairs of images whose content is quite different to have very similar or even identical 

feature representations.  Specifically, the three primary color moments approximate 

the histograms of the red, green and blue components of a video frame by a Gaussian 

curve of a certain mean, standard deviation, and skew.  One can easily imagine one 

frame whose color composition is such that the color histograms are bimodal, for 

example, as well as another one whose color histograms are Gaussian, as shown in 

Figure 103.  Such two frames would be represented by the same values of mean, 

standard deviation, and skew.  This issue may have significant impact of comparison 

of individual frames.  However, its impact is greatly reduced when entire sequences 

of frames are considered (see section 3.2.3). 

 
Figure 103 Different color  histograms with identical mean and standard deviation 
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While Definition 7 provides more resilience to local distortions of the video frames, it 

is still quite sensitive to global changes, such as increase or decrease in brightness.  If 

the two frames compared are identical, except that one has increased brightness, the 

differences Va,i – Vb,i will be directly related to the difference in brightness.  

Consequently, such two frames may be declared dissimilar. 

Both of the problems presented above may be alleviated if the two frames compared 

are considered in the broader context of the video clips they belong to.  In the next 

section we introduce frame similarity metrics which utilize this contextual 

information. 

Contextual Frame Similarity Metrics 

Global differences in brightness or color intensity may be eliminated by normalizing 

color moment values by their averages in the entire clip.  Consider two clips Sa and Sb 

which are identical in everything except brightness.  Let us assume that the brightness 

of Sb has been increased by certain amount � b.  As a consequence, the color 

components of all pixels in Sb will increase by that amount, and so will Mb(t,c) for all 

colors. 

( ) ( ) bcyxtIcyxtI ab ∆+= ,,,,,,  (21) 

( ) ( ) ( )( ) ( ) bctMbcyxtI
N

cyxtI
N

ctM a
xy

a
xy

bb ∆+=∆+== ,,,,
1

,,,
1

,  (22) 

If we now calculate the average values of color mean for the whole clip Sb, we obtain: 

( ) ( ) ( )( ) ( )
==

∆+=∆+==
bb N

t
aa

N

t
bb bcMbctM

N
ctM

N
cM

11

,
1

,
1

 (23) 

Consequently, we can normalize the values of color mean of Sa and Sb by subtracting 

their mean values for the entire clips, as follows: 

( ) ( ) ( ) ( ) ( ) ( )cMctMctMandcMctMctM bbbaaa −=−= ,,
~

,,
~

 (24) 

Finally, by substituting (22) and (23) into (24) we obtain: 
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( ) ( ) ( ) ( ) ( ) ( )ctMcMctMbcMbctMctM aaaaab ,
~

,,,
~ =−=∆−−∆+=  (25) 

If we now compute the FrameAvgMomentDiff(Sa, Sb) on the normalized values of 

color moments we will obtain zero, and the two clips will be considered identical.  

Therefore, we introduce the following definition. 

 

Definition 9: Similarity of two frames fa and fb is inversely proportional to the 

normalized average color moment difference between them, as follows: 

( ) ( )baba ffffvgMomentDiNormFrameAffFrmSim ,1, −=χ , (26) 

where 

( ) ( ) p

i

p

ibiaba VVffffvgMomentDiNormFrameA

1
9

1
,,9

1
, ��

���� −=
=

 (27) 

 

Moment normalization is very effective in eliminating global changes in brightness.  

However, its direct use is limited by the requirement that precise clip boundaries be 

known.  Consider two identical clips A and A’ .  The average color moment values are 

also identical for both clips.  However, if clip A’  was extended to include additional 

frames from another clip B, the average moment values calculated for this new clip 

A’B may be substantially different.  As a result, the normalized moments for frames 

in A and A’  will also differ, and the similarity between the two clips may not be 

established. 

Another way of utilizing contextual information to rectify the effects of global 

changes is to consider inter frame differences in color moments.  For every frame in a 

video clip, we can calculate the first order difference (discrete approximation of the 

first derivative) of all color moments as follows. 

( ) ( ) ( )1,,, −−= tVtVtdV ixixix  (28) 
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In this case, the values representing each frame depend only on the current frame and 

the frame directly preceding it.  This eliminates the requirement on precise clip 

boundaries.  Also, if the values of color moments change by a constant, the first order 

differences remain the same, which allows us to formulate the following frame 

similarity measure. 

 

Definition 10: Similarity of two frames fa and fb is inversely proportional to the 

average difference in color moment derivative between them, as follows: 

( ) ( )baba ffrivDiffvgMomentDeNormFrameAffFrmSim ,1, −=δ  (29) 

where 

( ) ( ) p

i

p

ibiaba dVdVffiffmentDerivDFrameAvgMo

1
9

1
,,9

1
, ��

���� −=
=

 (30) 

 

For all of the frame similarity metrics presented in this section, we can define the 

corresponding concept of frame match. 

Definition 11: We say that frame fa matches frame fb
 according to the similarity 

metric �  if and only if FrmSim� (fa, fb) greater or equal to a predefined threshold. 

( ) αα

α
reshFrmMatchThffFrmSimff baba ≥⇔= ,  (31) 

 

The frame similarity metrics introduced in this section allow us to compare individual 

video frames.  In practice, we are mainly interested in comparing entire sequences of 

frames, i.e. video clips.  In the next section, we introduce the notion of video clip 

similarity, and develop a number of corresponding metrics. 
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3.2.3 Video Clip Similar ity Metr ics 

In order to identify repetitions of video clips in a large video sequence, we need a 

way of comparing pairs of video clips so as to establish their similarity.  In a 

straightforward approach, one can compare all pairs of clips in the video sequence, 

and declare repetitions for the pairs which are sufficiently similar, that is, matching.  

For this purpose, we develop a number of clip similarity measures, which are 

discussed in this section.  We begin by generally classifying clip comparison 

techniques.  One can distinguish two approaches: 

1. Frame-by-frame comparison, which consists in comparing corresponding 

frames in the two clips involved, and aggregating the frame similarity over the 

length of the clips. 

2. Clip-wide representation comparison, which relies on features describing a 

video clip as a whole.  Such features may be directly compared to establish 

clip similarity. 

Although both techniques may be applied to complete clip comparison, only the first 

is suitable for partial clip comparison.  Given two clips SA and SB which share a 

sequence of frames SAB, one can expect that the frames in SAB to be identical.  

Conversely, a clip-wide features derived from SA is likely to be substantially different 

from those derived from SB.  Since in this work we are interested in detecting partial 

clip repetition, we focus our attention on frame-by-frame comparison methods. First, 

we discuss the problem of comparing complete clips, and present suitable similarity 

metrics.  Later, we address the issues of partial clip repetition and show how the 

metrics may be adapted to deal with them. 

Average Moment Difference 

Using the color moment representation of video frames one can derive a clip 

similarity measure from the total difference in moments between corresponding 

frames. 
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Definition 12: Consider two video clips Sa and Sb of length N.  Clip similarity between 

them may be defined as the average absolute moment difference between their 

corresponding frames: 

( ) ( )baba SSDiffClipMomentSSClipSim ,1, −=α , (32) 

where  

( ) ( )
=

=
N

i

i
b

i
aba ffmentDiffFrameAvgMo

N
SSDiffClipMoment

1

,
1

, , (33) 

and FrameAvgMomentDiff(fa, fb) is given by (19).  

 

Definition of the FrameAvgMomentDiff allows for different distance metrics Lp to be 

used.  The value of p in the distance metric determines the relative impact of large 

differences over small differences.  Given clip Sa and its repetition Sa’ , a small 

number of frames may differ substantially due to a number of factors, such as noise.  

The impact of such isolated large differences on the average difference is more 

pronounced for distance metrics with larger values of p.  Therefore, in order to reduce 

that impact we chose distance metric L1. 

Two clips Sa and Sb match according to the average moment difference metric if 

ClipSim� (Sa, Sb) is greater or equal to a threshold, i.e. 

( ) αα

α
hreshClipMatchTSSClipSimSS baba ≥⇔≈ , , (34) 

 

Matching Frame Percentage 

The average moment difference metric described above makes use of the continuous 

values of the average moment difference between frames.  These values may be 

quantized into two ranges by introducing a frame match threshold.  As a result, for 

every pair of corresponding frames, one can determine whether they match by 
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comparing the moment difference between them to the threshold.  The percentage of 

matching frames may then be used to measure clip similarity, as follows. 

 

Definition 13: Given two video clips Sa and Sb of length N, the similarity between 

them is measured by the ratio of the number of matching frames to the total number 

of frames N, as defined by the following equation. 

( ) ( )
=

=
N

i

i
b

i
aba ffframeMatch

N
SSClipSim

1

,
1

,β , (35) 

where 

( ) ��
���� ≈=

Otherwise

ffifffframeMatch
i

b
i

ai
b

i
a

0

1,
β

 (36) 

 

Analogically, two clips Sa and Sb match according to the matching frame percentage 

metric if ClipSim� (Sa, Sb) is greater or equal to a threshold, i.e. 

( ) ββ

β
hreshClipMatchTSSClipSimSS baba ≥⇔≈ , , (37) 

 

Partial Similarity 

Video clip similarity metrics presented so far dealt only with clips of precisely equal 

length.  In practice, the clips we need to compare almost always differ in length.  

Even if an entire video clip was reused in a video sequence, it is likely that its 

difference was altered slightly due to different transitions used to separate it from 

other clips.  In addition, if automatic temporal segmentation was used to obtain clips 

to compare, the imprecision of its methods most certainly led to a change in the clip 

lengths.  And finally, news broadcast stations often reuse video footage in part rather 

than in entirety.  Consequently, the metrics introduced earlier could rarely be applied 
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directly.  Instead, another measure of clip similarity is needed, which will allow us to 

recognize partial similarity between video sequences. 

Consider two video clips A and B, for which no temporal structure is available.  

Either of the clips may consist of any number of shots, of which some may match 

shots in the other clip.  Theoretically, virtually any pattern of repetitions between the 

two clips may exist.  However, in practical situations, the pair of clips for which 

partial similarity must be evaluated contains only one matching subsequence, which 

is shown in Figure 104. 

 

Figure 104 Example of partial repetition 

Since the length of the subsequence or its location in clips A and B is unknown, one 

must consider every possible pair of subsequences in order to find the best match, 

which leads to the following definition. 

 

Definition 14: Given two clips Sa and Sb of lengths Na and Nb respectively, partial 

similarity between the two clips is equal to the maximal value of similarity between 

any pair of frame subsequences Sa
g,g+n and Sb

k,k+n taken from Sa and Sb, respectively, 

such that |Sa
g,g+n| = |Sb

k,k+n| = n and n exceeds the significant length threshold L: 

( )( )nkk
b

ngg
a SSClipSimpSimPartialCli ++= ,, ,max αα , 

where 

LnandnNknNg ba ≥−≤≤−≤≤ ,1,1  

 

The value of the significant length threshold must be chosen in such a way that it 

reduces the possibility of accidental similarity between different clips.  As discussed 

earlier in this section, depending on the frame similarity metric used, accidental 

Clip B 

Clip A 
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similarity between individual frames is possible.  In practice, the likelihood of 

accidental similarity decreases very fast with the increase in the number of 

consecutive frames compared, and for sufficiently long sequence of frames is 

virtually zero.  For the remainder of this work we will use 30 frames as the value of 

the significant length threshold. 

3.2.4 Summary 

In this section, we proposed a number of similarity metrics, which allow us to assess 

similarity between individual video frames, as well as video sequences.  We 

developed clip similarity definitions for video sequences of exactly the same length, 

and extended them to be applicable to partially similar sequences.  We also 

introduced the notion of frame and clip match, which we defined as similarity 

exceeding a predetermined threshold.  In the next section we present an overview of 

repeated video sequence detection methods which utilize these concepts. 

3.3 Overview of Methods 

In the previous section, we discussed video clip similarity metrics, which provide the 

foundation for repeated clip detection by means of comparing pairs of clips.  Now we 

will present an overview of the algorithmic methods of repeated clip detection. 

In section 3.1.1, we defined the task of repeated clip detection as identifying all 

subsequences of a query sequence Q in a video sequence S.  We also introduced three 

additional requirements that may be placed on the detection task: segmentation of the 

query sequence, segmentation of the source sequence, and detection of complete 

shots only.  Depending on which of these requirements are present, different detection 

techniques may be used. 

Let us consider the detection task whose objective is to detect all complete repetitions 

of the query sequence Q.  Since sequence Q may be repeated starting at any frame of 

the source sequence S, the detection algorithm must perform a clip comparison 
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between Q and a sequence of the same length starting at every frame in S.  This 

straightforward detection method becomes considerably more complicated, if one is 

interested in detecting occurrences of all subsequences of the query Q.  If no structure 

is imposed on Q, it is possible that any subsequence q of Q may be repeated starting 

at any frame of S.  Consequently, identifying all such repeated occurrences requires 

comparing every subsequence of Q to a subsequence of S of the same length starting 

at every frame of S.  This is the principle of the brute force repeated sequence 

detection algorithm, which is discussed in section 3.4. 

This daunting task may be somewhat simplified by introducing temporal structure in 

the query and source sequences.  If both Q and S are divided into distinct shots and 

only complete repetitions are to be detected, then the detection method must simply 

compare every shot in Q with every shot in S.  This vastly reduces the number of 

necessary comparisons.  In addition, one can filter out pairs of shots of different 

lengths without performing a detailed comparison.  If one is interested in detection of 

partially repeated shots, the problem becomes more complicated, but is still 

considerably easier than detection of partial repetition of the unsegmented query clip 

Q.  The detailed discussion of the repeated shot detection method will be presented in 

section 3.5. 

Although the presence of temporal segmentation reduces the number of comparisons 

necessary for repeated sequence detection, the straightforward shot detection 

techniques are still too slow to perform exhaustive repetition detection in real-time on 

commodity hardware, which is needed for story tracking in live news broadcasts.  

Therefore, we need a technique to further restrict the group of shots that must be 

directly compared.  To accomplish this, we reach for a heuristic method based on 

quantization and hashing of color moments, which is described in section 3.6. 
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3.4 Repeated Clip Detection Algor ithm 

The repeated clip detection algorithm presented in this section is the most direct 

implementation of video sequence comparison.  It is the most time consuming of all 

the methods presented in this chapter, but may be applied in the absence of temporal 

segmentation results.  The algorithm may be considered for both single and 

exhaustive detection, and identifies both complete and partial repetitions. 

Let us consider the single detection task in which only occurrences of the whole 

query sequence Q are to be detected.  For this task, the algorithm must compute the 

video clip similarity metric between Q and a sequence of length |Q| beginning at 

every frame of the source sequence S.  If the two match according to the metric, a 

repeat is reported, and the algorithm moves on to the first frame after the matching 

clip. If not, the method tries the next frame in the sequence S.  The pseudo-code 

version of the algorithm is shown in Figure 105. 

� ��� ������ �� � �����
�������������������

Function ExhaustivelyCompareSequence(Clip q, Clip s) 
 ForEach frame in s 
  ss = Clip(frame, frame + q.Length) 
  similarity[frame] = ClipSim(q, ss) 
 EndFor 
 return similarity 
EndFunction 
 
Function DetectCompleteSequence(Clip q, Clip s) 
 similarity = ExhaustivelyCompareSequence(q, s) 
 For i = 0 to similarity.Length 
  matches[i] = similarity[i] <= matchThreshod 
 EndFor 
 return matches 
EndFunction 

Figure 105 Complete sequence detection algor ithm 

The remaining two detection tasks: single with partial repetitions and exhaustive are 

conceptually quite different.  The former aims to establish the similarity between the 

query sequence Q and the source sequence S, whereas the latter focuses on 

identifying all repeated subsequences of Q in S.  Both tasks, however, may be 
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accomplished using very similar computational methods.  The definition of partial 

similarity requires that all subsequences of Q be considered and compared to all 

subsequences of S, by computing a value of a clip similarity metric.  After all such 

comparisons have been performed, the maximum value of similarity metric is chosen 

as the measure of similarity of Q and S.  The exhaustive detection task also calls for 

comparison of all subsequences of Q to all subsequences of S.  Once this is done, 

matching pairs are identified as those whose similarity exceeds a match threshold.  

Hence, large portions of the respective algorithms are identical.  Both algorithms are 

presented in Figure 106 and Figure 107. 

� 	���	��� �� � �����
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Function DetectPartialSequence(Clip q, Clip s) 
 maxSim = 0 
 For i = 0 to q.Length 
  For j = i to q.Length 
   qs = Clip(i, j) 
   similarity = ExhaustivelyCompareSequence(qs, s) 
   tmpMaxSim = Math.Max(similarity) 
   maxSim = Math.Max(tmpMaxSim, maxSim) 
  EndFor 
 EndFor 
 return maxSim 
EndFunction 

Figure 106 Par tial sequence detection algor ithm 

� � �	� 
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Function DetectAllSubsequences(Clip q, Clip s) 
 maxSim = 0 
 For i = 0 to q.Length 
  For j = i to q.Length 
   qs = Clip(i, j) 
   similarity = ExhaustivelyCompareSequence(qs, s) 
   For k = 0 to similarity.Length 
    matches[i, j, k] = similarity[k] <= matchThreshod 
   EndFor 
  EndFor 
 EndFor 
 return matches 
EndFunction 

Figure 107 Exhaustive Subsequence detection algor ithm 
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Time Complexity 

For each of the three algorithms, the central operation is the computation of the value 

of similarity between two sequences of frames.  Every such operation consists in turn 

of a series of frame similarity evaluations.  We consider the latter to be the atomic 

operation of unit cost, and estimate computation complexity by the number of frame 

comparisons required.  The complete sequence detection algorithm requires |S| 

comparisons of sequences of length |Q|, so its computational cost is ( )QSO ⋅ .  The 

other two algorithms perform the same number of sequence comparisons for every 

subsequence of Q.  Since the number of such subsequences is given by ( )12
1 −⋅ QQ , 

and the average subsequence length is Q2
1 , the total computational cost is 

( )3
QSO ⋅ .  If one considers Q equal to S, and denotes their length in frames as n, 

which for 24-hour video sequence exceeds 2.5 million, then the computational cost of 

partial or exhaustive detection becomes an overwhelming ( )4nO . 

Given the complexity of the exhaustive sequence detection algorithm, it becomes 

obvious that performing this task on live news video broadcasts in real-time is not 

possible on commodity hardware.  Consequently, we need to develop different 

techniques that require less computation. 

3.5 Repeated Shot Detection Algor ithm 

3.5.1 Overview 

In the previous section, we described a repeated sequence detection algorithm which 

does not utilize temporal segmentation results.  Estimation of computational 

complexity of the algorithm showed that the problem quickly becomes intractable 

with the increase in the length of the source and query sequences.  In this section, we 

demonstrate that using temporal segmentation, we can vastly reduce the overall 
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number of sequence comparisons that need to be performed.  We present an algorithm 

which compares sequences only at shot boundaries, and detects both complete and 

partial shot repetitions. 

3.5.2 Algor ithm 

In the presence of temporal segmentation of both the query sequence Q and the 

source sequence S, repeated clip detection consists in comparing all shots in Q to all 

shots in S.   

� �� �	��� �� ����
�������������������

Function RepeatedShotDetection(Shot[] queryShots, Shot[] sourceShots) 
 For qi = 0 to queryShots.Length 
  For si = 0 to sourceShots.Length 
   repetitions[qi, si] = ShotSimilarity(queryShots[qi], sourceShots[si]) >= matchThreshod 
  EndFor 
 EndFor 
 return repetitions 
EndFunction 

Figure 108 Repeated shot detection algor ithm 

In the algorithm above, implementation of the ShotSimilarity function depends on 

whether complete repetition is required. 

Complete Repetition Detection 

If only complete shot repetition is allowed, then calculation of shot similarity reduces 

to a direct implementation of the clip similarity metric, i.e. comparing the two shots 

frame by frame.  In addition, even before the direct comparison is performed, one 

must reject pairs of clips of different length. 

� ��� ������ ����� ����	��� �����������

Function CompleteShotSimilarity(Shot q, Shot s) 
 if (q.Length != s.Length) return false 
 For i = 0 to q.Length 
  clipMomentDiff+= FrameAvgMomentDiff(q[i], s[i]) 
 EndFor 
 shotSimilarity = 1 – clipMomentDiff / q.Length 
 return shotSimilarity 
EndFunction 
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Figure 109 Complete shot similar ity algor ithm 

Partial Repetition Detection 

If partial repetition is allowed, then calculating shot similarity becomes somewhat 

more complicated.  According to the definition of partial similarity one must 

determine the most similar pair of subsequences of the two shots.  Thanks to the 

nature of video shots, however, this task is relatively simple.  In section 3.1 a video 

shot is defined as a sequence of successive video frames taken from a single camera 

working continuously.  It turns out that this definition places an important restriction 

on partial repetition between shots.  In fact, there are only two distinct ways in which 

any shot A may be partially repeated, which is conceptually illustrated in Figure 110. 

 
Figure 110 Two distinct ways of par tial shot repetition 

According to the shot definition, every frame f in the shot is immediately preceded by 

the frame taken from the same camera directly before f, and succeeded by the frame 

taken from the same camera immediately after f.  Consider two shots 

BA N
BB

N
AA ffBandffA ,,,, 11

�� == , and assume j
B

i
A ff =  for some i and j, 

i.e. the two frames were taken from the same camera the exact same time.  If the two 

frames are not the last ones in their respective sequences (i.e. i < NA and j < NB), then 

we also have 11 ++ = j
B

i
A ff .  Analogically, if neither of the frames is first in its 

sequence (i > 0 and j > 0), then 11 −− = j
B

i
A ff .  Hence, we can conclude that if two shots 
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A and B contain an identical sequence of frames S, this sequence must begin one of 

the shots and end one of the shots.   

This reasoning implies that one can determine all potentially similar subsequences of 

the two shots by sliding one of the shots over the other from left to right and taking all 

pairs of overlapping sequences.  One starts at the point where there is only one frame 

of overlap, then the overlap increases, reaches the maximum value equal to the length 

of the shorter of the two clips, and then decreases to a single frame on the other side.  

This is depicted conceptually in Figure 111.  In practice, in order to avoid accidental 

similarity between very short subsequences, one usually requires that the overlapping 

subsequence was at least L in length. 

 
Figure 111 Par tial shot similar ity computation diagram 

For every such overlapping subsequence, the value of clip similarity is calculated, and 

the maximal value is taken to represent the partial similarity of the two shots.  The 

partial shot similarity algorithm in pseudo-code is shown below. 

� 	���	��� ����� ����	��� �����������

Function PartialShotSimilarity(Shot q, Shot s) 
 sigLenThresh = 30 
 
 leftShiftBound = - (s.Length - sigLenThresh) 
 rightShiftBound = q.Length – sigLenThresh 
 
 bestMatch = 0.0 
 bestMatchShift = 0 
 bestMatchLength = 0 
 
 For shift = leftShiftBound to rightShiftBound 
  shift1 = shift > 0 ? shift : 0 
  shift2 = shift < 0 ? shift : 0 
  overlapLength = Math.Max(q.Length - shift1, s.Length - shift2) 
 

Shot A 

Shot A’ 

L L 
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  curMatch = CompleteShotSimilarity( 
    Shot(start1 + shift1, start1 + shift1 + overlapLength),  
    Shot(start2 + shift2, start2 + shift2 + overlapLength)) 
  If (curMatch > bestMatch) 
   bestMatch = curMatch 
   bestMatchShift = shift 
   bestMatchLength = overlapLength 
  EndIf 
 EndFor 
 
 return bestMatch, bestMatchShift, bestMatchLength 
EndFunction 

Time Complexity 

If we assume that the complexity of the shot similarity algorithm (whether complete 

or partial) is constant, then the overall complexity of the repeated shot detection 

algorithm would be given by ( )SQ ccO ⋅ , where cQ and cS are the number of shots in 

the query sequence Q and the source sequence S, respectively.  In practice, the cost of 

calculating shot similarity is proportional to the length of the compared shots, and 

depends on whether partial repetition is allowed.  The complexity of calculating the 

complete shot similarity is O(p), where p is the shot length, because a single frame 

comparison must be performed for every frame of the shots in question.  In addition, 

if partial similarity is allowed, then complete sequence similarity must be calculated 

at multiple offsets, whose number is proportional to the combined length of the shots 

involved.  Hence, the partial shot similarity algorithm complexity is O(p2). 

Thus, the overall complexity of partially repeated shot detection is ( )2pccO SQ ⋅⋅ .  If 

we consider sequences Q and S to be equal, and denote the number of shots they 

contain as c, we obtain ( )22 pcO ⋅ .  While the number of shots c is proportional to the 

number of frames n in the sequence, in a typical video news broadcast it is two orders 

of magnitude smaller (c << n).  Furthermore, the average shot length p is 

independent of n (p = n/c).  Consequently, the repeated shot detection method is 

computationally less intensive than the repeated sequence detection algorithm 

discussed in the previous section.  Therefore, we conclude that the availability of the 
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results of temporal segmentation greatly simplifies the task of repeated footage 

detection. 

3.5.3 Impact of Segmentation Errors 

Thus far in this section, we assumed availability of a perfect temporal segmentation 

method.  In practice, no such automated method exists (see Chapter 2).  Therefore, 

any repeated shot detection technique must deal with imprecision and errors 

introduced by imperfect temporal segmentation.  In this section, we discuss the 

impact of imperfect segmentation on repeated shot detection. 

Automated temporal segmentation methods introduce two types of imperfections 

listed below. 

1. Imprecise shot boundaries.  Gradual shot transitions often do not have very well 

defined boundaries, which makes it difficult to determine where a transition starts 

and a shot ends, and vice versa.  As a consequence, even completely repeated 

shots may differ in length by a few frames. 

2. Transition detection errors.  At times, temporal segmentation fails to detect a 

transition entirely, or reports a transition were none occurred.  As a result, some 

automatically reported shots may, in fact, be composed of more than one actual 

shot, while some actual shots may be split into two or more reported shots. 

The impact of imprecise shot boundaries is limited and relatively easy to deal with 

due to two factors.  First, since transitions between shots are usually quite short, the 

error in detecting their boundary must by definition be small, and typically involves 

only few frames.  Second, transition boundary errors occur only for gradual 

transitions, such as fades or dissolves.  During these transitions, the frames close to 

the transition boundaries are indeed very similar to the neighboring frames in the 

surrounding shots.  Consequently, if one compares shots whose boundaries have not 

been precisely detected, one may inadvertently compare a small number of frames 

belonging to an adjacent transition, but these frames are quite similar to the frames in 
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the nearby shot.  Therefore, the similarity calculated between such shots should not 

differ much from the actual similarity between the shots. 

Hence, the algorithm for partial shot similarity may be applied without changes.  In 

fact, it helps overcome some of the segmentation errors.  In contrast, the complete 

shot similarity method must be slightly adjusted.  Due to imprecise boundaries, even 

two identical shots may differ in length by a few frames.  In order to allow for such 

shots to be recognized as identical, one must relax the requirement on equal length.  

This can be done by introducing a threshold length � L by which two clips are allowed 

to differ.  In addition, in order to calculate the maximum value of shot similarity, one 

can slide the two shots with respect to each other in a manner similar to the one used 

in the partial shot similarity method within the bounds of +/- � L. 

The other type of imprecision in temporal segmentation comes from errors in 

transition detection, and presents a significant challenge for repeated shot detection 

methods.  Two types of errors may occur: a) omission of a true transition, and b) 

introduction of a false transition.  The former leads to two or more shots that are 

combined into a single sequence (under-segmentation), while the latter results in a 

single shot being split into two or more separate sequences (over-segmentation).  

These two types have different influence on repeated shot detection, and will be 

discussed separately. 

First, consider the problem of over-segmentation.  Assume shot A was erroneously 

divided into two sequences SA1 and SA2 which now appear to be separate shots.  

Assume also that shot A’  is a repetition of A, as depicted in Figure 112. 

 

Figure 112 Example of over-segmentation with a single falsely detected transition 

Shot A 

SA1 SA2 

Shot A’ 
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If only complete repetition is allowed, then the similarity between shots A and A’  will 

likely never be detected due to the difference in length between SA1 and A’ , as well as 

SA2 and A’ .  Therefore under-segmentation is a considerable obstacle for complete 

repetition detection.  In contrast, our partial shot similarity algorithm will report 

similarity between both pairs SA1 and A’ , and SA2 and A’ , provided that the length of 

SA1 and SA2 exceeds the significant length threshold.  Hence, under-segmentation 

does not pose a problem for the detection of partial shot repetition. 

In contrast, under-segmentation proves to be more challenging.  Consider four shots 

A, B, B’ , and C, as presented in Figure 113, where B’  is a repetition of B.  Assume 

that transitions between shots A and B, as well as B’  and C, were not detected by 

temporal segmentation, and as a result the four shots appear as two sequences AB and 

B’C. 

 

Figure 113 Example of under-segmentation with a single undetected transition 

Let us examine the behavior of the complete repetition detection algorithm in this 

situation.  The algorithm first tests if the shot lengths are the same with the margin of 

error of � L.  Clearly, if the lengths of A and C differ by more than � L, this test will 

fail.  Moreover, even if the lengths of the combined shots were similar enough, the 

complete shot similarity would likely be fairly low.  If the similarity algorithm is 

applied, it will compare corresponding frames in shots AB and B’C.  It is unlikely that 

either frames in A are similar to frames in B’ , or frames in B are similar to frame in C.  

As a result, the difference between AB and B’C will be large, and no repetition will be 

detected.  Thus, the complete repetition detection algorithm performs very poorly in 

the presence of under-segmentation. 

In the same situation, the detection of partial shot repetition works very well.  If one 

examines the diagram in Figure 113, one observes that shot B closes the combined 

Shot A Shot B 

Shot C Shot B’ 
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shot AB, and shot B’  opens the combined shot B’C.  If shot B’  is a complete repetition 

of B, the two shots match the type of subsequence that the partial shot similarity 

method is designed to recognize.  Hence, the repetition will be detected.  On the 

contrary, if shot B ends with a sequence of frames absent from B’ , or if B’  begins with 

a sequence of frames absent from B, the similarity between them will not be 

recognized.  Analogically, a repetition between shots for which both surrounding 

transitions have been missed will not be detected (see Figure 114). 

 

Figure 114 Example of under-segmentation with two undetected transitions 

In summary, imperfect temporal segmentation makes repeated shot detection more 

difficult.  The severity of its impact differs for different types of errors.  Imprecision 

in shot boundaries does not pose a problem, while over-segmentation and under-

segmentation are more difficult to deal with.  In general, the methods of partial 

repetition detection can handle these types of errors much better than complete 

repetition techniques. 

3.5.4 Summary 

In this section, we presented our repeated shot detection algorithm, a repeated 

sequence detection technique which takes advantage of the results of temporal 

segmentation.  We demonstrated that the availability of shot boundaries in both query 

and source sequences allows us to significantly reduce the number of sequence 

comparisons necessary to detect repetitions in the source video.  Because sequence 

comparison is a costly operation, this reduction constitutes a substantial decrease in 

execution time.  In addition, the division of video sequences into shots greatly 

simplifies detection of partially similar sequences. 

Shot A Shot B Shot C 

Shot D Shot E Shot B’ 
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Because automatic temporal segmentation methods are not perfect, we also 

considered the impact of imperfections in the shot detection data on the working of 

the algorithm.  We examined the influence of different types of inaccuracies in 

temporal detection.  We showed that our method can deal well with imprecision in 

the gradual transition boundaries.  The errors of over-segmentation and 

under-segmentation proved to be more challenging, and can be handled reasonably 

well only by the partial repetition detection techniques.  We concluded that our 

method performs better in the context of over-segmentation, rather than under-

segmentation. 

This allows us to draw a conclusion regarding our temporal segmentation methods.  

The performance of these methods is measured by two factors: recall and precision.  

Recall represents the percentage of true shot transitions detected by temporal 

segmentation, and may be thought of as a measure of under-segmentation.  

Analogically, precision stands for the percentage of true transitions among all 

transitions reported by the segmentation, and may be regarded as a measure of over-

segmentation.  Considering the greater difficulty in dealing with under-segmentation, 

we are more interested in the recall than we are in precision.  Therefore, when we 

perform temporal segmentation for the purposes of repeated sequence detection, we 

can fine tune the parameters governing the process so as to increase recall at the 

expense of precision.  

3.6 Hashing and Filter ing Algor ithm 

3.6.1 Overview 

In the previous section, we demonstrated that the availability of shot boundaries 

allows us to significantly reduce the number of direct sequence comparisons, and 

consequently greatly improve execution time.  While the algorithms presented in the 

previous section are fast enough for the task of interactive repetition detection, they 
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still are not fast enough for the exhaustive repetition detection on live news 

broadcasts.  If we examine one hour of typical television broadcasting, we will see 

that it consists of hundreds of video clips.  Some may be as long as one minute in 

length, while others are as short as one second.  Thus, if we temporally segment 24 

hours worth of video, we might find as many as 10,000 video clips.  If we attempt a 

brute force video comparison approach to detect repeated video clips, we would need 

to perform approximately 10,000 video comparisons for every new clip.  To complete 

this task in real time, we would need to make these comparisons in less than 10 

seconds.  This is not viable using current commodity computers. 

Since the direct shot comparison is a costly operation, we seek to further reduce the 

number of comparisons needed for detection of repeated shots.  In this section, we 

introduce a filtering method which allows us to effectively eliminate shots whose 

similarity to a given shot can be ruled out.  Naturally, this approach will only be 

advantageous if the filtering can be performed much faster than the direct shot 

comparison, which means the method must be very fast.  In order to develop the 

filtering method, we reach for a heuristic technique based on quantization and 

hashing of color moments.   

In the remainder of this section, we describe this technique in detail.  First, we discuss 

color moment quantization and its impact on video sequence similarity.  Later, we 

examine hashing as the means to reduce spatial requirements of our algorithm.  We 

follow, by presenting the complete shot repetition algorithm using filtering, and we 

close by presenting time and spatial constraints of the algorithm. 

3.6.2 Color  Moment Quantization 

In the effort to limit the number of direct shot comparisons, we want to find ways of 

quickly ruling out similarity between pairs of shots.  Two shots can certainly be 

deemed dissimilar if they contain no (or very few) similar frames.  Therefore, if we 

can devise a method of quickly determining for a given shot, which other shots have a 

substantial number of similar frames, then we can later compare this shot only to 
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those shots.  The trick is to do it without having to compare pairs of frames one by 

one. 

To accomplish this goal, we employ a quantization technique.  We observe that the 

color moment representation of every frame may be considered a point in a 9-

dimensional space.  The space is finite in size, because every color moment has finite 

range of values from 0 to 255.  If we divide the color moment space into a number of 

disjoint 9-dimensional hyper-cubes, every frame can be uniquely assigned to one of 

them.  Hence, given any frame of the video sequence we can quickly determine which 

other frames belong to the same hyper-cube.  Such division of color moment space 

can be performed by quantizing the values of all nine moments.  Each hyper-cube is 

then defined by the unique set of quantized color moment values.  Also, a pair of 

frames belongs to the same hyper-cube if the quantized values of all their color 

moments are equal.  Therefore, we can formally introduce the following definition. 

 

Definition 15: Two frames fa and fb are q-matching if the values of their 

corresponding color moments quantized with step qs are equal: 

ibiab
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We note that this definition of frame match is substantially different from the ones 

introduced in section 3.2.2.  Due to quantization of the color moment values, two 

frames which differ by more than the quantization step will always be considered 

non-matching.  On the other hand, frames whose moments differ by less than the 

quantization step may or may not be regarded as matching depending on their values.  

Let us consider the average moment difference similarity metric, for instance, and 

assume we have two pairs of frames whose color moment values are identical, except 

for mean of the red component M(r).  For frames fa, fb, and fc let the values of the 

mean be: Ma(r) = 4.1, Mb(r) = 3.9, Mc(r) = 5.9.  Clearly, frames fa and fb are more 
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similar than fa and fc.  However, if we use quantization step qs = 2.0, we get 

Ma(r) = 2.0, Mb(r) = 1.0, Mc(r) = 2.0, which means that frames fa and fc q-match, 

while fa and fb do not.  This artifact of quantization is not desirable and may cause a 

small number of pairs of very similar frames to be deemed dissimilar. 

One could attempt to derive a video sequence similarity metric from the definition of 

frame q-match analogically to ClipSim�  in Definition 13.  However, due to the artifact 

of quantization described above, such a metric would be inadequate because the value 

of sequence similarity it produces depends not only on the difference in color 

moments between the corresponding frames, but also on the relative distance of those 

moments from the quantization thresholds. 

Therefore, another video sequence similarity metric must be developed.  We will 

devise such a metric from the total number of q-matching pairs of frames, regardless 

of their temporal ordering.  In order to do it, we first make the following observation.  

Color moments of individual frames in a video sequence tend to change gradually 

over time.  As a result, the moment values usually differ slightly from frame to frame.  

Consider two shots A and B, such that BA
β
≈ .  If there exists a pair of frames 

i
B

i
A fandf , such that i

B
i
A ff

β
≈ , but i

B

q
i
A ff ≠ , we can reasonably assume that there 

exists a frame f j in shot B such that j
B

q
i
A ff ≈ , and conversely there exists a frame f k 

in shot A such that j
B

q
k

A ff ≈ .  These assumptions are heuristic in nature, and we are 

not guaranteed that for every frame in shot A we can find a q-matching frame in shot 

B, and vice versa.  However, the probability of finding such q-matching pairs of 

frames increases with the value of the quantization step.  This relationship is depicted 

in Figure 115, which shows the number of q-matching pairs of frames as a function of 

the quantization step for a sample video sequence and two of its repetitions. 



146 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

Quantization Step

P
er

ce
n

ta
g

e 
o

f 
q

-M
at

ch
in

g
 F

ra
m

es

 

Figure 115 Dependency of the sequence q-similar ity on the quantization step 

The discussion above allows us to formulate the following definition of heuristic 

video sequence similarity, called q-similarity. 

 

Definition 16: Given two video sequences Sa and Sb of length N, the q-similarity 

between them is equal to the total number of q-matching pairs of frames, as defined 

by the following equation. 
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Clearly, q-similarity between any given pair of video sequences depends on the 

quantization step chosen.  If the value of the quantization step is too large, quite 
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dissimilar frames will q-match, and consequently very different sequences may score 

a high q-similarity.  Conversely, if the value is too small, many similar frames will 

not q-match, and so some repeated video sequences may not be very q-similar.  In 

fact, the value of quantization step should be closely related to the value of the frame 

match threshold chosen for the clip similarity metric (ClipSim� ). 
The goal of quantizing color moments for video frames is to allow us to filter out 

dissimilar pairs of clips without directly comparing them frame by frame.  So far in 

this section, we discussed quantization and q-similarity in abstract terms.  Now we 

turn to the method which will allow us to perform filtering based on quantized color 

moments.  First, we note that given the definition of q-similarity between video 

sequences, we can establish a threshold on q-similarity, and for every pair of video 

sequences declare them dissimilar (or non-q-matching) if their q-similarity is below 

the threshold.  We could take every pair of video sequences and calculate their q-

similarity.  This, however, would not be any faster than directly calculating similarity 

between all pairs of sequences. 

Instead, the advantage of using color moment quantization to assign frames to unique 

hyper-cubes lies in the fact that this operation may be performed once only for each 

frame.  Namely, one can store a list of frames for every hyper-cube in memory.  

Later, when detecting repetitions of a certain shot A, one can check the list of frames 

assigned to every hyper-cube that contains at least one frame from shot A.  

Combining frames from all these lists, one can quickly establish which shots in the 

long video sequence q-match shot A.  The actual frame-by-frame comparison may 

then be performed only on shot A and all q-matching shots found.  Assuming that the 

number of q-matching shots is substantially smaller than the total number of shots in 

the sequence, we conclude that the number of direct comparisons decreases 

substantially, and so does the execution time.  Detailed analysis of the achievable 

speed-up is provided in section 3.7. 

It is clear that in order to accelerate repeated shot detection by using this filtering 

mechanism, we need to store lists of frames assigned to hyper-cubes of the quantized 
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space.  However, if we consider quantization of color moments with step 2.0, we can 

calculate that in the 9-dimensional space, the number of hyper-cubes is given as: 

( ) 18639

2
1 102.92256 ∗≈=∗=H  

Obviously, storing a list of frames for every such cube would exceed memory 

capacity of any currently available computer.  However, the number of frames in a 

24-hour video sequence recorded at 30 fps is only on the order of 106.  Therefore, a 

vast majority of the hyper-cubes are empty, and no data needs to be stored for them.  

Hence, one can achieve a high degree of storage requirement compression if memory 

is allocated only for the non-empty hyper-cubes.  Clearly, many dynamic memory 

structures could satisfy this requirement.  Not all of them, however, provide direct 

constant-time access to data, which is crucial in making the filtering algorithm fast.  

One data structure which satisfies both criteria is hash table, which proves ideal for 

our purposes.  The constant-time access to the appropriate hyper-cube for any given 

frame is available by means of computing a hash value of the quantized moments of 

this frame.  This hash value serves as an index to a flat array.  The size of this array is 

proportional to the total number of frames in the sequence, and is therefore many 

times smaller than the total number of hyper-cubes in the color moment space.  The 

performance of hash table depends on the properties of the hashing function, which 

will be discussed in the next section. 

3.6.3 Color  Moment Hashing 

A number of techniques have been developed for hashing images and video clips to 

improve the performance of image and video retrieval [Chi01a, Oos01, Sab95].  

Image hashing has also been used in image watermarking applications to uniquely 

identify images for authentication purposes [Kal01].  Given the space/time constraints 

on exhaustive repeated sequence detection, the constant time insertion/lookup 

provided by image hashing makes it an ideal solution for our application. 
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The practical performance of hash table algorithms depends on the properties of the 

hash function used to generate array indexes for the elements of a given data set.  

Indeed, the very premise of constant-time insertion and lookup is dependent on the 

distribution of the values generated by the function.  For a given data set, in which 

every element is represented by a certain key, an optimal hash function generates a 

unique index for every unique key.  In the past, much research has been devoted to 

developing optimal hash functions for a variety of applications, and numerous 

classical solutions exist.  A good exposition of the basic hashing algorithms may be 

found in [Knu97], which also provides additional references for more advanced 

hashing techniques. 

In this work, the data set is the sequence of video frames, each represented by the 

vector of quantized color moment values, which serves as the key.  We need to devise 

a hash function which will map this set of keys into a set of indexes into an array.  In 

order to fully realize the potential savings in execution time, we need a good hash 

function.  However, we are not concerned with devising an optimal function, but 

rather a computationally simple function of satisfying quality.  We aim to create a 

function which distributes the unique vectors of quantized color moments 

approximately evenly between the array entries. 

Pua [Pua02] devised a hashing function which relied on a string representation of the 

frame color moments.  He first quantized the nine color moment values with step 10 

to integers in the range of 0 to 25.  Quantized moment values for each video frame are 

then converted to their string representation and concatenated to create fixed length 

character strings.  The hash value for the given frame is calculated by multiplying the 

ASCII values of all characters in the string.   

The conversion of integer moment values to strings in Pua’s method is unnecessary.  

The operation is rather expensive computationally, and does not improve hash value 

distribution.  Therefore, in this work we employed a more straightforward approach.  

In order to obtain a hash value for a given frame, we calculate the product of the 

quantized moment values.  To avoid multiplying by zero, we add one to every 
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quantized value before multiplication.  In addition, we multiply the value of each 

moment by its position in the moment vector, which introduces a difference in hash 

value between moment vectors with the same set of values in different order.  The 

complete hash function is given by the following formula: 

( )∏
=

+⋅=
9

1

mod1
i

i izehashTableSqVihv  (41) 

 
Experiments is section 3.7.2 demonstrate that the hashing function posses the desired 

distribution properties for a typical sequence of video frames. 

3.6.4 Algor ithm 

Our hashing and filtering repeated sequence detection algorithm consists of four 

major components (see Figure 116): moment quantization, video frame hashing, 

video sequence filtering, and video sequence comparison.  In the first step we 

quantize color moments for every frame of the source video sequence.  We then insert 

all frames into the hash table according to the hash value calculated for their 

quantized color moments.  In the sequence filtering phase, we identify all potentially 

similar video sequences.  Finally, in the last step we directly compare pairs of 

sequences to determine if they are truly matching.  The remainder of this section 

describes the components of our algorithm and data structures in more detail. 

 
Figure 116 Hashing and filter ing repeated sequence detection algor ithm diagram 

Moment Quantization 

Frame Hashing 

Sequence Filtering 

Sequence Matching 
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Color Moment Quantization 

In this phase of the algorithm, we uniformly quantize color moment values for every 

frame in the video sequence.  As discussed in section 3.6.2, the quantization step was 

chosen in relation to the frame match threshold, and determined as follows: 

ThresholdframeMatchqs ⋅= 2  (42) 

Frame Hashing 

In order to perform hashing on a video frame level, we reuse the nine color moments 

which we calculated prior to video segmentation.  For every frame, we compute the 

hash value according to (41), and store the frame number in the hash table slot 

according to the hash value.  Since we perform repeated sequence detection on a 24-

hour news broadcast at 30 frames per second, there are 1440 *  1800 = 2,592,000 

video frames in our source video.  Hence, the storage requirement on our hash table 

of video frame moments is substantial. 

Our hash table must provide space for at least 2.5 million frames.  In addition, we 

need to handle multiple frames with identical hash values.  Such duplicate frames 

may be the result of either moment quantization or frame hashing.  In the first case, 

we encounter truly duplicated frames.  In the second, a collision occurs due to non-

unique mapping of the hash function.  Regardless of the cause, the hash table must be 

able to accommodate multiple entries with the same hash value.  This can be done 

using one of the two methods: separate chaining, multiple probing.  While separate 

chaining is often the preferred technique, it proved less desirable in this case due to 

the overhead of dynamic memory handling.  First, the amount of data stored for every 

frame is very small, i.e. only the frame number.  Therefore, the cost of using pointers 

in the dynamically linked lists required for separate chaining effectively doubles the 

size of the structure.  More importantly, the linked list entries must be allocated 

dynamically, which incurs the overhead of memory management.  Taking these 

factors into account, we decided to use linear probing to handle duplicate frames.  In 
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order to alleviate problems with congestion, we allocated approximately three times 

as many entries as there are frames in the source sequence: 10,000,001. 

Experiments show (see section 3.7.2) that the average number of frames in a single 

hash table bucket is 6.7, while the largest bucket contains over 1000 frames.  Clearly, 

this distribution is non-uniform, which introduces time jitter in the amount of time 

needed to process individual video frames, but our overall performance is still well 

within real time constraints. 

Video Sequence Filtering 

In this phase of the repeated shot detection process, we determine the pairs of shots 

with a potential for a match, and eliminate all others.  To this end, we examine all 

shots in the query sequence one at a time, and find all shots in the source sequence 

whose q-similarity to the given query shot exceeds a predetermined threshold.  We 

maintain a shot q-similarity counter array with a value for every shot in the source 

sequence, as well as a Boolean array of encountered frames with an entry for every 

frame of the query shot.  For every frame in the query shot that has not been 

encountered, we obtain the list of q-matching frames from the hash table.  This is 

done by first getting the list of all frames in the same bucket in the hash table, and 

removing those whose quantized moments are different (i.e. the results of collisions).  

We count the number of q-similar frames which came from the query shot, as well as 

calculate the number of frames that came from each source shot.  The entry of every 

source shot in the q-similarity counter array is increased by the minimum of the 

number of q-similar frames of the query shots and the number of q-similar frames of 

the source shot.  In addition, every q-similar frame of the query shot is marked as 

encountered.  This procedure guarantees that every q-similar frame is counted only 

once.  It also ensures that very still source shots do not receive artificially high q-

similarity scores, which could otherwise occur if many of their frames (all q-similar 

to each other) shared a hyper-cube with at least one frame of the query shot.  Once 

this process is performed for every frame of the query shot, the q-similarity counter 
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array contains q-similarity scores for every shot in the source sequence.  At this point, 

all source shots whose q-similarity is less than the predetermined threshold are 

removed. 

In the next stage, if only complete shot repetitions are allowed, then we further 

narrow down the list of q-similar source shots by imposing a restriction on the length 

of the shot.  We eliminate all source shots whose length does not match that of the 

query shot.  To account for imprecision in shot boundary detection, we allow a 

difference in length of � L.  On the other hand, if partial repetition is permitted, no 

further restrictions are imposed. 

Once the list of source shots has been filtered, we proceed to directly compare the 

remaining source shots to the query shot. 

Video Sequence Matching 

After the completion of the previous phase, the list of pairs of shots is reduced to only 

the q-matching pairs (Qgh, S jk).  In this final step, the sequences Qgh and S jk are 

compared using the complete or partial shot similarity algorithms described in section 

3.5.2.  If their similarity exceeds the predefined match threshold, then the shots are 

reported as matching, and S jk is considered a repetition Qgh. 

3.6.5 Time and Space Considerations 

The video hashing and filtering method we proposed offers very significant reduction 

of processing time at the expense of increasing the algorithm’s spatial requirements.  

In order to achieve desirable performance, the size of the hash table must exceed the 

number of frames by a factor of three.  In our experiments, we operated on a 24-hour 

video sequence. 

Increase in sequence length requires an increase in memory size.  In order to search 

longer sequences for repetitions, we must impose a search window of certain length.  
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This window can slide along the video sequence.  We can remove frames that are 

outside of this window to accommodate new incoming frames. 

3.7 Exper iments and Discussion 

In this section, we discuss the results of several experiments we conducted to 

establish certain parameters of our algorithms, critically examine our assumptions, as 

well as evaluate the performance of our methods.  We begin by testing our 

assumption that corresponding frames of repeated video sequences have very similar 

color moments.  We then analyze the behavior of different clip similarity metrics 

introduced in section 3.2.3 in the context of video news broadcasts.  Later, we analyze 

the properties of quantization and hashing using both similarity metrics.  We end with 

the discussion of the execution time reduction due to the filtering process, and 

evaluation of the overall performance of our detection algorithm. 

All experiments were done using the 24-hour video sequence recorded on a typical 

day of the CNN News broadcast.  In order to minimize the influence of on-screen 

captions, all video frame features were calculated using only the top 75% of the 

pixels in the frame. 

3.7.1 Clip Similar ity Metr ics 

In the previous section, we considered repeated sequence detection based on raw 

color moments.  This approach is consistent with the assumption that video sequences 

taken from the same source do not undergo significant global changes or degradation, 

which we adopted in the introduction to this chapter.  In this section, we test this 

assumption, and consider other similarity metrics and their application in our 

techniques. 
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Metric Analysis 

First, we compare the color moments of several repetitions of the same video clip.  

We found that in the majority of repetitions, the moment values for the corresponding 

frames in the matching clips are very similar.  Occasionally, however, when the clip 

is used in a different news program, the overall brightness differs somewhat, which is 

illustrated in Figure 117.  This issue was discussed in section 3.2.2, where we also 

proposed to use a different similarity metric to deal with this problem.  We showed 

that for every frame in a given clip, one can normalize each color moment by 

subtracting the average value of that moment calculated over the entire clip.  

Similarity between two clips may then be measured by the difference in normalized 

moments between their corresponding frames.  We showed that this similarity 

measure is invariant to global changes in brightness. 
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Figure 117 Mean of red, green, and blue components for  100 frames of a repeated clip 

Direct application of this similarity scheme requires information about precise clip 

boundaries, so that average moment values may be computed correctly.  Otherwise, 

normalization by an average value computed over a clip boundary would most likely 

lead to undesirable results.  For example, consider adjacent clip pairs A and B, and A’  
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and C, in which A’  is a repetition of clip A.  If the average moment values were 

computed from the start of clip A to the end of clip B, and from the start of clip A’  to 

the end of clip C, they will be influenced by the color moments of frames in clips B 

and C, which may be very different.  Consequently, the normalized moment values 

for the frames in clips A and A’  would be dissimilar.  Therefore, in the absence of 

precise clip boundaries, the use of normalized moments is limited. 

Moreover, if one is interested in detecting partial clip repetitions, moment 

normalization is not straightforward, even when clip boundaries are known.  Consider 

clip A and its shorter version A’ .  If the sequence of frames of clip A that are absent 

from A’  is considerably different in color composition than the frames present in A’ , 

then the average moment values computed for A and A’  will differ substantially.  As a 

result, normalized moments for frames in clips A and A’  will be quite dissimilar. 

Therefore, in order to apply moment normalization in the context of partial clip 

repetition with uncertain clip boundaries, one needs to alter the metric’s definition.  

Instead of computing average moment values over entire clips, one can impose a 

window of size 2w + 1 around every frame in the video sequence, and determine the 

average moment values for that window.  The normalized moments for a given frame 

can be obtained by dividing its moment values by the average moments for the 

surrounding window.  This approach is illustrated in Figure 118, which shows 

normalized mean values for color components of three repetitions of the same clip.  

One can easily see that the shift in moment values due to the change in brightness has 

been eliminated. 
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Figure 118 Normalized mean of red, green, and blue components for  100 frames of a repeated 

clip 

This outcome indicates that the normalized moment difference metric – even in its 

modified form – may be suitable for detection of repeated video sequences.  In order 

to compare the practical performance of the similarity metrics based on raw moment 

values and their normalized counterparts, we conducted another experiment in which 

repetitions of the same query clip were detected using the brute force method.  The 

clip chosen for the experiment is 10 seconds long, and is shown in full or in part 5 

times in the 24-hour video sequence.  The start times of all occurrences are shown in 

Figure 119.  With the exception of the 4th repetition, all matching sequences are at 

least 5 seconds long.  The 4th sequence – although also 5 seconds in length – matches 

the query clip on only the last 2 seconds.  The last sequence is slightly darker than the 

query clip.  In addition, the query sequence is shown several times as picture-in-

picture in a smaller window, often partially occluded by a view of an anchor person 

or an interviewee.  Such occurrences are difficult to classify as repetitions of the 

query sequence, but they cannot be dismissed as false positives either. 

In order to detect these repetitions, the brute force algorithm was run on the source 

sequence.  The algorithm was configured to report all similar sequences for which the 
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number of matching frames was equal to at least 30 with the frame match threshold 

equal to 2.0.  With these parameters, the raw-moment algorithm returned a reasonable 

number of matches.  In contrast, the normalized moment difference metric indicated 

over 50,000 matching sequences.  We adjusted the frame match threshold 0.5, and 

increased the minimal number of matching frames to 120.  The results of repetition 

detection with these parameters are depicted in Figure 119 and Figure 120.  While the 

raw moment similarity reported all five occurrences of the query sequence, the last 

detection must be regarded as accidental.  The sequence at 22:54:36 actually matches 

the query clip on over 8 seconds (240 frames), but only 36 frames match according to 

the metric.  The normalized moment metric indicated seven repetitions, three of 

which are the picture-in-picture versions of the query clip.  The other four are the 

main screen repetitions of the query sequence.  Finally, the normalized moment 

metric misses the 4th repeated sequence, which matches the query clip on only 2 

seconds. 
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Figure 119 Sample clip repetitions detected using raw moment difference metr ic 
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Figure 120 Sample clip repetitions detected using normalized moment difference metr ic 

From these observations, we can derive a number of conclusions regarding the 

applicability of the two metrics for repeated sequence detection in news broadcasts: 

1. Repetitions of video sequences with somewhat changed global characteristics, 

such as brightness, do occur.  If the change is substantial, the raw moment 

metric will not detect a match.  On the other hand, normalized moment metric 

handles these types of repetitions very well. 

2. Normalized moment difference metric performs poorly if the overlap between 

the original clip and its repetition is small. Since the moment averages are 

calculated regardless of clip boundaries, their values may be determined by 

frames belonging to more than one clip.  Specifically, if a frame f lies within 

w frames of a clip boundary, then its normalized moments will be affected by 

frames in the current clip, as well as the previous or next clip.  Consequently, 

frames which belong to repeated clips but are close to clip boundaries may 

have different normalized moment values.  However, assuming that w is small 

in comparison to the clip length, we conclude that for the majority of the 
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frames in the clip, the normalized moment values will be calculated correctly, 

and will yield the same values for repetitions of the same clip. 

3. Because color composition of consecutive frames in a single clip usually 

changes in a gradual manner, the normalized moment values tend to be 

relatively small for a vast majority of frames in a video sequence.  If the 

content of a sequence of frames does not change much over time, then the 

average color moments for this sequence are almost equal to the moment 

values of individual frames.  As a result, the normalized moments are very 

close to zero, as shown in Figure 121.  This in turn leads to difficulties in 

discerning between different clips, especially if they are relatively still.  Even 

if the original moment values for frames in such clips may have been 

substantially different, their normalized values may be very small and quite 

similar. 
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Figure 121 Normalized mean for  red, green and blue components of a very still clip 

4. The normalized method indicates repetitions in the picture-in-picture mode.  

This intriguing outcome is the result of the fact that the remainder of the 
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screen is still, and thus the differences in color moments are mainly due to 

changes in the clip. 

Summarizing these conclusions, we note that the normalized moment difference 

metric outperforms the raw moment version in detection of somewhat altered 

sequences.  However, it is not suitable for detection of still clips. 

In section 3.2.2, we suggested another similarity metric invariant to global color 

changes in video, which relied on comparing first order differences of color moments.  

In this method, one calculates the difference in color moments between pairs of 

consecutive frames.  The advantage of this approach is that it calculates correct values 

for all frames except those directly after a clip boundary.  However, the color 

moments tend to differ very little between consecutive frames.  As a consequence, the 

first order differences used in this method are even smaller than the normalized 

moment values, and thus the metric is even less useful for still clip comparison. 

In view of the conclusions presented above, we can divide video sequences into two 

groups: static and dynamic.  Static sequences contain little motion or other changes, 

and are characterized primarily by their color composition.  On the contrary, the 

content of the dynamic clips changes considerably, and thus the clips are better 

represented by the change in color composition.  The raw moment similarity metric is 

designed to measure color composition, and so is better suited for static sequences, 

whereas the normalized metric emphasizes similarity in the color composition change 

patterns. 

Video news broadcasts certainly contain both dynamic and static clips.  The former 

often appear in commercial sequences, as well as certain news content shots, while 

the latter are typical of anchor persons, interviews and studio settings.  Therefore it is 

important that the similarity metric used was able to deal effectively with both types 

of shots.  As we discussed above, the similarity metrics relying on changes in frame 

composition are ill-suited for still shots.  Consequently, we chose to use the raw 
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moment metric for repeated sequence detection.  In the next section, we examine the 

practical performance of this metric in detecting repeated sequences in video news. 

Raw Moment Metric Performance on Video News Broadcasts 

In order to assess the accuracy of the raw moment similarity metric we conducted a 

set of shot repetition detection experiments using a group of sample video clips.  We 

divide the pool of clips into three categories: commercials, studio clips, and news 

content clips.  Each of these three groups is different in nature and has a distinct 

pattern of repetitions in a typical news broadcast.  Consequently, we performed 

separate tests for each of the groups.  This section will describe in detail the results 

obtained for news content shots, as the accuracy of their detection is essential for 

effective story tracking.  The evaluation for the other two groups will be discussed 

briefly. 

For the detection of repeated news content shots a set of 50 representative shots was 

chosen from a 24-hour broadcast of CNN News.  The shots varied in length from 60 

frames to over 1000 frames, as well as differed in the amount of motion.  Each of the 

selected shots was compared to every shot in the entire broadcast using the repeated 

shot detection algorithm described in section 3.5.  The ground truth for the 

experiment was established manually, and the performance was measured using recall 

and precision, defined as follows. 

broadcast the in A matching  shotsall of number

A matching  shotsreportedcorrectly  of number
Rrecall AA ==  (43) 

A matching as reported  shotsall of number

A matching  shotsreportedcorrectly  of number
Pprecision AA ==  (44) 

The two measures were combined into a single value of utility according to (9) with 

�  = 0.5.  Since the accuracy of the metric depends on three parameters: significant 

length threshold, frame match threshold, and clip match threshold, we used different 

values of each parameter to establish the optimal settings.  The results of the 
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experiment for different parameter values are presented in Table 8.  One can see that 

the repetition detection is the most accurate if the metric is used with frame similarity 

threshold of 3.0, and clip similarity threshold set to 0.5.  The values of recall and 

precision as the function of frame similarity threshold are depicted in Figure 122. 

 Frame Similarity Threshold 

 5.0 4.0 3.0 2.0 1.0 

0.25 48.50% 64.30% 79.28% 88.64% 78.44% 

0.50 60.28% 72.06% 90.22% 87.47% 77.47% 

Cl
ip

 S
im

ila
rit

y 
Th

re
sh

ol
d 

0.75 66.53% 75.97% 89.41% 87.23% 74.60% 

Table 8 Raw moment metr ic per formance measured by the utility value 

Subsequently, we ran the same set of tests using the significant length threshold L of 

60 frames.  The results we obtained were equivalent to the ones presented in Table 8.  

Therefore we chose L = 30 frames as the optimal significant length threshold, because 

it allows for detection of partially repeated shots of smaller length.   

The outcome of these experiments can be summarized, in the following way.  Two 

shots are considered partially matching if they overlap on at least 30 frames, out of 

which at least 50% differ in moments by at most 3.0. 
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Figure 122 Raw moment metr ic per formance for  the clip match threshold of 0.5 as a function of 

the frame match threshold 

A similar experiment was performed on a set of typical commercial shots.  Because 

commercials are always shown on the full screen, the color moment values are not 

influenced by on screen captions.  Consequently, moment values differ only slightly 

between repetitions and the detection attains high recall (over 90%) even with very 

small values of the frame match threshold.  Precision values were found to be equally 

high (over 90%) for frame match threshold of 1.0 through 3.0.  Therefore, the raw 

moment metric can be effectively used to detect repetitions of commercials with the 

same parameter values as for news content sequences. 

While commercials and news content clips exhibit certain similarities in the repetition 

pattern, studio sequences are characterized by very different properties.  Studio shots 

are always filmed live, and are virtually never repeated in the news broadcast.  The 

exceptions to this rule are a few late night news shows which are usually re-broadcast 

a few times throughout the night, but these are of no particular interest for story 

tracking purposes.  As a result, studio and anchor clips do not repeat in the strict sense 

provided in Definition 4.  On the other hand, different clips of this type shown during 

the same news program are often visually very similar.  Clearly, one can always 
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identify the original query clip in the source sequence, because the moment values of 

its frames are identical to the ones in the query clip.  Thus recall of 100% is always 

attained.  One can also obtain 100% precision by lowering the frame match threshold 

to zero, thus eliminating all other sequences except the original query clip.  In 

practice, the optimal frame match threshold value determined above leads to 

substantially lower precision.  This issue represents a weakness of the similarity 

metric and has an adverse effect on story tracking, which will be discussed in Chapter 

4.  In that chapter we will also propose a method which utilizes the locality of such 

pseudo-repetitions to alleviate this problem to a certain extent. 

Summarizing, we can say that the raw moment metric can be used to accurately 

match both commercial sequences and news content clips.  The best accuracy was 

achieved with significant length threshold of 30 frames, frame match threshold of 3.0, 

and clip match threshold of 0.5.  The same parameters used for anchor and studio clip 

matching result in low precision, which is cause by visual similarity of this type of 

sequences. 

3.7.2 Quantization and Hashing 

In order to verify our assumptions regarding the properties of quantized color 

moments, we examined the statistical distribution of video frames among the hyper-

cubes of the quantized moment space.  The experiment we conducted demonstrates 

that the frame distribution is approximately uniform, with a vast majority of the cubes 

containing a very small number of frames.  In the experiment we used the 

quantization step determined by (42) as twice the value of the frame match threshold.  

The best value of this threshold was established experimentally in section 3.7.1 as 

3.0.  Thus, the value of 6.0 was selected for the quantization step.  We performed 

quantization of a 24-hour video sequence, which contained a total of 2,589,052 

frames.  Prior to quantization, all monochrome frames were removed from the 

sequence, leaving 2,563,990 frames to be quantized.  Figure 123 depicts a histogram 

of frame distribution between the hyper-cubes of the quantized space.  The histogram 
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shows that over 50% of all cubes contained only single video frame, while close to 

90% held 7 frames or less.  The average number of frame per hyper-cube was 6.65 

with the standard deviation of 47.39. 
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Figure 123 Histogram of frame distr ibution between hyper-cubes of the quantized space 

(step = 6.0) 

The significance of this result lies in the fact that close to 90% of video frames share 

hyper-cubes with a very small number of other frames.  This implies that most video 

frames are q-similar to very few other frames in the sequence, and as a result q-

similarity allows us to effectively discriminate between video frames, as well as video 

sequences. 

A similar experiment was performed to evaluate the quality of the color moment 

hashing function.  We examined the distribution of video frames into hash table 

buckets with respect to the number of collisions.  In this case a collision occurs if 

frames with different quantized color moments are placed in the same hash table 

bucket.  If the average number of collisions is high, it may adversely influence the 
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hash table performance, and consequently slow down the shot matching process.  In 

our algorithm we utilize a hash table with 10,000,001 entries.  In this experiment we 

hashed the same 24-hour video sequence of 2,589,052 frames using the hash function 

described in section 3.6.3.  We observed a total number of 278,507 collisions, which 

constitutes about 10% of the number of frames hashed.  The average number of 

collisions per hash table bucket was 2.61 with the standard deviation of 6.59, and the 

maximum of 135 collisions was registered in a single bucket.  The complete 

histogram of the number of collisions is depicted in Figure 124. 
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Figure 124 Histogram of the number  of hash table collisions 

This result shows that the hashing function chosen is not optimal, as it allows for a 

considerable number of collisions.  Nonetheless, the distribution of collisions is such 

that the large majority – over 80% – of the hash table buckets contains frames from 3 

or less hyper-cubes. 
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Summarizing, we can conclude that both the quantization scheme, as well as the 

hashing function have the properties desired for effective filtering of dissimilar video 

frames and sequences. 

3.7.3 Execution Time 

In order to quantitatively assess the reduction in execution time attained by the use of 

our filtering technique, we conducted an experiment in which exhaustive video 

sequence repetition detection was performed on video sequences of increasing length.  

Due to the overwhelming complexity of the raw video clip matching algorithm, this 

technique was not used for detection in this test.  Instead, we compared the execution 

times of shot matching methods with and without filtering.  The results are 

summarized in Table 9 and depicted graphically in Figure 125. 

Length in 
Minutes 

Frame 
Hashing 

Frame 
Matching 

Direct Shot 
Matching 

Filtered Shot 
Matching 

5 00:00:00.020 00:00:00.180 00:00:14.531 00:00:02.223 

10 00:00:00.050 00:00:00.200 00:00:55.740 00:00:06.009 

15 00:00:00.090 00:00:00.210 00:02:06.191 00:00:09.163 

20 00:00:00.130 00:00:00.240 00:03:37.333 00:00:12.899 

25 00:00:00.160 00:00:00.250 00:05:29.173 00:00:13.900 

30 00:00:00.170 00:00:00.270 00:08:18.527 00:00:17.125 

Table 9 Execution time of direct vs. filtered shot matching 

The plots of execution time curves in Figure 125 confirm the theoretically derived 

complexity of the corresponding algorithms.  The curve of the direct shot matching 

method clearly has a parabolic shape, while the duration of filtered shot matching 

grows linearly with the increase in video sequence length.  As a result, direct shot 

matching is not a viable option for real-time repeated sequence detection for live 

news broadcasts.  Conversely, identification of repeated shot using hashing and 

filtering can be performed in a fraction of the time needed to broadcast and capture 

the video sequence.  This technique also scales well with the increase in the broadcast 

length. 
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Figure 125 Execution time of direct vs. filtered shot matching 

In addition, the results in Table 9 show that video frame hashing and subsequent 

collection prior to shot matching are performed in a small portion of the total 

execution time.  Therefore, we can conclude that color moment hashing can be 

effectively used to substantially reduce the average complexity of repeated shot 

detection. 

Naturally, the gain in execution time should not be realized at the expense of the shot 

matching accuracy.  Hence, in the next section we will demonstrate that the hashing 

and filtering algorithm detects shot repetitions with recall and precision equivalent to 

those attained by the direct shot matching method. 

3.7.4 Repeated Footage Detection Per formance 

The performance of our repeated footage detection method was evaluated on a group 

of 50 news content shots of different lengths.  For each shot in the group, the ground 

truth was established by detecting repetitions using the repeated clip detection 

algorithm with a high frame match threshold.  Thus detected repetitions were 

subsequently analyzed manually to remove all false detections, so that only true 
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repetitions were retained.  In the first experiment, we compared the performance of 

the repeated shot detection algorithm with and without filtering.  Both algorithms 

used the optimal parameter values established in section 3.7.1, i.e. frame match 

threshold equal to 3.0, significant length threshold of 30 frames, and clip match 

threshold of 0.50.  The results of the direct shot repetition detection for the first 10 

shots are shown in Table 10.  The average performance for the entire set was 96% 

recall and 84% precision, yielding the utility value of 90%. 

Shot No. 
No. of 

Frames 
True 

Matches 
Detected 
Matches 

True 
Positives 

False 
Positives 

False 
Negatives Recall Precision 

11501 321 6 8 6 2 0 100% 75% 

9534 167 4 4 4 0 0 100% 100% 

10767 616 5 5 5 0 0 100% 100% 

10662 333 12 12 12 0 0 100% 100% 

7994 106 8 10 7 2 1 88% 80% 

7996 100 7 7 7 0 0 100% 100% 

7998 100 9 9 9 0 0 100% 100% 

8004 66 9 10 9 1 0 100% 90% 

7545 120 6 6 6 0 0 100% 100% 

9860 370 4 7 4 3 0 100% 57% 

Table 10 Recall and precision of repeated shot detection without filter ing  

The same test was conducted using repeated shot detection with filtering.  The results 

for the same 10 sample shots are shown in Table 11, while the average recall and 

precision for all 50 shots were 86% and 91%, respectively.  Hence, the overall utility 

was 88.5%.  This outcome allows us to conclude that the utility value did not 

decrease substantially due to filtering.  Therefore, in view of the great reduction of 

execution time, repeated shot detection with filtering is by far a superior method. 
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Shot No. 
No. of 

Frames 
True 

Matches 
Detected 
Matches 

True 
Positives 

False 
Positives 

False 
Negatives Recall Precision 

11501 321 6 5 5 0 1 83% 100% 

9534 167 4 4 4 0 0 100% 100% 

10767 616 5 5 5 0 0 100% 100% 

10662 333 12 11 11 0 1 92% 100% 

7994 106 8 4 4 0 4 50% 100% 

7996 100 7 7 7 0 0 100% 100% 

7998 100 9 9 9 0 0 100% 100% 

8004 66 9 9 9 0 0 100% 100% 

7545 120 6 4 4 0 2 67% 100% 

9860 370 4 5 4 1 0 100% 80% 

Table 11 Recall and precision of repeated shot detection with filter ing 

In order to demonstrate the importance of partial shot repetition detection for story 

tracking in news broadcasts we conducted the same experiment, but required that 

repeated shots be of equal length.  To account for imperfections in temporal video 

segmentation, which lead to imprecision in transition boundary detection, we allowed 

repeated shots to differ in length by up to 10%.  This approach was used by Pua 

[Pua02].  The detection results using this method for the 10 sample shots are 

presented in Table 12, while the recall and precision for the whole set of shots were 

45% and 100%, respectively. 

This experiment confirms that video footage reused by television news stations is 

indeed frequently repeated only in part.  Complete shot repetition detection methods 

fail to recognize such partial repetitions and consequently are not a good basis for 

story tracking in television news broadcasts.  Conversely, the partial repetition 

detection technique introduced in this work is highly effective and attains recall of 

86% and precision of 91%. 
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Shot No. 
No. of 

Frames 
True 

Matches 
Detected 
Matches 

True 
Positives 

False 
Positives 

False 
Negatives Recall Precision 

11501 321 6 1 1 0 5 17% 100% 

9534 167 4 1 1 0 3 25% 100% 

10767 616 5 1 1 0 4 20% 100% 

10662 333 12 8 8 0 4 67% 100% 

7994 106 8 2 2 0 6 25% 100% 

7996 100 7 1 1 0 6 14% 100% 

7998 100 9 8 8 0 1 89% 100% 

8004 66 9 5 5 0 4 56% 100% 

7545 120 6 1 1 0 5 17% 100% 

9860 370 4 4 4 0 0 100% 100% 

Summary       45% 100% 

Table 12 Recall and precision of the completely repeated shot detection with filter ing 

3.8 Conclusions 

In this chapter, we introduced a video sequence repetition detection algorithm for live 

video news broadcasts.  The method proposed works in real-time and can effectively 

deal with partial shot repetition, which is essential for effective story tracking.  In 

order to create this algorithm, we first proposed a set of video sequence similarity 

metrics.  We analyzed their properties in the context of video news, and found that 

the metric based on raw moments is most suitable for our purposes, although it is 

sensitive to global image changes, such as brightness adjustments.  We demonstrated 

that repetition detection in the absence of shot detection results is extremely time 

consuming, and showed that detection of repeated shots can be performed 

substantially faster.  We examined the impact of imperfections in temporal 

segmentation, and concluded that our method of partial shot matching can handle 

them relatively well.  Finally, we described the hashing and filtering technique, which 

allowed us to reduce the execution time requirements to within real-time constraints.  

At the end of the chapter, we evaluated the performance of our repeated sequence 
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detection method, and showed that it attains high accuracy (86% recall, and 91% 

precision).
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Chapter  4  

Story Tracking 

4.1 Introduction 

In Chapter 1, we presented the problem of the lack of effective access to information 

contained in video.  We also indicated that this issue is particularly pronounced in the 

domain of video news broadcasts.  The contemporary world is awash with news from 

all over the globe coming to us continuously from a multitude of television news 

stations.  In theory then, virtually anyone could have instantaneous access to the latest 

news at almost any time.  Practically, however, gaining such access would require 

constant monitoring of all available news sources, which is humanly impossible.  

Moreover, perpetual viewing of even a single news channel would prove very time-

inefficient, as a vast majority of information provided is of little or no interest to the 

user.  Also, quite commonly the ratio of truly new information in the news is fairly 

small, and a lot of material is redundant.  Thus, there is a need to create methods of 

effectively accessing news information which is of relevance to the user. 

In the realm of video news broadcasts, which provide an overwhelming amount of 

information, it is important that the viewers be able to focus their attention only on 

the news of interest to them.  In addition, they should be able to access new 
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information pertaining to their interest as it becomes available over time.  This mode 

of accessing video news is facilitated by a technique called story tracking.  This 

technique enables viewers to choose an interesting story in a news broadcast, follows 

the development of that story over time, and provides an effective means of viewing 

it entirely or in part.  Thus, story tracking is essential for providing effective and 

intuitive access to video news broadcasts. 

In this chapter, we present a story tracking method inspired by the observation that 

news stations frequently reuse video material when reporting the same story (see 

section 1.1).  Based on this fact, we developed an algorithm which identifies 

repetitions in the video stream of the news broadcast, and then uses this information 

to track the development of news stories. 

Before we provide details of our story tracking technique, we need to precisely define 

the problem of story tracking, as well as introduce the necessary terminology which 

will be used throughout this chapter.  We have already referred to the concept of a 

news story.  The following definition appeals to the intuitive understanding of the 

notion. 

Definition 17: A news story is the subject matter of news reporting, and consists of an 

event or a set of related events which occur in the real world. 

Television news stations exist to report news stories.  As the news story is related 

verbally, it is accompanied by video footage which may provide visual clues 

regarding the news story.  The video footage may be segmented into a sequence of 

video shots, as it was described in Chapter 2.  If a video news broadcast is temporally 

segmented, each of the resulting shots may be associated with one or more news 

stories, as in the following definition: 

Definition 18: A shot s in the video news broadcast is relevant to a given news story 
�

 if it is displayed while the news story is reported. 

The definition above makes no restrictions on the number of shots which may be 

relevant to any given news story.  A news story may have a single relevant shot, or it 
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may be associated with multiple relevant shots.  A shot may also be relevant to more 

than one news story.  For instance, an anchor person may finish reporting one news 

story and switch to another in a single video shot. 

Having described the concept of shot relevance to a news story, we can now define 

the notion of story in a video news broadcast, which from now on will be referred to 

as a story for simplicity. 

Definition 19: Given a news video sequence V consisting of N shots 

NsssV ,, ,21 �= , a story { }�

l

��
� sssS ,, 21 �=  in V is the set of all shots in V 

relevant to a single news story 
�

. 

Although it is theoretically possible that the entire story may consist of only a single 

shot, such stories rarely occur in practice.  Usually, news story reports take at least a 

few minutes and, therefore, their corresponding stories span several shots.  In 

addition, multiple reports on the same story may take place at different times during 

the day, and be separated by other reports or commercials.  Thus, it is logical to 

divide a story into a number of disjoint segments, each corresponding to a single 

report on the story during the broadcast.  Each story segment consists of shots 

relevant to the news story, which are consecutive in V. 

Definition 20: Given a news video sequence V and a story S� , a story segment is a set 

of shots in S� , which are consecutive in V, i.e. 

{ } �
nk

�
k

�
i

�

nk

�

k

�

k
� SsSsSsnkki that  such,sssE ∉∧∉∧∈+=∀= ++−++ 111 :,...,,, �  

The set of concepts introduced above allows us to precisely describe the task of story 

tracking in video news broadcasts, which is the focus of this chapter. 

Definition 21: The problem of story tracking is as follows.  Given a news video 

sequence V consisting of N shots NsssV ,, ,21 �= , and a nonempty query set 

{ }MqqqQ ,, ,21 �=  consisting of shots relevant to the news story 
�

, determine the 

story S�  in V. 
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A story, as defined above, does not imply any particular ordering of the relevant 

shots.  It also, by definition, includes all repeated relevant shots.  For purposes of 

presenting the story to the user, the shots need to be arranged into certain order, and 

not all of them need to be shown.  The choice of the subset of shots to be shown, as 

well as their ordering is determined by the purposes of performing story tracking, or 

simply user preferences.  A subset of story shots, along with their order, determines a 

story view.  In other words, a story view is a subset of shots in S�  which has been 

arranged for presentation, which may be formally defined as follows: 

Definition 22: Story view is a subset W of shots in S�  along with a partial order 
�
 

defined on W, i.e. ≤,W .  

If all shots are arranged in a sequence, in which case �  becomes a total order, the 

story view is called linear.  The task of creating the story view for a given story is the 

subject of story presentation. 

In this chapter, we introduce a solution to the problem of story tracking in video news 

broadcasts based on redundancies in video material.  We rely on video sequence 

repetition detection methods developed in Chapter 3 to identify story segments, and 

combine them into a single cohesive story.  We evaluate the performance of our story 

tracking methods using the standard information retrieval parameters of recall and 

precision.  In addition, we explore techniques of automatically classifying news shots 

based on their repetition patterns, as well as examine performance improvements in 

story tracking which may be achieved using this classification.  Finally, we propose 

two different methods of story presentation and discuss their advantages and 

disadvantages with different story tracking approaches. 

The remainder of this chapter is organized as follows.  Section 4.2 describes related 

research.  Section 4.3 presents our general approach to story tracking and explains 

story representation used by our algorithms.  In section 4.4, we present our story 

tracking algorithm based on repeated shot detection.  We evaluate the algorithm’s 

performance on real-world news broadcast and discuss potential problems discovered 
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in the course of the experiments.  Section 4.5 discusses improvements which can be 

introduced into our method by using news shot classification.  We show how the 

algorithm can be adapted to incorporate this additional information, and propose 

automated methods of shot classification.  Section 4.6 presents a conceptual overview 

of different methods of story presentation.  Finally, the chapter closes with section 

4.7, which contains a summary and conclusions. 

4.2 Related Work 

The problem of story tracking is relatively new, and was first posed as part of the 

Topic Detection and Tracking (TDT) initiative in 1997.  Research in the field can be 

classified into two broad categories: techniques that focus on textual information 

(written and spoken), and methods that utilize visual information (images and video).  

In both cases, domain specific information can be exploited to detect and track 

stories. 

4.2.1 Textual topic detection and tracking 

The Topic Detection and Tracking (TDT) initiative started as a joint effort between 

DARPA, the University of Massachusetts' Center for Intelligent Information 

Retrieval, Carnegie Mellon's Language Technology Institute, and Dragon 

Systems[All98a, All98b].  TDT is a research program investigating methods for 

automatically organizing news stories by the events that they discuss. TDT includes 

several evaluation tasks, each of which explores one aspect of that organization – i.e., 

splitting a continuous stream of news into stories that are about a single topic 

(“segmentation"), gathering stories into groups that each discuss a single topic 

(“detection"), identifying the onset of a new topic in the news (“ first story detection"), 

and exploiting user feedback to monitor a stream of news for additional stories on a 

specified topic (“ tracking” ).  The domain of TDT's interest is all forms of written or 

spoken broadcast news, but does not include video. 
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A year-long pilot study was undertaken to define the problem clearly, develop a test 

bed for research, and evaluate the ability of current technologies to address the 

problem. Results of that study were reported at a workshop in October of 1997, and a 

final report was made at a related workshop.  The groups involved in the tasks found 

that current methods are capable of providing adequate performance for detection and 

tracking of events, but that there is a high enough failure rate to warrant significant 

research into how the state of the art can be advanced. 

The name “Topic Detection and Tracking”  suggests that TDT deals with topics,  

whereas the description cited above defines TDT using the term event.  This implies 

that the terms are synonymous, which is not the case.  Therefore, in order to avoid 

confusion in the future, a distinction between the two needs to be made. 

Let us consider an event that occurred in the real world at a certain time and place.  

That event may later be reported in the news broadcast in the form of a story (strictly 

episode of a story).  Later, as additional facts surface, new reports may be broadcast, 

and thus become new episodes of the same story.  Moreover, new events related to 

the original event may happen and be reported in the news, thus adding new episodes 

to the same story, or if the event is significant enough in itself, starting a new story.  

So, stories evolve over time to include new episodes describing or related to the 

original event, but events themselves remain static, situated in their time and place.  

Finally, if we collect all the stories describing or related to a certain type of events, 

that collection becomes a topic. 

Hence, we propose the following taxonomy: 

Event: An event corresponds to something that occurred in the real world at a certain 

time and place, e.g., President Bush’s trip to the Middle East in May 2001. 

Episode: An episode is a temporally continuous description of an event, such as a 

relation of the President’s visit to the Middle East in the morning news on a 

certain day. 
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Story: A story is a sequence of episodes describing or related to a certain event.  The 

entire coverage of the President’s visit in the news over a period of time is an 

example of a story. 

Topic: A topic refers to a general notion of some potential subject of interest, such as 

politics, natural disasters, movies, etc.  As such, it can be viewed as a 

collection of stories sharing a certain theme, for example, U.S. foreign 

politics, or East Coast hurricanes. 

Because TDT deals primarily with events, it is perhaps more appropriately called 

Event Tracking [All98b].  In fact, to be precise, we should say that since events occur 

once and remain immutable over time, they can be detected but not tracked.  Stories, 

on the other hand, do not occur, strictly speaking, and are only a reflection of the 

events in the news, but they do evolve over time.  Therefore, their development over 

time can be tracked.  Hence, we will use the name Event Detection and Story 

Tracking (EDST) in place of TDT throughout the rest of this work. 

Event detection and story tracking 

The problem of EDST can be divided into two subtasks: new event detection and 

story tracking. These tasks were extensively analyzed by Allan et al. [All98a, All98b] 

and described as follows. 

“The goal of those tasks is to monitor a stream of broadcast news stories so as to 

determine the relationships between the stories based on the real world events that 

they describe. New event detection requires identifying those news stories that 

discuss an event that has not already been reported in earlier stories. Event tracking 

means starting from a few sample stories and finding all subsequent stories that 

discuss the same event.”   In this case the phrase “broadcast news stories”  refers to 

textual news services, and transcripts of TV news broadcasts, and does not include 

video. 
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As described above, EDST is closely related to the Information Retrieval (IR) 

problems of Information Filtering and Routing. However, there are two important 

differences: 

First, EDST is restricted to the domain of news, which is an ideal medium for finding 

coverage of events.  Filtering and Routing, on the other hand, apply to unrestricted 

corpora covering arbitrary topics. 

Second, the “query”  in EDST refers to an event, and is specified using a few 

examples of stories about this event.  By contrast, IR queries are generally at the 

broader level of topic, and are described directly by the user. 

Hence, the field of EDST is defined more narrowly than Filtering and Routing, and 

allows for the evaluation measures to be more easily agreed upon. 

Event detection methods 

Allan et al. [All98b] created an algorithm which detects new events based on 

commonly known word statistics in Information Retrieval.  They represent episodes 

and queries as vectors of weighted features, which were chosen to be all nouns, verbs, 

adjectives, and numbers.  The algorithm builds a query from one training episode 

using the n most frequently occurring features.  It also computes an initial similarity 

threshold.  All subsequent episodes are compared to the query by computing the 

similarity measure. If its value is above the similarity threshold, then the episode is 

pronounced to describe the same event.  Otherwise, a new event is detected. 

The authors observe that the likelihood that the episode describes the same event as 

some earlier episode decreases with time.  Therefore, they increase the threshold 

value with the temporal difference between compared episodes. 

Story tracking methods 

Allan et al. [All98b] propose an event tracking algorithm based primarily on 

Information Filtering.  The algorithm uses a certain number of stories (Nt) to form a 
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query and a threshold for matching episodes to the query.  All subsequent stories are 

then compared to the query and, if the match is above the threshold, the episode is 

considered to be about the same event.  A query is composed of a certain number (n) 

of features most commonly occurring in the Nt training episodes.  The authors show 

that the performance of their method is stable across a range of n and appears to be 

optimal for 10-20 features.  They also demonstrate that, although increasing the 

number of training stories (Nt) improves performance, raising the value of Nt above 

four provides little help. 

Allan et al. admit that this approach alone does not perform very well due to the 

evolution of event coverage over time.  Namely, in the initial phase of reporting 

usually not much information is available, but as additional facts are discovered they 

are included in the coverage and often become the focus of the story.  Therefore the 

word-based feature model of the story changes over time. To account for this 

phenomenon, they introduce an adaptive tracking algorithm that amends the original 

method by incorporating features of the detected episodes of the same story into the 

query for further story tracking.  This way, the query evolves along with the model of 

the story. 

Papka [Pap99] provides a brief description of other event tracking methods presented 

for evaluation on TDT2.  They demonstrate that all of the techniques shown perform 

similarly according to the NIST evaluation.  Considering that textual event tracking is 

not a primary focus of our research, we will limit ourselves here to only briefly 

mentioning other textual story tracking systems. 

BBN The BBN tracking system is based on formulating a mixture of classifiers from 

three models: Topic Spotting (TS), Information Retrieval (IR), and Relevance 

Feedback (RF). The first two approaches are based on a probabilistic approach to 

word occurrence distributions. The TS model assumes that words in the test story are 

generated by the model from the training stories; the IR model assumes that the 

training stories are generated by the model from the test story; and the RF approach 
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used frequently occurring terms in the training stories. In their report, they also show 

improvements using an adaptive query formulation approach. [Jin99] 

CMU The group from Carnegie Mellon University tested Decision Trees (DT) and a 

K Nearest Neighbors (KNN) approach to tracking. In their DT approach, they used 

features in addition to word cooccurrence statistics including the location of a word 

relative to the beginning of the story, whether the root of the word appeared in the 

story, and an adaptive time window approach. The KNN 65 approach used a tf  idf 

document representation. Their analysis suggests that the KNN approach appeared 

slightly more effective than the DT approach. [Car99] 

DRAGON Dragon Systems uses statistical approaches based on a beta-binomial 

model and a unigram language model. Their data suggest that a mixture of their 

approaches leads to improved tracking effectiveness. They also apply background 

models that are constructed from an auxiliary corpus. A document is considered 

relevant to an event if it is more similar to the model resulting from the training 

documents than to one resulting from a background model. [Yam99] 

UPENN The system from the University of Pennsylvania is based on a similar 

representation to the one used in [Pap99]. They used a tf  idf representation for 

classifiers and documents, where incremental idf was seeded with the document 

frequencies from the TDT1 corpus. A cosine similarity function was used to compare 

classifier and document vectors. [Sch99] 

4.2.2 Multimodal techniques of video news organization 

The concept of topic detection and tracking has been extended to include non-textual 

sources of information.  Although text-based techniques can be applied to the textual 

transcripts of video news broadcasts, its methods completely ignore the rich layer of 

visual information present in the video stream.  Therefore, in recent years initial 

research has been done on incorporating audio and visual characteristics of video into 

news organization techniques. 
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Ide et al. [Ide00] attempt to identify news scenes by comparing background images 

using simple visual features.  For this purpose, they manually remove the region 

corresponding to the person in front of the camera, such as an anchor or reporter, and 

compute basic color histogram and correlogram of the resulting image.  These 

features are then compared against a database of features calculated for some known 

locations.  The method was tested on a very small database of only 3 different 

locations: parliament, cabinet meeting, and a news briefing.  Although the 

performance of location detection on a video sequence of about 3 hours was reported 

to be very high, this approach is unlikely to scale well to a large database with 

significant number of different locations. 

A few papers have been published on the subject of classification of shots in news 

broadcasts.  Some simple commercial detection techniques use black frames to detect 

commercials [Lie97, Hau98]. However, such simple approaches must fail for 

television channels that do not use black frames to flag commercial breaks. Also, 

black frames used in other parts of the broadcast will cause false alarms.  

Furthermore, progress in digital technology obviates the need to insert black frames 

before commercials during production. An alternative makes use of shorter average 

shot lengths as in [Mar01]. However, this approach depends strongly on the ’high 

activity’  rate which may not always distinguish commercials from regular broadcasts. 

In more recent research, face recognition is used to identify anchor person shots 

[Ide99b, Hau03].  Ide et al. [Ide99b] use face recognition to identify three additional 

shot classes: speech, walking person, and gathering.  They also distinguish graphics 

shots by detecting large numbers of still frames in the shot.  Duygulu et al. [Duy04a] 

propose a commercial classification technique which relies on unique characteristics 

of commercial sequences.  First, they observe that commercials are frequently 

repeated throughout news broadcasts.  They also utilize visual and audio 

characteristics which distinguish commercials from the rest of the broadcast.  They 

combine the results of detection of repetitions with the outcome of the video and 

audio classifier to identify commercials.  In their method, video shots are represented 
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by keyframes, and this representation is used for both detection of repetitions, and 

derivation of visual features.  A number of image features are used to recognize 

repetitions of keyframes.  Duygulu et al. report very high accuracy of their combined 

method (recall and precision around 90%). 

In another article, Duygulu et al. [Duy04b] use shot classification based on visual 

features to improve association of video shots with words for news videos.  They 

classify news video shots as: anchors, commercials, graphics and studio settings, and 

other.  They detect commercials using the method developed in [Duy04], and identify 

anchor person shots using a classifier proposed in [Hau03].  In addition, they 

manually detect graphics and studio shots by first clustering all remaining shots by 

their color composition, and then visually inspecting representatives of the clusters.  

After all these types of shots have been recognized, the authors divide the news 

broadcast into segments by applying a heuristic based on the shot classification.  

Their segmentation algorithm is as follows: 

1. Start a new segment after a graphics shot or a commercial 

2. End the current segment if the next shot is a commercial or a graphics shot 

3. Start a new segment on an anchor shot which follows a non-anchor shot 

4. End the current segment on an anchor shot followed by a non-anchor shot 

Their method was tested on a relatively small data set of 114 story segments, and a 

relatively low accuracy of approximately 60% was reported. 

The story tracking technique we propose in this work relies solely on visual 

characteristics of the television news broadcasts.  It is, therefore, complementary to 

textual story tracking and could be used in conjunction with it to discover correlations 

between story segments that do not have textual similarity.  For example, it may be 

used when news is reported in different languages or when closed captions are not 

available.  Our method could also help distinguish between two story segments 

related to the same person or place, but reporting different stories.  On the other hand, 
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textual story tracking could provide additional clues for linking story segments that 

do not contain common video footage. 

4.3 Method Overview 

In this section, we describe the general concept of our story tracking method.  We 

present the input parameters and internal story representation used by our algorithm.  

We also discuss evaluation strategy. 

Our story tracking method addresses the following usage scenario.  A person watches 

a live news video channel and finds certain news story interesting.  He or she selects 

the interesting portion of the broadcast and provides it as the input for our algorithm.  

The algorithm analyzes the query and begins tracking the story by means of detecting 

repetitions of video shots contained in the query.  At any later point in time, the 

viewer may request to view the story of interest.  In response, our algorithm returns a 

desired view of the story. 

4.3.1 Inputs 

In addition to the query set Q described earlier, the story tracking algorithm takes as a 

supporting parameter a partition of the source video sequence induced by a shot 

match relation.  The significance of this parameter is explained below. 

The partition of the source video sequence V is determined by the shot match 

relation, and groups together matching shots.  A shot match relation is an equivalence 

relation, which can be inferred from a video sequence similarity metric introduced in 

Chapter 3.  In that chapter, we also showed that given similarity metric , and a 

threshold on the value of this metric, we could determine all pairs of matching shots 

in a video sequence.  If only complete shot matching is required, then the set of all 

such pairs along with all the shots which did not match any other shots, forms an 

equivalence relation in V.  The three necessary properties of an equivalence relation: 

reflexivity, symmetry, and transitivity follow directly from the definition of the 
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similarity metric.  Thus, for every shot si we can determine an equivalence class, as 

the set of all shots sj which match si, i.e. ( ) { }jij  smatches ssi :=ε  

On the other hand, if partial shot matching is allowed, the relation inferred may not be 

transitive.  This issue is best illustrated by a diagram.  Suppose we have three shots A, 

B, and C shown in Figure 126, which contain identical sequences of frames indicated 

by the overlap between the shots.  In this example, shot A partially matches B, and B 

partially matches C.  However, shots A and C do not share any sequence of frames, 

and therefore do not match even partially.  Consequently, pairs (A,B) and (B,C) are in 

the relation, while (A,C) is not, and so the relation is not transitive. 

 
Figure 126 An example of a non-transitive shot matching relation 

In order to ensure transitivity of the shot match relation, we need to take a transitive 

closure of the inferred relation.  Thus, if any two pairs of shots (X,Y) and (Y,Z) match, 

then the pair (X,Z) is automatically considered matching.  This corresponds to the 

example in Figure 126.  Here shots A, B, and C must, in fact, be a shortened version 

of some shot M which is the union of all three.  Taking a transitive closure of the 

match relation is equivalent to comparing each shot to the combined shot M.  

Consequently, we can formally define the equivalence class for any shot si as: 

( ) { } ( ){ }jkkji  smatches sisssi :: εε ∈∃∪=  

A set of all matching shot equivalence classes defines a partition � (V) on V. 

The two input parameters are assumed to be available at the start of the algorithm.  

However, in practice only the query Q is presumed entirely accurate, that is 

containing only shots relevant to the news story in question.  The partition P(V) may 

M = A+B+C 

C 

A 

B 
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contain errors if the temporal segmentation or repeated shot detection are imperfect.  

For instance, some pairs of shots may be determined matching, while in reality they 

were not. 

At the start of the algorithm, the input parameters are inserted into an internal 

representation of the story, which will be described in the next section. 

4.3.2 Internal Story Representation 

The main task of the algorithm is to build the story S, i.e. create the set of shots 

relevant to the news story, from the given query Q.  The story is built gradually as the 

video content becomes available using an iterative algorithm.  In order to facilitate the 

process of story building, the algorithm uses a story board – an internal structure 

representing the story at a given time.  The story board is a tuple 

( ) δ,,, ΣΡΩΣ=�SB , in which 
�

 is the story as detected by the algorithm, �  is the 

story core, � (
�

) is a partition of 
�

, and �  is the co-occurrence function. 

The story core �  is a subset of the story 
�

 and comprises all shots whose occurrences 

are tracked by the algorithm.  � (
�

) is a partition induced by a shot match relation, and 

is provided as a supporting input parameter.  Co-occurrence function 

{ }0: ∪→× NVVδ  assigns a non-negative value to every pair of shots in V.  The 

value of the function is zero if the two shots do not co-occur in the same story 

segment.  If they do co-occur, the function �  assumes a value equal to the temporal 

distance between the two shots. 

A story board can be represented as a non-directed graph whose vertices are all the 

shots in 
�

.  The graph contains two types of edges: co-occurrence edges and shot 

match edges.  Co-occurrence edges connect pairs of shots for which the co-

occurrence function �  is non-zero.  Each edge of this type has a weight equal to the 

value of the function � .  Shot match edges join matching shots, and have no weight 

assigned to them.  In addition, we distinguish the core of the story as a sub-graph of 

the story graph.  The core contains the shots whose repetitions we want to track. 
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Figure 127 depicts a sample story board graph consisting of two segments: 

DC1,B,A1,  and C2F,A2,E, .  Each segment is depicted on a separate line.  In the 

graph, solid lines represent shot match edges, while dashed lines show the co-

occurrence edges.  In addition, shots whose names are italicized belong to the story 

core.  In this story board, we have six shot equivalence classes: { A1, A2} , { B} , { C1, 

C2} , { D} , { E} , and { F} , and the story core consists of { A1, A2, C1, C2} . 

 
Figure 127 Sample story graph 

The co-occurrence edges may be shown explicitly as in the diagram above.  However, 

thanks to the rule of depicting all shots in one episode on a single line, and separate 

episodes on separate lines, these edges may be inferred to fully connect all shots in 

the same line.  This simplifies the graph diagram, and prevents the co-occurrence 

edges from obscuring other details.  As an example, Figure 128 depicts the same 

graph in its simplified form.  In the graph, the time runs left to right and top to 

bottom, that is all shots in the same row were broadcast in their left to right order, and 

all shots in row i precede all shots in row i+1.  In the rest of this chapter, we will use 

the simplified graph representation. 

 
Figure 128 Simplified sample story graph 
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The story tracking algorithms which will be presented in this chapter build a story 

board in an iterative fashion starting from the set of query shots.  In order to present a 

story board, as it is created, in the broader context of the surrounding shots from V, 

we adopt the following graphical notation. 

 
Figure 129 Graphical notation for  story graphs 

Figure 130 depicts a graph representation of a sample story consisting of three 

episodes: DC1,B,A1, , HG1,C2,F,A2,E1, , and G2E2, .  Although the diagram 

shows additional shots, only the shaded shots belong to the story graph.  In the graph, 

shots A1, A2, C1, C2, E1, E2, G1, and G2 belong to the story core.  Shot C1 was 

given as the query, and all shots X1 through X8 are irrelevant to the story.  The graph 

also shows matches between shots (A1, A2), (C1, C2), (E1, E2), and (G1, G2).  The 

temporal distance edges were omitted for simplicity and are implied to link all pairs 

of shots in the same row.  Each of them has an associated weight equal to the number 

of shots separating the beginnings of the two shots. 

 
Figure 130 Sample story graph 

4.3.3 General Algor ithm 

Given the input query, our story tracking algorithm begins to build the story in a 

gradual fashion, iteratively adding shots until no more shots can be added.  This is 

X1 X2 A1 C1 B D 
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shown on the block diagram in Figure 131.  First, all the query shots are placed in the 

story core.  Then, the algorithm operates in three main steps which are repeated 

cyclically.  For every shot in the core, the algorithm selects the next repetition of that 

shot from the corresponding equivalence class.  Subsequently, a story segment is built 

around the newly discovered matching shot.  All shots in this segment are added to 

the story 
�

.  In addition, some of the shots in this segment may be added to the core 

depending on whether they satisfy certain criteria.  Once this is done, another 

matching shot is chosen for the current core shot, and all steps are repeated.  If there 

are no more matching shots for the current core shot, the next core shot is chosen.  

When there are no more shots can be added to the core, the algorithm terminates and 

the story 
�

 is returned as the result.  

 
Figure 131 Block diagram of the general story tracking algor ithm 
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In the following section, we present and evaluate an automatic story tracking method.  

A number of variations of the technique are considered which differ primarily in the 

strategies used to build story segments and expand the story core.  Depending on the 

strategy used, the story tracking algorithm may achieve very different performance, 

which will be the subject of performance evaluation. 

4.3.4 Evaluation Approach 

In order to examine the accuracy of our story tracking methods on real world data, we 

recorded a 24-hour video broadcast of a typical day of CNN News channel.  The 

video was captured using Windows Media Encoder 9.0 and stored in the Windows 

Media format at a frame rate of 30 frames per second with frame size of 160 by 120 

pixels.  The resulting video file is 40 GB in size, and represents a reasonable 

compromise between video quality and storage requirements. 

The news broadcast contains several stories, some of which comprise only one 

segment, while others contain several.  For purposes of story tracking evaluation, we 

chose one story which consists of a number of episodes.  The story regards the arrest 

of Michael Jackson in connection with alleged child abuse charges.  All segments of 

the story were manually annotated to establish the ground truth for the experiments. 

The overall performance of a story tracking method may be evaluated using the 

standard information retrieval measures of recall and precision.  Both concepts were 

introduced in section 2.4 and can be applied to story tracking results in the following 

manner.  By definition, a story is a set of shots, and so the tracking performance may 

be viewed as the accuracy of story shot detection, and will be evaluated in terms of 

shot recall and precision.  Shot recall is the ratio of the number of correctly detected 

story shots to the number of all shots in the actual story.  Shot precision is equal to the 

ratio of the number of correctly detected story shots to the total number of story shots 

reported by the algorithm. 
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The story tracking technique discussed in the following sections will be evaluated 

using these two performance measures. 

4.4 Implementation and Evaluation 

In this section, we introduce our story tracking method, which relies on the shot 

match information and shot co-occurrence function.  We begin by presenting an 

algorithm which tracks stories by simply detecting shot repetitions.  We then discuss 

our general strategies of building story segments around repeated shots, which is 

followed by a presentation of two different story core expansion schemes.  The 

accuracy or our story tracking technique is evaluated on the experimental data 

described above.  At the end of this section, we summarize the results and examine 

the main challenges. 

4.4.1 Segment Building Strategies 

One can conceive of a story tracking algorithm which does little more than detect 

repetitions of the query shot or shots.  In such a method, all query shots are placed in 

the core, and the detection process starts.  When a repetition is identified, it is added 

to the story, as in the following example.  
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Figure 132 Story graph a) of the actual story, b) as detected by the basic tracking method 

The example shows that although the actual story consists of several shots in three 

episodes, the algorithm recognizes only repetitions of the query clip C1 as belonging 

to the story.  Thus, the story detected by this technique is uninteresting.  If the user 

has already viewed shot C1 and selected it as the query, then viewing repetitions of 

C1 will add little to his knowledge of the news story. 

Clearly, the story detected by any tracking method should be extended beyond the 

original query shot.  We need a method of building an episode around every 

repetition of the query shot.  For this purpose, we need to determine the episode 

boundaries.  One approach is to assume that the every occurrence of a query shot is at 

the center of the corresponding episode.  Hence, we can examine a symmetric 

neighborhood centered on the query shot, and consider all shots in the neighborhood 

to belong to the episode.  Once an occurrence of a query shot is detected, all shots in 

the neighborhood may be added to the story.  Let us assume the neighborhood size 

was set to two shots.  In the same example with shot C1 given as the query, this 

extension would result in the following story (see Figure 133). 

  A1 C1 B D 

  A2 C2 F E 

  A2 C3 G 

a) 
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Figure 133 Story graph a) of the actual story, b) as detected by the basic tracking method with 

liberal segment extension 

This example demonstrates that liberal segment extension offers much better 

coverage of the actual story.  Of all actual story shots, only one (E) was not included 

as part of the story by this technique.  On the other hand, this method of segment 

extension may introduce some irrelevant shots into the story, especially if the query 

shot appeared closer to the episode boundary.  In the example above, shots X1, X2, 

and X3 are not relevant to the story, but were included by the algorithm.  Therefore, 

this segment building method may be called liberal. 

The accuracy of this segment building strategy depends on the chosen neighborhood 

size.  If the size is set to a large value, then the segments built by the algorithm will 

be long and may include irrelevant shots.  On the other hand, small neighborhood size 

may lead to omission of story shots.  The optimal value of this parameter could be 

determined experimentally, as the average story segment length in a given video 

domain. 

To alleviate the shortcomings of the liberal method, one can devise a conservative 

segment building technique.  This method relies on a larger number of query shots.  
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In our example, if both A1 and C1 were given as the query, then the algorithm could 

detect shots A2 and A3 as repetitions of A1.  If repetitions of both A1 and C1 are 

detected in close proximity to each other, one can assume that the shots between them 

belong to the episode of the story.  Thus, the conservative segment building technique 

adds such shots to the story, as shown in Figure 134.  The story shots lying outside of 

the shot span defined by the query shots are not added to the story.  Naturally, if only 

one core shot is found in a new episode, that episode is not expanded. 

 
Figure 134 Story graph a) of the actual story, b) as detected by the basic tracking method with 

conservative segment extension 

 The two segment-building strategies may be combined into a single algorithm.  

When an occurrence of a core shot is identified, the algorithm searches for 

occurrences of other core shots in a neighborhood of a certain size, called a search 

window.  The size of the search window should be determined experimentally based 

on the average length of a story segment in a given new source.  If another core shot 

is found, then the search continues also around that shot.  Once all core shots in the 

segment have been found, the algorithm marks the new segment as stretching from 

the earliest to the latest core shot.  In addition, the segment is extended by a small 
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number of shots beyond the bounding core shots.  This algorithm combines the 

advantages of both earlier techniques, as it allows for the segment to become quite 

large if multiple core shots are discovered.  At the same time, if only one core shot is 

found, the segment built around it is relatively small, but contains more than just the 

core shot. 

In all methods presented so far, the story core remained the same, and contained only 

the query shots.  These methods may, therefore, be classified as static core methods, 

and all share one weakness.  As the story develops over time, new video footage 

becomes available, which may be more relevant to the latest events.  Thus, old 

footage may be gradually phased out, while the new footage is introduced.  After a 

few story segments, the original query shots may not appear any more.  As a result, 

static core methods would be unable to continue tracking the story past the point of 

the last occurrence of any of the original query shots.  On the other hand, footage 

introduced later is likely to be reused in later segments.  Therefore, if such new 

footage is recognized, the tracking may continue.  This issue is addressed by the 

dynamic core techniques, which are presented in the next section. 

4.4.2 Dynamic Core Expansion 

In this section, we discuss our dynamic core story tracking approach, which deals 

with the problem of evolution of the video footage used in story segments over time.  

To this end, our dynamic core technique expands the core to include certain shots 

found in the new segments of the story.  When the story tracking algorithm identifies 

a new segment and determines its boundaries by the liberal or conservative building 

strategy, some or all of the shots in the new segment may be added to the core, 

according to the core expansion scheme. 

In the optimistic expansion scheme, all shots in the new segment are added to the 

core.  Using this approach, we assume that all shots in the segment are, in fact, 

relevant to the news story.  If this is the case, the optimistic scheme maximizes our 

chances of detecting new segments of the story.  However, if some of the shots 
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belong to a different story (which is possible because of the imperfections in segment 

building), our algorithm will begin to track two stories simultaneously, and the 

resulting story will likely be a combination of the two.  To illustrate this point, we can 

examine the example shown in Figure 135.  The diagram depicts segments of two 

different stories, one consisting of shots A through H, and the other comprising shots 

M through P.  In part b) the liberal segment building strategy was used, and 

consequently shot M1 was included in the segment.  If the core is expanded 

optimistically, shot M1 becomes part of the core.  As a result, the next segment of the 

story M-P is considered part of the story A-H.  This incorrect expansion adversely 

affects the precision of story tracking. 

 
Figure 135 Story graph a) of the actual story, b) as detected by the tracking method with 

optimistic core extension scheme 

This issue may lead to multiple stories combined into a single story board.  In the 

extreme case, the entire source video sequence may be returned in response to the 

given query, which is certainly undesirable.   

In order to alleviate this problem, one can use the pessimistic expansion scheme.  In 

this scheme, only shots that occur in other segments of the story are added to the core.  
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When a new story segment is detected, all shots in the segment are examined with 

respect to their matching shots.  The shots which match at least one shot found in 

some previously discovered segment are added to the core.  Although in this scheme 

much fewer shots are added to the core, the ones which are added are less likely to be 

irrelevant to the news story.  Intuitively, if a shot is used more than once in the story, 

it is likely to be a part of the recorded footage used by the news station.  In addition, 

the potential for inclusions of shots from other stories is considerably diminished.  If 

this were to happen, two segments of two different stories would have to be aired 

adjacent to each other at least twice. 

The following example (Figure 136) demonstrates the advantage of the pessimistic 

core expansion.  The story graphs show that even though the greedy segment building 

strategy erroneously classified M1 as part of the story A-H, the shot was not included 

in the core because no occurrence thereof was found in other segments of the story.  

Thanks to that, the following segment of the story M-P was not misclassified as 

belonging to story A-H.  At the same time, shot D1, whose repetition was found in the 

new segment, was incorporated into the core.  Hence, subsequent segments may be 

detected based on the repetition of that shot. 
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Figure 136 Story graph a) of the actual story, b) as detected by the tracking method with 

pessimistic core extension scheme 

In summary, the pessimistic core expansion scheme may, at times, exclude shots from 

the core that could be valuable in detection of subsequent story episodes.  However, it 

is generally more accurate than the optimistic scheme, and will be used in our 

algorithms. 

4.4.3 Evaluation 

This section discusses the performance of out story tracking technique on a typical 

news broadcast.  For this purpose, we selected an 18-hour video sequence of CNN 

News channel, and chose a story regarding Michael Jackson’s arrest for evaluation 

purposes.  This story was deemed the most interesting during the whole broadcasts, as 

it is reported over many hours and contains some new developments, as well as 

discusses different aspects of the events.  The story consists of 16 segments of various 

lengths.  The shortest of them is only 30 seconds long, and consists of merely 3 shots, 

while the longest lasts almost 10 minutes, and contains a large number of shots.  The 

entire story contains 17 repeating shots, some of which occur as many as 8 times in 
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different episodes, while others are shown only twice.  The whole 18-hour broadcast 

was viewed by a human observer, and all segments of the story were manually 

detected to establish the ground truth for the experiment.  The resulting story graph is 

depicted in Figure 137, where story segments are represented as schematic film strips, 

and repeated shots are shown as keyframes. 
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Figure 137 Graph of the entire story used in the exper iment 
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To test our algorithm we chose a set of three different queries, each corresponding to 

a single segment of the story (see Table 13).   

Segment Segment Duration Query Size 

3 0:35 1 

5 0:21 3 

6 4:22 6 

Table 13 Exper imental quer ies 

Each query was used as an input for the story tracking algorithm with liberal segment 

building and pessimistic core expansion.  The algorithm, as described earlier, is 

controlled by two parameters: 

1. Neighborhood size, which determines the size of a story segment build around 

each repetition of a core shots. 

2. Co-occurrence threshold, which governs the process of core expansion. 

We conducted several experiments using different values for these two parameters.  

Since the algorithm executes iteratively by first detecting new story segments and 

then expanding the core, we ran it until ten iteration steps were performed, or until the 

story converged, and no more episodes could be added. 

We first observed that for the vast majority of the input parameter settings, the story 

tracking process did not cease until the entire video sequence was included in the 

story, thus yielding 100% recall, and unacceptably low precision.  Therefore, we 

decided to examine the values of recall and precision after different number of 

iterations.  Figure 138 and Figure 139 depict recall and precision achieved by the 

algorithm starting with query 3.  In the graphs, iteration 0 corresponds to the initial 

query, and each subsequent value represents the recall and precision for the story 

detected by the algorithm after n core expansions. 

The graphs indicate that recall grows gradually with the number of iterations as the 

algorithm discovers new episodes of the story and extends the existing ones.  

Conversely, precision decreases in the same manner due to inclusion of irrelevant 
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shots.  For a given neighborhood size, the rate of the increase in recall and decrease in 

precision depends on the co-occurrence threshold.  A similar pattern was observed for 

the other queries (5 and 6). 
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Figure 138 Story tracking recall after  different number  of iteration for  query 3 with 

neighborhood size of 2.0 minutes 
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Figure 139 Story tracking precision after  different number  of iteration for  query 3 with 

neighborhood size of 2.0 minutes 



 205 

These observations have the following significance.  Although the algorithm usually 

does not stop on its own accord until the entire broadcast is contained in the story, it 

is possible to obtain the desired level of accuracy by limiting the number of iterations 

the algorithm executes.  For instance, the story tracking process yields 75% recall and 

70% precision after 3 iterations with neighborhood size of 2 minutes, and co-

occurrence threshold of 2. 

In order to establish the optimal set of parameters for the algorithm, we aggregate 

recall and precision into a single performance estimator – utility function.  The utility 

function – first introduced in Chapter 2 - is a weighted sum of recall and precision as 

presented in (45), where �  is a coefficient regulating the relative importance of the 

two measures. 

precisionrecall utility ⋅−+⋅= )1( αα  (45) 

For this evaluation we chose �  = 0.5, thus assigning equal importance to recall and 

precision.  Figure 140 presents a graph of the utility function for different number of 

iterations of story tracking with query 3 using neighborhood size of 2 minutes.  The 

function exhibits a characteristic pattern.  Its values first increase to reach a maximum 

at a certain small number of iterations.  Subsequently, the values diminish and 

stabilize around the starting level.  The same pattern is also present for detection 

starting with queries 5 and 6, as well as for different values of the neighborhood size.  

This allows us to conclude that the story tracking algorithm attains highest accuracy 

after a small number of iterations, during which the gain in recall outweighs the loss 

of precision.  Afterwards, precision drops quickly decreasing the overall performance. 
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Figure 140 Story tracking utility after  different number  of iteration for  query 3 with 

neighborhood size of 2.0 minutes 

Analysis of the utility function for all queries over the whole range of parameters 

shows that the algorithm achieves the best performance using a neighborhood of 2.0 

minutes.  The optimal value of the co-occurrence threshold was 2 for query 3, and 3 

for queries 5 and 6.  The graphs of recall, precision and utility function for all three 

queries with their respective optimal parameters are shown in Figure 141 and Figure 

142. 
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Figure 141 Recall and precision curves for  all three quer ies with optimal parameters 
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Figure 142 Utility function for  all three quer ies with optimal parameters 

The graphs in Figure 141 and Figure 142 demonstrate that our story tracking 

algorithm described in this section is capable of achieving recall and precision in the 

range of 70% to 80%, which is an excellent result compared to the values of recall 

and precision for the original query. 
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4.4.4 Summary and Discussion 

In this section, we presented a novel story tracking technique which relies on shot 

repetition patterns to identify story segments related to the user’s query.  We showed 

that repeated shot detection combined with episode creation and story core expansion 

may be used to track stories with very good accuracy.  The experiments we 

performed show that the algorithm achieves the best performance after a small 

number of iterations.  With the increase in the number of iterations, the algorithm 

detects larger portions of the story and increasing recall, while simultaneously 

including some irrelevant shots, which causes a gradual decrease in precision.  

Consequently, the number of iterations could be used as a parameter which controls 

the trade-off between recall and precision.  This would allow the user to adjust the 

algorithm performance to their individual preferences. 

Throughout this section, we also identified a number of challenges in our automated 

story tracking method, which were confirmed by the experiments and will now be 

discussed in more detail.  We showed earlier that the set of all repetitions of the query 

shots is an uninteresting result of a story tracking algorithm.  Thus, we proposed two 

strategies (liberal and conservative) of discovering story segments around the 

repeated shots.  Both approaches have potential weaknesses.  The liberal strategy 

builds an episode of all shots within a certain time span, whose size must be 

determined a priori.  If the time span is too small, very few shots are incorporated 

into the story.  On the contrary, if it is large, the algorithm may include irrelevant 

shots (from commercials, or other stories) into the story being built.  Irrelevant shots 

may also be included if the core shot is not centered in the episode.  The conservative 

strategy attempts to alleviate this problem by adding to the story only the shots which 

lie between two or more repeated core shots.  This approach eliminates the need for 

the a priori parameter determining the episode length.  However, it requires that at 

least two core shots be repeated in every segment of the story in order to effectively 

detect segment boundaries. 
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In the experiments described in section 4.4.3, the liberal story building strategy was 

used.  Even though it was shown that the optimal performance was achieved with 

neighborhood size of two minutes, this neighborhood substantially exceeds the size of 

several segments of the actual story.  For instance, segments 3 and 5 are only about 

30 seconds in length.  Consequently, when either of the shots was detected, the story 

was extended to include several irrelevant shots.  We also observed that a few of the 

story segments were surrounded by commercial blocks.  Although it is clear that 

commercials are not part of the story being tracked, the algorithm proceeds to include 

them as long as they are within the neighborhood size of some core shot. 

Earlier in this section, we demonstrated that in order to effectively track stories over 

time, we must allow the story core to evolve and include additional shots as they 

become available.  This proposition was confirmed by the experimental results.  

When we attempted to track the story using co-occurrence threshold of 5.0 (see 

Figure 138), no shots were added to the core.  As a result, the story did not expand 

past the repetitions of the original query shot, and the recall remained at a mere 5%. 

To alleviate this problem, we devised two story core expansion schemes.  In the first, 

we optimistically add all shots in the episode to the core.  This scheme would be 

optimal if the segment building strategies were perfect.  Because they are not, some 

number of irrelevant shots from other stories may become part of the story segment.  

If such shots are also added to the core, the tracking method will inadvertently 

combine multiple stories into one.  This problem is rectified to a large extent by the 

pessimistic expansion scheme, which requires that only shots repeated in other 

segments of the story be added to the core.  However, it is still possible for the same 

commercial to be aired next to two or more different segments of the same story.  If 

this occurs, the shots belonging to the commercial may be added to the story and the 

core.  Since commercials repeat throughout the news broadcast independently of any 

particular story, including any of the commercial shots in the core may lead to the 

story growing far beyond its true boundaries, and even include the entire broadcast.  

This occurred in most of the experiments conducted in section 4.4.3.  For example, in 
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the second iteration of story tracking with query 3, neighborhood of two minutes, and 

co-occurrence threshold equal to 2, several shots from a BWM commercial were 

added to the core.  In the subsequent iteration a number of new “story segments”  were 

detected around the repetitions of the same commercial. 

All of the deficiencies discussed above may manifest themselves, even if the shot 

match relation given as the input to the algorithm is perfectly accurate.  In the 

presence of imperfections in shot matching, some of the problems become more 

acute.  Specifically, the shot matching techniques introduced in Chapter 3 do not 

distinguish well between different anchor or studio shots.  Shots of these types tend to 

be visually very similar, and hence are often regarded matching, even if they are not 

strictly repetitions of one another.  This poses a problem because usually during a 

single news program, one anchor person reports several different stories, and thus 

anchor shots are present in story segments of multiple unrelated stories.  If any of 

them make their way to the story core, then the tracking algorithm will quickly 

incorporate all other segments reported by the same anchor into a single story.  As a 

result, the story may grow out of control and is very likely to include the entire news 

broadcast. This problem was exemplified by the second iteration of the same 

experiment with query 3.  In this iteration a studio shot, which accidentally matched 

two another studio shot already in the story, was included in the core.  Consequently, 

in the next iteration the algorithm added two unrelated segments, which in turn 

contributed to the uncontrollable growth of the story. 

Clearly, the issues discussed in this section hamper the story tracking performance.  

In particular, their impact prevents the algorithm from converging before the story 

comprises the entire broadcast.  In the course of working with the story tracking 

algorithm, we discovered that some of these problems could be alleviated if the 

algorithm had information about classes of news shots involved in the story building. 

In the next section, we will consider a number of improvements that could be made 

by classifying news shots. 



 211 

4.5 Shot Classification 

In the previous section, we introduced a story tracking algorithm which relied solely 

on matching shot information.  We also demonstrated that the algorithm performs 

reasonably well, but pointed out certain shortcomings, and suggested that some of 

them may be addressed by making use of news shot classification.  Most of the shots 

in television news broadcasts can be categorized into a small number of classes, such 

as anchor persons, studio shots, commercials, news content, etc.  Thus, we could 

introduce a shot classification function � , which provides a label for each shot in the 

original video sequence.  The function �V →:γ  assigns a shot class from the set �  

to every shot in V.  The function �  could be used as an additional input parameter of 

the story tracking algorithm. 

In this section, we explore improvements which can be made to the story tracking 

algorithm by utilizing the category labels assigned to every shot.  We consider a 

classification scheme which groups shots into four categories: anchor person or 

studio, commercial or promo, logo or graphics, and news content.  Hence, the shot 

class set �  may be defined as follows: 

{ }news graphics, ,commercial anchor,
�

=  

We also suggest methods of automatic shot classification for the classes anchor and 

commercial based on shot repetition pattern. 

4.5.1 Improvements from Shot Classification 

The problems with the basic story tracking algorithm concerned two phases of the 

tracking process: segment building and core expansion.  Due to imprecision of these 

two steps, irrelevant shots could be included in the story or even incorporated into the 

story core.  In the following two sections, we discuss ways of rectifying these 

problems by shot classification. 
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Segment Boundary Detection 

The main deficiency of the segment building used by our algorithm the assumption 

that all segments are of approximately the same size and centered around the repeated 

shots.  Clearly, this simple approach cannot fit all types of segments and all locations 

of repeated shots within the segments.  As a result, some relevant shots are not 

included in the story, while certain irrelevant shots may be.  Although this problem 

cannot be entirely eliminated by using shot classification, some improvement can be 

made. 

A closer examination of the experimental results obtained in section 4.4.3 indicates 

that news segments regarding one story very rarely span a commercial block.  Most 

often, the anchor person finishes reporting the story, and only then the station goes to 

a commercial break.  Therefore, detection of a commercial shot in the neighborhood 

of a repeated shot is a very good indication that the story segment ends before the 

commercial. 

Hence, the following algorithm may be used to build story segments.  Start with the 

last shot preceding the repeated shot.  For every preceding shot within the 

experimentally determined distance of the repeated shot check the shot class.  If the 

shot is labeled as a commercial, do not add it to the story and stop building the 

segment in this direction.  Repeat the process for the shots succeeding the repeated 

shot.  This process is depicted on the block diagram in Figure 131. 
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Figure 143 Block diagram of the segment building algor ithm 

Core Expansion 

Errors in core expansion have more severe consequences than imperfections in 

segment building.  As discussed earlier, inclusion of irrelevant shots in the query may 

result in an uncontrollable story growth. 

If every shot in the news segment is labeled according to its class, we may elect to 

include in the core only the news content shots.  This way we eliminate the issue of 

placing commercials in the core and finding their repetitions at random places in the 

broadcast.  Simultaneously, we also filter out anchor shots, which may be matched to 

other shots by an imperfect shot matching technique. 
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Figure 144 Block diagram of the core expansion algor ithm 

If we combine this method with the pessimistic core expansion scheme, we could 

virtually eradicate the possibility of including any irrelevant shots in the core. 

4.5.2 Automatic News Shot Classification 

In the previous section, we proposed a method by which correct shot classification 

can be used to improve the results of our story tracking algorithm.  In this section, we 

suggest techniques of automatic shot classification based primarily on repetition 

patterns typical for different types of shots.  We propose algorithms for automatic 

recognition of three classes of shots common in video news: commercials and 

promos, anchor and studio shots, and news content shots.  In addition, we identify the 

most commonly repeating shots, named stop shots. 
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Stop Shots 

In the field of textual information retrieval, words that occur very frequently contain 

little semantic information and are called stop words.  Similarly, in video news 

broadcasts certain shots occur so often that they provide nothing relevant to news 

stories, and could analogically be called stop shots.  Examples of such shots may be 

sequences of black frames between fade-outs and fade-ins, or television station logos 

which appear between news segments.  Therefore, it is beneficial to identify stop 

shots and make sure they are never added to a story. 

The classification technique for this type of shots is quite straightforward.  Given a 

shot match partition on the source video sequence V, one can simply label a certain 

percentage of the most frequently repeating shots as stop shots.  The specific 

percentage value may be chosen experimentally depending on the video source. 

In order to verify this proposition, we calculated a histogram of shot repetition in the 

18-hour CNN News broadcast used in other experiments in this chapter.  The 

resulting histogram is depicted in Figure 145.  The graph shows that indeed the 

broadcast contains a small percentage of shots which repeat frequently, while the 

majority of shots occur only a few times.  More detailed investigation revealed that 

the most frequently occurring shots were anchor persons and certain promos.  

However, we also observed that a large number of anchor person shots, commercials, 

and studio shots, appeared were matched to less than 10 other shots.  Considering that 

certain news content shots belonging to our story were repeated a similar number of 

times, we found it difficult to establish an optimal frequency threshold separating 

important shots from potential stop shots. 
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Figure 145 Shot repetition histogram in an 18-hour  CNN News broadcast 

Nonetheless, we chose to perform a story tracking experiment in which stop shots 

were excluded from the story core expansion.  Having precise knowledge of the story 

shot repetition patterns – none of the shots repeated more than 10 times – we selected 

the stop-shot frequency threshold equal to 10.  Contrary to our initial expectations, 

the removal of the most frequent shots did not improve the story tracking 

performance.  This result may be better understood, if one remembers that the 

majority of anchor person and commercial shots were not eliminated by this 

frequency threshold.  Apparently their presence in close proximity to the actual story 

segments was sufficient to introduce a large number of false segments into the story. 

This experiment shows that in order to substantially improve the story tracking 

accuracy, frequency-based classification is insufficient and classification methods for 

the specific types of news shots are needed.  In the next sections we suggest such 

automated methods for detection of commercials and promos, as well as anchor 

person and studio shots. 
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Commercials and Promos 

Commercials and promos have a number of characteristics that help distinguish them 

from the rest of the news broadcast.  First, they repeat regularly at various times 

during the broadcast (see Figure 146).  They tend to consist of several shots, and 

usually are either 30 or 60 seconds long.  In addition, they occur in blocks of several 

commercials at a time.  These characteristics could be used to create a classification 

method which could use multiple criteria to correctly identify commercials and 

promos.  Such a technique could detect sequences of multiple shots, which appear 

several times during the broadcast, especially in close proximity to other sequences of 

shots of similar repetition pattern.  Commercial classification is beyond the scope of 

our work, but shows potential for improvement of story tracking performance. 
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Figure 146 Typical repetition pattern of a commercial shot 

Anchors and Studio Shots 

In this section, we propose an automatic method of identifying anchor and studio 

shots.  By analyzing typical news shows, we observed that during a single show, 

anchor persons appear multiple times to relate different stories.  Although in the strict 

sense those shots are not repetitions of one another, they are visually very similar, and 
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are frequently reported as matching by an automatic shot matching algorithm.  This 

shortcoming of the shot matching mechanism may be used to our advantage. 
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Figure 147 Typical repetition patter  for  an anchor  person shot 

Figure 147 shows a typical distribution of shots matching a sample anchor person.  In 

this experiment, a 60-frame portion of an anchor person shot was selected and all its 

repetitions were detected and grouped within 10-minute time spans.  It is clear that in 

a time window of 08:30:00 to 10:20:00, a large number of occurrences is found.  This 

corresponds to a single news show lasting about 2 hours.  On the other hand, no 

matching sequences are found any other time during the day, except for some 

accidental matches to different anchor person shots in another news show.  Thus, 

unlike commercials and promos, which occur frequently during the entire broadcast, 

anchor and studio shots tend to appear in close proximity to one another. 

Therefore, frequent local repetition may be used as good anchor classifier.  If a 

certain shot matches a large number of other shots within a certain distance 

corresponding to the length of a typical news show, but does not match many shots 

outside of this range, it may be labeled as an anchor shot.  The characteristic length of 

a news show may be established experimentally depending on the news source. 
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In addition, anchor shots usually contain very little motion.  As a result, the video 

features of their individual frames remain very stable across the whole shot.  This fact 

may be used to augment anchor classification.  To this end, one can measure the auto-

similarity of every shot.  Naturally, if one compares any video sequence to itself by 

measuring the difference in features of the corresponding frames, one will find all 

sequences matching.  This is not very helpful in establishing auto-similarity.  On the 

other hand, if one can consider the number of non-corresponding frames that match, 

one will notice that relatively still shots contain a large number of them, while 

sequences with substantial motion do not.  Thus, the total number of matching frames 

could be calculated by comparing all pairs of frames in the shot.  This process, 

however, would be very time consuming.  Alternatively, we could use quantized 

color moments (see section 3.6.2).  The auto-similarity of a given shot may be 

quickly assessed by counting the total number of frames which share a single hyper-

cube of the quantized color moment space. 

The combination of the two criteria introduced above, i.e. high frequency of local 

repetition and high auto-similarity, shows promise as an anchor shot classification 

technique.  Implementation and evaluation of this approach are beyond the scope of 

this research, and could constitute an interesting extension of our work. 

News Content Shots 

Due to a great variety of video footage used by news stations as visual clues for 

reported stories, it is difficult to provide a direct classification technique for news 

content shots.  Instead, we will assume that all shots not categorized into other shot 

classes will be considered news content shots.  This approach is not perfect, but it 

substantially limits the number of shots used for story core expansion, and thus 

reduces the odds of uncontrollable story growth. 
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4.5.3 Summary 

In this section, we proposed news shot classification as a source of improvement for 

the story tracking algorithm.  We explained how shot classification could be used to 

address problems in our technique discovered in earlier sections, and suggested how 

this information can be incorporated into the algorithm.  Finally, we proposed 

methods of automatic shot classification based on shot repetition patterns and basic 

visual features of typical news shots. 

4.6 Story Presentation 

The problem of story presentation may be regarded very broadly, as an effort to 

devise optimal ways of presenting news stories to the viewers.  Traditional video 

news media, i.e. television stations, are limited by their nature, and can report news 

only in a linear fashion.  With the advent of the Internet, as well as proliferation of 

various electronic multimedia devices several other models of story presentation are 

possible.  As these new media become more dominant sources of video news, the 

domain of story presentation is bound to gain more importance.  Detailed analysis of 

the various alternatives of news story presentation using modern media is certainly 

beyond the scope of this work.  Hence, in this section we do not attempt to provide 

definitive solutions to the general problem of story presentation.  Instead, we focus on 

the issue of presenting the stories resulting from story tracking in television news 

broadcasts. 

As discussed in section 4.1, the problem of story tracking is intricately connected 

with the issue of story presentation.  Once the story has been identified by the story 

tracking algorithm it must be presented to the user in a manner which facilitates 

intuitive browsing and viewing.  To this end, we propose to create a story view, 

which comprises a subset of all story shots, and arranges them according to a certain 

order.  In this section we discuss a few alternative story views which follow naturally 
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from our story tracking technique.  A brief exposition of graphical presentation of the 

story views is also given. 

4.6.1 Complete Story View 

The story tracking algorithm developed in this chapter returns a story as a set of video 

shots.  A straightforward way of presenting the story to the user is to simply show all 

the shots in their chronological order.  If, in addition, the associated audio is played 

while the shots are shown, such presentation constitutes the most comprehensive 

coverage of the story.  On the other hand, it may contain a considerable amount of 

visually redundant information.  This could be eliminated by retaining only the first 

occurrence of any story shot, and removing all of its repetitions.  In this case, the 

information in the audio signal may be difficult to understand due to the removal of 

the audio associated with the repeated shots. 

4.6.2 Visual Content View 

Our tracking algorithm detects stories using visual features of the broadcast.  It is, 

therefore, natural and more interesting to focus on the visual aspects of the story.  It 

turns out the story board used by the algorithm lends itself to creation of a story view 

which focuses on visual aspect of the story. 

This approach to story presentation emphasizes the visual content of the story.  While 

video shots of anchor persons and reporters convey important portions of the story in 

the associated audio, they are of little importance visually.  If the user is interested 

primarily in the visual aspects of the story, it may be beneficial to present to him only 

the news content shots.  To this end we propose to use the story core created by our 

story tracking algorithm. Thus, we select a story view (see section 4.1) which consists 

of the set of all shots comprising the core along with a partial or total order on these 

shots.  In this section we discuss two possible shot orderings, which result in two 

different story core views. 
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One story view may be constructed by arranging all core shots in the order of their 

chronological appearance.   This simple arrangement captures an important aspect of 

story development.  As the news story evolves over time and comprises new events, 

television news stations obtain new video material and show it to the viewers.  Thus, 

by viewing only the core shots in the order they were shown by the station, the user 

may deduce the temporal development of the story. 

Perhaps the main disadvantage of presenting the story in this fashion is the significant 

proportion of redundant visual information.  The story core, as constructed by our 

algorithm, contains every repetition of every news content shot in the story.  Thus, 

viewing the entire story core the user would be shown the same shots multiple times.  

This issue can be rectified by reducing the view to only the unique shots in the core, 

which may be accomplished by using the equivalence classes in the story board.  For 

every equivalence class a single representative shot may be selected and placed in the 

view.  The choice of the representative shot allows for three alternatives.  First, one 

can simply take the chronologically earliest shot in the class.  However, since shots in 

the class often vary in length and may match only partially, the earliest shot may be 

very short, and contain little information.  A better choice is to use the longest shot in 

the class.  Finally, in order to maximize the visual content, one can construct a video 

sequence constituting the union of all shots in the class, as depicted in Figure 148. 

 
Figure 148 Example of shot merging to obtain maximum of visual content 

In the end, after every equivalence class has been reduced to a single shot, the 

chronological story view becomes a linear sequence of unique shots presenting the 

maximal portion of the visual content of the story in the shortest amount of time. 

M = A+B+C 

C 

A 
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The chronological story view utilizes temporal relationships between core shots.  

Certainly other relationships exist and could be exploited for story view creation.  

Here, we will consider one alternative, which explores the core shot organization 

within story segments.  The news content shots in the story segments are arranged by 

the director of the news program during the production process.  This arrangement 

may correspond to some logical connections between the shots, and thus presenting 

the story in a manner most accurately reflecting these connections may be beneficial.  

We can utilize the story board created by our algorithm to construct such a story 

view. 

 
Figure 149 Sample story 

To this end we form a co-occurrence matrix C[M,M] , where M is the number of 

equivalence classes in the core.  Every entry cij of this matrix is the total number of 

times a shot from class i preceded a shot from class j in any segment of the story.  

Consider the story depicted in Figure 149, which has a core whose shots belong to 

three equivalence classes: A, B, and C. The co-occurrence matrix for this story is 

shown in Table 14. 

 A B C Total 

A 0 4 0 4 

B 1 0 0 1 

C 3 2 0 5 

Table 14 Sample co-occurrence matr ix 
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Given the co-occurrence matrix, one can construct a partial order on the core shots in 

the following way.  For every shot x a co-occurrence score cs(x) can be calculated as 

the sum of all entries in the corresponding row of the matrix.  The partial is the set of 

all pairs of shots (x,y) with different scores, such that cs(x) > cs(y).  In the example 

above, the resulting partial order becomes { }BABCAC ,,,,, . 

In this simple example the partial order is also a total order, but in general several 

shots may have the same co-occurrence score, and therefore cannot be ordered with 

respect to each other.  However, a total order may always be constructed by 

considering the chronology of the shots in question.  If multiple shots share the same 

score, they can be ordered according to the time of their first occurrence in the news 

broadcast. 

In summary, the story core, which comprises the visual content of the story, may be 

presented in either a chronological order, or arranged according to the order of shot 

appearance in the story segments. 

4.6.3 Graphical Story Presentation 

Regardless of the choice of story view and the method used to create it, the story view 

must be presented to the user in a form that facilitates intuitive browsing and viewing 

of the story.  In this section we briefly describe a concept of a graphical story 

presentation interface which serves this purpose. 

In order to graphically display the complete view of the story one can use a 

representation visually similar to the story graph used throughout this chapter.  All 

segments of the story should be arranged chronologically, and displayed on separate 

lines, as shown in Figure 150.  The shots within individual segments can be depicted 

by icons showing corresponding keyframes.  To avoid displaying a very large number 

of icons, especially for long segments, only the keyframes representing the core shots 

could be used. 
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Figure 150 Sample user  inter face for  a complete story view with two segments 

Presented with this interface, the user could click on the displayed icons to play the 

corresponding core shots.  Alternatively, the entire segment could be played by 

clicking on the area between the keyframes. 

The visual story content view is not inherently divided into segments.  Rather, the 

view presents the story core in either a linear or non-linear fashion.  For the linear 

view, an interface resembling a film strip could be adopted, as shown in Figure 151.  

The user’s interaction with this interface could be analogical to the one used for 

complete story view. 

 
Figure 151 Sample user  inter face for  a linear  story core view 

The non-linear view of the story core requires a different representation.  Since only 

certain pairs of core shots are strictly ordered, the story view could be shown as a 

graph, in which vertices correspond to shots and edges represent ordering, as in 

Figure 152.  This interface requires the user to select individual shots for playback 

one at a time.  Alternatively, the user could mark a path in the graph and have all 

shots in this path played sequentially. 
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Figure 152 Sample user  inter face for  a story with two segments 

All of the user interfaces presented could be used to efficiently and intuitively view 

the results of story tracking.  However, since the development of a graphical user 

interface for story viewing was not the focus of this work, we restricted ourselves to 

implementing a simple linear view of either the complete story or the story core.  The 

view is shown to the user in the form of a list of video clips described by their start 

and end time, as shown in Figure 153.  Each such list item may be clicked in order to 

play the video clip in the associated video window.  In addition, the user can 

randomly access any portion of the video clips by entering the time at which they 

would like to begin playback.  This simple interface has proven very useful in the 

development and testing of our story tracking algorithm. 
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Figure 153 Simple list representation of a complete story view 

Summary 

In this section we briefly discussed the problem of story presentation.  Far from 

attempting to provide definitive solutions for the general question of optimal 

presentation of news stories in modern media, we were primarily interested in the 

methods of organizing and displaying the results of our story tracking technique.  To 

this end we described two story views which follow most naturally from the tracking 

algorithm.  In the complete story view all shots in the story are arranged in their 

chronological order and presented along with the corresponding audio, whereas in the 

visual content view emphasizes the visual aspect of the story, by displaying only the 

story core.  At the end, we gave a conceptual overview of a graphical user interface 

which may be used to present both story views to the user in an interactive fashion. 

4.7 Conclusions 

This chapter discusses the design of a story tracking algorithm based on repetition of 

video footage in television news broadcasts.  In this chapter we first provided the 

definition of the problem of story tracking in video, as the detection of all shots 

relevant to a particular news story.  We designed and implemented an algorithm 

which creates a story from a set of relevant query shots.  The story is built gradually, 
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one segment at a time, as the video content becomes available.  The algorithm detects 

story segments by identifying new occurrences of shots already in the story.   

To evaluate this technique in real-world conditions we performed a story tracking 

experiment on a CNN News broadcast.  The results showed that our fully automated 

story tracking algorithm can achieve good performance (recall and precision around 

75%), even using imperfect input data.  The experiments also proved that there are 

some aspects our approach which could be further improved.  We observed that the 

repetitions of anchor person shots and commercials confuse our algorithm and cause 

it to expand the story past its actual boundaries.  Therefore, we postulated that 

accurate shot classification could be used to enhance our story tracking method, and 

showed how the method could be extended to incorporate the shot classification 

information.  Finally, we suggested methods of automatic labeling of shots as 

commercials and anchor persons based on their characteristic repetition patterns. 

The research discussed in this chapter demonstrates that repetitions in the visual 

content of video news broadcasts can be used to successfully track stories.  This 

tracking method constitutes a viable alternative to the textual topic tracking 

techniques.  The two approaches could be combined in order to improve the overall 

story tracking performance. 
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Chapter  5  

Conclusions 

This dissertation considered the problem of inadequate access to video information, 

particularly in the domain of video news broadcasts.  In our research, we addressed 

one of the main aspects of the problem, which is the tracking of news story 

development over time.  We designed and implemented an effective story tracking 

technique based on visual characteristics of television news broadcasts.  Our method 

is complementary to textual topic tracking techniques, and may be used in 

conjunction with them to improve the overall performance.  The story tracking 

method we developed comprises three major components, which required us to tackle 

the corresponding challenges of effective temporal video segmentation, fast and 

accurate video sequence repetition detection, and story tracking based on detected 

repetitions. 

Temporal Segmentation 

An analysis of typical television news broadcasts showed that effective story tracking 

requires precise detection and effective matching of very short video sequences.  

After evaluation of some simple shot detection methods and finding their 

performance insufficient, we designed a more advanced technique based on 

mathematical models of the main types of video transitions.  We chose the three 

primary color moments – mean, standard deviation, and skew – as video frame 
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features, and used this representation to create a temporal segmentation algorithm.  

The algorithm detects cuts, fades, and dissolves by identifying their characteristic 

patterns in the time series of the color moments.  The algorithm was tested on a video 

sequence obtained from a typical broadcast of the CNN News channel, and compared 

with other techniques using less compact video features.  Our method achieved 

similar performance in cut and fade detection, but outperformed the other techniques 

in the identification of dissolves, yielding a 15% improvement in precision and recall 

for this task. 

Repeated Sequence Detection 

In order to track news stories in live video broadcast using repeated video footage, we 

developed a real-time video sequence matching algorithm.  Considering that video 

clips reused by new stations are often very short and their length is adjusted to the 

demands of live television, we introduced a number of video sequence similarity 

metrics which can deal with partial sequence repetition.  We examined the advantages 

and disadvantages of using different metrics for detection of repetitions in the news 

video stream.  We demonstrated that direct calculation of partial similarity between 

all potential sequences in a live video stream is not viable on state-of-the-art 

commodity hardware.  Consequently, we adopted a heuristic filtering technique based 

on quantization and hashing of the frame color moments, which substantially reduces 

the average time complexity of repeated sequence detection, and allows the detection 

to be performed in real time.  We analyzed the effects of color moment quantization 

on video sequence similarity, and introduced a sequence similarity measure based on 

equality of quantized color moments between video frames regardless of their 

temporal ordering.  We showed that this measure is a good approximation of the 

actual video sequence similarity, and used it to filter out dissimilar video sequences 

without performing direct comparison.  Experimental evaluation showed that our 

repeated sequence detection technique with heuristic filtering successfully detected 

partially repeated video sequences achieving very high recall and precision. 
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Story Tracking 

Using the results of our temporal segmentation and repeated sequence detection 

method, we designed and developed a novel story tracking algorithm for television 

news broadcasts based on repetitions of video footage.  Our method builds a set of 

shots relevant to the news story being tracked, called a story core, and identifies new 

story episodes by detecting occurrences of shots belonging to this set.  The story core 

is allowed to evolve dynamically over time to account for additional video footage as 

it becomes available.  This technique was evaluated on a 24-hour broadcast of CNN 

News channel and was found to achieve good performance (recall and precision of 

approximately 75%).  We subsequently demonstrated that a number of improvements 

may be made using the classification of shots into categories typical for video news.  

Finally, we proposed a set of automated classification methods for commercials and 

anchor shots using their characteristic repetition patterns. 

Future Work 

Our work demonstrates that visual characteristics of news video streams may be used 

to track news stories over time.  Nonetheless, there are several research areas which 

this dissertation does not address, and which certainly deserve further investigation.  

In the domain of temporal video segmentation, little attention has been devoted to the 

detection of computer generated transition effects.  Due to advances in computer and 

video production technology, such sophisticated effects are increasingly used by the 

television news stations.  Therefore, an interesting research direction would be the 

development of effective detection methods for computerized effects in video. 

In this dissertation, we focused on detecting repeated footage shown in the full video 

frame, and obscured only by the on-screen captions at the bottom of the frame.  We 

observed, however, that in certain news programs, video footage is displayed in a 

smaller window and occupies only part of the screen.  Effective methods of 

recognizing the presence of such windows could improve the story tracking 
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performance.  Hence, the design and implementation of automatic techniques of on-

screen window detection constitutes a promising extension to our work.   

In Chapter 4, we indicated that information regarding news shot classification could 

substantially improve the accuracy of our story tracking technique.  We believe, 

therefore, that the area of automatic news shot classification should be further 

explored.  Automatic shot classifiers could be created based on shot repetition 

patterns, as suggested in this work.  Alternatively, other methods could be devised, 

for instance relying on facial recognition, or speaker identification.  Such techniques 

would not only advance the research in story tracking, but would also be a valuable 

contribution to the broad domain of video retrieval. 

Finally, our work could be a starting point for an entirely new research area of 

multimodal story tracking.   The primary efforts in this area should concentrate on the 

creation of story tracking algorithms which combine the visual characteristics of the 

news video stream with the associated textual and audio information.  For instance, 

closed captions included in the news broadcasts could be effectively exploited to 

improve performance of all three phases of the visual story tracking.  Similarly, 

repeated video footage data could be used to enhance the textual topic tracking 

techniques.  Therefore, the convergence of different modes of news communication 

should be explored so that the merits of visual, as well as textual and aural 

information may be fully realized. 
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