
Story Tracking

in Video News Broadcasts

Jedrzej Zdzislaw Miadowicz

M.S., Poznan University of Technology, 1999

Submitted to the Department of Electrical Engineering and Computer Science

and the Faculty of the Graduate School of the University of Kansas

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Chair

Date Defended: June 4, 2004

ii

Abstract
Since the invention of television, and later the Internet, the amount of video content

available has been growing rapidly. The great mass of visual material is an

invaluable source of information, but its usefulness is limited by the available means

of accessing and tailoring it to the needs of an individual. Long experience with text

as a medium of conveying information allowed us to develop relatively effective

methods of dealing with textual data. Unfortunately, the currently available

techniques of accessing and processing video data are largely inadequate to the needs

of its potential users. Hence video material remains a valuable but grossly untapped

resource.

In the domain of video news sources, this problem is especially severe. Television

news stations broadcast continuous up-to-the-minute information from around the

globe. For any individual viewer, only small portions of this news stream is of

interest, yet currently no methods exist which would allow him to filter and monitor

only the interesting news.

In this dissertation, we demonstrate a solution to this problem by exploiting the

repetitive character of the video news broadcast to create a story tracking algorithm.

We observe that news stations often reuse the same video footage when reporting on

the development of a story. We use this information to detect repetitions of the video

footage and utilize this information for story tracking. To achieve this purpose in live

video news broadcasts, we develop a real-time video sequence matching technique

capable of identifying very short and only partially repeated sequences. We also

iii

introduce improvements in existing temporal video segmentation methods, which

allow us to more accurately detect short video shots.

The story tracking technique presented in this dissertation is complementary to

existing textual topic detection and tracking methods and could be used in

conjunction with them to improve the overall performance.

iv

Acknowledgements
I am deeply indebted to my advisor and mentor, Professor John Gauch, for his

guidance and inspiration during my career at the University of Kansas. His

invaluable advice and direction offered me during countless hours of discussion,

especially during the last few months of this work, were absolutely indispensable in

the successful completion of this research.

I owe gratitude to Professor Susan Gauch, who first suggested the problem of story

tracking as an interesting area of investigation, and guided me through the process of

writing and presenting the dissertation proposal. Her constructive criticism and

insightful observations expressed during numerous consultations in later phases of my

work have greatly enhanced the quality of this dissertation. I am truly grateful to the

members of my Ph.D. committee, Professors Jerzy Grzymala-Busse, Jerry James,

Allard Jongman, and Costas Tsatsoulis for their comments during my comprehensive

examination, which were very helpful in establishing the direction of my research, as

well as remarks and corrections to this manuscript.

I would also like to thank my wife, Heather, for her assistance in creating the manual

data for many of the experiments presented in here, as well as proof reading and

editing the earlier revisions of this manuscript. More importantly, I am eternally

grateful for her enduring love and unceasing words of encouragement which have

carried me through the most difficult days of this work, when in moments of despair I

was ready to give up. She alone knows how many times this dissertation was only a

hair’s width away from never being completed.

v

I will never be able to fully repay my parents, Lidia and Zdzislaw, whose love,

devotion and often personal sacrifice created a family in which I was blessed to spend

a happy and carefree childhood, form my character during adolescence, and later

acquire the knowledge and skills needed for this work. Their encouragement and

support ultimately allowed me to begin the graduate studies at the University of

Kansas. I owe thanks to numerous other friends and family members, whose wisdom

has guided me over many years, and whose valuable advice, as well as countless

prayers undoubtedly contributed to the successful completion of this dissertation.

Finally – last but certainly not least – I would like to offer my thanks to the Lord,

God. His eternal will – the origin of all things – allows all good things to come to

fruition.

vi

Table of Contents
L IST OF FIGURES... IX

L IST OF TABLES...XIV

CHAPTER 1 INTRODUCTION ..1

1.1 MOTIVATION ...1

1.2 PROBLEM DEFINITION AND PROPOSED SOLUTION ...3

1.3 RELATED WORK ...4

1.4 ORGANIZATION..9

CHAPTER 2 TEMPORAL SEGMENTATION ...10

2.1 INTRODUCTION ..10

2.2 RELATED WORK ..13

2.2.1 Cut detection..14

2.2.2 Fade detection..15

2.2.3 Dissolve detection ...15

2.2.4 Compressed domain methods..16

2.3 TEMPORAL SEGMENTATION FOR V IDEO NEWS BROADCASTS..17

2.4 EVALUATION METHODOLOGY ...19

2.5 MOMENT CROSS-DIFFERENCE ALGORITHM ..22

2.6 TRANSITION MODEL ALGORITHM ...37

2.6.1 Cut detection..38

2.6.2 Fade detection..63

2.6.3 Dissolve detection ...82

2.6.4 Combining transition detection algorithms..101

2.7 CONCLUSIONS..103

CHAPTER 3 REPEATED VIDEO SEQUENCE DETECTION ...105

vii

3.1 INTRODUCTION ..105

3.1.1 Problem Definition..106

3.1.2 Related Work...108

3.1.3 Contribution...113

3.1.4 Chapter Organization...115

3.2 V IDEO CLIP SIMILARITY METRICS...116

3.2.1 Overview ...116

3.2.2 Frame Similarity Metrics...118

3.2.3 Video Clip Similarity Metrics...125

3.2.4 Summary ...129

3.3 OVERVIEW OF METHODS ...129

3.4 REPEATED CLIP DETECTION ALGORITHM ..131

3.5 REPEATED SHOT DETECTION ALGORITHM...133

3.5.1 Overview ...133

3.5.2 Algorithm ..134

3.5.3 Impact of Segmentation Errors..138

3.5.4 Summary ...141

3.6 HASHING AND FILTERING ALGORITHM ..142

3.6.1 Overview ...142

3.6.2 Color Moment Quantization..143

3.6.3 Color Moment Hashing...148

3.6.4 Algorithm ..150

3.6.5 Time and Space Considerations ..153

3.7 EXPERIMENTS AND DISCUSSION ..154

3.7.1 Clip Similarity Metrics..154

3.7.2 Quantization and Hashing ...165

3.7.3 Execution Time...168

3.7.4 Repeated Footage Detection Performance...169

3.8 CONCLUSIONS..172

CHAPTER 4 STORY TRACKING..174

4.1 INTRODUCTION ..174

4.2 RELATED WORK ..178

4.2.1 Textual topic detection and tracking..178

4.2.2 Multimodal techniques of video news organization..183

4.3 METHOD OVERVIEW..186

viii

4.3.1 Inputs...186

4.3.2 Internal Story Representation..188

4.3.3 General Algorithm...190

4.3.4 Evaluation Approach...192

4.4 IMPLEMENTATION AND EVALUATION ..193

4.4.1 Segment Building Strategies ...193

4.4.2 Dynamic Core Expansion..197

4.4.3 Evaluation..200

4.4.4 Summary and Discussion ..208

4.5 SHOT CLASSIFICATION...211

4.5.1 Improvements from Shot Classification..211

4.5.2 Automatic News Shot Classification...214

4.5.3 Summary ...220

4.6 STORY PRESENTATION...220

4.6.1 Complete Story View ..221

4.6.2 Visual Content View ...221

4.6.3 Graphical Story Presentation...224

4.7 CONCLUSIONS..227

CHAPTER 5 CONCLUSIONS..229

BIBLIOGRAPHY ..233

ix

List of Figures
Figure 1 Generic Transition Detection Algorithm.. 24
Figure 2 Recall and precision of generic transition detection as a function of the

window size.. 26
Figure 3 Recall and precision of generic transition detection as a function of the

cross-difference threshold... 26
Figure 4 Recall and precision of the generic transition detection as a function of

cross-difference threshold for cuts.. 28
Figure 5 Recall and precision of the generic transition detection as a function of

cross-difference threshold for fades.. 28
Figure 6 Recall and precision of the generic transition detection as a function of

cross-difference threshold for dissolves.. 29
Figure 7 Simple cut with little motion.. 30
Figure 8 Mean curve for a simple cut with little motion .. 30
Figure 9 Cross-difference curve for a simple cut with little motion........................... 31
Figure 10 Example of a correctly detected dissolve... 31
Figure 11 Mean curves for a correctly detected dissolve... 32
Figure 12 Cross-difference curve for a correctly detected dissolve 32
Figure 13 Example of a missed dissolve... 32
Figure 14 Mean curves for a sample missed dissolve... 33
Figure 15 Small peak in cross-difference for a sample missed dissolve.................... 33
Figure 16 Example of motion sequence which triggers a false transition report........ 34
Figure 17 Mean curves for a sample motion sequence... 34
Figure 18 Cross-difference curve of a sample motion sequence................................ 35
Figure 19 Example of a fade missed due to the proximity of a cut 35
Figure 20 Mean curve for a sample missed fade.. 36
Figure 21 Cross-difference curve for a sample missed fade....................................... 36
Figure 22 Example of a simple cut with little motion .. 39
Figure 23 Mean curves for a sample cut with little motion.. 39
Figure 24 Frame moment difference for a simple cut with little motion.................... 39
Figure 25 Example of a cut with a small change in color moments........................... 40
Figure 26 Mean curves for a sample cut with a small change in color moments....... 40
Figure 27 Frame moment difference for a sample cut with a small change in color

moments.. 41
Figure 28 Frame moment difference values for true cuts and false positives 43

x

Figure 29 Frame moment difference values with adaptive threshold for true cuts and
false positives.. 43

Figure 30 Cut detection algorithm.. 45
Figure 31 Recall and precision of Truong’s cut detection algorithm as a function of

the difference ratio threshold .. 47
Figure 32 Cut detection performance as a function of the standard deviation

coefficient with mean coefficient equal 1.5.. 49
Figure 33 Example of a correctly detected cut with little motion and large change in

moments.. 49
Figure 34 Mean curves for the sample cut.. 50
Figure 35 Adapted moment difference values for the sample cut 50
Figure 36 Example of a correctly detected cut with a small change in moments....... 51
Figure 37 Mean curves for the sample cut.. 51
Figure 38 Enlarged mean curves for the sample cut... 52
Figure 39 Adapted moment difference values for the sample cut 52
Figure 40 Moment difference ratio values for the sample cut 53
Figure 41 Example of a sequence of very short shots .. 53
Figure 42 Mean curves for the sample sequence with short shots.............................. 54
Figure 43 Adapted moment difference for the sample sequence with short shots..... 54
Figure 44 Moment difference ratio values for the sample sequence with short shots 55
Figure 45 Example of a sequence with two cuts in close proximity 55
Figure 46 Mean curves for the sequence with two cuts in close proximity................ 56
Figure 47 Adapted moment difference values for the sequence with two cuts in close

proximity... 56
Figure 48 Moment difference ratios for the sequence with two cuts in close proximity

... 57
Figure 49 Example of a cut in a sequence with rapid motion..................................... 57
Figure 50 Mean curves for the sample sequence with rapid motion 58
Figure 51 Adapted moment differences for the sample sequence with rapid motion 58
Figure 52 Moment difference ratios for the sample sequence with rapid motion...... 59
Figure 53 Example of a cut distorted by video compression...................................... 59
Figure 54 Mean curves for a sequence with a cut distorted by video compression.... 60
Figure 55 Adapted moment differences for a sequence with a cut distorted by video

compression .. 60
Figure 56 Moment difference ratios for a sequence with a cut distorted by video

compression .. 61
Figure 57 Example of a camera flash interpreted as a cut .. 61
Figure 58 Mean curves for the sequence with a camera flash.................................... 61
Figure 59 Adapted moment differences for the sample sequence with a camera flash

... 62
Figure 60 Moment difference ratios for the sample sequence with a camera flash.... 62
Figure 61 Example of a fade-out and fade-in sequence.. 65
Figure 62 Standard deviation curves for the sample fade sequence........................... 65

xi

Figure 63 Smoothed second derivative of standard deviation for the sample fade
sequence.. 66

Figure 64 Slope difference vs. linear regression slope for the sample fade sequence 66
Figure 65 Example of a sequence with slow fade-out and fade-in............................. 68
Figure 66 Standard deviation curves for the slow fade sequence............................... 68
Figure 67 Smoothed second derivative for the slow fade sequence........................... 69
Figure 68 Slope difference vs. linear regression slope for the slow fade sequence.... 69
Figure 69 Fade detection algorithm.. 72
Figure 70 Fade detection performance as a function of the minimum slope threshold

... 74
Figure 71 Fade detection performance as a function of the slope dominance threshold

... 75
Figure 72 Example of a fade-out sequence ending with an abrupt cut to black 77
Figure 73 Standard deviation curves for the fade-out ending with an abrupt cut to

black.. 77
Figure 74 Slope difference of standard deviation for the fade-out ending with an

abrupt cut to black... 78
Figure 75 Example of a pseudo fade-in sequence which does not start with a

monochrome frame... 78
Figure 76 Standard deviation curves for the pseudo fade-in sequence....................... 79
Figure 77 Slope difference of the standard deviation for the pseudo fade-in sequence

... 79
Figure 78 Example of a special effect sequence detected as a fade............................ 80
Figure 79 Standard deviation curves for the sample special effect sequence............. 80
Figure 80 Standard deviation slope difference for the sample special effect sequence

... 81
Figure 81 Example of a dissolve between shots of similar variances......................... 83
Figure 82 Variance curve for the sample dissolve between shots of similar variances

... 83
Figure 83 Example of a dissolve between shots of different variances...................... 84
Figure 84 Variance curve for a dissolve between shots of different variances 84
Figure 85 Example of a dissolve between shots with extremely different variances. 84
Figure 86 Variance curve for a dissolve between shots with extremely different

variances ... 85
Figure 87 Example of a camera motion which produces a dissolve-like shape of

variance curve... 86
Figure 88 Variance curve for the sample camera motion sequence........................... 86
Figure 89 Differences between the start and the bottom of the variance curve during

dissolve as a function of the variance of the start frame................................. 88
Figure 90 Differences between the end and the bottom of the variance curve during

dissolve as a function of the variance of the end frame.................................. 88
Figure 91 Differences between the start and the bottom of the variance curve during

dissolves and non-dissolve sequences as a function of the variance of the start
frame... 89

xii

Figure 92 Differences between the end and the bottom of the variance curve during
dissolves and non-dissolve sequences as a function of the variance of the end
frame... 89

Figure 93 Minima of first derivative of variance at the start of a potential dissolve.. 90
Figure 94 Minima of first derivative of variance at the end of a potential dissolve... 91
Figure 95 Average variance difference as a function of the average variance at both

ends of a potential dissolve... 92
Figure 96 Aberration of the mean curve its linear interpolation for true dissolves.... 93
Figure 97 Aberration of the mean curve its linear interpolation for non-dissolve

sequences.. 93
Figure 98 Center mean difference of the red component ... 94
Figure 99 Center mean difference of the green component.. 94
Figure 100 Center mean difference of the blue component.. 95
Figure 101 Dissolve detection performance with increasing number of criteria applied

... 100
Figure 102 An actual histogram and its approximation by a normal distribution with

mean = 10 and standard deviation = 30. ... 120
Figure 103 Different color histograms with identical mean and standard deviation 121
Figure 104 Example of partial repetition.. 128
Figure 105 Complete sequence detection algorithm... 131
Figure 106 Partial sequence detection algorithm.. 132
Figure 107 Exhaustive Subsequence detection algorithm.. 132
Figure 108 Repeated shot detection algorithm ... 134
Figure 109 Complete shot similarity algorithm.. 135
Figure 110 Two distinct ways of partial shot repetition... 135
Figure 111 Partial shot similarity computation diagram... 136
Figure 112 Example of over-segmentation with a single falsely detected transition139
Figure 113 Example of under-segmentation with a single undetected transition..... 140
Figure 114 Example of under-segmentation with two undetected transitions.......... 141
Figure 115 Dependency of the sequence q-similarity on the quantization step 146
Figure 116 Hashing and filtering repeated sequence detection algorithm diagram.. 150
Figure 117 Mean of red, green, and blue components for 100 frames of a repeated

clip... 155
Figure 118 Normalized mean of red, green, and blue components for 100 frames of a

repeated clip.. 157
Figure 119 Sample clip repetitions detected using raw moment difference metric.. 158
Figure 120 Sample clip repetitions detected using normalized moment difference

metric .. 159
Figure 121 Normalized mean for red, green and blue components of a very still clip

... 160
Figure 122 Raw moment metric performance for the clip match threshold of 0.5 as a

function of the frame match threshold.. 164
Figure 123 Histogram of frame distribution between hyper-cubes of the quantized

space (step = 6.0) .. 166

xiii

Figure 124 Histogram of the number of hash table collisions.................................. 167
Figure 125 Execution time of direct vs. filtered shot matching................................ 169
Figure 126 An example of a non-transitive shot matching relation.......................... 187
Figure 127 Sample story graph... 189
Figure 128 Simplified sample story graph.. 189
Figure 129 Graphical notation for story graphs.. 190
Figure 130 Sample story graph... 190
Figure 131 Block diagram of the general story tracking algorithm.......................... 191
Figure 132 Story graph a) of the actual story, b) as detected by the basic tracking

method... 194
Figure 133 Story graph a) of the actual story, b) as detected by the basic tracking

method with liberal segment extension... 195
Figure 134 Story graph a) of the actual story, b) as detected by the basic tracking

method with conservative segment extension... 196
Figure 135 Story graph a) of the actual story, b) as detected by the tracking method

with optimistic core extension scheme... 198
Figure 136 Story graph a) of the actual story, b) as detected by the tracking method

with pessimistic core extension scheme... 200
Figure 137 Graph of the entire story used in the experiment 202
Figure 138 Story tracking recall after different number of iteration for query 3 with

neighborhood size of 2.0 minutes... 204
Figure 139 Story tracking precision after different number of iteration for query 3

with neighborhood size of 2.0 minutes... 204
Figure 140 Story tracking utility after different number of iteration for query 3 with

neighborhood size of 2.0 minutes... 206
Figure 141 Recall and precision curves for all three queries with optimal parameters

... 207
Figure 142 Utility function for all three queries with optimal parameters............... 207
Figure 143 Block diagram of the segment building algorithm................................. 213
Figure 144 Block diagram of the core expansion algorithm..................................... 214
Figure 145 Shot repetition histogram in an 18-hour CNN News broadcast 216
Figure 146 Typical repetition pattern of a commercial shot..................................... 217
Figure 147 Typical repetition patter for an anchor person shot................................ 218
Figure 148 Example of shot merging to obtain maximum of visual content............ 222
Figure 149 Sample story ... 223
Figure 150 Sample user interface for a complete story view with two segments..... 225
Figure 151 Sample user interface for a linear story core view 225
Figure 152 Sample user interface for a story with two segments............................. 226
Figure 153 Simple list representation of a complete story view............................... 227

xiv

List of Tables
Table 1 Transition classification scheme for transition detection 12
Table 2 Truong’s cut detection performance as a function of the difference ratio

threshold.. 47
Table 3 Cut detection performance as a function of mean and standard deviation

coefficients.. 48
Table 4 Fade detection performance as a function of the minimal slope threshold ... 75
Table 5 Dissolve detection performance with increasing criteria set 98
Table 6 Combined temporal segmentation performance on the 1-hour experimental

sequence.. 101
Table 7 Combined temporal segmentation performance on a 10-minute test sequence

... 102
Table 8 Raw moment metric performance measured by the utility value................ 163
Table 9 Execution time of direct vs. filtered shot matching..................................... 168
Table 10 Recall and precision of repeated shot detection without filtering 170
Table 11 Recall and precision of repeated shot detection with filtering................... 171
Table 12 Recall and precision of the completely repeated shot detection with filtering

... 172
Table 13 Experimental queries... 203
Table 14 Sample co-occurrence matrix .. 223

 1

Chapter 1

Introduction

1.1 Motivation

As the advent of print in the fifteenth century offered a widespread access to

information and caused a proliferation of printed material, the invention of the

television set, and later the Internet, initiated an explosion in the amount of video

content available. And if the proverb “a picture is worth a thousand words” is right,

the mass of information contained in this visual material should by far surpass that

available through only textual sources.

In practice, however, the useful amount of information from any source depends on

how easily that information can be accessed and trimmed to the needs of an

individual. Many centuries of experience with text as a medium of conveying

information allowed us to develop relatively effective methods of accessing and

processing textual data. Unfortunately, the currently available techniques of

accessing and processing video data are largely inadequate to the needs of its

potential users. Hence, video material remains a valuable but grossly untapped

resource.

 2

This state of the matters is especially pronounced in the realm of news. Multiple

television news channels, as well as various Internet news sources, broadcast

continuous up-to-the-minute information from around the globe. Theoretically then,

virtually anyone could have instantaneous access to the latest news at almost any

time. In practice, this would require constant monitoring of all available news

sources, which is humanly impossible. Moreover, continuous viewing of news

sources would prove very time-inefficient, as a vast majority of information they

contain is of little or no interest to the user and the ratio of truly new information in

the news is fairly small.

Therefore, it is needed to develop methods of effective access to video news. These

techniques should allow the human user to specify the scope of interest, and report to

him only the news related to that interest. They should also eliminate all redundant

material, and present only the actual new information. A system with such capability

could find application not only in personal use, but also in areas such as national

security, or automatic archive and library creation.

In this dissertation, we focus on the domain of television news broadcasts. As stated

above, television news stories have a very repetitive character. Breaking news occurs

only so often, yet news channels broadcast continuously. The rest of the regular

programming has to be filled with information that has been reported earlier in

previously recorded video footage. Furthermore, even when reporting on new story

developments, the old footage is re-broadcast to provide context.

Hence, the continuous stream of video news broadcast contains a substantial amount

of repeated material. Frequently however, repeated portions are not duplicated in

their entirety. Rather, an event that was described at length in the morning news may

be only briefly mentioned in the afternoon edition. Thus, the accompanying video

material must be truncated. It is also conceivable that a video sequence will be

extended in subsequent programs, for instance, an event described in headline news

may be examined in detail later. Therefore, when searching for repeated video

 3

material, one must account for such changes in length and composition of the relevant

portions.

It is also important to note that, although the video footage may be repeated, it is

often accompanied by new audio and closed captions. This happens when the same

event is reported live by a different anchor person in a different news program, or

even by the same anchor person using different words. Consequently, while

examining news broadcast for repetitions, one must consider video signal separately

from audio and closed captions.

Whatever the nature and composition of the repeated material, the fact that it is

duplicated indicates that the different portions of the story containing it are most

likely related. In our dissertation, we propose to use repeated video footage as an

indication of the relationship between events reported in the news. We design,

implement, and evaluate an algorithm for story tracking in video news broadcasts

based on detection of repetitions in the video stream.

1.2 Problem Definition and Proposed Solution

In this dissertation, we aim to provide a solution for the problem of effective access to

news video broadcast addressing the following scenario. A person watches the

morning news edition, and with assistance of a computer identifies interesting stories.

The story tracking system independently tracks the development of these stories

throughout the day. In the evening, the user is provided with a summary of the

relevant news.

To accomplish this goal, we must tackle a number of problems and provide solutions

which will become the major components of the story tracking system. First, we

must monitor a live video broadcast and divide it into shots, the basic units of video

production. Second, we need to identify video footage that is reused by the news

station to provide visual clues to the viewers. Third, we must devise methods of

 4

building a story around the repeated footage. And finally, we need to create

techniques of meaningful presentation of the story to the viewer.

In the process of dealing with these challenges, we touch on several areas of the broad

domain of video retrieval. Therefore, before embarking on a detailed description of

our story tracking techniques, we first give a brief overview of the research in the

related fields. More detailed discussion is presented in the corresponding chapters.

1.3 Related work

Temporal Segmentation

The video stream which reaches viewers in the form of a television broadcast is a

composition of video material coming from multiple sources and arranged by the

producer or editor. The most basic components of the broadcast are sequences of

video frames captured from a single camera, called shots. In the production process,

video shots from different cameras recorded at different times, are combined into a

single video sequence by means of shot transitions. Thus, the final product is a

continuous video stream whose original structure is not directly available. The

recovery of this structure by dividing the continuous stream of video frames into the

original shots, is the fundamental step in any kind of processing video content, and is

the subject of temporal video segmentation.

Temporal video segmentation methods aim to detect shot transitions inserted by the

producer, and so detect the boundaries of the original shots comprising the video.

Today, thanks to the advances in computer and video production technology, a

number of editing effects, and hence, shot transitions are available. The majority of

editing effects used can be classified into three basic categories: cuts, fades, and

dissolves, but recently television stations employ an increasing number of more

sophisticated computer-generated effects.

 5

The field of video segmentation is relatively mature and has been researched for well

over ten years. The resulting methods concentrate primarily on detection of the three

basic types of transitions, and generally ignore the computer-generated effects. The

fundamental idea of transition detection results from the assumption that certain

characteristics of video are different during shot transitions than within the shots.

Therefore, transition detection techniques select certain features of video frames and

analyze their properties over time. If a characteristic pattern is recognized, shot

transition is reported.

A variety of image and video sequence features, such as color histogram, edges, or

motion have been used in a number of transition detection methods. Although the

overall performance for simple transitions, such as cuts is excellent, the detection of

gradual transitions, especially dissolves, certainly leaves room for improvement.

Considering that television news stations tend to use more sophisticated transition

effects, we seek to improve on the existing segmentation methods. In Chapter 2 we

present a real-time temporal segmentation algorithm based on color moments as

compact video frame feature. The evaluation experiments demonstrate that our

approach achieves cut and fade detection performance equivalent to other methods

presented in literature, and is superior in detection of dissolves.

Video Retrieval

As indicated earlier, we are interested in detecting repetitions in the live video news

broadcast in order to use this information in our story tracking technique. Though our

goal is to detect exact copies of the same video footage, this task is closely related to

assessing video sequence similarity. Much of the research in the field has focused on

search for conceptually similar material: given, say, an image or video clip of a

sailing boat, any clips of sailing might be regarded as a match. In this work, we are

primarily interested in a different type of similarity, which may be described as

matching of co-derivatives. Thus, two distinct types of video similarity may be

recognized:

 6

1. Semantic similarity. Two video sequences are semantically similar if they

represent or describe the same or similar concept.

2. Co-derivative similarity. Two video clips are co-derivatives if they have been

derived from the same original video sequence.

Semantic similarity has been the focus of considerable research efforts generally

classified as content-based video retrieval. Matching and retrieval of co-derivatives

has been explored in other domains, such as text, but the problem has received little

attention in the realm of multimedia.

The semantic video retrieval is generally shaped by the cognitive gap separating

humans from machines. Conceptual content of video, intuitively recognized by the

humans, is inherently difficult to obtain by computers. As a result, existing semantic

video retrieval systems resort to defining human information need in terms of lower

level machine-accessible features, such as colors, textures, etc. Alternatively, manual

annotations of video may be used, but they do not scale well with the rapid expansion

of available video material.

In certain domains of video retrieval, such as news broadcasts, additional information

regarding the semantic meaning is contained in metadata, such as accompanying

audio or closed captions. With the help of automated speech recognition methods,

the audio signal may be transcribed into a textual form, and as such may be analyzed

using textual information retrieval methods. Since these methods have been

researched for many years, they often provide an attractive alternative to relatively

new techniques of visual information retrieval.

In the last few years, initial efforts have begun to derive semantic concepts from

video by applying certain machine learning techniques. The methods developed have

been shown to work reasonably well in limited contexts, but they remain in their very

early stages, and do not offer viable solutions to more general problems of semantic

video retrieval.

 7

While semantic video retrieval has been researched for a number of years, matching

and retrieval of co-derivative video material is a new field, and so far has received

little attention in the research community. Recently, some work has been done to

identify commercials in television broadcasts. Introductory research into recognizing

co-derivative video sequences from different sources has also been reported.

Detection of co-derivative similarity could find a number of applications, such as

copyright management, video compression, or – as shown in this dissertation – news

story tracking.

In this dissertation, we are interested in detecting repeated video sequences in live

video news broadcasts. This task offers a number of challenges, such as recognition

of similarity in the presence of on-screen captions, detection of repetitions between

very short sequences, as well as identification of only partially matching video clips.

In Chapter 3, we describe our method of repeated video sequence detection, which

addresses these problems. We demonstrate experimentally that our technique

successfully identifies repetitions in a typical television news broadcast.

Story Tracking

The main goal of this dissertation is to design and develop methods of story tracking

in live video news broadcasts. The problem of story tracking is relatively new, and

was first posed in the domain of textual information retrieval as part of the Topic

Detection and Tracking (TDT) initiative in 1997. According to the original authors:

“ TDT is a research program investigating methods for automatically

organizing news stories by the events that they discuss. TDT includes

several evaluation tasks, each of which explores one aspect of that

organization – i.e., splitting a continuous stream of news into stories

that are about a single topic (“ segmentation"), gathering stories into

groups that each discuss a single topic (“ detection"), identifying the

onset of a new topic in the news (“ first story detection"), and

 8

exploiting user feedback to monitor a stream of news for additional

stories on a specified topic (“ tracking”).”

As in any new field of study, the general taxonomy is not fully developed and certain

concepts are not precisely defined. In addition, the different tasks of TDT are very

closely intertwined. As a result, the problem of story tracking addressed in this

dissertation, as defined earlier in this chapter, spans two TDT tasks, i.e. detection and

tracking. We also believe that the phrase “story tracking” is more suitable for our

work than “ topic tracking” , and we provide detailed definitions of our understanding

of the basic concepts of event, story, and topic in the introduction to Chapter 5.

In the years since the inception of TDT, a number of topic detection and tracking

techniques have been proposed. Their performance on textual news sources has been

found to be satisfactory, but leaves room for additional improvement. Topic

detection and tracking does not restrict its attention to only textual news sources, and

its methods can be applied to the transcripts of video news broadcasts obtained from

closed captions or through automated speech recognition. However, these methods

rely entirely on text, and completely ignore the rich layer of visual information

present in the video stream.

In recent years, initial research has been done on incorporating elements of visual

information into organization of video news. Visual features have been used to

improve alignment of textual transcripts of news broadcasts by means of shot

classification. Basic image features of video background have also been used to

identify scene location in a limited database. Overall, however, the visual content of

news broadcasts is vastly underutilized, and has never been exploited for the purposes

of story tracking.

In this dissertation, we demonstrate that it is possible to use only visual content of

news broadcasts in order to effectively track stories over time. In Chapter 4, we

describe the design, implementation and evaluation of a video-based story tracking

system.

 9

1.4 Organization

This dissertation is organized as follows. Chapter 2 presents our temporal video

segmentation method. In this chapter, we first review shot detection techniques

available in literature. Then we discuss improvements introduced in this work, and

evaluate the performance of our method. Finally, we compare our results with those

reported by other researchers, and demonstrate the superiority of our technique.

Chapter 3 is devoted to the problem of repeated sequence detection. This chapter

starts with a brief discussion of the specific challenges involved in detecting

repetitions for purposes of story tracking in video news. Subsequently, we present a

number of video sequence similarity metrics and assess their suitability for detection

of very short and only partially repeated video clips. We then introduce two basic

repeated sequence detection algorithms, and show that they could not be applied to

real-time detection. We follow by presenting a heuristic shot filtering technique,

which greatly reduces the average execution time of repetition detection. At the end

of the chapter we experimentally verify the effectiveness of our approach.

Chapter 4 introduces our story tracking method based on repetitions of video

material. In this chapter, we first define the fundamental concepts of story tracking in

video. We then present our algorithm of story tracking using repeated shot detection,

and demonstrate its effectiveness experimentally. Manual and automatic story

tracking are performed on a typical video news broadcast and their results are

compared. This chapter also discusses potential improvements to story tracking

based on shot classification and introduces two approaches to story presentation.

Finally, Chapter 5 presents the summary of the research contributions discussed in

this dissertation and enumerates suggestions for future research in this area.

 10

Chapter 2

Temporal Segmentation

2.1 Introduction

In the production process of any video news broadcast, the producer or editor

combines and arranges video material coming from multiple sources. The original

video sequences captured by different cameras at different times – some live, some

prerecorded – are blended into a single long sequence of video frames which is

broadcast by a television station. Thus, when the news broadcast reaches its viewers,

its original structure is not obscured by a variety of editing effects. The recovery of

this structure, i.e. the task of dividing the continuous stream of video frames into the

original components, is the fundamental step in any kind of video content processing,

and is the subject of temporal video segmentation, also known as video shot detection

or transition detection. Thus, temporal video segmentation is an important element of

story tracking in video news broadcasts.

In this chapter, we present the problem of temporal video segmentation, and discuss

specific challenges pertaining to story tracking in the domain of video news. We

review certain existing solutions, and propose an effective algorithm of shot detection

 11

in video news broadcasts. First, however, we provide an overview of terminology

used in the field.

The task of temporal video segmentation is to recover the original structure of a video

stream as a composition of shots. A shot is defined as a sequence of successive video

frames taken from one camera. In the production process, individual shots are

combined to form a video sequence using a variety of editing techniques. Any

sequence of frames resulting from video editing is called a shot transition.

Today, thanks to the advances in computer and video production technology, a

number of editing effects and, hence, shot transitions are available. All of them can be

organized into a few basic classes [Lie01a, Ham95] based on 2D image

transformations applied. The following classes may be distinguished:

i. Identity Class: Neither of the two shots involved is modified, and no additional

edit frames are added. Only hard cuts qualify for this class.

ii. Spatial Class: Some spatial transformations are applied to the two shots

involved. Wipes, page turns, slides, and iris effects fall into this category.

iii. Chromatic Class: Some color space transformations are applied to the two shots

involved. These include fade and dissolve effects.

iv. Spatio-Chromatic Class: Some spatial as well as some color space

transformations are applied to the two shots involved. All morphing

effects fall into this category. Note that in practice often all effects in the

spatial class in principle fall into the spatio-chromatic class since some

chromatic transformations are always applied at the boundary between the

pixels of the first and second shot such as anti-aliasing, smoothing or

shading operations.

An alternative shot transition classification scheme presented in [Lie01b] is based on

the spatial and temporal separation of the two shots involved (see Table 1). For

instance, for hard cuts and fades the two sequences involved are temporally and

 12

spatially well-separated. Their detection comes down to identifying that the video

signal is abruptly governed by a new statistical process, as in the case of hard cuts, or

that the video signal has been scaled by some mathematically simple and well-defined

function, as in the case of fades. For wipes, the two video sequences involved in the

transition are spatially well-separated at all times. This is not the case for dissolves.

At any time, the two video sequences are temporally as well as spatially intermingled,

requiring dissolve detection algorithms to deal with a two source problem.

The two involved sequences are

Type of transition spatially separated temporally separated

Hard cut Yes Yes

Fade Yes Yes

Wipe, Door, Slide Yes No

Dissolve No No

Table 1 Transition classification scheme for transition detection

Although several kinds of shot transitions are available, only three basic types-cuts,

fades, and dissolves-constitute a large majority of all transitions seen in real world

video streams. Each of those transition types corresponds to a production process

which can be modeled mathematically. We can consider a video sequence as a three

dimensional intensity function I(x,y,t), which assigns an intensity value to every pixel

in every video frame. During a transition, the intensity function can be viewed as a

superposition of the functions corresponding to the two shots involved: I1(x,y,t),

I2(x,y,t). If we assume that the function arguments are continuous, we can describe

each transition type by the mathematical model of the intensity function during the

transition sequence:

i. Cut is a direct concatenation of two shots not involving any transitional frames,

and so the transition sequence is empty.

ii. Fade involves only one shot and is a sequence of frames I(t,x,y) of duration T

resulting from scaling pixel intensities of the sequence I1(t,x,y) by a

 13

temporally monotone function f(t):

],0[),,,()(),,(1 TtyxtItfyxtI ∈⋅=

iii. Dissolve is a sequence I(t,x,y) of duration T resulting from combining two video

sequences I1(t,x,y) and I2(t,x,y), where the first sequence is fading out

while the second is fading in:

],0[),,,()(),,()(),,(2211 TtyxtItfyxtItfyxtI ∈⋅+⋅=

These models allow us to predict certain characteristics of the intensity function

during shot transitions, and became the foundation of the research in temporal video

segmentation.

An overview of the related work in this area is presented in section 2.2. The

remainder of this chapter is organized as follows. Section 2.3 discusses the

challenges of shot detection in the domain of video news. In section 2.4, we present

the evaluation methodology used to assess the performance of the transition detection

techniques. We propose and evaluate two different transition detection algorithms in

sections 2.5 and 2.6. Section 2.7 contains a summary of our findings and our

conclusions.

2.2 Related Work

The field of video segmentation is relatively mature and has been researched for over

ten years. Numerous algorithms have been created and their performance is

acceptable for general purpose video segmentation. However, no single technique

exists that would provide 100% segmentation accuracy for all types of transitions in

all kinds of video sequences. Presented below is a brief summary of the most

effective segmentation methods with the emphasis on those especially suitable for the

task of story tracking in video.

The fundamental idea of transition detection stems from the assumption that certain

characteristics of video are different during shot transitions than within the shots. In

 14

the previous section, we showed mathematical models of the effects of the three basic

transitions on the pixels in the video frames. These effects are reflected in the global

features of video frames, such as color composition, number of edges, or motion

continuity. Researchers have exploited this fact to create detection methods for the

basic types of transitions. The existing detection techniques use one or more video

frame features and analyze their properties over time. If a pattern typical of one of

the transition types is recognized, then the transition is reported. Since the temporal

feature patterns are quite different for different types of transitions, most of the

detection techniques are tailored to a specific type of transition. The following

sections present an overview of the detection methods.

2.2.1 Cut detection

A hard cut produces a temporal discontinuity in the video stream, which manifests

itself as a radical change in the time series of a video frame feature. Thus cuts may

be discovered by looking for large difference in the frame feature between

consecutive frames. Existing algorithms use this fact to detect hard cuts by

identifying isolated peaks in the feature difference time series.

The most effective algorithms use color histograms [Nag92, Lie99, Gar00, Tru00a],

edge pixels [Zab95, Zab99] and motion [Aku92, Dai95, Lup98, Sha95] as video

frame features. Once the feature is selected, cut detection consists in identifying

feature differences large enough to be considered cuts. This is accomplished by

selecting a discontinuity threshold. A cut is then declared each time the feature

difference exceeds the given threshold.

A common problem with having only one global threshold is that it is impossible in

practice to find one value that fits all kinds of video material [Lie99]. Therefore

different techniques have been used to provide adaptive threshold [Tru00a] that

adjusts to the type of video material currently being processed.

 15

In general, the histogram-based methods prove to be simple, yet very effective. The

more sophisticated edge- or motion-based techniques do not offer significant

performance gains [Lie01a]. The accuracy and performance of various hard cut

detection algorithms has been thoroughly studied and can be found in [Bor96, Dai95,

Gar00].

2.2.2 Fade detection

Fades correspond to a gradual transition from a given shot to a monochrome (usually

black) screen or vice versa. Two effective approaches to detecting this type of

transition are described by Lienhart [Lie01a]. One is based on the observation that

fades show as a gradual and steady decrease/increase in the color variance of video

frames. The other uses the observation that during a fade edges of objects in the

frame tend to become weaker (fade-out) or stronger (fade-in). The former was

introduced independently by Lienhart [Lie99] and Alattar [Ala97], and later

combined and extended by Truong at al. [Tru00a]. The latter is presented in [Zab95,

Zab99]. Their comparison has been performed and its results reported in [Lie99,

Lup98]. Both of these studies show that the edge-based method did not perform as

well as the color variance approach. It has also been demonstrated that fade detection

using the color variance method yields very high accuracy.

2.2.3 Dissolve detection

The problem of dissolve detection is by far the most challenging in the domain of

video segmentation due to the lack of either spatial or temporal separation of the two

shots involved. The issue is further complicated by motion in the shots being

combined. The effects of motion and dissolve on several characteristics of video

frames are virtually indistinguishable.

Lienhart [Lie01a] presents a number of dissolve detection techniques. The first group

of techniques attempts to recognize dissolves by examining temporal change of pixel

colors. These methods rely on the observation that during a dissolve with little or no

 16

motion most of the pixels change approximately linearly over time [Ham95].

Unfortunately, this approach is very sensitive to motion, and in the presence of it

behaves poorly.

The second group uses changes in the time series of video frame color variance.

Alattar [Ala93] noticed that the color variance curve during an ideal dissolve has a

parabolic shape. This observation has been further exploited in [Fer99, Tru00a,

Tru00b] and proved to be reasonably effective.

Lienhart also reports two edge-based methods introduced and examined in [Zab95,

Zab99, Lie99]. He states, however, that these techniques produce an unacceptably

high false alarm rate.

Finally, a multi-resolution pattern recognition approach was introduced in [Lie01b].

Lienhart uses a neural network method, which is reported to be very effective on a

wide range of dissolves. It is shown to be very effective on even difficult and unusual

dissolve sets. However, this method is computationally intensive and requires

extensive training which is prohibitive in the processing of continuous, live video

broadcasts.

2.2.4 Compressed domain methods

With recent popularization of digital video sources (DVD, digital cable, etc.), some

researchers proposed methods of shot transition detection in the compressed (MPEG)

domain. In comparison to detection in uncompressed domain, segmentation of

MPEG video streams has the advantage of motion estimation already encoded in the

stream. Performing such estimation for purposes of segmentation of a live video

stream is currently too computationally expensive.

An evaluation of currently available MPEG segmentation techniques can be found in

[Kop98, Kas98]. In this work we elect not to consider compressed domain

segmentation methods. This choice offers freedom from the intricacies of various

 17

video compression formats, as well as independence of the encoding quality offered

by different encoders.

2.3 Temporal Segmentation for Video News

Broadcasts

Video news broadcasts differ considerably from other types of video. They typically

contain a limited number of shot types, such as anchor person, studio, or report from

the field. Often the core of the news content is communicated verbally. Therefore,

the stations strive to make the broadcast more visually appealing, by introducing

sophisticated effects, such as moving or morphing borders, computerized transitions,

picture-in-picture effects with icons corresponding to currently discussed events, as

well as multiple camera shots in one frame. In addition, they frequently display a

caption bar at the bottom of the screen to provide textual cues as to what is being

discussed, as well as brief summaries. These specialized effects make transition

detection a difficult task. Although transitions between live coverage (studio, anchors,

etc.) are usually relatively simple (i.e. cuts), this is not the case for prerecorded

material. Such footage is combined with the rest of the broadcast primarily by means

of dissolves. Since detection of repeated video footage is the primary focus of this

work as the foundation for story tracking, accurate dissolve detection is very

important to us. The importance of accurate transition detection is emphasized by the

fact that repeated news clips are often short and constitute only a small portion of the

overall video. In addition, the clips of interest tend to contain considerable motion, as

they are often filmed by hand at an off-site location.

Transition detection is further complicated by on-screen captions and the live

broadcast indicator. Since these elements tend to be displayed in bright colors and

sharp contrast in order to stand out from the rest of the screen content, they alter

significantly the color composition of video frames. Additionally, the content of the

bottom caption changes frequently during shots, causing abrupt changes in color

 18

composition. Similarly, the live footage indicator often appears or disappears in the

middle of gradual transitions, such as when the video transitions from an anchor

person to some prerecorded footage. These effects tend to obscure changes in video

frames when an actual transition occurs, and therefore make the temporal

segmentation task more difficult.

Modern news video broadcasts also abound in computer generated transition effects,

aimed at making the visual content more appealing. Such effects come in a large

variety of flavors, and there is no good general method of consistently detecting them

all. Fortunately this does not affect our research significantly, as these transitions

occur mainly in promos and commercials, not in the actual news footage. This allows

us to largely ignore them in this work.

All of the above discussed aspects of video news make the task of temporal

segmentation in this domain challenging. Therefore, in our research on story tracking

we needed to create transition detection methods capable of working effectively in

video news. Since transition detection is only the first step in the story tracking

process, which needs to be performed on a live news broadcast, it is important that

our techniques be very fast.

As described earlier (see section 2.1), temporal segmentation relies primarily on

choosing a feature or set of features of video frames and analyzing their behavior over

time in order to detect patterns characteristic of the three main types of transitions. In

this work, we chose the three primary color moments (mean, standard deviation and

skew) as the frame feature. The mean, standard deviation, and skew of a color image

are calculated as follows.

=
xy

cyxtI
N

ctM),,,(
1

),(, (1)

[]−=
xy

ctMcyxtI
N

ctS 22),(),,,(
1

),(, (2)

 19

and

[]−=
xy

ctMcyxtI
N

ctK 33),(),,,(
1

),(. (3)

Color moment frame representation is the basis of two different temporal

segmentation algorithms developed in this work. The first method, the cross-

difference algorithm, relies on moment differences between video frames to detect all

types of transitions. The second technique uses mathematical models of different

transition types. The cross-difference algorithm was developed first and proved to be

effective in cut detection. However, its performance for gradual transitions was

unsatisfying. Therefore, to improve the accuracy of gradual transition detection, we

developed the transition-model approach extending previous work in the field. Both

methods are discussed in detail in sections 2.5 and 2.6, but first we describe the

evaluation methodology.

2.4 Evaluation Methodology

Experimental Data

In order to evaluate performance of our temporal segmentation algorithms we

recorded a one-hour block of typical news broadcast obtained from CNN News. The

video clip was compressed using Windows Media Encoder 9.0 and saved in the

Windows Media Format with video size of 160 x 120 pixels.

The video clip was then manually inspected and annotated with shot transitions. Four

different types of transitions were distinguished: cuts, fades, dissolves, other

transitions. The first three types follow their respective definitions presented earlier,

and the last category is comprised of all transitions that do not fit any of the previous

types. For every transition the start and end frames were recorded, where the start and

end frames are defined as the first and last video frame for which the effects of the

 20

transition are discernable by the human eye. In the case of cuts, the frame before the

cut was taken as the start frame, and the frame after, as the end frame.

The video clip consisted of several shots of news content, such as studio shots,

outdoors shots, anchor person shots, as well as several commercials and promotional

clips. The clip contained a total of 971 transitions, of which 618 were cuts, 84 were

fades, 189 dissolves, and 70 were other transitions. Clearly the sharp cut is the

dominant type of transition used, but there is a surprisingly high number of dissolves.

In a few cases of commercials and promos the video material was entirely computer

generated, and therefore could not be objectively divided into shots and transitions.

We decided to exclude this part altogether, because segmentation results from this

material would be highly subjective.

Finally, in order to reduce the impact of on-screen captions and the live footage

indicator, we analyzed the video source to determine their location and size across the

entire clip. We determined that the bottom caption – if present – occupies, at most,

the bottom 25% of the screen. We also found that the live indicator always appears in

the top left corner of the screen, and is limited to at most 10% of the screen size.

Given this information, we chose to exclude these areas of the screen from frame

feature calculation entirely, regardless of whether a given frame contained an on-

screen caption or live indicator.

Evaluation Methodology

Automated transition detection was performed on the same one-hour segment of

video broadcast. Results of the automated detection were compared to those of

manual segmentation in order to find matching pairs. A pair of transitions could be

considered matching if they are of the same type and their start and end frames are the

same. Such a definition, however, is often too strict, as automatically detected

transitions, especially gradual (i.e. fades, dissolves, and other) may differ in length

from the manually annotated. Such a difference remains without significant impact on

the quality of temporal segmentation. Therefore, we adopted a modified definition of

 21

matching transitions. We say that two transitions match if they are of the same type

and if they overlap.

Matching transitions are found by searching for a manual transition (mt) of matching

type for every automatically detected transition (at). If at overlaps more than one mt,

then we choose the manual transition with the same type, and report a match. If the

transition types do not match, we pick the first manual transition which overlaps, and

declare a mismatch. Finally, if no mt overlaps the current at, we declare a false

alarm. Once this process is completed, all remaining manual transitions that have not

been matched are reported as missed.

We then evaluate the transition detection performance in terms of the standard recall

and precision measures defined as follows:

%100⋅
+

==
x
miss

x
correct

x
correctx

NN

N
Rrecall (4)

%100⋅
+

==
x
false

x
correct

x
correctx

NN

N
Pprecision , (5)

where

{ }∅≠∩∈∃∈=ΘΘ= x
j

x
i

x
m

x
a

x
i

x
correct SSandkjkiS where,N ,...,1{|},...,1{, (6)

{ }∅=∩∈∀∈=ΘΘ= x
j

x
i

x
m

x
a

x
i

x
miss SSkjkiS where,N },...,1{|},...,1{, (7)

��
���

��
�� �

∅=∩∈∀

∅=Φ∩∈
=ΘΘ=

x
j

x
i

x
m

x
i

x
a

x
ix

false
SSkjand

SkiS
 where,N

},...,1{

|},...,1{,
 (8)

In addition to these standard performance measures, we introduce a utility function,

which aggregates recall and precision into a single performance estimator. The utility

function is a weighted sum of recall and precision, and controls the desired tradeoff

between their values, as presented in (9).

 22

precisionrecall utility ⋅−+⋅=)1(αα (9)

This aggregated value, which is often referred to as f-measure in the information

retrieval literature, allows us to objectively determine what set of parameters gives

the best performance.

2.5 Moment cross-difference algor ithm

Overview

In view of our initial assumptions about video transitions in news broadcasts, we first

developed a transition detection algorithm for all types of transitions based on the

following observations. Generally, two frames within one clip, especially in close

proximity to each other, are very similar in appearance. Two frames from two

different adjacent clips are considerably different.

We can also assume that different frames have different sets of moments, and similar

frames have similar sets of moments. Although this assumption does not hold true in

all cases, it is true for an overwhelming majority of practical situations. Therefore, in

a simple approach we compare color moments of every two consecutive frames and

declare a transition if they differ sufficiently. We could select a difference threshold,

compute the difference between the corresponding sets of moments, and declare a

transition if the difference exceeds the threshold. Depending on the two clips in

question, the difference may be very large or fairly small, which makes it difficult to

choose a single difference threshold for an entire video broadcast.

This method could work for cuts, but would be inadequate for gradual transition

detection. By the very definition of gradual transitions, consecutive frames during the

transition change gradually. Hence, the differences between them are slight, and are

only apparent for the frames before and after the transition. In order to identify such

transitions, we could compare frames a certain distance away from each other.

 23

However, if the shots themselves contain motion or other rapid changes, then frames

sufficiently distant from each other will exhibit substantial differences in moments,

and therefore will trigger transition detection. This would lead to a high rate of false

alarms.

To account for this, but still recognize gradual transitions, we created a detection

algorithm which attempts to compensate for the changes in color moments due to

motion in shots. The following section describes the algorithm.

Algorithm

We rely again on the fundamental assumption that the frames of the shot before a

transition are similar between themselves, as are the frames of the shot after the

transition. In the presence of motion in the shots, the similarities are somewhat

diminished, and the frames taken from the same shot may be different. Considering

this, we attempt to find pairs of consecutive frames which differ substantially from

each other. To achieve this, we define the concept of cross-difference as the average

moment difference of every pair of frames within a certain window spanning the

current frame less the average moment difference of every pair of frames to the left of

the current frame and to the right of the current frame.

j and i frames between difference moment color absoluted

otherwise

fj and fi if
m

where

dmdifferencecross

ij

ij

wf

fiwfi

wf

ij
ijij

=

����
−

><
=

=
+

≠−=

+

=

1

1

,

 (10)

Thus, if little motion is present, and the frames to the left (right) of the current frame

are very similar, but the frame pairs from the left and right are considerably different,

the value of cross-difference is high. However, if motion causes frames to differ

 24

significantly on either side of the current frame, the value of cross-difference will be

lowered accordingly.

In order to detect transitions, we compute a cross-difference for every frame in video,

using a window of certain size 2w + 1. If so computed cross-difference is maximal

within the window and exceeds a predefined threshold (t), then we declare a

transition. This algorithm is presented in pseudo code in Figure 1.

����������	�
������
�������������������

Function CrossDifference(frame)
 crossDiff = 0.0;
 ForEach pair of frames f1 and f2 in [frame – wndwSize, frame + wndwSize]
 diff = AbsMomentDiff(f1, f2);
 If (f1 <= frame And f2 <= frame) Or (f1 >= frame And f2 >= frame)
 crossDiff = crossDiff - diff;
 Else
 crossDiff = crossDiff + diff;
 EndIf
 EndFor
 return crossDiff / numberOfPairs;
EndFunction

Function CalculateCrossDifferences
 ForEach frame in VideoClip
 frameDiff[frame] = CrossDifference(frame);
 EndFor
EndFunction

Function DetectGenericTransitions
 ForEach frame in VideoClip
 If frameDiff[frame] is maximum in [frame – srchWndwSize, frame + srchWndwSize]
 If frameDiff[frame] > MinCrossDiffThreshold
 genericTransitions[frame] = True;
 Else
 genericTransitions[frame] = False;
 EndIf
 EndIf
 EndFor
EndFunction

Figure 1 Gener ic Transition Detection Algor ithm

Experimental Results

We first evaluate the overall performance of the algorithm irrespective of the types of

transitions. In this case, any automatically detected generic transition can match any

 25

type of the manually detected transitions. Recall is therefore defined as the ratio of

the number all matching generic transitions to the number of all manually detected

transitions, and precision – as the ratio of the number of matching generic transitions

to the number of all automatically reported transitions.

%100⋅
+

==
generic
miss

generic
correct

generic
correctgeneric

NN

N
Rrecall (11)

%100⋅
+

==
generic
false

generic
correct

generic
correctgeneric

NN

N
Pprecision (12)

Although the algorithm is controlled by two parameters, i.e. window size (w) and

cross-difference threshold (t), its performance is practically independent of the first

parameter. This is illustrated in Figure 2, which shows the recall and precision as a

function of the window size. Clearly, the utility function remains essentially flat with

increasing window size. In view of this fact, we chose w = 5 for further experiments.

Consequently, performance of the algorithm depends only on the cross-difference

threshold. The value of this parameter is used globally for the entire video clip. A

graph of recall and precision as a function of the cross-difference threshold is

presented in Figure 3. A typical recall vs. precision tradeoff is clearly visible. As the

threshold increases, so does precision at the expense of recall. For the extreme value

of the threshold (10.0) the algorithm achieves over 95% precision, but recall drops to

a mere 35%. Conversely, for a threshold equal to 0.0, recall approaches 95%, but

precision decreases to almost 10%.

The algorithm never achieves 100% recall due to the requirement that the cross-

difference at a given frame was maximal within a certain search window. Thus, if

multiple transitions occur in quick succession, such that the distance between them is

less than the size of the search window, only one of them – the one with maximal

cross-difference – will be reported.

 26

Overall: Recall and Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10

Window Size

Recall

Precision

Utility

Figure 2 Recall and precision of gener ic transition detection as a function of the window size

Overall: Recall and Precision

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 1 2 3 4 5 6 7 8 9 10

Cross-Difference Threshold

Recall

Precision

Utility

Figure 3 Recall and precision of gener ic transition detection as a function of the cross-difference

threshold

In order to learn more about the performance of the algorithm for different types of

transitions we conducted another experiment in which we reported detection results

 27

for cuts, fades, and dissolves separately. These results will serve as a baseline

performance for evaluation of other detection methods.

Since the manually detected transitions have been annotated as cuts, fades, and

dissolves, we can determine cut (or fade, or dissolve) recall as the ratio of the number

all automatic transitions matched to manually annotated cuts (or fades, or dissolves)

to the number of all manually annotated cuts (or fades, or dissolves).

utscallofnumber

cutsdetectedofnumber
Rrecall cut

cut == (13)

fadesallofnumber

fadesdetectedofnumber
Rrecall fade

fade == (14)

dissolvesallofnumber

dissolvesdetectedofnumber
Rrecall dissolve

dissolve == (15)

Precision, however, cannot be directly evaluated, as the algorithm does not

differentiate between types of transitions, and hence it is impossible to determine how

many cuts (or fades, or dissolves) have been falsely reported. In order to present some

measure of precision we resorted to estimation. We took the total number of false

alarms reported by the algorithm and divided it among the different transition types in

proportion to their share in the total number of transitions. We therefore assume that

the distribution of the different types of false alarms is the same as the distribution of

the types of transitions in the clip.

 28

Cut Detection: Recall and Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Cross-Difference Threshold

Recall

Precision

Utility

Figure 4 Recall and precision of the gener ic transition detection as a function of cross-difference

threshold for cuts

Fade Detection: Recall and Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Cross-Difference Threshold

Recall

Precision

Utility

Figure 5 Recall and precision of the gener ic transition detection as a function of cross-difference

threshold for fades

 29

Dissolve Detection: Recall and Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Cross-Difference Threshold

Recall

Precision

Utility

Figure 6 Recall and precision of the gener ic transition detection as a function of cross-difference

threshold for dissolves

The graphs above show the algorithm’s recall and precision as functions of the cross-

difference threshold. Again, the typical trade-off between these two performance

measures is apparent.

Since cuts are by far the most frequent type of transitions in the video material used,

the detection performance for this type follows the overall trend. As shown on the

graphs above (Figure 4, Figure 5, and Figure 6), a reasonably high recall and

precision of around 80% can be achieved with cross-difference threshold between 3.0

and 4.0. As the threshold increases past this point, so does precision at the expense of

the drop in recall. The utility function indicates that any threshold value between 3.0

and 4.0 yields the same overall performance.

The algorithm’s performance for fades and dissolves follows the same pattern. The

highest values of the combined utility are reached for threshold between 3.0 and 4.0.

The algorithm detects fades with over 80% recall and precision, but performs worse

in dissolve detection, achieving below 80% recall and precision. In addition, the

precision curve of dissolve detection levels off just above 80%, and further increasing

 30

the cross-difference threshold does not improve precision. This demonstrates that the

cross-difference is not a sufficient dissolve indicator.

Analysis

In this section, we analyze the results of the experiments performed, to obtain

additional insight into the strengths and weaknesses of the cross-difference algorithm.

The algorithm performs well detecting cuts in the absence of significant motion. This

situation is demonstrated in Figure 7. As shown on the graph of color mean (Figure

8), a clear discontinuity is present when the cut occurs. The same discontinuity

manifests itself as a narrow peak in cross-difference around the cut frame (Figure 9).

Figure 7 Simple cut with little motion

0

20

40

60

80

100

120

26
06

26
09

26
12

26
15

26
18

26
21

26
24

26
27

26
30

26
33

26
36

26
39

26
42

26
45

26
48

26
51

26
54

26
57

26
60

26
63

26
66

26
69

26
72

26
75

26
78

26
81

26
84

26
87

26
90

26
93

26
96

Red

Green

Blue

Figure 8 Mean curve for a simple cut with little motion

 31

0

2

4

6

8

10

12

14

16

18

20

26
06

26
09

26
12

26
15

26
18

26
21

26
24

26
27

26
30

26
33

26
36

26
39

26
42

26
45

26
48

26
51

26
54

26
57

26
60

26
63

26
66

26
69

26
72

26
75

26
78

26
81

26
84

26
87

26
90

26
93

26
96

Cross-Difference

Figure 9 Cross-difference curve for a simple cut with little motion

Gradual transitions, especially dissolves prove more challenging. As shown in Figure

10 through Figure 15, the peak in cross-difference is not as clearly defined for such

transitions, and generally tends to be smoother and more spread out. This is the result

of the gradual nature of the transitions, which means that for any frame during the

transition the differences computed between pairs of frames to the left (right) of the

current frame are not negligible, and may be close in magnitude to the differences

computed across the current frame. Hence, the cross-difference even at the highest

point of the peak may not reach the predetermined threshold, which leads to a missed

transition.

It will be shown later, that the same transition becomes very apparent when color

moments are analyzed with respect to the mathematical model of gradual transitions.

Figure 10 Example of a cor rectly detected dissolve

 32

0

20

40

60

80

100

120

19
17

8

19
18

1

19
18

4

19
18

7

19
19

0

19
19

3

19
19

6

19
19

9

19
20

2

19
20

5

19
20

8

19
21

1

19
21

4

19
21

7

19
22

0

19
22

3

19
22

6

19
22

9

19
23

2

19
23

5

19
23

8

19
24

1

19
24

4

19
24

7

19
25

0

19
25

3

19
25

6

19
25

9

19
26

2

19
26

5

19
26

8

Red

Green

Blue

Figure 11 Mean curves for a cor rectly detected dissolve

0

2

4

6

8

10

12

14

16

18

20

19
17

8

19
18

1

19
18

4

19
18

7

19
19

0

19
19

3

19
19

6

19
19

9

19
20

2

19
20

5

19
20

8

19
21

1

19
21

4

19
21

7

19
22

0

19
22

3

19
22

6

19
22

9

19
23

2

19
23

5

19
23

8

19
24

1

19
24

4

19
24

7

19
25

0

19
25

3

19
25

6

19
25

9

19
26

2

19
26

5

19
26

8

Cross-Difference

Figure 12 Cross-difference curve for a cor rectly detected dissolve

Figure 13 Example of a missed dissolve

 33

0

10

20

30

40

50

60

70

80

90

45
69

4

45
69

7

45
70

0

45
70

3

45
70

6

45
70

9

45
71

2

45
71

5

45
71

8

45
72

1

45
72

4

45
72

7

45
73

0

45
73

3

45
73

6

45
73

9

45
74

2

45
74

5

45
74

8

45
75

1

45
75

4

45
75

7

45
76

0

45
76

3

45
76

6

45
76

9

45
77

2

45
77

5

45
77

8

45
78

1

45
78

4

Red

Green

Blue

Figure 14 Mean curves for a sample missed dissolve

0

2

4

6

8

10

12

14

16

18

20

45
69

4

45
69

7

45
70

0

45
70

3

45
70

6

45
70

9

45
71

2

45
71

5

45
71

8

45
72

1

45
72

4

45
72

7

45
73

0

45
73

3

45
73

6

45
73

9

45
74

2

45
74

5

45
74

8

45
75

1

45
75

4

45
75

7

45
76

0

45
76

3

45
76

6

45
76

9

45
77

2

45
77

5

45
77

8

45
78

1

45
78

4

Cross-Difference

Figure 15 Small peak in cross-difference for a sample missed dissolve

Another problem the algorithm faces is manifested in shots containing significant

motion, caused either by large moving objects, or by the motion of the camera, such

as when the camera operator follows a walking person, as shown in Figure 16.

During such sequences, color moment differences between consecutive frames may

 34

be considerable, and the difference between frames a certain distance apart tends to

be quite large. This produces peaks in the cross-difference curve similar to those

resulting from gradual transitions (see Figure 18). If the peak exceeds the

predetermined threshold, a false transition will be reported.

Figure 16 Example of motion sequence which tr iggers a false transition repor t

0

20

40

60

80

100

120

140

21
27

21
30

21
33

21
36

21
39

21
42

21
45

21
48

21
51

21
54

21
57

21
60

21
63

21
66

21
69

21
72

21
75

21
78

21
81

21
84

21
87

21
90

21
93

21
96

21
99

22
02

22
05

22
08

22
11

22
14

22
17

Red

Green

Blue

Figure 17 Mean curves for a sample motion sequence

 35

0

2

4

6

8

10

12

14

16

18

20

21
27

21
30

21
33

21
36

21
39

21
42

21
45

21
48

21
51

21
54

21
57

21
60

21
63

21
66

21
69

21
72

21
75

21
78

21
81

21
84

21
87

21
90

21
93

21
96

21
99

22
02

22
05

22
08

22
11

22
14

22
17

Cross-Difference

Figure 18 Cross-difference curve of a sample motion sequence

Finally, the algorithm requires that the cross-difference be maximal within the

window in order to detect a transition. It follows then that if two or more transitions

occur within the size of the window, at most one of them will be detected. Figure 21

presents an example, in which a fade directly following a cut is dominated by the

latter in term of cross-difference, and therefore is not detected by the algorithm.

Figure 19 Example of a fade missed due to the proximity of a cut

 36

0

50

100

150

200

250

21
15

6

21
15

9

21
16

2

21
16

5

21
16

8

21
17

1

21
17

4

21
17

7

21
18

0

21
18

3

21
18

6

21
18

9

21
19

2

21
19

5

21
19

8

21
20

1

21
20

4

21
20

7

21
21

0

21
21

3

21
21

6

21
21

9

21
22

2

21
22

5

21
22

8

21
23

1

21
23

4

21
23

7

21
24

0

21
24

3

21
24

6

Red

Green

Blue

Figure 20 Mean curve for a sample missed fade

0

2

4

6

8

10

12

14

16

18

20

21
15

6

21
15

9

21
16

2

21
16

5

21
16

8

21
17

1

21
17

4

21
17

7

21
18

0

21
18

3

21
18

6

21
18

9

21
19

2

21
19

5

21
19

8

21
20

1

21
20

4

21
20

7

21
21

0

21
21

3

21
21

6

21
21

9

21
22

2

21
22

5

21
22

8

21
23

1

21
23

4

21
23

7

21
24

0

21
24

3

21
24

6

Cross-Difference

Figure 21 Cross-difference curve for a sample missed fade

Conclusions

Despite its simplicity the cross-difference algorithm performs reasonably well for all

of the basic transition types, achieving around 80% recall and precision. On the other

 37

hand, it suffers from two major shortcomings. First, its requirement that the cross-

difference of the transition frame be maximal within the window of 2w+1 frames

forces it to reject transitions which occur less than w frames apart. Although this is

not a very frequent occurrence, it does deteriorate performance.

The second problem involves the method’s inability to distinguish well between

gradual transitions and effects of motion. No setting of the cross-difference threshold

provides a good separation between those two cases. Consequently, for any setting of

this single parameter the algorithm either reports a large number of false positives

triggered by motion, or misses a large number of gradual transitions.

Finally, the cross-difference method does not provide any way to determine precise

boundaries of gradual transitions. Rather, it determines the transition on a single

frame with maximal value of cross-difference. Since this frame is not guaranteed to

fall in the center of the gradual transition most of the transition frames may end up

included in the shot directly preceding or succeeding the transition. Such inclusion

may have an adverse effect on repeated footage detection (see Chapter 3).

As discussed in section 2.3, precise temporal segmentation is important for purposes

of story tracking in video. Considering that our method of story tracking relies on

detecting repeated video material, which is often surrounded and separated by

dissolves, we should try to create better methods of temporal segmentation, especially

focusing on improving dissolve detection. To this end, we decided to explore

transition detection methods based on mathematical models of transitions in video

(see section 2.1).

2.6 Transition model algor ithm

This temporal segmentation method aims to detect different types of transitions

separately. For each transition type a mathematical model representing the transition

is chosen (see section 2.1) and some of its properties are determined. The detection

 38

method for a given transition type consists in identifying characteristic patterns in the

time-series of video frame features corresponding to the model of the transition type.

Results of the individual transition type detection are then combined to form the

overall temporal segmentation of the video stream.

Three main types of transitions are detected: cuts, fades and dissolves. All other

transitions, which result from applying some computer generated effects to the video

stream, are typically ignored. This is due to a wide variety of such effects used in

modern video broadcasts, which make it virtually impossible for any single method to

identify them consistently. The following sections describe individual transition type

detection methods we developed, and discuss their performance on the experimental

data set.

2.6.1 Cut detection

Overview

Cuts are the simplest type of shot transition and occur when the last frame of one shot

is followed immediately by the first frame of the next shot. Thus, a cut does not

consist of any frames, but rather occurs between frames. Assuming (as we have

before) that frames belonging to the same shot tend to be similar to one another, and

frames taken from different shots are generally dissimilar, we can infer that the frame

feature (here color moments) of the last frame of the shot before a cut, and the frame

feature of the first frame of the following shot will also be dissimilar. Therefore, in

general, cuts manifest themselves as discontinuities in the feature representation of

video frames, and can be detected by computing the difference in frame feature(s)

(here: color moments) of every pair of consecutive frames, and declaring a cut when

this value exceeds a certain threshold. This is well illustrated in Figure 22 through

Figure 24.

 39

Figure 22 Example of a simple cut with little motion

0

20

40

60

80

100

120

26
06

26
09

26
12

26
15

26
18

26
21

26
24

26
27

26
30

26
33

26
36

26
39

26
42

26
45

26
48

26
51

26
54

26
57

26
60

26
63

26
66

26
69

26
72

26
75

26
78

26
81

26
84

26
87

26
90

26
93

26
96

Red

Green

Blue

Figure 23 Mean curves for a sample cut with little motion

0

2

4

6

8

10

12

14

16

18

20

26
06

26
09

26
12

26
15

26
18

26
21

26
24

26
27

26
30

26
33

26
36

26
39

26
42

26
45

26
48

26
51

26
54

26
57

26
60

26
63

26
66

26
69

26
72

26
75

26
78

26
81

26
84

26
87

26
90

26
93

26
96

Figure 24 Frame moment difference for a simple cut with little motion

 40

Clearly the moment difference at frame 2665 stands out from the surrounding frames.

In this case, a simple threshold of 5.0 would isolate the cut frame from all other

frames. Such a static threshold would work well across the entire video broadcast, if

all shots in the broadcast were of similar nature. In practice, news videos contain a

variety of shots ranging from often fast changing and intense-motion commercials to

relatively static studio and anchor person shots. In some of them cuts are marked by

only a very small change in color moments, such as in Figure 25 through Figure 27

below at frame 46034. In others, motion contained in the video footage causes color

moments to change significantly even within a single shot. Consequently, one global

threshold is not flexible enough to account for all different types of shots, and a

method based on an adaptive threshold is needed.

Figure 25 Example of a cut with a small change in color moments

0

20

40

60

80

100

120

46
00

0

46
00

3

46
00

6

46
00

9

46
01

2

46
01

5

46
01

8

46
02

1

46
02

4

46
02

7

46
03

0

46
03

3

46
03

6

46
03

9

46
04

2

46
04

5

46
04

8

46
05

1

46
05

4

46
05

7

46
06

0

46
06

3

46
06

6

46
06

9

46
07

2

46
07

5

46
07

8

46
08

1

46
08

4

46
08

7

46
09

0

46
09

3

46
09

6

46
09

9

Red

Green

Blue

Figure 26 Mean curves for a sample cut with a small change in color moments

 41

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

46
00

0

46
00

3

46
00

6

46
00

9

46
01

2

46
01

5

46
01

8

46
02

1

46
02

4

46
02

7

46
03

0

46
03

3

46
03

6

46
03

9

46
04

2

46
04

5

46
04

8

46
05

1

46
05

4

46
05

7

46
06

0

46
06

3

46
06

6

46
06

9

46
07

2

46
07

5

46
07

8

46
08

1

46
08

4

46
08

7

46
09

0

46
09

3

46
09

6

46
09

9

Figure 27 Frame moment difference for a sample cut with a small change in color moments

Truong et al [Tru00a] propose to detect spikes in frame feature difference using an

adaptive threshold based on an average amount of change within a certain number of

frames from the current frame. In their method, the authors utilize luminance

histogram as the frame feature and calculate histogram differences of every pair of

consecutive frames. They impose a window of 2w + 1 frames around every frame in

video, and for every such window compute the mean histogram difference, excluding

the center frame. A cut is reported if the following two conditions on histogram

difference at the center frame hold:

1. The difference is maximal in the window.

2. The difference exceeds the dynamically adapted threshold, which is obtained

by multiplying the mean histogram difference by a certain coefficient

determined experimentally.

In addition, Truong observes that in the complete absence of motion the mean

histogram difference is very close to zero, thus leading to the second condition being

satisfied by center frames of even very small histogram difference, which do not

represent cuts. In the domain of news, this is a fairly common occurrence during

 42

sequences showing anchor persons. To guard against reporting such frames as cut

frames, Truong et al. introduce a residual histogram difference by adding a small

value to the histogram difference at every frame.

Since the authors report high performance of their method on a variety of video

sources, including news, we decided to start the development of our cut detection

algorithm with their method. Truong’s method is independent of the frame feature

selected, which allowed us to implement and test it using color moments instead of

histograms for frame feature.

The advantage of using an adaptive threshold is apparent in the following graphs.

Figure 28 shows the values of frame feature difference directly, while Figure 29

presents the ratio of the feature difference and the adaptive threshold. In the graphs,

the difference values for cut frames (true positives) are shown as positive bars, while

the values for all other frames (false positives) are depicted as negative bars.

Introducing a threshold of some value into the first figure, we would report a cut

whenever this threshold is exceeded. In the second figure, a cut is declared if the

ratio at the given frame exceeds 1.0. Clearly, the adaptive threshold provides better

separation of cut and non-cut frames. Choosing any constant threshold in the left-

hand side graph would lead to either missing several cuts or reporting a large number

of false positives. On the contrary, only very few false alarms have a cut ratio which

exceeds 1.0. Thus reporting cuts at frames whose ratio exceeds 1.0 should yield high

precision and recall.

 43

Color Moment Differences

-10.0

-9.0

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

20
00

0

20
27

0

20
54

0

20
81

0

21
08

0

21
35

0

21
62

0

21
89

0

22
16

0

22
43

0

22
70

0

22
97

0

23
24

0

23
51

0

23
78

0

24
05

0

24
32

0

24
59

0

24
86

0

25
13

0

25
40

0

25
67

0

25
94

0

26
21

0

26
48

0

26
75

0

27
02

0

27
29

0

27
56

0

27
83

0

28
10

0

28
37

0

28
64

0

28
91

0

29
18

0

29
45

0

29
72

0

29
99

0

Figure 28 Frame moment difference values for true cuts and false positives

Adjusted Color Moment Differences

-10.0

-9.0

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

20
00

0

20
27

0

20
54

0

20
81

0

21
08

0

21
35

0

21
62

0

21
89

0

22
16

0

22
43

0

22
70

0

22
97

0

23
24

0

23
51

0

23
78

0

24
05

0

24
32

0

24
59

0

24
86

0

25
13

0

25
40

0

25
67

0

25
94

0

26
21

0

26
48

0

26
75

0

27
02

0

27
29

0

27
56

0

27
83

0

28
10

0

28
37

0

28
64

0

28
91

0

29
18

0

29
45

0

29
72

0

29
99

0

Figure 29 Frame moment difference values with adaptive threshold for true cuts and false

positives

Truong et al. report very high performance (recall 98.5%, precision 98.5%) of their

algorithm on news video streams [Tru00a]. We ran their algorithm on our test data,

but were unable to reproduce their results. The performance we measured was recall

 44

91.5% and precision 90%. This discrepancy is most likely caused by the difference in

the news source used for experiments. Therefore, in order to provide performance

comparison between Truong’s algorithm and the method developed in our work, we

evaluated both using the data set and methodology presented in section 2.4.

In working with Truong’s algorithm we discovered two shortcomings. First, the

algorithm requires that the moment difference of the current frame were a maximum

within a window of 2w+1 frames. Consequently, the method systematically misses

some cuts, if they occur less than w frames apart. Shots so short occur rarely, except

in commercials. However, sometimes one shot cuts to black for just a couple of

frames and then another cuts back from black. Out of two such cuts, at most one will

be detected by the algorithm.

Second, Truong’s method does not account for changes in feature difference across

the window. We observed that even if color moment differences between

consecutive frames in the window are significant, but do not vary much, a single

frame with somewhat higher difference can be easily identified, and often represents

a cut.

Therefore, we suggest a more statistically grounded approach. We propose that

analyzing statistical properties of color moment differences may yield additional

insight into distinguishing between motion induced changes and cuts. Specifically,

we introduce standard deviation of color moment difference as the measure of

consistency of color moment differences across the window. If the value of standard

deviation is small, we can report cuts on frames with moment difference exceeding

the mean by a smaller amount.

Algorithm

This section describes in detail the cut detection algorithm. The algorithm consists of

three fundamental steps.

 45

1. First, we compute color moment differences between every pair of

consecutive frames in the video clip. We adjust the differences by adding a

small (residual) difference to avoid false alarms in still frame sequences.

2. In the second step, we select a window of 2w + 1 frames around every frame

in the video clip, and compute statistics of the moment differences within the

window. Statistics are represented by the mean and standard deviation

calculated over the frames in the window excluding the center frame.

3. Finally, in the last step we calculate the value of the adaptive threshold for this

window and compute the ratio of the moment difference of the center frame to

the threshold. If the ratio exceeds 1.0 we declare a cut. The adaptive threshold

is calculated as a weighted sum of mean and standard deviation of moment

differences. The weights applied are obtained experimentally.

Figure 30 presents the cut detection algorithm in pseudo code.

� � ��
�������������������

Function CalculateDifferences
 ForEach frame in VideoClip
 frameDiff[frame] = AbsMomentDiff(f1, f2) + residualDiff;
 EndFor
EndFunction

Function CalculateDifferenceStatistics
 ForEach frame in VideoClip
 mean[frame] = Mean(frameDiff[frame–w]:frameDiff[frame–1],
 frameDiff[frame+1]:frameDiff[frame+w]);
 stdDev[frame] = StdDev(frameDiff[frame–w]:frameDiff[frame–1],
 frameDiff[frame+1]:frameDiff[frame+w]);
 EndFor
EndFunction

Function DetectCuts
 CalculateDifferences();
 CalculateDifferenceStatistics();
 ForEach frame in VideoClip
 threshold = mw * mean[frame] + sw * stdDev[frame];
 cuts[frame] = frameDiff[frame] / threshold > 1.0;
 EndFor
EndFunction

Figure 30 Cut detection algor ithm

 46

The algorithm is controlled by four parameters, of which the first two must be

determined a priori, and the remaining ones can be obtained experimentally:

1) window size (w)

2) residual moment difference (d)

3) moment difference mean coefficient (mw)

4) moment difference standard deviation coefficient (sw)

The main advantage of this algorithm is that no requirement is placed on the current

frame to have the maximal moment difference within the window.

Experimental Results

In order to evaluate the cut detection algorithm, we examine its performance over the

experimental data set described in section 2.4 using the same methodology. In

addition, for comparison purposes, we evaluate performance of the Truong’s

algorithm on our experimental data.

Truong’s algorithm is controlled by three parameters: window size (w), residual

difference adjustment (d), and difference ratio threshold (t). The first two should be

determined a priori, and we chose them to be the same as for our cut detection

algorithm in order to make the results comparable. The values used were w = 5 and

d = 1.0.

We measured recall and precision of the algorithm for the value of difference ratio

threshold varying between 0.0 and 5.0. Results of this experiment are presented in

Table 2 and Figure 31. It is apparent from the graph of recall and precision that the

optimal combination of the two according to the utility function chosen is achieved

for threshold 3.0, where both measures are close to 91%.

 47

Threshold Match Mismatch False Alarm Missed Recall Precision Utility

0.0 557 130 8335 29 95.1% 6.3% 50.66%

0.5 557 130 8335 29 95.1% 6.3% 50.66%

1.0 557 130 7448 29 95.1% 7.0% 51.00%

1.5 556 92 1199 30 94.9% 31.7% 63.28%

2.0 552 70 217 34 94.2% 71.8% 82.99%

2.5 545 46 89 41 93.0% 86.0% 89.48%

3.0 536 31 58 50 91.5% 90.2% 90.85%

3.5 516 23 38 70 88.1% 93.1% 90.60%

4.0 486 17 22 100 82.9% 95.7% 89.30%

4.5 461 14 12 125 78.7% 97.5% 88.07%

5.0 434 13 9 152 74.1% 98.0% 86.01%

Table 2 Truong’s cut detection per formance as a function of the difference ratio threshold

Cut Detection: Recall and Precision

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Difference Ratio Threshold

Recall

Precision

Utility

Figure 31 Recall and precision of Truong’s cut detection algor ithm as a function of the difference

ratio threshold

It is important to note that even for threshold of 0.0, the algorithm does not yield

100% recall. This is due to the requirement that the moment difference at a cut frame

be the maximum difference within the window of 2w + 1 frames. Therefore, out of

every two (or more) cuts occurring less than w apart, at most one will be detected.

 48

Since the value of recall at threshold 0.0 is 95.1%, we conclude that 5% of all cuts in

our experimental video clip must occur within w = 5 frames of other cuts. This

number is not negligible, and certainly leaves room for improvement.

The same experiment was performed using our cut detection method, and the results

obtained will be discussed below.

% 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.5 50.39 49.84 49.39 49.26 48.97 47.76 46.26 2.91 0.00 0.00

1.0 51.05 51.99 53.86 59.98 76.12 90.58 84.29 0.00 0.00 0.00

1.5 62.62 71.51 81.91 90.12 92.09 87.80 58.87 0.00 0.00 0.00

2.0 81.18 87.19 90.98 92.20 88.90 78.98 51.45 0.00 0.00 0.00

2.5 88.74 90.99 91.37 89.56 83.97 71.42 0.00 0.00 0.00 0.00

3.0 90.94 91.24 89.88 85.80 78.29 62.97 0.00 0.00 0.00 0.00

3.5 91.01 89.73 86.87 81.90 73.37 58.45 0.00 0.00 0.00 0.00

4.0 89.63 88.01 83.53 78.11 68.52 55.12 0.00 0.00 0.00 0.00

4.5 88.47 85.51 80.48 74.57 63.65 53.07 0.00 0.00 0.00 0.00

5.0 86.42 82.39 78.35 71.84 60.32 51.88 0.00 0.00 0.00 0.00

Table 3 Cut detection per formance as a function of mean and standard deviation coefficients

Table 3 shows the values of the utility function for different combinations of the

weighting coefficients of mean and standard deviation. The values shown in bold face

are maximal in their respective columns. It can be seen that the overall best

performance achieved with mw = 2.0 and sw = 1.5 is better than the best performance

attainable with sw = 0.0 (with mw = 3.5). This demonstrates that introducing standard

deviation into the base of difference ratio improves the algorithm’s performance. In

addition, the comparison of the best value of utility of our algorithm (92.20%) with

that of Truong’s method (90.85%) shows that our algorithm performs better by a

factor of 1.35%.

Figure 32 shows the plot of recall and precision for mean coefficient of 1.5 and

standard deviation coefficient varying between 0.0 and 4.5. Overall with the optimal

choice of all parameters, we were able to achieve recall and precision of 90% and

above.

 49

Cut Detection: Recall and Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Standard Deviation Coefficient

Recall

Precision

Utility

Figure 32 Cut detection per formance as a function of the standard deviation coefficient with

mean coefficient equal 1.5

Analysis of results

As described above, the cut detection algorithm performs very well across the whole

video clip used in the experiments. Below, we will present examples of different

contexts in which cuts appeared in the experimental video, and we will analyze the

behavior of the algorithm.

A large portion of news video broadcasts consists of studio and anchor person shots,

which are usually several seconds in length, and tend to contain little motion or

otherwise change. Therefore, the color moments for these shots remain very stable

and exhibit little variation. When a cut occurs, it manifests itself as a significant jump

in the moment values (see Figure 34). Given very small differences between frames

within the shots around it, the moment difference for the cut frame clearly dominates,

and can be easily detected, as shown in Figure 35.

Figure 33 Example of a cor rectly detected cut with little motion and large change in moments

 50

0

20

40

60

80

100

120

26
00

26
03

26
06

26
09

26
12

26
15

26
18

26
21

26
24

26
27

26
30

26
33

26
36

26
39

26
42

26
45

26
48

26
51

26
54

26
57

26
60

26
63

26
66

26
69

26
72

26
75

26
78

26
81

26
84

26
87

26
90

26
93

26
96

26
99

Red

Green

Blue

Figure 34 Mean curves for the sample cut

0.0

5.0

10.0

15.0

20.0

25.0

30.0

26
00

26
03

26
06

26
09

26
12

26
15

26
18

26
21

26
24

26
27

26
30

26
33

26
36

26
39

26
42

26
45

26
48

26
51

26
54

26
57

26
60

26
63

26
66

26
69

26
72

26
75

26
78

26
81

26
84

26
87

26
90

26
93

26
96

26
99

BaseStdDev

BaseMean

AdjDiff

Figure 35 Adapted moment difference values for the sample cut

Such easy to spot changes in color moments can be accurately detected even by the

trivial global threshold algorithm. The advantage of using adaptive threshold instead

is demonstrated in Figure 40. Here the color moment change accompanying the cut

at frame 46034 is hardly detectible even to the human eye (see Figure 37). Only after

 51

zooming in on details (Figure 38) do we notice the change primarily in the red

channel. But a quick glance at the adjusted moment difference plot (Figure 39), as

well as the difference ratio graph (Figure 40), makes the transition very apparent.

Figure 36 Example of a cor rectly detected cut with a small change in moments

0

20

40

60

80

100

120

46
00

0

46
00

3

46
00

6

46
00

9

46
01

2

46
01

5

46
01

8

46
02

1

46
02

4

46
02

7

46
03

0

46
03

3

46
03

6

46
03

9

46
04

2

46
04

5

46
04

8

46
05

1

46
05

4

46
05

7

46
06

0

46
06

3

46
06

6

46
06

9

46
07

2

46
07

5

46
07

8

46
08

1

46
08

4

46
08

7

46
09

0

46
09

3

46
09

6

46
09

9

Red

Green

Blue

Figure 37 Mean curves for the sample cut

 52

80

82

84

86

88

90

92

94

96

98

100

46
00

0

46
00

3

46
00

6

46
00

9

46
01

2

46
01

5

46
01

8

46
02

1

46
02

4

46
02

7

46
03

0

46
03

3

46
03

6

46
03

9

46
04

2

46
04

5

46
04

8

46
05

1

46
05

4

46
05

7

46
06

0

46
06

3

46
06

6

46
06

9

46
07

2

46
07

5

46
07

8

46
08

1

46
08

4

46
08

7

46
09

0

46
09

3

46
09

6

46
09

9

Red

Green

Blue

Figure 38 Enlarged mean curves for the sample cut

0.0

5.0

10.0

15.0

20.0

25.0

46
00

0

46
00

3

46
00

6

46
00

9

46
01

2

46
01

5

46
01

8

46
02

1

46
02

4

46
02

7

46
03

0

46
03

3

46
03

6

46
03

9

46
04

2

46
04

5

46
04

8

46
05

1

46
05

4

46
05

7

46
06

0

46
06

3

46
06

6

46
06

9

46
07

2

46
07

5

46
07

8

46
08

1

46
08

4

46
08

7

46
09

0

46
09

3

46
09

6

46
09

9

BaseStdDev

BaseMean

AdjDiff

Figure 39 Adapted moment difference values for the sample cut

 53

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

46
00

0

46
00

3

46
00

6

46
00

9

46
01

2

46
01

5

46
01

8

46
02

1

46
02

4

46
02

7

46
03

0

46
03

3

46
03

6

46
03

9

46
04

2

46
04

5

46
04

8

46
05

1

46
05

4

46
05

7

46
06

0

46
06

3

46
06

6

46
06

9

46
07

2

46
07

5

46
07

8

46
08

1

46
08

4

46
08

7

46
09

0

46
09

3

46
09

6

46
09

9

Figure 40 Moment difference ratio values for the sample cut

The cut detection task becomes more complicated in the presence of very short shots,

especially if they contain rapid motion. The following example presents such a

situation (see Figure 41 through Figure 44). The algorithm still performs reasonably

well, detecting cuts at frames 21111, 21120, and 21139. The cut at frame 21106,

however, goes unreported. The change in color moments due to this cut is visibly

dominated by the nearby cut at frame 21111, which induces large mean and standard

deviation.

Such missed cuts do not hinder us in our task of story tracking, as such short shots

occur very rarely in actual news footage, and are present mostly in commercials and

promotional clips.

Figure 41 Example of a sequence of very shor t shots

 54

0

20

40

60

80

100

120

21
09

0

21
09

3

21
09

6

21
09

9

21
10

2

21
10

5

21
10

8

21
11

1

21
11

4

21
11

7

21
12

0

21
12

3

21
12

6

21
12

9

21
13

2

21
13

5

21
13

8

21
14

1

21
14

4

21
14

7

21
15

0

21
15

3

21
15

6

21
15

9

21
16

2

21
16

5

21
16

8

21
17

1

21
17

4

21
17

7

21
18

0

21
18

3

21
18

6

21
18

9

Red

Green

Blue

Figure 42 Mean curves for the sample sequence with shor t shots

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

21
09

0

21
09

3

21
09

6

21
09

9

21
10

2

21
10

5

21
10

8

21
11

1

21
11

4

21
11

7

21
12

0

21
12

3

21
12

6

21
12

9

21
13

2

21
13

5

21
13

8

21
14

1

21
14

4

21
14

7

21
15

0

21
15

3

21
15

6

21
15

9

21
16

2

21
16

5

21
16

8

21
17

1

21
17

4

21
17

7

21
18

0

21
18

3

21
18

6

21
18

9

BaseStdDev

BaseMean

AdjDiff

Figure 43 Adapted moment difference for the sample sequence with shor t shots

 55

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

21
09

0

21
09

3

21
09

6

21
09

9

21
10

2

21
10

5

21
10

8

21
11

1

21
11

4

21
11

7

21
12

0

21
12

3

21
12

6

21
12

9

21
13

2

21
13

5

21
13

8

21
14

1

21
14

4

21
14

7

21
15

0

21
15

3

21
15

6

21
15

9

21
16

2

21
16

5

21
16

8

21
17

1

21
17

4

21
17

7

21
18

0

21
18

3

21
18

6

21
18

9

Figure 44 Moment difference ratio values for the sample sequence with shor t shots

The issue we were more interested in addressing with our approach was that of a shot

ending with a cut to black followed by a shot starting very shortly afterwards with a

cut from black, as presented in Figure 48. Here, both cuts are manifested by large

moment differences, often of similar value (see Figure 46). Truong’s algorithm

systematically misses at least one of the cuts because of the requirement that the cut

frame have the maximum difference value within the window. Our algorithm

performs better in this case, allowing both cuts to be detected (see Figure 48).

Whether both cuts will be detected depends on the values of mean and standard

deviation of moment differences around them. Generally, if these differences are of

similar magnitude, they are both correctly detected.

Figure 45 Example of a sequence with two cuts in close proximity

 56

0

50

100

150

200

250

92
44

5

92
44

8

92
45

1

92
45

4

92
45

7

92
46

0

92
46

3

92
46

6

92
46

9

92
47

2

92
47

5

92
47

8

92
48

1

92
48

4

92
48

7

92
49

0

92
49

3

92
49

6

92
49

9

92
50

2

92
50

5

92
50

8

92
51

1

92
51

4

92
51

7

92
52

0

92
52

3

92
52

6

92
52

9

92
53

2

92
53

5

92
53

8

92
54

1

92
54

4

Red

Green

Blue

Figure 46 Mean curves for the sequence with two cuts in close proximity

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

92
44

5

92
44

8

92
45

1

92
45

4

92
45

7

92
46

0

92
46

3

92
46

6

92
46

9

92
47

2

92
47

5

92
47

8

92
48

1

92
48

4

92
48

7

92
49

0

92
49

3

92
49

6

92
49

9

92
50

2

92
50

5

92
50

8

92
51

1

92
51

4

92
51

7

92
52

0

92
52

3

92
52

6

92
52

9

92
53

2

92
53

5

92
53

8

92
54

1

92
54

4

BaseStdDev

BaseMean

AdjDiff

Figure 47 Adapted moment difference values for the sequence with two cuts in close proximity

 57

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

92
44

5

92
44

8

92
45

1

92
45

4

92
45

7

92
46

0

92
46

3

92
46

6

92
46

9

92
47

2

92
47

5

92
47

8

92
48

1

92
48

4

92
48

7

92
49

0

92
49

3

92
49

6

92
49

9

92
50

2

92
50

5

92
50

8

92
51

1

92
51

4

92
51

7

92
52

0

92
52

3

92
52

6

92
52

9

92
53

2

92
53

5

92
53

8

92
54

1

92
54

4

Figure 48 Moment difference ratios for the sequence with two cuts in close proximity

Our algorithm does not address the issue of cuts in the presence of rapid motion. A

small percentage of cuts were missed due to the impact of motion, especially when

the objects in motion appear close to the camera and obscure a large portion of the

screen. When this happens the frame to frame moment differences are significant

even between frames belonging to the same shot. Consequently, the frame difference

for the cut frame does not considerably exceed differences for the surrounding

frames, and is dominated by the weighted sum of mean and standard deviation. This

is apparent in Figure 52 at frame 21455.

There appears to be nothing in the color moments domain alone that could alleviate

this problem. Fortunately, this issue affects only a very small portion of video news

footage.

Figure 49 Example of a cut in a sequence with rapid motion

 58

0

20

40

60

80

100

120

21
40

0

21
40

3

21
40

6

21
40

9

21
41

2

21
41

5

21
41

8

21
42

1

21
42

4

21
42

7

21
43

0

21
43

3

21
43

6

21
43

9

21
44

2

21
44

5

21
44

8

21
45

1

21
45

4

21
45

7

21
46

0

21
46

3

21
46

6

21
46

9

21
47

2

21
47

5

21
47

8

21
48

1

21
48

4

21
48

7

21
49

0

21
49

3

21
49

6

21
49

9

Red

Green

Blue

Figure 50 Mean curves for the sample sequence with rapid motion

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

21
40

0

21
40

3

21
40

6

21
40

9

21
41

2

21
41

5

21
41

8

21
42

1

21
42

4

21
42

7

21
43

0

21
43

3

21
43

6

21
43

9

21
44

2

21
44

5

21
44

8

21
45

1

21
45

4

21
45

7

21
46

0

21
46

3

21
46

6

21
46

9

21
47

2

21
47

5

21
47

8

21
48

1

21
48

4

21
48

7

21
49

0

21
49

3

21
49

6

21
49

9

BaseStdDev

BaseMean

AdjDiff

Figure 51 Adapted moment differences for the sample sequence with rapid motion

 59

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

21
40

0

21
40

3

21
40

6

21
40

9

21
41

2

21
41

5

21
41

8

21
42

1

21
42

4

21
42

7

21
43

0

21
43

3

21
43

6

21
43

9

21
44

2

21
44

5

21
44

8

21
45

1

21
45

4

21
45

7

21
46

0

21
46

3

21
46

6

21
46

9

21
47

2

21
47

5

21
47

8

21
48

1

21
48

4

21
48

7

21
49

0

21
49

3

21
49

6

21
49

9

Figure 52 Moment difference ratios for the sample sequence with rapid motion

We observed a few occurrences of a curious artifact of video compression, which

causes a single cut to be distributed over two frames (see Figure 53 through Figure

56). If this occurs, the difference values for both frames are high and may exceed the

dynamic threshold. As a result, they may both be reported as cuts. This could be

alleviated by requiring that the cut frame have a locally maximal value of moment

difference, which would allow for only one of the two frames to be declared as cut.

Currently, our transition matching method takes care of this issue. The manually

annotated cuts use the frame before the cut as the start, and the frames after as the

end, of the transition. Hence, if both frames are reported as cuts, they will overlap the

same single manually annotated transition.

Figure 53 Example of a cut distor ted by video compression

 60

0

20

40

60

80

100

120

53
57

5

53
57

8

53
58

1

53
58

4

53
58

7

53
59

0

53
59

3

53
59

6

53
59

9

53
60

2

53
60

5

53
60

8

53
61

1

53
61

4

53
61

7

53
62

0

53
62

3

53
62

6

53
62

9

53
63

2

53
63

5

53
63

8

53
64

1

53
64

4

53
64

7

53
65

0

53
65

3

53
65

6

53
65

9

53
66

2

53
66

5

53
66

8

53
67

1

53
67

4

Red

Green

Blue

Figure 54 Mean curves for a sequence with a cut distor ted by video compression

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

53
57

5

53
57

8

53
58

1

53
58

4

53
58

7

53
59

0

53
59

3

53
59

6

53
59

9

53
60

2

53
60

5

53
60

8

53
61

1

53
61

4

53
61

7

53
62

0

53
62

3

53
62

6

53
62

9

53
63

2

53
63

5

53
63

8

53
64

1

53
64

4

53
64

7

53
65

0

53
65

3

53
65

6

53
65

9

53
66

2

53
66

5

53
66

8

53
67

1

53
67

4

BaseStdDev

BaseMean

AdjDiff

Figure 55 Adapted moment differences for a sequence with a cut distor ted by video compression

 61

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

53
57

5

53
57

8

53
58

1

53
58

4

53
58

7

53
59

0

53
59

3

53
59

6

53
59

9

53
60

2

53
60

5

53
60

8

53
61

1

53
61

4

53
61

7

53
62

0

53
62

3

53
62

6

53
62

9

53
63

2

53
63

5

53
63

8

53
64

1

53
64

4

53
64

7

53
65

0

53
65

3

53
65

6

53
65

9

53
66

2

53
66

5

53
66

8

53
67

1

53
67

4

Figure 56 Moment difference ratios for a sequence with a cut distor ted by video compression

Figure 57 Example of a camera flash interpreted as a cut

0

20

40

60

80

100

120

52
50

52
53

52
56

52
59

52
62

52
65

52
68

52
71

52
74

52
77

52
80

52
83

52
86

52
89

52
92

52
95

52
98

53
01

53
04

53
07

53
10

53
13

53
16

53
19

53
22

53
25

53
28

53
31

53
34

53
37

53
40

53
43

53
46

53
49

Red

Green

Blue

Figure 58 Mean curves for the sequence with a camera flash

 62

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

52
50

52
53

52
56

52
59

52
62

52
65

52
68

52
71

52
74

52
77

52
80

52
83

52
86

52
89

52
92

52
95

52
98

53
01

53
04

53
07

53
10

53
13

53
16

53
19

53
22

53
25

53
28

53
31

53
34

53
37

53
40

53
43

53
46

53
49

BaseStdDev

BaseMean

AdjDiff

Figure 59 Adapted moment differences for the sample sequence with a camera flash

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

52
50

52
53

52
56

52
59

52
62

52
65

52
68

52
71

52
74

52
77

52
80

52
83

52
86

52
89

52
92

52
95

52
98

53
01

53
04

53
07

53
10

53
13

53
16

53
19

53
22

53
25

53
28

53
31

53
34

53
37

53
40

53
43

53
46

53
49

Figure 60 Moment difference ratios for the sample sequence with a camera flash

We have also identified camera flashes as a source of consistent false alarms raised

by our algorithm. During a flash, the pixel intensity of the frame radically increases

and then drops, as shown in Figure 58. This causes a significant change in color

moments, and triggers cut detection. This problem could be addressed by comparing

 63

frames immediately before and after such a spike in moments. If their color moment

values are similar, then the cut could be rejected as a false positive. This approach

would work well for relatively still video sequences. In the presence of motion,

however, frames before and after the flash may be dissimilar and the flash will still be

reported as a cut.

Conclusions

The experimental results and discussion presented above leads to conclude that the

cut detection algorithm we adopted performs very well for video news broadcasts. Its

performance is somewhat degraded in the presence of very short shots containing

rapid motion, but this rarely occurs in the actual news footage, and hence remains

without significant impact on our work.

2.6.2 Fade detection

Overview

As discussed in the introduction (section 2.1) fades are sequences of frames whose

intensity gradually increases from black or decreases to black in time. Consequently,

fade detection consists in recognizing sequences of monochrome frames (mostly

black), and accurately marking the fade out and fade in slopes around them. The first

task is relatively simple, when one observes that monochrome frames, regardless of

their color, have practically zero variance, due to the fact that all pixels in the frame

are of the same color. The second part presents more of a challenge. Given the start

and end of the monochrome sequence, we must determine whether the sequence is

preceded by a fade-out and whether it is succeeded by a fade-in. Once this is

established we need to accurately determine the first frame of the fade-out and the last

frame of the fade-in, i.e. at which point these transitions terminate and the actual

shots begin.

 64

It can be shown, that while the intensity of the pixels decreases gradually during fade

out and increases gradually during fade in, so does the color standard deviation of the

entire frames. In the ideal case, where the shot fading out or in contains no motion or

any other change, the decrease or increase in standard deviation would be exactly

linear. In practice, it tends to deviate somewhat from this theoretic model. Therefore,

the existing fade detection methods seek to establish how well a given frame

sequence matches the model.

Lienhart [Lie01a] proposes to use linear regression to assess how well the curve of

standard deviation during fade in/out fits the linear model. While linear regression is

a very good measure of linearity, it does not offer a satisfactory solution to the

problem of detecting fade boundaries. Due to the nature of linear regression, if the

number of frames that fit the linear model is large (i.e. the fade is relatively long),

introduction of an additional point which does not fit the model well does not

significantly perturb the slope and correlation. Therefore, a number of shot frames

may be added to the curve, before the algorithm declares the end of a fade.

Truong et al. [Tru00a] used the second derivative of color variance to detect fade

boundaries. They observed that the fade boundaries are accompanied by large spikes

of second derivative curve. Indeed, an abrupt change in the slope of the variance

curve at the beginning and end of a fade causes a large change in the first derivative,

and consequently a large value of the second derivative. The same holds true for the

curve of color standard deviation, which is shown in Figure 61 through Figure 64

(frames 21237 and 21253).

Truong argues that fades can be detected accurately by searching for such spikes

around monochrome frame sequences. In their fade detection method they impose

two additional conditions:

1. First derivative of color mean is relatively constant and does not change sign

during the fade sequence.

 65

2. The color variance of the frame immediately preceding a fade-out and the

frame immediately succeeding a fade-in are above certain threshold.

Figure 61 Example of a fade-out and fade-in sequence

0

10

20

30

40

50

60

70

21
21

0

21
21

3

21
21

6

21
21

9

21
22

2

21
22

5

21
22

8

21
23

1

21
23

4

21
23

7

21
24

0

21
24

3

21
24

6

21
24

9

21
25

2

21
25

5

21
25

8

21
26

1

21
26

4

21
26

7

21
27

0

21
27

3

21
27

6

21
27

9

21
28

2

21
28

5

21
28

8

21
29

1

21
29

4

21
29

7

21
30

0

21
30

3

21
30

6

21
30

9

Red

Green

Blue

Figure 62 Standard deviation curves for the sample fade sequence

 66

-15

-10

-5

0

5

10

15

21
21

0

21
21

3

21
21

6

21
21

9

21
22

2

21
22

5

21
22

8

21
23

1

21
23

4

21
23

7

21
24

0

21
24

3

21
24

6

21
24

9

21
25

2

21
25

5

21
25

8

21
26

1

21
26

4

21
26

7

21
27

0

21
27

3

21
27

6

21
27

9

21
28

2

21
28

5

21
28

8

21
29

1

21
29

4

21
29

7

21
30

0

21
30

3

21
30

6

21
30

9

Figure 63 Smoothed second der ivative of standard deviation for the sample fade sequence

0

1

2

3

4

5

6

7

8

9

10

21
21

6

21
21

9

21
22

2

21
22

5

21
22

8

21
23

1

21
23

4

21
23

7

21
24

0

21
24

3

21
24

6

21
24

9

21
25

2

21
25

5

21
25

8

21
26

1

21
26

4

21
26

7

21
27

0

21
27

3

21
27

6

21
27

9

21
28

2

21
28

5

21
28

8

21
29

1

21
29

4

21
29

7

21
30

0

21
30

3

21
30

6

Linear Regression Slope

Slope Difference

Figure 64 Slope difference vs. linear regression slope for the sample fade sequence

In this work, we chose a different approach, though also based on the maxima of

second derivative of standard deviation. We approximate the second derivative of

standard deviation as a difference in the smoothed first derivative. The smoothing

operation is performed separately for frames before and after a given frame in the

 67

potential fade sequence, so that we can reduce the effects of motion, while retaining

the clarity of the extreme values of second derivative.

For every frame in the fade sequence we calculate the average first derivative over a

certain number of frames prior to the current frame, and call this value the inner

slope. We also calculate the average first derivative of a certain number of subsequent

frames, and call it the outer slope.

In order to find the end point of the fade, we search for the frame at which the

difference between the inner slope and the outer slope is maximal (i.e. the maximum

of second derivative). This point corresponds very precisely to the end of fade in/out.

This solution is superior to using linear regression proposed in [Lie99] in two

respects. First, it is computationally very simple, as it does not require computing

powers and square roots. More importantly, it provides a precise cutoff point for the

end of the transition. Figure 61 and Figure 65 show two typical combinations of

fade-out and fade-in. In the former, both transitions are relatively short and their

standard deviation curves are fairly steep. In the latter, the transitions are slow and

smooth, yielding a more gradually decreasing and increasing curve. It is evident from

the graphs in Figure 64 and Figure 68 that the slope obtained from linear regression

drops off gradually, especially for slow transitions. In extreme cases, the difference in

slope from one frame to another is virtually unnoticeable. This makes it difficult to

detect the precise frame on which the transition terminates. Conversely, the slope

difference obtained in our method shows a clear maximum at precisely the transition

boundary. Hence, detecting these maxima guarantees high precision in fade boundary

detection.

 68

Figure 65 Example of a sequence with slow fade-out and fade-in

0

10

20

30

40

50

60

21
75

6

21
75

9

21
76

2

21
76

5

21
76

8

21
77

1

21
77

4

21
77

7

21
78

0

21
78

3

21
78

6

21
78

9

21
79

2

21
79

5

21
79

8

21
80

1

21
80

4

21
80

7

21
81

0

21
81

3

21
81

6

21
81

9

21
82

2

21
82

5

21
82

8

21
83

1

21
83

4

21
83

7

21
84

0

21
84

3

21
84

6

21
84

9

21
85

2

21
85

5

Red

Green

Blue

Figure 66 Standard deviation curves for the slow fade sequence

 69

-2

-1

0

1

2

3

4

5

6

7

8

9

10

21
75

6

21
75

9

21
76

2

21
76

5

21
76

8

21
77

1

21
77

4

21
77

7

21
78

0

21
78

3

21
78

6

21
78

9

21
79

2

21
79

5

21
79

8

21
80

1

21
80

4

21
80

7

21
81

0

21
81

3

21
81

6

21
81

9

21
82

2

21
82

5

21
82

8

21
83

1

21
83

4

21
83

7

21
84

0

21
84

3

21
84

6

21
84

9

21
85

2

21
85

5

Figure 67 Smoothed second der ivative for the slow fade sequence

0

1

2

3

4

5

6

7

8

9

10

21
75

6

21
75

9

21
76

2

21
76

5

21
76

8

21
77

1

21
77

4

21
77

7

21
78

0

21
78

3

21
78

6

21
78

9

21
79

2

21
79

5

21
79

8

21
80

1

21
80

4

21
80

7

21
81

0

21
81

3

21
81

6

21
81

9

21
82

2

21
82

5

21
82

8

21
83

1

21
83

4

21
83

7

21
84

0

21
84

3

21
84

6

Linear Regression Slope

Slope Difference

Figure 68 Slope difference vs. linear regression slope for the slow fade sequence

We believe that the additional conditions introduced by Truong may be eliminated,

thus simplifying the fade detection, and reducing the potential for missing some fades

which may not satisfy these criteria. We note that any sequence of monochrome

frames must be preceded and succeeded by a transition. Clearly, three types of

 70

transitions could be involved: cut, fade, or special effect. Since detecting a special

effect transition is generally a good thing, we will not attempt to prevent our method

from reporting them as fades. Given that, the fade detection can be reduced to

distinguishing between cuts and fades. Our algorithm presented in the next section

builds on this observation.

Algorithm

In this section, we describe in detail the fade detection method we developed. The

algorithm consists of three major steps. First, we detect if the current frame marks the

beginning of a sequence of monochrome frames. Then, we check whether the

monochrome sequence is surrounded by linear slopes in standard deviation

corresponding to fade-out and fade-in. And finally, we determine whether the slopes

detected match certain predetermined criteria.

In the first step, we compare the three values of standard deviation for red, green, and

blue against a monochrome frame threshold. We have experimentally established the

optimal threshold value at 15.0. If all three standard deviation values fall below this

threshold we consider the current frame monochrome, and mark it as the beginning of

the monochrome sequence. We then proceed to test subsequent frames in the same

manner until we reach a frame which is not monochrome. The last monochrome

frame marks the end of the monochrome sequence.

Given the start and end of the monochrome sequence we analyze the frames before its

start and after its end, to find a potential fade-out and fade-in. For this purpose, we

calculate the inner and outer slope for every frame up to 60 frames away from the

start (end), and as long as the inner slope exceeds the minimal fade slope threshold.

We choose the frame for which the slope difference reaches maximum to be the start

(end) of the fade-out (fade-in).

Finally, we determine if the potential fades satisfy the following criteria:

 71

a) The ratio of the total standard deviation difference between the start and end

of the fade to the maximal standard deviation difference between any

consecutive frames during the potential fade exceeds certain threshold, which

we call slope dominance threshold.

b) The slope of the standard deviation curve is between the minimum and

maximum acceptable values, named minimal and maximal fade slope,

respectively.

Figure 69 shows the algorithm in pseudo code.

� 	� ��
�������������������

Function IsFrameMonochrome(int frame)
 return RedStdDev(frame) < monoFrameThreshold And
 GreenStdDev(frame) < monoFrameThreshold And
 BlueStdDev(frame) < monoFrameThreshold
EndFunction

Function FindMonochromeSpanEnd(int frame)
 endFrame = frame;
 While (IsFrameMonochrome(endFrame))
 endFrame++;
 EndWhile
 return endFrame
EndFunction

Function CalcSlope(int startFrame, int endFrame)
 float slope = 0.0;
 For int frame = startFrame To endFrame
 slope += Abs(AvgStdDev(frame) – AvgStdDev(frame-1));
 EndFor
 slope = slope / (endFrame – startFrame + 1);
EndFunction

Function FindFadeOut(int monoStartFrame, int monoEndFrame)
 climbing = True;
 frame = monoStartFrame;
 While innerSlope > innerSlopeThresh Or climbing
 innerSlope = CalcSlope(frame, frame + innerSlopeSize)
 outerSlope = CalcSlope(frame – outerSlopeSize, frame)

 If innerSlope – outerSlope > maxSlopeDiff
 maxSlopeDiff = innerSlope – outerSlope
 maxSlopeFrame = frame
 EndIf

 If innerSlope > outerSlope

 72

 climbing = False
 EndIf

 frame++;
 EndWhile

 fadeOutStart = monoStart;
 fadeOutEnd = monoStart

 If innerSlope between minSlopeThresh And maxSlopeThresh
 If innerSlope dominates maxFrameDiff
 fadeOutStart = maxSlopeFrame
 fadeOutEnd = monoStartFrame
 EndIf
 EndIf
EndFunction

Function FindFadeIn(int monoStartFrame, int monoEndFrame)
 Proceed analogically to FindFadeOut;
EndFunction

Function DetectFades
 ForEach frame in VideoClip
 If Not IsFrameMonochrome(frame) continue;

 monoStartFrame = frame;
 monoEndFrame = FindMonochromeSpanEnd(monoStartFrame)

 fadeOutStart, fadeOutEnd = FindFadeOut(monoStartFrame, monoEndFrame)
 fadeInStart, fadeInEnd = FindFadeIn(monoStartFrame, monoEndFrame)

 If Not FadeOutMeetsCriteria
 fadeOutStart = fadeOutEnd
 EndIf
 If Not FadeInMeetsCriteria
 fadeInStart = fadeInEnd
 EndIf

 If (fadeOutStart != fadeOutEnd)
 fades[fadeOutStart] = fadeStartTag
 fades[fadeOutEnd] = fadeEndTag
 EndIf
 If (fadeInStart != fadeInEnd)
 fades[fadeInStart] = fadeStartTag
 fades[fadeInEnd] = fadeEndTag
 EndIf

 frame = fadeInEnd;
 EndFor
EndFunction

Figure 69 Fade detection algor ithm

 73

Experimental Results

The fade detection algorithm is controlled by four parameters listed below.

1. Maximum detectable fade length. This parameter determines how far from

the start (end) of a monochrome sequence the algorithm searches for a fade

boundary. The value of this parameter can be essentially arbitrary, and should

be determined a priori. It should be large enough to accommodate the longest

fade expected in the video sequence. We used 60 frames, or about 2 seconds,

for the maximum fade length.

2. Minimal fade slope threshold. The value of this parameter controls the

minimum slope of the standard deviation curve during a fade. If the inner

slope falls below this value, the algorithm stops its search for the maximum

slope difference. Also, if the overall slope of the curve, between the start

(end) of the monochrome sequence and the start (end) of the potential fade out

(in) is below this threshold, the fade will not be reported. The optimal value

of this parameter should be determined experimentally.

3. Maximal fade slope threshold. This parameter serves as a sanity check on the

steepness of the standard deviation curve during a potential fade. If the

overall slope of the potential fade sequence exceeds this threshold, the

sequence is not reported as a fade. The value of the threshold should be

determined a priori, and should be relatively large. We selected 50.0 as the

maximal fade slope threshold in the following experiments.

4. Slope dominance threshold. This threshold protects against detecting cuts to

and from monochrome frames as fade-ins or fade-outs. The value of this

parameter determines the minimum ratio of the overall difference in standard

deviation between the start and end of a potential fade sequence to the

maximal standard deviation difference between any two consecutive frames in

that sequence. If the ratio does not reach this threshold, then the sequence is

 74

not reported as a fade. The optimal value of this parameter should be

determined experimentally.

In order to evaluate the fade detection performance, we performed a set of

experiments using the data and methodology described in section 2.4. We varied the

values of minimal fade slope threshold and slope dominance threshold, to determine

their optimal values and maximal achievable performance. The results are presented

in Figure 70, Figure 71 and Table 4.

Fade Detection: Recall and Precision

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Minimum Slope Threshold

Recall

Precision

Utility

Figure 70 Fade detection per formance as a function of the minimum slope threshold

 75

Fade Detection: Recall and Precision

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Slope Dominance Threshold

Recall

Precision

Utility

Figure 71 Fade detection per formance as a function of the slope dominance threshold

Minimal Slope Recall Precision Utility

0.0 92.9% 97.5% 95.18%

0.5 92.9% 97.5% 95.18%

1.0 90.5% 98.7% 94.59%

1.5 82.1% 98.6% 90.36%

2.0 71.4% 98.4% 84.89%

2.5 67.9% 98.3% 83.07%

3.0 64.3% 98.2% 81.23%

3.5 58.3% 100.0% 79.17%

4.0 57.1% 100.0% 78.57%

4.5 51.2% 100.0% 75.60%

5.0 47.6% 100.0% 73.81%

Table 4 Fade detection per formance as a function of the minimal slope threshold

The experiments show high values of recall and precision reaching 92.9% and 97.5%

respectively. Figure 71 shows the significance of the slope dominance threshold. If

we do not require that the total difference be at least 1.0 times greater than the

maximum consecutive frame difference, then some cuts are detected as fades, and

 76

overall precision deteriorates. Otherwise, precision remains practically flat with the

increase of both parameters, but recall decreases.

Figure 70 demonstrates that increasing the value of minimum slope threshold past 1.0

causes a visible decrease in recall. This indicates that many fades are relatively flat

with a slope of 1.0 or less. In fact, the threshold value of 0.0 yields the highest

overall value of utility, the same as for threshold of 0.5. We consider 0.5 to be an

optimal value, as it may guard against reporting certain false positives.

Our results are comparable with those reported by Truong [Tru00a] for news

sequences (recall 92.5% and precision 96.1%). In addition, further analysis will show

that the fades our method actually missed are quite questionable. Some of them do

not start or end with a strictly monochrome frame. Others do not fade gradually to a

monochrome frame, but rather abruptly drop to it, more in the manner of a cut. If we

eliminate such pseudo-fades, our method achieves 100% recall on the experimental

data set.

The pseudo-fades which drop suddenly to a monochrome frame could be considered

cuts. Our fade detection method could be adapted to report such transitions, and in

the overall temporal video segmentation, cuts could be inserted if they have not been

detected by the cut detection method.

The following section presents a detailed discussion of the fade detection experiments

results.

Analysis

As noted earlier, our method consistently misses two types of pseudo-fades. The first

one consists in a sequence of frames that starts to gradually fade out, but at a certain

frame drops directly to monochrome, as illustrated in Figure 72. This poses a

problem, because the maximum difference in the standard deviation slope (Figure 74)

is found at this drop-off frame and the fade looks like a cut, i.e. it consists of a single

large difference between consecutive frames. In this example, although the fade

 77

stretches from frame 39019 to 39024, the sudden drop in standard deviation causes

the maximum of the second derivative to fall on frame 39023. Therefore, this frame

is recognized as the start of fade-out and the slope does not dominate the consecutive

frame difference.

Figure 72 Example of a fade-out sequence ending with an abrupt cut to black

0

10

20

30

40

50

60

70

80

90

100

39
00

0

39
00

3

39
00

6

39
00

9

39
01

2

39
01

5

39
01

8

39
02

1

39
02

4

39
02

7

39
03

0

39
03

3

39
03

6

39
03

9

39
04

2

39
04

5

39
04

8

39
05

1

39
05

4

39
05

7

39
06

0

39
06

3

39
06

6

39
06

9

39
07

2

39
07

5

39
07

8

39
08

1

39
08

4

39
08

7

39
09

0

39
09

3

39
09

6

39
09

9

Red

Green

Blue

Figure 73 Standard deviation curves for the fade-out ending with an abrupt cut to black

 78

-50

-40

-30

-20

-10

0

10

20

30

40

50

39
00

0

39
00

3

39
00

6

39
00

9

39
01

2

39
01

5

39
01

8

39
02

1

39
02

4

39
02

7

39
03

0

39
03

3

39
03

6

39
03

9

39
04

2

39
04

5

39
04

8

39
05

1

39
05

4

39
05

7

39
06

0

39
06

3

39
06

6

39
06

9

39
07

2

39
07

5

39
07

8

39
08

1

39
08

4

39
08

7

39
09

0

39
09

3

39
09

6

39
09

9

Figure 74 Slope difference of standard deviation for the fade-out ending with an abrupt cut to

black

The other type of pseudo-fade not detected by our method is a fade-like sequence of

frames which does not start or end with a truly monochrome frame, as in Figure 75.

In this sequence, the value of standard deviation of the blue component at frame

20880 equals 16.0 and slightly exceeds the chosen monochrome threshold of 15.0

(Figure 76). Consequently, our algorithm does not find any monochrome frames, and

does not attempt to detect potential fades surrounding it.

Figure 75 Example of a pseudo fade-in sequence which does not star t with a monochrome frame

 79

0

20

40

60

80

100

120

20
85

0

20
85

3

20
85

6

20
85

9

20
86

2

20
86

5

20
86

8

20
87

1

20
87

4

20
87

7

20
88

0

20
88

3

20
88

6

20
88

9

20
89

2

20
89

5

20
89

8

20
90

1

20
90

4

20
90

7

20
91

0

20
91

3

20
91

6

20
91

9

20
92

2

20
92

5

20
92

8

20
93

1

20
93

4

20
93

7

20
94

0

20
94

3

20
94

6

20
94

9

Red

Green

Blue

Figure 76 Standard deviation curves for the pseudo fade-in sequence

-15

-10

-5

0

5

10

15

20
85

0

20
85

3

20
85

6

20
85

9

20
86

2

20
86

5

20
86

8

20
87

1

20
87

4

20
87

7

20
88

0

20
88

3

20
88

6

20
88

9

20
89

2

20
89

5

20
89

8

20
90

1

20
90

4

20
90

7

20
91

0

20
91

3

20
91

6

20
91

9

20
92

2

20
92

5

20
92

8

20
93

1

20
93

4

20
93

7

20
94

0

20
94

3

20
94

6

20
94

9

Figure 77 Slope difference of the standard deviation for the pseudo fade-in sequence

Finally, our method reports fade-ins and fade-outs at beginnings and ends of some

computer generated transitions (see Figure 78). Such pseudo-fades do not count as

false positives in our evaluation methodology, because they overlap a manually

annotated transition, in accordance with definition in section 2.4. In fact, this

 80

behavior should be considered beneficial, as it helps distinguish at least some shots

separated by such complex transitions.

Figure 78 Example of a special effect sequence detected as a fade

0

20

40

60

80

100

120

20
0

20
3

20
6

20
9

21
2

21
5

21
8

22
1

22
4

22
7

23
0

23
3

23
6

23
9

24
2

24
5

24
8

25
1

25
4

25
7

26
0

26
3

26
6

26
9

27
2

27
5

27
8

28
1

28
4

28
7

29
0

29
3

29
6

29
9

Red

Green

Blue

Figure 79 Standard deviation curves for the sample special effect sequence

 81

-40

-30

-20

-10

0

10

20

30

40

20
0

20
3

20
6

20
9

21
2

21
5

21
8

22
1

22
4

22
7

23
0

23
3

23
6

23
9

24
2

24
5

24
8

25
1

25
4

25
7

26
0

26
3

26
6

26
9

27
2

27
5

27
8

28
1

28
4

28
7

29
0

29
3

29
6

29
9

Figure 80 Standard deviation slope difference for the sample special effect sequence

Conclusions

The fade detection algorithm presented in this section is based on the average

standard deviation of pixels in video frames. Our method is very simple, uses only

two criteria on standard deviation, and achieves a very high performance level of

recall and precision close to 100%.

Our approach to detecting fade boundaries is an improvement over the linear

regression method proposed by Lienhart [Lie99], and is similar to the one introduced

by Truong et al. [Tru00a]. Unlike Truong, we do not require color mean to change

linearly, but rather introduce a condition which guards against cuts being detected as

fades. Our algorithm performs equivalently to the methods developed by Lienhart

and Truong.

 82

2.6.3 Dissolve detection

Overview

Next to computer generated special effects, dissolves are the most difficult transitions

to detect. As presented earlier, no spatial or temporal separation exists between the

shots surrounding this type of transition.

In essence, dissolves are very similar in nature to fades. In fact, a fade can be thought

of as a special kind of dissolve in which one of the shots involved consists of only

black (monochrome) frames. We demonstrated earlier that fades can be detected

effectively and accurately, by looking for certain typical features surrounding

sequences of monochrome frames. Unfortunately, dissolve detection does not share

the luxury of such well-defined initial conditions, and we cannot resort to detecting

monochrome frames to trigger transition detection.

Dissolves are created by fading one shot to black while the next shot is faded in from

black. In order to achieve this, pixel intensities of frames in shot A are modified by a

monotonically decreasing function fA, and pixel intensities of frames in shot B are

modified by a monotonically increasing function fB. At any frame during the

transition, the intensity of every pixel is defined as the sum of the original intensities

of that pixel in shot A and B.

Many researchers derived different characteristics of dissolve frame sequences, and

built detection methods around them. These were described briefly in section 2.2.3.

A method presented by Truong et al. [Tru00a] achieves the highest reported

performance. Since their method relies on variance, which is readily available to us

as the square of standard deviation, it became a good starting point for the

development of our algorithm.

It can be shown that if the variances of shots A and B are constant, then the color

variance of frames over time during transition should have a parabolic shape. This

corresponds to the decrease in color intensity which occurs during fade-out of shot A

 83

and fade-in of shot B. In practice, this idealized shape is somewhat perturbed by

change (such as motion) within shots. Figure 81 shows a dissolve between two

relatively static shots of similar variance. For such a transition, the parabolic shape of

variance curve is apparent (see Figure 82).

Figure 81 Example of a dissolve between shots of similar var iances

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

14
00

14
03

14
06

14
09

14
12

14
15

14
18

14
21

14
24

14
27

14
30

14
33

14
36

14
39

14
42

14
45

14
48

14
51

14
54

14
57

14
60

14
63

14
66

14
69

14
72

14
75

14
78

14
81

14
84

14
87

14
90

14
93

14
96

14
99

Red Green Blue Average

Figure 82 Var iance curve for the sample dissolve between shots of similar var iances

On the other hand, if the two shots involved have significantly different variances,

then the parabolic shape of the variance curve becomes asymmetric, and is more

difficult to identify. This situation often happens when a studio shot transitions into a

field shot (see Figure 83). The former is filmed indoor, presents a close-up of anchor

persons and contains several distinct objects of high color intensity, while the latter

has been taken outside and may have been recorded in poor lighting conditions. Such

asymmetry in the variance curve (see Figure 84) leads to difficulty in detecting the

minimum, which usually is the starting point for dissolve detection. In the extreme

 84

case, such as is shown in Figure 85, the parabola of the variance curve does not

appear at all, and therefore no minimum exists during a dissolve (Figure 86).

Figure 83 Example of a dissolve between shots of different var iances

0

1000

2000

3000

4000

5000

6000

53
80

0

53
80

3

53
80

6

53
80

9

53
81

2

53
81

5

53
81

8

53
82

1

53
82

4

53
82

7

53
83

0

53
83

3

53
83

6

53
83

9

53
84

2

53
84

5

53
84

8

53
85

1

53
85

4

53
85

7

53
86

0

53
86

3

53
86

6

53
86

9

53
87

2

53
87

5

53
87

8

53
88

1

53
88

4

53
88

7

53
89

0

53
89

3

53
89

6

53
89

9

Red Green Blue Average

Figure 84 Var iance curve for a dissolve between shots of different var iances

Figure 85 Example of a dissolve between shots with extremely different var iances

 85

0

500

1000

1500

2000

2500

3000

3500

4000

4500

19
45

0

19
45

3

19
45

6

19
45

9

19
46

2

19
46

5

19
46

8

19
47

1

19
47

4

19
47

7

19
48

0

19
48

3

19
48

6

19
48

9

19
49

2

19
49

5

19
49

8

19
50

1

19
50

4

19
50

7

19
51

0

19
51

3

19
51

6

19
51

9

19
52

2

19
52

5

19
52

8

19
53

1

19
53

4

19
53

7

19
54

0

19
54

3

19
54

6

19
54

9

Red Green Blue Average

Figure 86 Var iance curve for a dissolve between shots with extremely different var iances

Television news stations tend to use dissolves to introduce prerecorded footage, as

well as separate individual shots of that footage. Frequently, a sequence of live studio

shots presenting an anchor person introduces the story, followed by a dissolve and a

sequence of prerecorded shots, connected by dissolves. Finally, at the end of the

prerecorded sequence, another dissolve brings back the anchor person in the studio.

As we argued earlier, such prerecorded footage is essential to our task of story

tracking, because it contains the visual clues connecting episodes of the same story.

It follows that precise dissolve detection is very important in this work.

The task is complicated by the nature of the prerecorded video material. First, as we

noted, the lower quality of the video, such as light exposure, causes difficulty in

recognizing transitions between studio shots and field shots. In addition, field shots

are often recorded from a hand-held camera, and contain rapid motion, due to the

movement of either the camera, or the objects in view. Finally, the view is often

temporarily occluded by persons passing directly in front of the camera. The effects

of such occurrences on frame variance are very similar to the ones caused by

dissolves, as it is shown in Figure 87. In both cases, the color variance function

 86

gradually decreases, reaches a minimum (at maximum occlusion, or maximally

monochrome background) and then gradually recovers.

Figure 87 Example of a camera motion which produces a dissolve-like shape of var iance curve

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

23
50

23
53

23
56

23
59

23
62

23
65

23
68

23
71

23
74

23
77

23
80

23
83

23
86

23
89

23
92

23
95

23
98

24
01

24
04

24
07

24
10

24
13

24
16

24
19

24
22

24
25

24
28

24
31

24
34

24
37

24
40

24
43

24
46

24
49

Red Green Blue Average

Figure 88 Var iance curve for the sample camera motion sequence

The best dissolve detection performance reported in literature is reported by Truong

et al. [Tru00a] who claim recall and precision of approximately 65% for news

sequences. Considering the importance of precise dissolve detection in our work, we

need to create an algorithm which performs better. We decided to begin with

Truong’s method, analyze it in detail, and improve upon it.

Essentially, his approach focuses on identifying trigger points for all potential

dissolves and applying multiple conditions separating actual dissolves from effects of

motion and noise. Truong introduces the following set of conditions:

 87

1. The variances of the two shots surrounding a potential dissolve must exceed a

predetermined threshold.

2. The first order difference of the variance must have two negative spikes on

either side of the potential dissolve. The minimal values should exceed a

given threshold.

3. The variance differences between the bottom of the variance curve and the left

and right ends of the dissolve must exceed another threshold whose value is

proportional to the variance of the corresponding shot.

4. Average variance difference between start (end) and the bottom of the curve

should exceed half the average variance at the start and end of the potential

dissolve.

All of the above conditions were derived algebraically from the mathematical model

of an idealized dissolve. Subsequently, however, Truong relaxed some of them in

order to deal with real world data. We examine Truong’s conditions on our

experimental data, and make improvements where needed. First, we assume that

dissolve sequences must have certain minimal length. In our experimental data we

found that virtually all dissolves contained at least five frames, and assume this value

as the required minimal length. Although shorter dissolve sequences do exist, they

are extremely rare. In addition, the color moment differences between consecutive

frames of such short dissolves are very large, which leads to their detection as cuts.

 88

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00 7000.00 8000.00 9000.00 10000.00

Model Dissolves Actual Dissolves Minimum Maximum

Figure 89 Differences between the star t and the bottom of the var iance curve dur ing dissolve as a

function of the var iance of the star t frame

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

10000.00

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00 7000.00 8000.00 9000.00 10000.00

Model Dissolves Actual Dissolves Minimum Maximum

Figure 90 Differences between the end and the bottom of the var iance curve dur ing dissolve as a

function of the var iance of the end frame

Figure 89 and Figure 90 show plots of variance differences between the bottom of the

variance curve and its start and end, respectively. The plots show that the theoretical

predictions made by Truong do not match the actual values very well. Most of the

 89

time the model overestimates the difference between the minimum and either start or

end of the dissolve. As a result, we adjusted the cut-off line proposed by Truong to

accommodate the lower difference values.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

False Positives Actual Dissolves Minimum Maximum

Figure 91 Differences between the star t and the bottom of the var iance curve dur ing dissolves

and non-dissolve sequences as a function of the var iance of the star t frame

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

False Positives Actual Dissolves Minimum Maximum

Figure 92 Differences between the end and the bottom of the var iance curve dur ing dissolves and

non-dissolve sequences as a function of the var iance of the end frame

 90

The plots in Figure 91 and Figure 92 show the variance difference values for the

actual dissolves along with the values for false positives. It is apparent that the actual

dissolves do not differ significantly from the false alarms, as their corresponding

points are clearly intermixed. We can observe, however, that the vast majority of

false positives have very low difference values. Therefore, we can introduce a

threshold line of a very small slope, proportional to the variance of the corresponding

shot. Such a cut-off allows us to eliminate the majority of false alarms, while

excluding only a small number of actual dissolves. We found the slope value of

0.075 to be effective for our experimental data.

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

False Positives Actual Dissolves

Figure 93 M inima of first der ivative of var iance at the star t of a potential dissolve

 91

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

False Positives Actual Dissolves

Figure 94 M inima of first der ivative of var iance at the end of a potential dissolve

Again, no separation is offered by the condition on the minima of the first order

variance difference. In fact, the plots in Figure 93 and Figure 94 show that there is no

way to separate the actual dissolves from the false positives which remain after the

previous condition has been applied. Therefore, we elect not to use this condition in

our algorithm.

Then, we examine the condition of average difference in variance. Figure 95 shows

that this condition offers some degree of separation. Truong proposes a linear

threshold dependent on the average variance at start and end. While this works, a

constant threshold offers better overall improvement, if we measure improvement as

the ratio of increase in precision to decrease in recall.

 92

0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Actual Dissolves False Positives Proportional Threshold Constant Threshold

Figure 95 Average var iance difference as a function of the average var iance at both ends of a

potential dissolve

After all of the conditions proposed by Truong have been applied, a large number of

false positives remain. In an effort to reduce this number, we analyze the

characteristic features of the color mean of video frames during a dissolve. It can be

shown that during an idealized dissolve the mean values of individual color

components change linearly from the mean of the shot before the dissolve, to the

mean of the shot after the dissolve.

We also observe that false alarms are often caused (and impossible to distinguish

from dissolves based on variance alone) by large objects passing before the camera,

or in the background. If such an object is relatively dark and monochrome, then it

causes a gradual decrease in variance as it comes into view, followed by a gradual

increase as it leaves the view. This also induces a gradual decrease in color mean.

 93

0

10

20

30

40

50

60

Red Green Blue

Figure 96 Aberration of the mean curve its linear interpolation for true dissolves

0

10

20

30

40

50

60

Red Green Blue

Figure 97 Aberration of the mean curve its linear interpolation for non-dissolve sequences

We use these observations to add a new criterion for dissolve detection. We compare

the value of mean at the center of the potential dissolve to the minimum of the values

at the start and end of the dissolve. We require that the center value exceed the

minimum by an amount proportional to the absolute difference between the mean at

 94

the start and the end of the dissolve. The graphs in Figure 98 through Figure 100

present the value of this difference as a function of the total difference between the

means of the two shots involved.

-10

0

10

20

30

40

50

0 20 40 60 80 100 120

Actual Dissolves False Positives Threshold

Figure 98 Center mean difference of the red component

-10

0

10

20

30

40

50

0 20 40 60 80 100 120

Actual Dissolves False Positives Threshold

Figure 99 Center mean difference of the green component

 95

-10

0

10

20

30

40

50

0 20 40 60 80 100 120

Actual Dissolves False Positives Threshold

Figure 100 Center mean difference of the blue component

Algorithm

In this section, we describe in detail the dissolve detection algorithm. Due to a large

number of criteria used by the algorithm, as well as a variety of calculated values,

presenting the algorithm in pseudo code would be impractical. Instead, we provide a

detailed list of steps taken by the algorithm.

For every frame in the video clip, perform the following steps.

1) Check if the average standard deviation of the current frame is minimal within +/-

2 frames. If it is, proceed to step 2. Otherwise, move on to the next frame.

2) Make sure the standard deviation of the current frame exceeds the monochrome

threshold of 15.0. If it does, proceed to step 3. Otherwise, move on to the next

frame.

3) Establish a window of 90 frames around the current frame. For every frame in the

window:

a) Calculate average color variance as the square of the average standard

deviation.

 96

b) Calculate first order variance difference, by taking the difference in variance

between frame i and i-1.

c) Compute first derivative of variance by smoothing the first order difference

using weighted average with mask [1, 2, 4, 2, 1].

4) Starting at the current frame find the first minimum of first derivative of variance

to the left (dVarMin), and the first maximum to the right (dVarMax). Mark their

respective frame numbers as dVarMinFrm and dVarMaxFrm, and calculate the

center frame (centerFrm) as the average of the two.

5) Calculate the second derivative of variance as the difference between average first

variances of 3 frames to the right and to the left of frame i.

6) Find the first minimum of second derivative to the right of dVarMax and to the

left of dVarMin. Mark their respective frames as dissolveStartFrm and

dissolveEndFrm.

7) Calculate variance differences between the dissolveStartFrm and current frame

(startVarDiff), as well as dissolveEndFrm and current frame (endVarDiff).

Compute the average variance difference (avgVarDiff) as the average of

startVarDiff and endVarDiff.

8) Test if the sequence of frames between dissolveStartFrm and dissolveEndFrm

meets the following criteria. If all conditions hold, declare a dissolve and move

on to the first frame after dissolveEndFrm. Otherwise, move on to the next frame.

a) Dissolve length (dissolveEndFrm – dissolveStartFrm + 1) exceeds 5 frames.

b) Start variance difference and end variance difference exceed their respective

thresholds:

i) startVarDiff >= 0.075 * startVar

ii) endVarDiff >= 0.075 * endVar

c) Average variance difference is greater or equal to 500.0.

 97

d) The value of mean for every color component of centerFrm exceeds its

respective threshold

i) ThreshC = 0.15 * Abs(dissolveStartMean – dissolveEndMean) – 0.5

ii) MeanC >= Min(Mean(dissolveStartFrm), Mean(dissolveEndFrm)) +

ThreshC

e) Mean aberration for every color component is less than or equal to 20.0

Experimental Results

In this section, we present and discuss the results obtained by using our dissolve

detection algorithm on the experimental data. Due to a large number of parameters

controlling the algorithm we decided not to optimize the value of each parameter by

performing detection with a range of values. Instead, we analyzed the graphical

representation of each parameter, as shown earlier in this section. We believe that

further adjustment of the parameters to obtain somewhat better results, although

possible, would likely lead to over fitting of the model to the experimental data.

Moreover, we present and discuss the performance gain offered by each of the

conditions introduced earlier. Table 5 summarizes the results.

It is easy to see that dissolve detection lacks the benefit of monochrome frames which

triggered the fade detection algorithm. Dissolve detection algorithm is initiated for

every minimum of standard deviation. Evidently, due to motion and general changes

on screen, video sequences contain an enormous number of such minima. Reporting

each of them as a dissolve would lead to very poor precision. Therefore, a dissolve

detection algorithm must apply additional criteria to reduce the number of false

positives, and improve precision.

 98

Condition Match False Alarm Missed Recall Precision Utility

Minimum Variance 186 5786 3 98.4% 3.1% 50.76%

Minimum Length 185 3410 4 97.9% 5.1% 51.51%

Min Bottom Variance 184 3345 5 97.4% 5.2% 51.28%

Start/End Variance Diff 170 194 19 89.9% 46.7% 68.33%

Average Variance Diff 164 95 25 86.8% 63.3% 75.05%

Center Mean 158 45 31 83.6% 77.8% 80.72%

Mean Aberration 157 42 32 83.1% 78.9% 80.98%

Table 5 Dissolve detection per formance with increasing cr iter ia set

We first restricted the length of dissolves we would like to detect by introducing a

minimum threshold of 5 frames. Dissolves shorter than this do occur, but were very

rare. Table 5 shows that imposing the minimum length threshold made the algorithm

miss just one additional dissolve in our experimental data, decreasing recall by 0.5 %.

Conversely, increase in precision due to this condition is almost twofold.

Subsequently we required that the bottom frame of every dissolve had the standard

deviation of at least 15.0. This requirement is consistent with the one applied in fade

detection to recognize monochrome frame. Hence, this condition eliminates fades

that may have otherwise been recognized as dissolves. The effect of this restriction is

demonstrated in Figure 91 and Figure 92 as the straight line of larger slope. Clearly,

we can eliminate several false positives, with only minimal loss of actual dissolves.

In the next step, we apply the criterion on start and end variance difference proposed

by Truong et al. Upon examination of Figure 91 and Figure 92 as well as numerical

optimization, we arrived at the optimal threshold line y = 0.075 * x. It is apparent

that the slope of this line is significantly lower than the value 0.25 suggested by

Truong. This adjustment is necessary to account for the discrepancy between the

theoretical model and empirical data. Limiting dissolve detection to only such

sequences whose variance difference between start and bottom, as well as end and

bottom frames falls above the chosen threshold line dramatically increases precision,

 99

which now exceeds 45%. On the other hand, we needed to accept a 7.5% drop in

recall.

From this point on, we need to considerably reduce the number of false positives in

order to achieve acceptable precision, but we cannot afford to lose much more recall,

as it is already down to below 90%. Therefore, as discussed earlier, we reject

Truong’s condition on minimum and maximum of the first derivative of variance.

Any gain in precision from using it would come at the price of substantially reduced

recall (see discussion earlier in this section). Hence, we move on to the average

variance difference threshold. Analyzing the plot in Figure 95, we determined that

the cutoff value of 500.0 offers a very good separation of false positives from

dissolves. Applying this threshold, we can reduce the number of false positives by

50%, while missing only 6 additional dissolves. This leads to a recall and precision

of 86.8% and 63.3%, respectively. Careful examination of the same graph reveals

that the threshold value could be increased to 550.0 in order to reduce the number of

false alarms. It would, however, most likely lead to over fitting of the model to the

experimental data, and would ultimately result in decreased performance for other

video sequences.

We note that using a constant threshold for the average variance difference produces

much better results than applying any type of threshold proportional to the average

start and end frame variance, which Truong proposes. Figure 94 demonstrates that

any line of slope greater than 0.0 which eliminates a substantial number of false

positives, simultaneously excludes a large number of true dissolves.

Precision of 63.3% offered by the current set of conditions is far from satisfying.

Therefore, we attempt to improve its value further, by employing the criterion of

mean linearity during dissolve. Figure 98 through Figure 100 show clearly that for

many false positives, the values of mean of individual color channels drop below the

minimum values at the beginning and the end of the sequence. Whereas, during true

dissolves the mean changes approximately linearly from start to end. We choose to

impose a threshold on the value of the mean at the center of a potential dissolve

 100

proportional to the absolute mean difference between the start and end frame.

Specifically, we use the line y = 0.15 * x – 0.5, which has been determined

experimentally to give optimal results. This reduces the number of false positives by

over 50% while excluding 6 additional dissolves, yielding recall of 83.6% and

precision of 77.8%.

Finally, we limit on mean aberration, i.e. the distance between the actual mean curve

and the linear interpolation between the values at the start and the end of a potential

dissolve. The graphs of mean aberration for red, green, and blue channels, for both

true dissolves and false positives, are presented in Figure 96 and Figure 97,

respectively. From the two graphs, we can obtain the value of 20.0 as a good

threshold. Three more false positives can be eliminated by applying this threshold.

Performance improvements due to all of the restricting conditions discussed in this

section are shown graphically in Figure 101. Utilizing all of these conditions our

algorithm achieves an overall recall of 83.1% with 78.9% precision, which constitutes

a substantial improvement over results presented in literature.

Dissolve Detection: Recall and Precision

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6

Criteria

Recall Precision Utility

Figure 101 Dissolve detection per formance with increasing number of cr iter ia applied

 101

Conclusions

In this section, we presented a dissolve detection algorithm based on mean and

variance of color components of video frames. Our method is rooted in the approach

proposed by Truong et al. [Tru00a], but contains several improvements.

Our contribution has two aspects. First, we conducted a detailed analysis of the

model of the dissolve transition and confronted it with empirical data. We present

criteria used by Truong and evaluate them with respect to our experimental data. As

a result of this evaluation we drop one of criteria as not useful, and modify another to

achieve better performance. Second, we introduce two additional criteria, derived

from the properties of color mean, which vastly reduce the number of false alarms,

and thus increase precision.

2.6.4 Combining transition detection algor ithms

In this section we first present the combined performance of our temporal

segmentation algorithm. The summary of recall and precision of the detection

techniques for all three types of transitions is presented in Table 6. These results

were obtained for the experimental 1-hour sequence with the optimal set of

parameters.

 Match False Alarm Missed Recall Precision Utility

Cuts 528 31 59 90% 94% 92%

Fades 78 2 6 93% 98% 95%

Dissolves 157 42 32 83% 79% 81%

Total 89% 91% 90%

Table 6 Combined temporal segmentation per formance on the 1-hour exper imental sequence

In order to verify the performance of our method we chose a different 10-minute

sequence of CNN News and ran the transition detection algorithm with the same set

of parameter values. The results of this experiment show (see Table 7) that our

technique attains similar and better performance in detection of cuts and dissolves.

Fade detection achieves 100% recall, but its precision is lower than on the original

 102

sequence. The test sequence contained only three actual fades, while also including

two unusual clips in which a camera pan produced a fade-like effect. These two clips

were erroneously detected as fades, and their impact on precision was exaggerated by

the small number of actual fades. In a larger group of fades we expect a high

precision value.

The two experiments conducted allow us to conclude that our temporal segmentation

technique works consistently well on different news video sequences.

 Match False Alarm Missed Recall Precision Utility

Cuts 46 2 0 100% 96% 98%

Fades 3 2 0 100% 60% 80%

Dissolves 28 3 2 93% 90% 92%

Total 97% 92% 95%

Table 7 Combined temporal segmentation per formance on a 10-minute test sequence

After all individual types of transitions have been detected, there remains one final

step before the temporal segmentation is fully accomplished. The disparate sets of

transition frames must be combined, so that a consistent set of shot frames can be

established. Since transition detection for cuts, fades, and dissolves is performed

independently, it is possible that some frames marked as belonging to one type of

transition are also denoted as belonging to another type. All such conflicts must be

resolved before the temporal segmentation is completed.

Our approach to transition conflict resolution consists in assigning priorities to

different types of transitions according to our confidence in their respective detection

method. Due to a high performance of our cut detection method, we give cuts the

highest priority. Fades receive a medium priority, and finally dissolves have low

priority. If any two transitions of different types overlap, we keep only the one with

higher priority, while ignoring the other.

The remaining transition frames are combined to form a single set T. The set of all

frames that do not belong to T forms the set of shot frames S. These two sets define

the final temporal segmentation of the video clip.

 103

2.7 Conclusions

In this chapter, we described the problem of temporal video segmentation with

emphasis on its application to video news broadcasts. We presented some approaches

available in literature and proposed two of our own solutions. Both solutions were

based on color moments as video frame representation, and adhere to our requirement

of real-time execution. We tested both algorithms on a one hour block of video from

a typical day of CNN News broadcast and analyzed their performance.

First, we introduced a simple algorithm, which attempted to detect all types of

transitions using one method consisting in assessing a cross-difference between video

frames up to a certain distance apart. We analyzed its performance on the

experimental data, and concluded that due to inter-frame differences caused by noise

and motion, the algorithm cannot achieve acceptable levels of recall and precision.

In order to provide a better distinction between the effects of noise (or motion), and

actual transitions, we adopted a method based on transition model. This method aims

to detect different types of transitions by identifying certain characteristics of frame

sequences, which can be derived from the transition models. The algorithm was

tested on the experimental data, and achieved very good performance, especially for

cut and fade detection. For these two types of transitions, both recall and precision

exceeded 90%. Dissolve detection proved to be the most challenging, and the

algorithm attained a recall and precision of approximately 80%.

Our contribution to the field of temporal video segmentation is twofold. First, we

introduce an effective temporal segmentation method based entirely on color

moments. This unique approach offers a very compact representation of video, as we

only need to store and process nine floating point numbers for every frame. Using

this representation we created a very fast one-pass algorithm, which executes in a

fraction of real time, and performs at least as well as other approaches presented in

literature.

 104

Second, we proposed several improvements in cut and dissolve detection. We

introduced a statistically grounded approach to cut detection, which eliminates some

systemic problems with existing algorithms and offers improved performance. We

also introduced a few additional criteria for dissolve detection, as well as analyzed

and modified certain existing conditions. Application of these additional and

modified conditions produced a substantially improved performance of dissolve

detection (15% increase in recall and precision).

In the following chapters, we will use the temporal video segmentation as a stepping

stone to detecting repeated shots and combining them into stories. Therefore, the

quality of transition detection will have direct impact on the quality of story tracking

we perform. Our story tracking method is based on detecting repeated footage used

by news station to provide visual background for the story. In the process of

developing and testing our temporal segmentation methods, we observed that such

footage is often introduced and separated by dissolves. Thus, the improvements to

dissolve detection were essential for the remainder of our work. On the other hand,

the 80% recall and precision of dissolve detection may still prove insufficient for a

reliable repeated footage detection.

.

105

Chapter 3

Repeated Video Sequence Detection

3.1 Introduction

As it was discussed in Chapter 1, modern television news stations often reuse video

footage when relating a news story. As the story develops and new segments are

shown by the station, often the same footage is displayed. This means that a number

of video clips presented at some point in time are later repeated as a whole or in part.

Detection of such repetitions is a good indication that two news segments are in fact

related and convey the same story. It is the focus of our work to detect repeated video

footage and use this information to track the development of news stories.

In this chapter, we present the problem of repeated footage detection as it pertains to

the task of story tracking. We discuss challenges involved in identifying fully or

partially repeated video sequences, and present a number of methods for effective

detection of repeated video material.

106

3.1.1 Problem Definition

First, we introduce some basic terminology and notation. Throughout this chapter we

frequently refer to video sequences, subsequences, clips, and shots. In order to avoid

confusion, we provide their precise definitions.

Definition 1: A video sequence S of length NS is a sequence of NS consecutive video

frames:

SNfffS ,,, 21
�=

The length of the video sequence is denoted by |S|.

Thus, f t denotes the t-th frame in a video sequence and is equivalent to S(t). In the

context in which video frames are considered independently of any video sequence

the superscript is omitted. In addition, if more than one video sequence is considered,

frames belonging to different sequences are distinguished by the subscript, for

instance fa denotes a frame from sequence Sa. Finally, in certain situations it is useful

to consider a video sequence as a four-dimensional intensity function I(t,x,y,c) which

assigns a value to every component – red, green, and blue – of every pixel in every

frame of the sequence. Summarizing, we can write

() ()cyxtIftS a
t

aa ,,,== .

Definition 2: A subsequence S g,h of the video sequence S is a sequence of consecutive

video frames from S:

ShgandfffS h
S

g
S

g
S

hg ≤≤≤= + 1,,, 1,
�

The terms video sequence and video clip are synonymous and are used

interchangeably in this chapter. On the other hand a video shot, whose definition was

107

provided in the previous chapter, is a video sequence that was taken from a single

camera working continuously, in a single span of time. Equivalently, a shot is a video

sequence which contains no transition frames.

In this chapter, we examine methods of detecting occurrences of video sequences

(query sequences) in other video sequences (source sequences). In order to

accurately define the problem at hand, we distinguish two classes of repeated

sequence detection:

1. Single repetition detection. In this task, we are interested in finding a query

sequence (usually short) in a long source sequence. The query sequence

usually contains a small number of shots, and may represent a commercial, for

instance.

2. Exhaustive repetition detection. The goal of this task is to detect all

repetitions of all subsequences of a given long video sequence. In this case,

the query and source sequence may be the same, and may come from a live

broadcast. As a result, the detection algorithm must run in real-time.

These two classes correspond to the following definitions.

Definition 3: Let S and Q be sequences of video frames of length NS and NQ,

respectively. The task of single repeated footage detection consists in identifying all

subsequences of S k,k+n of the source sequence S, such that Q matches S k,k+n
 and

n = NQ. The task of exhaustive repeated footage detection consists in identifying all

subsequences Q g,g+n of Q, such that there exists a subsequence S k,k+n of S which

matches Q
k,k+n.

The concept of matching video sequences will be discussed in depth in section 3.2.3.

For now, we can assume that sequences of frames that match are simply identical.

The notion of frame sequence identity appears intuitive, but requires a formal

definition, which will be given later in section 3.2.1.

108

Each type of repeated sequence detection task may have two additional aspects,

which influence the choice and performance of detection techniques.

1. Temporal segmentation. The results of temporal segmentation of video

sequences Q and S may be available, thus providing a list of shots contained

in both sequences.

2. Partial repetition. One may be interested in identifying partial repetitions of

the query sequence Q (for single detection task) or partial repetition of the

clips in Q (for exhaustive detection task).

The techniques used for repetition detection depend on the class of detection task

involved, as well as the two aspects listed above. Naturally, exhaustive detection is

much more demanding than single detection. Both tasks are simplified by the

presence of the shot structure of Q and S, and different approaches are required for

complete and partial detection. Further details regarding repeated footage detection

algorithms will be given in section 3.3.

In this work, we are primarily interested in repeated sequence detection as an element

of a method for story tracking in live video news broadcasts. Therefore, our detection

methods must solve the problem of exhaustive detection, in which the query

sequences Q and S are the same.

3.1.2 Related Work

The problem of repeated video sequence detection falls within the scope of the

broader domain of video retrieval, which is concerned (in the most general sense)

with identifying video material relevant to some information need. Much of the

research on video retrieval has focused on search for conceptually similar material.

For example, when given an image or video clip of a sailing boat, any clips of sailing

might be regarded as a match. A standard method for addressing this task is to use

image comparison techniques to seek frames with similar content. In contrast, a

different type of similarity is considered when searching for clips with the same

109

footage – other footage on a similar topic is not a match. For example, given material

from the movie “Apollo 13” , news footage of the Apollo program is not a match, nor

is material from “The Right Stuff” . However, the “Apollo 13” material is a match in

widescreen, standard format, or after removal of the color signal. This task can be

described as matching of co-derivatives. Thus, two distinct types of video similarity

may be distinguished:

1. Semantic similarity. Two video sequences are semantically similar if they

represent or describe the same or similar concept.

2. Co-derivative similarity. Two video clips are co-derivatives if they have been

derived from the same original video sequence.

Semantic similarity has been the focus of considerable research efforts generally

classified as content-based video retrieval. Matching and retrieval of co-derivatives

has been explored in other domains, such as text [Man94, Shi95], but the problem has

received little attention in the multimedia domain.

Semantic Video Retrieval

Semantic video retrieval comprises efforts in a broad area of research concerned with

providing people with effective and intuitive access to information contained in

video. In order to make video intuitively available, video retrieval systems must

respond to the information need of their users expressed in terms of high level

concepts natural to human beings. This, in turn, requires that video be first

automatically processed and appropriately organized. Therefore, research in the area

may be further classified into the following categories.

i. Video comprehension, which comprises efforts to understand the semantic

content of video material and capture the intuitive notion of what the

video is “about” .

ii. Video organization, which deals with issues of recognizing certain structural

properties of video material, such as related video clips, spatial and

110

temporal relations in video, etc. Video organization also investigates

mechanisms of efficient video storage.

iii. Video retrieval, which attempts to provide methods of effective and intuitive

searching and browsing of video content.

All of the research categories above are closely related. Naturally, no effective video

retrieval method can be proposed without some degree of video comprehension.

Similarly, video retrieval systems must, in most cases, be coupled with some

underlying video organization and storage.

It has long been known that a cognitive gap exists between humans and machines.

The conceptual reasoning and semantic understanding which comes naturally to the

former, is generally unavailable to the latter. This problem is addressed by the

research in the field of video comprehension, which aims to enable computers to

process visual information according to its semantic content. This ultimate goal can

only be accomplished gradually, and video must be analyzed on multiple levels of

“comprehension” [Pet01]:

i. Raw video material and metadata: At this level, only raw video units (frames)

and some metadata, such as video stream format, frame-rate, and

resolution, are available.

ii. Basic visual features: Here belong certain statistical features of the video

stream, such as color content and distribution, shapes, textures, and

motion.

iii. Conceptual content: This level corresponds closely to human understanding.

The video content is described in terms of objects, persons, and events,

At the current stage of development in video comprehension, the raw video material

and metadata are easily obtainable from practically every video stream. Basic visual

features can generally also be extracted automatically without human assistance.

However, the conceptual content extraction requires some level of human interaction.

111

In recent years, some advances have been made in obtaining limited semantic content

from video [Nap00a, Nap03], but the available methods are far from automatically

extracting the large variety of concepts accessible intuitively to humans.

Due to the limitations in automated video comprehension, the research in the field of

video retrieval relies on lower level video features or metadata associated with the

video. A number of video retrieval systems are built around basic video features,

such as color, texture, or motion (VisualSEEk [Smi96], Virage [Ham97], VideoQ

[Cha98]). Such systems require their user to formulate their information need, as a

query expressed in terms of the basic features, which is not intuitive to a human user.

Moreover, searches performed using such queries tend to retrieve diverse and

conceptually unrelated video clips. Other systems exist, which utilize manually

created annotations. Searching in such a system is more intuitive, but limited to the

information provided manually. Considering that the annotation process is tedious

and time consuming, such markups tend to be very brief, and thus do not represent

the depth of the video content. Lately, advances in automatic speech recognition

allowed for the text retrieval techniques to be used in video [Pet96, Hac00, Hua00].

With the advances in video retrieval, it became important to provide a standardized

performance measurement of video indexing and retrieval systems. Efforts in this

area were initiated in 2001 as part of the TREC Video Track (TRECVID).

TRECVID workshop provides a large corpus of video material from a variety of news

sources. It also offers a consistent performance evaluation methodology for a number

of video retrieval tasks. In the last two years, TRECVID emphasized the issues of

extraction of high level video features, as well as retrieval based on high level

concepts [Hau03, Nap03b].

All three aspects of the semantic video retrieval research are combined in an effort to

create comprehensive Digital Video Libraries, which in turn are part of the broader

Digital Libraries Initiative funded jointly by several national institutions. The main

research project in this area is Carnegie Mellon University’s Informedia project

112

[InfWeb], which – in addition to video retrieval – also explores automated speech

recognition and annotation, as well as effective means of video presentation.

Co-Derivative Video Retrieval

The domain of co-derivative video retrieval is relatively new and has not been

extensively studied. The research efforts in the field concentrate primarily around

detection of occurrences of known commercials.

Gauch [GauWeb] developed a commercial authentication system (VidWatch). This

system monitors two continuous live video streams in order to determine whether the

video content provided for distribution by its owners reaches the audience unchanged.

Gauch uses color moments to represent video frames. Given information about the

airing times for any given commercial, VidWatch compares the two video sequences

at those times and detects potential discrepancies, by comparing the moment

representations of their corresponding frames. The system achieves very high

accuracy and has been deployed commercially at a major U.S. television broadcasting

company.

Pua [Pua02, Pua04] describes a real-time video sequence identification and tracking

system, which detects repeated video sequences in a continuous live video stream.

Like Gauch, Pua also uses color moments for video frame representation and

matching. In order to achieve real-time performance, Pua employs a video frame

hashing technique to reduce the number of sequence comparisons. His technique was

tested on television broadcasts from two different documentary channels, and

produced recall and precision rates of over 90%. Pua also demonstrates that correct

identification and removal of repeated video sequences can lead to significant

compression of video archives.

Hoad and Zobel [Hoa03a, Hoa03b] focus on identifying repeated video material

which may have undergone certain degradation or modification, such as a change in

brightness or contrast, and difference in frame rate or frame resolution. They develop

three different video similarity detection methods and evaluate their robustness to

113

such changes. The first of their methods compares video clips according to the

pattern of cuts. If the positions of cuts in the two clips are identical, then the clips are

considered matching. This method requires that the clips contained at least 5 to 10

cuts. The second approach relies on tracking movement of the centroid of the

brightest or darkest pixels across video frames. For every frame in a video clip, a

centroid of the lightest 5% or darkest 5% of the pixels is computed, and its

displacement from frame to frame is stored as the magnitude of the vector containing

the respective centroid positions. Identification of matching video clips then consists

in comparing their sequences of vector magnitudes. Finally, the last method uses

changes in color between frames as the clip signature, and compares the sequences of

changes in order to find matching clips.

Hoad and Zobel tested their methods on a relatively small data sets of about 3 hours

of video. The tests consisted of detecting repetitions of a commercial in the video

stream, after the original has been perturbed in a variety of ways. The experiments

showed that the centroid approach was most robust to video degradation, but even

this method was unable to cope with all types of modifications.

In this work, we employ repeated video sequence detection as the central stage in a

broader task of story tracking in television news broadcasts. As such, our goals are

similar to Pua’s, but accomplishing them in the context of news broadcasts provides

numerous additional challenges. The domain of television news also substantially

limits the applicability of the methods developed by Hoad and Zobel.

3.1.3 Contr ibution

In this work, we focus on detection of repeated video footage in live broadcasts of

modern television news stations for purposes of story tracking. This task is

considerably more complex than the problems presented in literature so far. The

video footage reused by the television stations is usually quite limited, and tends to be

interspersed piece-wise between live studio shots. As a result, video sequences which

must be detected in order to link segments of the same story are very short, often

114

restricted to individual shots only a few seconds in length. This fact substantially

reduces applicability and performance of many video sequence matching methods.

For instance, the cut pattern method presented by Hoad and Zobel is clearly useless

for matching individual shots, which by definition contain no cuts or other transitions.

The limited sequence length places increased requirements on temporal video

segmentation. Imprecision and errors in shot detection are of little impact if repeated

sequences are several shots long, but become very problematic when repetitions

involve only individual shots. Pua’s system relies on a very simple segmentation

technique, which proves sufficient for the detection of long video sequences his

system deals with. The same segmentation method would render our detection task

impossible.

In addition, new video footage is often shown not as a whole, but rather in parts

whose length is adjusted according to the demands of the live news programming.

Consequently, video sequences which need to be compared and matched frequently

differ in length and may contain very little overlap. This issue has not been addressed

at all by the research in the field.

Finally, news broadcasts are composed, in large part, of the video shots taken in a

studio and contain one or more anchor persons directly facing the camera. Such

video sequences tend to be relatively static, and in general quite similar to one

another. This also limits the choice of video matching techniques that may be used

for repetition detection in news videos.

Summarizing, we can identify four major challenges and areas where improvements

are needed:

1. Detection of very short video clips, which may consist of only a single shot

not exceeding a few seconds in length.

2. Detection of partially repeated sequences.

3. Video similarity techniques capable of dealing with studio sequences.

115

4. Real-time execution for exhaustive repetition detection.

In this chapter, we address these challenges. First, we analyze issues and develop

mechanisms for detection of very short video clips. Then we provide solutions for

the problem of partial clip repetition. We introduce a number of video sequence

similarity metrics, and examine their application to repeated clip detection. For very

short clips, the question of precise temporal segmentation becomes very important.

Although we introduced improvements in temporal segmentation in the previous

chapter, the automated shot detection is not perfectly accurate. In this chapter, we

analyze the impact of imperfect segmentation on detection of repeated footage.

Since we are interested in live real-time detection of repeated material, we focus on

improving detection speed. We analyze the heuristic approach introduced by Pua,

and make improvements in quantization and hashing, as well as adapt the solution to

detection of partial sequence repetition.

3.1.4 Chapter Organization

The remainder of this chapter is organized as follows. Section 3.2 introduces the

notion of video sequence similarity as the foundation for the repeated footage

detection. The concept is then formalized by a number of frame and sequence

similarity metrics. This section is closed by a discussion of the application of these

metrics to the problem of complete and partial sequence repetition detection. An

overview of the algorithmic methods of repeated sequence detection is presented in

section 3.3. The following two sections (3.4 and 3.5) describe, in detail, detection

techniques in the absence and presence of the shot structure of the query and source

sequences. The heuristic repetition detection approach is introduced in section 3.6.

The section first presents the idea of color moment quantization, and discusses its

implications for sequence similarity. Later the hashing technique for color moments

is presented, and followed by the details of the heuristic video sequence repetition

detection algorithm. Evaluation of the detection methods developed in this chapter is

given in section 3.7. The chapter closes with concluding remarks in section 0.

116

3.2 Video Clip Similar ity Metr ics

3.2.1 Overview

The notion of video clip similarity and identity appears intuitively straightforward.

Two video clips are similar or identical if they appear so to the human eye. Such a

naïve definition, however, is insufficient for automatic detection of repeated video

footage, and a more formal notion of similarity and identity must be developed. In

this section, we introduce a number of similarity and identity metrics and discuss their

advantages and shortcomings. First, we precisely define the notion of clip identity,

which is followed by a number of practical measures of frame similarity. We close

by discussing several clip similarity metrics derived from frame similarity.

Before we can detect repeated footage, we need to formally establish the notion of

video footage repetition. Intuitively, we could define video footage repetition as the

appearance of the same video clip at two different times in a video sequence. While

this concept seems clear, it leaves open the question of “sameness” of two video clips.

From the human perspective, we can assess “sameness” as identical content in terms

of objects, persons, background, camera angle, etc. Such description, however, lacks

precision needed for automated detection methods.

In this work, we will adopt the following definition of “sameness” :

Definition 4: Two video clips are the same (identical) if they were taken from the

same camera, at the same location and in the same time span.

Hence, we can recognize identical video clips if we know exactly where and when the

individual clips were filmed. Unfortunately, we do not generally have direct access

to this type of information, and so making a direct determination whether any given

two clips are identical using this definition is impossible. Consequently, we need to

develop concepts of clip identity which closely reflect Definition 4, and yet can be

directly verified using only the two video clips involved. The remainder of this

section presents and discusses several alternatives.

117

Given two video clips Sa and Sb of length N, a straightforward definition of identity

could be formulated as follows.

Definition 5: Two video clips Sa and Sb of length N are identical if their

corresponding pixels of the corresponding frames are identical, i.e. the values of their

primary color components are equal:

() ()cyxtIcyxtIcyxNt ba ,,,,,,:,,,...,1 =∀=∀ .

In order to determine whether two clips are identical, one could compare every pixel

of every frame of Sa to the corresponding pixel of the corresponding frame of Sb.

Such notion of clip similarity, though valid, is impractical due to extremely long

computation time and lack of robustness to noise. Obviously, even clips of relatively

small length contain a very large number of pixels, and direct pixel comparison would

require a very large number of operations. Moreover, in most practical applications,

clips compared contain a certain amount of noise, which alters color components of

individual pixels. Therefore, we need to develop a more robust and computationally

simpler definition of video clip identity.

To accomplish this goal, we develop a number of video clip similarity metrics, which

allow us to determine how close in appearance any two clips are. The definition of

clip identity can then be derived as sufficient similarity, i.e. two video clips are

identical if they are sufficiently similar.

In the remainder of this section, we will frequently make use of color moments: mean

(M), standard deviation (S) and skew (K), which were defined in section 2.3. Earlier

in this work, we used pixel color components in the range of 0 to 255, and

consequently assumed color moments to have the same range. In this section, we will

adopt a range of 0 to 1, which simplifies some of the definitions.

118

3.2.2 Frame Similar ity Metr ics

Individual Frame Similarity Metrics

We generally express clip similarity based on the similarity of their corresponding

frames. The definition above implicitly contains a straightforward notion of frame

similarity. Specifically, it deems two frames identical if their corresponding pixels

are identical. This could be extended to define frame similarity.

Definition 6: Similarity of two frames fa and fb is inversely proportional to the

average pixel-wise difference between them:

() ()baba fflDiffFrameAvgPxffFrmSim ,1, −=α , (16)

where

() () ()−=
xyc

baba cyxtIcyxtI
N

fflDiffFrameAvgPx ,,,,,,
3

1
, . (17)

This notion of frame similarity has a number of shortcomings. First, it is

computationally intensive, as it requires a number of operations equal to the number

of pixels in the frames compared. More importantly, it is very sensitive to even slight

distortions of the compared frames. For instance, if one of the frames was shifted by

even one pixel with respect to the other, the resulting value of frame similarity may

be large, thus implying that the frames are dissimilar.

In order to alleviate this problem, we can represent video frames by means of global

image features. A global feature characterizes certain statistical property of an image,

such overall brightness or color composition, and is therefore more robust to local

changes and noise. Research in the fields of image processing and retrieval has

produced several global features, such as color histogram, texture, or color moments.

All these features could be considered intra-image characteristics, as they represent an

119

image by its internal properties. In addition, if an image is part of a video sequence,

and is preceded and succeeded by other images, inter-image features may be

determined. Most notably, one can estimate apparent motion between consecutive

images. Any of such features (or a combination thereof) may be used in measuring

frame similarity. The use of specific features depends on the application, and may be

determined by the computational complexity of the feature calculation. In the domain

of video retrieval, this aspect becomes particularly important, as the number of

individual images is very large. In this work we aim to detect repeated footage in a

live video broadcast, and so must be able to compute frame features in real time.

Therefore, we focus on the computationally simple features, such as color histogram

and color moments.

Color histogram representation divides the spectrum of values of primary color

components (usually the range of 0 to 255) into a number of smaller ranges, called

histogram buckets. The color histogram is the set of values representing the number

of pixels in the video frame whose color components belong to the corresponding

buckets. The size of the set of values is determined by the number of buckets. The

color moments representation may be thought of as an approximation of the color

histogram. The three primary moments: mean, standard deviation and skew are

computed for each of the three color components: red, green and blue. Each set of

moments describes a statistical distribution uniquely determined by their values, and

approximates the histogram for the respective color component. Due to the nature of

approximation, the color moment representation introduces certain error, as depicted

in Figure 102. On the other hand, color moments require only nine numbers to

represent a video frame, which is considerably more compact than the color

histogram representation. Considering this fact, we chose color moments as frame

representation.

120

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

Actual Values Model Approximation

Figure 102 An actual histogram and its approximation by a normal distr ibution with mean = 10

and standard deviation = 30.

Based on the choice of color moments for frame representation, we introduce the

following definition of frame similarity.

Definition 7: Similarity of two frames fa and fb is inversely proportional the average

color moment difference between them.

() ()baba ffmentDiffFrameAvgMoffFrmSim ,1, −=β (18)

Definition 8: Let Vx be the vector of color moments of frame fx:

(b)K (g),K (r),K (b), S(g), S(r), S(b), M(g), M(r),M V xxxxxxxxxx =

The average color moment difference is given by the following equation:

() ()bapba VVLffmentDiffFrameAvgMo ,
9

1
, = (19)

where Lp is the chosen distance metric given by

121

() () p

i

p

ibiabap VVVVL

1
9

1
,,, ��

���� −=
=

 (20)

Global frame feature representations have one potential shortcoming. Since they

represent the entire image by a small set of numbers, they certainly are incapable of

capturing every detail of the image content. Consequently, it may be possible for

pairs of images whose content is quite different to have very similar or even identical

feature representations. Specifically, the three primary color moments approximate

the histograms of the red, green and blue components of a video frame by a Gaussian

curve of a certain mean, standard deviation, and skew. One can easily imagine one

frame whose color composition is such that the color histograms are bimodal, for

example, as well as another one whose color histograms are Gaussian, as shown in

Figure 103. Such two frames would be represented by the same values of mean,

standard deviation, and skew. This issue may have significant impact of comparison

of individual frames. However, its impact is greatly reduced when entire sequences

of frames are considered (see section 3.2.3).

Figure 103 Different color histograms with identical mean and standard deviation

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

122

While Definition 7 provides more resilience to local distortions of the video frames, it

is still quite sensitive to global changes, such as increase or decrease in brightness. If

the two frames compared are identical, except that one has increased brightness, the

differences Va,i – Vb,i will be directly related to the difference in brightness.

Consequently, such two frames may be declared dissimilar.

Both of the problems presented above may be alleviated if the two frames compared

are considered in the broader context of the video clips they belong to. In the next

section we introduce frame similarity metrics which utilize this contextual

information.

Contextual Frame Similarity Metrics

Global differences in brightness or color intensity may be eliminated by normalizing

color moment values by their averages in the entire clip. Consider two clips Sa and Sb

which are identical in everything except brightness. Let us assume that the brightness

of Sb has been increased by certain amount � b. As a consequence, the color

components of all pixels in Sb will increase by that amount, and so will Mb(t,c) for all

colors.

() () bcyxtIcyxtI ab ∆+= ,,,,,, (21)

() () ()() () bctMbcyxtI
N

cyxtI
N

ctM a
xy

a
xy

bb ∆+=∆+== ,,,,
1

,,,
1

, (22)

If we now calculate the average values of color mean for the whole clip Sb, we obtain:

() () ()() ()
==

∆+=∆+==
bb N

t
aa

N

t
bb bcMbctM

N
ctM

N
cM

11

,
1

,
1

 (23)

Consequently, we can normalize the values of color mean of Sa and Sb by subtracting

their mean values for the entire clips, as follows:

() () () () () ()cMctMctMandcMctMctM bbbaaa −=−= ,,
~

,,
~

 (24)

Finally, by substituting (22) and (23) into (24) we obtain:

123

() () () () () ()ctMcMctMbcMbctMctM aaaaab ,
~

,,,
~ =−=∆−−∆+= (25)

If we now compute the FrameAvgMomentDiff(Sa, Sb) on the normalized values of

color moments we will obtain zero, and the two clips will be considered identical.

Therefore, we introduce the following definition.

Definition 9: Similarity of two frames fa and fb is inversely proportional to the

normalized average color moment difference between them, as follows:

() ()baba ffffvgMomentDiNormFrameAffFrmSim ,1, −=χ , (26)

where

() () p

i

p

ibiaba VVffffvgMomentDiNormFrameA

1
9

1
,,9

1
, ��

���� −=
=

 (27)

Moment normalization is very effective in eliminating global changes in brightness.

However, its direct use is limited by the requirement that precise clip boundaries be

known. Consider two identical clips A and A’ . The average color moment values are

also identical for both clips. However, if clip A’ was extended to include additional

frames from another clip B, the average moment values calculated for this new clip

A’B may be substantially different. As a result, the normalized moments for frames

in A and A’ will also differ, and the similarity between the two clips may not be

established.

Another way of utilizing contextual information to rectify the effects of global

changes is to consider inter frame differences in color moments. For every frame in a

video clip, we can calculate the first order difference (discrete approximation of the

first derivative) of all color moments as follows.

() () ()1,,, −−= tVtVtdV ixixix (28)

124

In this case, the values representing each frame depend only on the current frame and

the frame directly preceding it. This eliminates the requirement on precise clip

boundaries. Also, if the values of color moments change by a constant, the first order

differences remain the same, which allows us to formulate the following frame

similarity measure.

Definition 10: Similarity of two frames fa and fb is inversely proportional to the

average difference in color moment derivative between them, as follows:

() ()baba ffrivDiffvgMomentDeNormFrameAffFrmSim ,1, −=δ (29)

where

() () p

i

p

ibiaba dVdVffiffmentDerivDFrameAvgMo

1
9

1
,,9

1
, ��

���� −=
=

 (30)

For all of the frame similarity metrics presented in this section, we can define the

corresponding concept of frame match.

Definition 11: We say that frame fa matches frame fb
 according to the similarity

metric � if and only if FrmSim� (fa, fb) greater or equal to a predefined threshold.

() αα

α
reshFrmMatchThffFrmSimff baba ≥⇔= , (31)

The frame similarity metrics introduced in this section allow us to compare individual

video frames. In practice, we are mainly interested in comparing entire sequences of

frames, i.e. video clips. In the next section, we introduce the notion of video clip

similarity, and develop a number of corresponding metrics.

125

3.2.3 Video Clip Similar ity Metr ics

In order to identify repetitions of video clips in a large video sequence, we need a

way of comparing pairs of video clips so as to establish their similarity. In a

straightforward approach, one can compare all pairs of clips in the video sequence,

and declare repetitions for the pairs which are sufficiently similar, that is, matching.

For this purpose, we develop a number of clip similarity measures, which are

discussed in this section. We begin by generally classifying clip comparison

techniques. One can distinguish two approaches:

1. Frame-by-frame comparison, which consists in comparing corresponding

frames in the two clips involved, and aggregating the frame similarity over the

length of the clips.

2. Clip-wide representation comparison, which relies on features describing a

video clip as a whole. Such features may be directly compared to establish

clip similarity.

Although both techniques may be applied to complete clip comparison, only the first

is suitable for partial clip comparison. Given two clips SA and SB which share a

sequence of frames SAB, one can expect that the frames in SAB to be identical.

Conversely, a clip-wide features derived from SA is likely to be substantially different

from those derived from SB. Since in this work we are interested in detecting partial

clip repetition, we focus our attention on frame-by-frame comparison methods. First,

we discuss the problem of comparing complete clips, and present suitable similarity

metrics. Later, we address the issues of partial clip repetition and show how the

metrics may be adapted to deal with them.

Average Moment Difference

Using the color moment representation of video frames one can derive a clip

similarity measure from the total difference in moments between corresponding

frames.

126

Definition 12: Consider two video clips Sa and Sb of length N. Clip similarity between

them may be defined as the average absolute moment difference between their

corresponding frames:

() ()baba SSDiffClipMomentSSClipSim ,1, −=α , (32)

where

() ()
=

=
N

i

i
b

i
aba ffmentDiffFrameAvgMo

N
SSDiffClipMoment

1

,
1

, , (33)

and FrameAvgMomentDiff(fa, fb) is given by (19).

Definition of the FrameAvgMomentDiff allows for different distance metrics Lp to be

used. The value of p in the distance metric determines the relative impact of large

differences over small differences. Given clip Sa and its repetition Sa’ , a small

number of frames may differ substantially due to a number of factors, such as noise.

The impact of such isolated large differences on the average difference is more

pronounced for distance metrics with larger values of p. Therefore, in order to reduce

that impact we chose distance metric L1.

Two clips Sa and Sb match according to the average moment difference metric if

ClipSim� (Sa, Sb) is greater or equal to a threshold, i.e.

() αα

α
hreshClipMatchTSSClipSimSS baba ≥⇔≈ , , (34)

Matching Frame Percentage

The average moment difference metric described above makes use of the continuous

values of the average moment difference between frames. These values may be

quantized into two ranges by introducing a frame match threshold. As a result, for

every pair of corresponding frames, one can determine whether they match by

127

comparing the moment difference between them to the threshold. The percentage of

matching frames may then be used to measure clip similarity, as follows.

Definition 13: Given two video clips Sa and Sb of length N, the similarity between

them is measured by the ratio of the number of matching frames to the total number

of frames N, as defined by the following equation.

() ()
=

=
N

i

i
b

i
aba ffframeMatch

N
SSClipSim

1

,
1

,β , (35)

where

() ��
���� ≈=

Otherwise

ffifffframeMatch
i

b
i

ai
b

i
a

0

1,
β

 (36)

Analogically, two clips Sa and Sb match according to the matching frame percentage

metric if ClipSim� (Sa, Sb) is greater or equal to a threshold, i.e.

() ββ

β
hreshClipMatchTSSClipSimSS baba ≥⇔≈ , , (37)

Partial Similarity

Video clip similarity metrics presented so far dealt only with clips of precisely equal

length. In practice, the clips we need to compare almost always differ in length.

Even if an entire video clip was reused in a video sequence, it is likely that its

difference was altered slightly due to different transitions used to separate it from

other clips. In addition, if automatic temporal segmentation was used to obtain clips

to compare, the imprecision of its methods most certainly led to a change in the clip

lengths. And finally, news broadcast stations often reuse video footage in part rather

than in entirety. Consequently, the metrics introduced earlier could rarely be applied

128

directly. Instead, another measure of clip similarity is needed, which will allow us to

recognize partial similarity between video sequences.

Consider two video clips A and B, for which no temporal structure is available.

Either of the clips may consist of any number of shots, of which some may match

shots in the other clip. Theoretically, virtually any pattern of repetitions between the

two clips may exist. However, in practical situations, the pair of clips for which

partial similarity must be evaluated contains only one matching subsequence, which

is shown in Figure 104.

Figure 104 Example of partial repetition

Since the length of the subsequence or its location in clips A and B is unknown, one

must consider every possible pair of subsequences in order to find the best match,

which leads to the following definition.

Definition 14: Given two clips Sa and Sb of lengths Na and Nb respectively, partial

similarity between the two clips is equal to the maximal value of similarity between

any pair of frame subsequences Sa
g,g+n and Sb

k,k+n taken from Sa and Sb, respectively,

such that |Sa
g,g+n| = |Sb

k,k+n| = n and n exceeds the significant length threshold L:

()()nkk
b

ngg
a SSClipSimpSimPartialCli ++= ,, ,max αα ,

where

LnandnNknNg ba ≥−≤≤−≤≤ ,1,1

The value of the significant length threshold must be chosen in such a way that it

reduces the possibility of accidental similarity between different clips. As discussed

earlier in this section, depending on the frame similarity metric used, accidental

Clip B

Clip A

129

similarity between individual frames is possible. In practice, the likelihood of

accidental similarity decreases very fast with the increase in the number of

consecutive frames compared, and for sufficiently long sequence of frames is

virtually zero. For the remainder of this work we will use 30 frames as the value of

the significant length threshold.

3.2.4 Summary

In this section, we proposed a number of similarity metrics, which allow us to assess

similarity between individual video frames, as well as video sequences. We

developed clip similarity definitions for video sequences of exactly the same length,

and extended them to be applicable to partially similar sequences. We also

introduced the notion of frame and clip match, which we defined as similarity

exceeding a predetermined threshold. In the next section we present an overview of

repeated video sequence detection methods which utilize these concepts.

3.3 Overview of Methods

In the previous section, we discussed video clip similarity metrics, which provide the

foundation for repeated clip detection by means of comparing pairs of clips. Now we

will present an overview of the algorithmic methods of repeated clip detection.

In section 3.1.1, we defined the task of repeated clip detection as identifying all

subsequences of a query sequence Q in a video sequence S. We also introduced three

additional requirements that may be placed on the detection task: segmentation of the

query sequence, segmentation of the source sequence, and detection of complete

shots only. Depending on which of these requirements are present, different detection

techniques may be used.

Let us consider the detection task whose objective is to detect all complete repetitions

of the query sequence Q. Since sequence Q may be repeated starting at any frame of

the source sequence S, the detection algorithm must perform a clip comparison

130

between Q and a sequence of the same length starting at every frame in S. This

straightforward detection method becomes considerably more complicated, if one is

interested in detecting occurrences of all subsequences of the query Q. If no structure

is imposed on Q, it is possible that any subsequence q of Q may be repeated starting

at any frame of S. Consequently, identifying all such repeated occurrences requires

comparing every subsequence of Q to a subsequence of S of the same length starting

at every frame of S. This is the principle of the brute force repeated sequence

detection algorithm, which is discussed in section 3.4.

This daunting task may be somewhat simplified by introducing temporal structure in

the query and source sequences. If both Q and S are divided into distinct shots and

only complete repetitions are to be detected, then the detection method must simply

compare every shot in Q with every shot in S. This vastly reduces the number of

necessary comparisons. In addition, one can filter out pairs of shots of different

lengths without performing a detailed comparison. If one is interested in detection of

partially repeated shots, the problem becomes more complicated, but is still

considerably easier than detection of partial repetition of the unsegmented query clip

Q. The detailed discussion of the repeated shot detection method will be presented in

section 3.5.

Although the presence of temporal segmentation reduces the number of comparisons

necessary for repeated sequence detection, the straightforward shot detection

techniques are still too slow to perform exhaustive repetition detection in real-time on

commodity hardware, which is needed for story tracking in live news broadcasts.

Therefore, we need a technique to further restrict the group of shots that must be

directly compared. To accomplish this, we reach for a heuristic method based on

quantization and hashing of color moments, which is described in section 3.6.

131

3.4 Repeated Clip Detection Algor ithm

The repeated clip detection algorithm presented in this section is the most direct

implementation of video sequence comparison. It is the most time consuming of all

the methods presented in this chapter, but may be applied in the absence of temporal

segmentation results. The algorithm may be considered for both single and

exhaustive detection, and identifies both complete and partial repetitions.

Let us consider the single detection task in which only occurrences of the whole

query sequence Q are to be detected. For this task, the algorithm must compute the

video clip similarity metric between Q and a sequence of length |Q| beginning at

every frame of the source sequence S. If the two match according to the metric, a

repeat is reported, and the algorithm moves on to the first frame after the matching

clip. If not, the method tries the next frame in the sequence S. The pseudo-code

version of the algorithm is shown in Figure 105.

� ��� ������ �� � �����
�������������������

Function ExhaustivelyCompareSequence(Clip q, Clip s)
 ForEach frame in s
 ss = Clip(frame, frame + q.Length)
 similarity[frame] = ClipSim(q, ss)
 EndFor
 return similarity
EndFunction

Function DetectCompleteSequence(Clip q, Clip s)
 similarity = ExhaustivelyCompareSequence(q, s)
 For i = 0 to similarity.Length
 matches[i] = similarity[i] <= matchThreshod
 EndFor
 return matches
EndFunction

Figure 105 Complete sequence detection algor ithm

The remaining two detection tasks: single with partial repetitions and exhaustive are

conceptually quite different. The former aims to establish the similarity between the

query sequence Q and the source sequence S, whereas the latter focuses on

identifying all repeated subsequences of Q in S. Both tasks, however, may be

132

accomplished using very similar computational methods. The definition of partial

similarity requires that all subsequences of Q be considered and compared to all

subsequences of S, by computing a value of a clip similarity metric. After all such

comparisons have been performed, the maximum value of similarity metric is chosen

as the measure of similarity of Q and S. The exhaustive detection task also calls for

comparison of all subsequences of Q to all subsequences of S. Once this is done,

matching pairs are identified as those whose similarity exceeds a match threshold.

Hence, large portions of the respective algorithms are identical. Both algorithms are

presented in Figure 106 and Figure 107.

� 	���	��� �� � �����
�������������������

Function DetectPartialSequence(Clip q, Clip s)
 maxSim = 0
 For i = 0 to q.Length
 For j = i to q.Length
 qs = Clip(i, j)
 similarity = ExhaustivelyCompareSequence(qs, s)
 tmpMaxSim = Math.Max(similarity)
 maxSim = Math.Max(tmpMaxSim, maxSim)
 EndFor
 EndFor
 return maxSim
EndFunction

Figure 106 Par tial sequence detection algor ithm

� � �	�
��� ��� � �
�� � �����
�������������������

Function DetectAllSubsequences(Clip q, Clip s)
 maxSim = 0
 For i = 0 to q.Length
 For j = i to q.Length
 qs = Clip(i, j)
 similarity = ExhaustivelyCompareSequence(qs, s)
 For k = 0 to similarity.Length
 matches[i, j, k] = similarity[k] <= matchThreshod
 EndFor
 EndFor
 EndFor
 return matches
EndFunction

Figure 107 Exhaustive Subsequence detection algor ithm

133

Time Complexity

For each of the three algorithms, the central operation is the computation of the value

of similarity between two sequences of frames. Every such operation consists in turn

of a series of frame similarity evaluations. We consider the latter to be the atomic

operation of unit cost, and estimate computation complexity by the number of frame

comparisons required. The complete sequence detection algorithm requires |S|

comparisons of sequences of length |Q|, so its computational cost is ()QSO ⋅ . The

other two algorithms perform the same number of sequence comparisons for every

subsequence of Q. Since the number of such subsequences is given by ()12
1 −⋅ QQ ,

and the average subsequence length is Q2
1 , the total computational cost is

()3
QSO ⋅ . If one considers Q equal to S, and denotes their length in frames as n,

which for 24-hour video sequence exceeds 2.5 million, then the computational cost of

partial or exhaustive detection becomes an overwhelming ()4nO .

Given the complexity of the exhaustive sequence detection algorithm, it becomes

obvious that performing this task on live news video broadcasts in real-time is not

possible on commodity hardware. Consequently, we need to develop different

techniques that require less computation.

3.5 Repeated Shot Detection Algor ithm

3.5.1 Overview

In the previous section, we described a repeated sequence detection algorithm which

does not utilize temporal segmentation results. Estimation of computational

complexity of the algorithm showed that the problem quickly becomes intractable

with the increase in the length of the source and query sequences. In this section, we

demonstrate that using temporal segmentation, we can vastly reduce the overall

134

number of sequence comparisons that need to be performed. We present an algorithm

which compares sequences only at shot boundaries, and detects both complete and

partial shot repetitions.

3.5.2 Algor ithm

In the presence of temporal segmentation of both the query sequence Q and the

source sequence S, repeated clip detection consists in comparing all shots in Q to all

shots in S.

� �� �	��� �� ����
�������������������

Function RepeatedShotDetection(Shot[] queryShots, Shot[] sourceShots)
 For qi = 0 to queryShots.Length
 For si = 0 to sourceShots.Length
 repetitions[qi, si] = ShotSimilarity(queryShots[qi], sourceShots[si]) >= matchThreshod
 EndFor
 EndFor
 return repetitions
EndFunction

Figure 108 Repeated shot detection algor ithm

In the algorithm above, implementation of the ShotSimilarity function depends on

whether complete repetition is required.

Complete Repetition Detection

If only complete shot repetition is allowed, then calculation of shot similarity reduces

to a direct implementation of the clip similarity metric, i.e. comparing the two shots

frame by frame. In addition, even before the direct comparison is performed, one

must reject pairs of clips of different length.

� ��� ������ ����� ����	��� �����������

Function CompleteShotSimilarity(Shot q, Shot s)
 if (q.Length != s.Length) return false
 For i = 0 to q.Length
 clipMomentDiff+= FrameAvgMomentDiff(q[i], s[i])
 EndFor
 shotSimilarity = 1 – clipMomentDiff / q.Length
 return shotSimilarity
EndFunction

135

Figure 109 Complete shot similar ity algor ithm

Partial Repetition Detection

If partial repetition is allowed, then calculating shot similarity becomes somewhat

more complicated. According to the definition of partial similarity one must

determine the most similar pair of subsequences of the two shots. Thanks to the

nature of video shots, however, this task is relatively simple. In section 3.1 a video

shot is defined as a sequence of successive video frames taken from a single camera

working continuously. It turns out that this definition places an important restriction

on partial repetition between shots. In fact, there are only two distinct ways in which

any shot A may be partially repeated, which is conceptually illustrated in Figure 110.

Figure 110 Two distinct ways of par tial shot repetition

According to the shot definition, every frame f in the shot is immediately preceded by

the frame taken from the same camera directly before f, and succeeded by the frame

taken from the same camera immediately after f. Consider two shots

BA N
BB

N
AA ffBandffA ,,,, 11

�� == , and assume j
B

i
A ff = for some i and j,

i.e. the two frames were taken from the same camera the exact same time. If the two

frames are not the last ones in their respective sequences (i.e. i < NA and j < NB), then

we also have 11 ++ = j
B

i
A ff . Analogically, if neither of the frames is first in its

sequence (i > 0 and j > 0), then 11 −− = j
B

i
A ff . Hence, we can conclude that if two shots

Shot A’

Shot A

Shot A

Shot A’
Shortened or Extended Shot

Overlapping Shots Shot A’

Shot A

136

A and B contain an identical sequence of frames S, this sequence must begin one of

the shots and end one of the shots.

This reasoning implies that one can determine all potentially similar subsequences of

the two shots by sliding one of the shots over the other from left to right and taking all

pairs of overlapping sequences. One starts at the point where there is only one frame

of overlap, then the overlap increases, reaches the maximum value equal to the length

of the shorter of the two clips, and then decreases to a single frame on the other side.

This is depicted conceptually in Figure 111. In practice, in order to avoid accidental

similarity between very short subsequences, one usually requires that the overlapping

subsequence was at least L in length.

Figure 111 Par tial shot similar ity computation diagram

For every such overlapping subsequence, the value of clip similarity is calculated, and

the maximal value is taken to represent the partial similarity of the two shots. The

partial shot similarity algorithm in pseudo-code is shown below.

� 	���	��� ����� ����	��� �����������

Function PartialShotSimilarity(Shot q, Shot s)
 sigLenThresh = 30

 leftShiftBound = - (s.Length - sigLenThresh)
 rightShiftBound = q.Length – sigLenThresh

 bestMatch = 0.0
 bestMatchShift = 0
 bestMatchLength = 0

 For shift = leftShiftBound to rightShiftBound
 shift1 = shift > 0 ? shift : 0
 shift2 = shift < 0 ? shift : 0
 overlapLength = Math.Max(q.Length - shift1, s.Length - shift2)

Shot A

Shot A’

L L

137

 curMatch = CompleteShotSimilarity(
 Shot(start1 + shift1, start1 + shift1 + overlapLength),
 Shot(start2 + shift2, start2 + shift2 + overlapLength))
 If (curMatch > bestMatch)
 bestMatch = curMatch
 bestMatchShift = shift
 bestMatchLength = overlapLength
 EndIf
 EndFor

 return bestMatch, bestMatchShift, bestMatchLength
EndFunction

Time Complexity

If we assume that the complexity of the shot similarity algorithm (whether complete

or partial) is constant, then the overall complexity of the repeated shot detection

algorithm would be given by ()SQ ccO ⋅ , where cQ and cS are the number of shots in

the query sequence Q and the source sequence S, respectively. In practice, the cost of

calculating shot similarity is proportional to the length of the compared shots, and

depends on whether partial repetition is allowed. The complexity of calculating the

complete shot similarity is O(p), where p is the shot length, because a single frame

comparison must be performed for every frame of the shots in question. In addition,

if partial similarity is allowed, then complete sequence similarity must be calculated

at multiple offsets, whose number is proportional to the combined length of the shots

involved. Hence, the partial shot similarity algorithm complexity is O(p2).

Thus, the overall complexity of partially repeated shot detection is ()2pccO SQ ⋅⋅ . If

we consider sequences Q and S to be equal, and denote the number of shots they

contain as c, we obtain ()22 pcO ⋅ . While the number of shots c is proportional to the

number of frames n in the sequence, in a typical video news broadcast it is two orders

of magnitude smaller (c << n). Furthermore, the average shot length p is

independent of n (p = n/c). Consequently, the repeated shot detection method is

computationally less intensive than the repeated sequence detection algorithm

discussed in the previous section. Therefore, we conclude that the availability of the

138

results of temporal segmentation greatly simplifies the task of repeated footage

detection.

3.5.3 Impact of Segmentation Errors

Thus far in this section, we assumed availability of a perfect temporal segmentation

method. In practice, no such automated method exists (see Chapter 2). Therefore,

any repeated shot detection technique must deal with imprecision and errors

introduced by imperfect temporal segmentation. In this section, we discuss the

impact of imperfect segmentation on repeated shot detection.

Automated temporal segmentation methods introduce two types of imperfections

listed below.

1. Imprecise shot boundaries. Gradual shot transitions often do not have very well

defined boundaries, which makes it difficult to determine where a transition starts

and a shot ends, and vice versa. As a consequence, even completely repeated

shots may differ in length by a few frames.

2. Transition detection errors. At times, temporal segmentation fails to detect a

transition entirely, or reports a transition were none occurred. As a result, some

automatically reported shots may, in fact, be composed of more than one actual

shot, while some actual shots may be split into two or more reported shots.

The impact of imprecise shot boundaries is limited and relatively easy to deal with

due to two factors. First, since transitions between shots are usually quite short, the

error in detecting their boundary must by definition be small, and typically involves

only few frames. Second, transition boundary errors occur only for gradual

transitions, such as fades or dissolves. During these transitions, the frames close to

the transition boundaries are indeed very similar to the neighboring frames in the

surrounding shots. Consequently, if one compares shots whose boundaries have not

been precisely detected, one may inadvertently compare a small number of frames

belonging to an adjacent transition, but these frames are quite similar to the frames in

139

the nearby shot. Therefore, the similarity calculated between such shots should not

differ much from the actual similarity between the shots.

Hence, the algorithm for partial shot similarity may be applied without changes. In

fact, it helps overcome some of the segmentation errors. In contrast, the complete

shot similarity method must be slightly adjusted. Due to imprecise boundaries, even

two identical shots may differ in length by a few frames. In order to allow for such

shots to be recognized as identical, one must relax the requirement on equal length.

This can be done by introducing a threshold length � L by which two clips are allowed

to differ. In addition, in order to calculate the maximum value of shot similarity, one

can slide the two shots with respect to each other in a manner similar to the one used

in the partial shot similarity method within the bounds of +/- � L.

The other type of imprecision in temporal segmentation comes from errors in

transition detection, and presents a significant challenge for repeated shot detection

methods. Two types of errors may occur: a) omission of a true transition, and b)

introduction of a false transition. The former leads to two or more shots that are

combined into a single sequence (under-segmentation), while the latter results in a

single shot being split into two or more separate sequences (over-segmentation).

These two types have different influence on repeated shot detection, and will be

discussed separately.

First, consider the problem of over-segmentation. Assume shot A was erroneously

divided into two sequences SA1 and SA2 which now appear to be separate shots.

Assume also that shot A’ is a repetition of A, as depicted in Figure 112.

Figure 112 Example of over-segmentation with a single falsely detected transition

Shot A

SA1 SA2

Shot A’

140

If only complete repetition is allowed, then the similarity between shots A and A’ will

likely never be detected due to the difference in length between SA1 and A’ , as well as

SA2 and A’ . Therefore under-segmentation is a considerable obstacle for complete

repetition detection. In contrast, our partial shot similarity algorithm will report

similarity between both pairs SA1 and A’ , and SA2 and A’ , provided that the length of

SA1 and SA2 exceeds the significant length threshold. Hence, under-segmentation

does not pose a problem for the detection of partial shot repetition.

In contrast, under-segmentation proves to be more challenging. Consider four shots

A, B, B’ , and C, as presented in Figure 113, where B’ is a repetition of B. Assume

that transitions between shots A and B, as well as B’ and C, were not detected by

temporal segmentation, and as a result the four shots appear as two sequences AB and

B’C.

Figure 113 Example of under-segmentation with a single undetected transition

Let us examine the behavior of the complete repetition detection algorithm in this

situation. The algorithm first tests if the shot lengths are the same with the margin of

error of � L. Clearly, if the lengths of A and C differ by more than � L, this test will

fail. Moreover, even if the lengths of the combined shots were similar enough, the

complete shot similarity would likely be fairly low. If the similarity algorithm is

applied, it will compare corresponding frames in shots AB and B’C. It is unlikely that

either frames in A are similar to frames in B’ , or frames in B are similar to frame in C.

As a result, the difference between AB and B’C will be large, and no repetition will be

detected. Thus, the complete repetition detection algorithm performs very poorly in

the presence of under-segmentation.

In the same situation, the detection of partial shot repetition works very well. If one

examines the diagram in Figure 113, one observes that shot B closes the combined

Shot A Shot B

Shot C Shot B’

141

shot AB, and shot B’ opens the combined shot B’C. If shot B’ is a complete repetition

of B, the two shots match the type of subsequence that the partial shot similarity

method is designed to recognize. Hence, the repetition will be detected. On the

contrary, if shot B ends with a sequence of frames absent from B’ , or if B’ begins with

a sequence of frames absent from B, the similarity between them will not be

recognized. Analogically, a repetition between shots for which both surrounding

transitions have been missed will not be detected (see Figure 114).

Figure 114 Example of under-segmentation with two undetected transitions

In summary, imperfect temporal segmentation makes repeated shot detection more

difficult. The severity of its impact differs for different types of errors. Imprecision

in shot boundaries does not pose a problem, while over-segmentation and under-

segmentation are more difficult to deal with. In general, the methods of partial

repetition detection can handle these types of errors much better than complete

repetition techniques.

3.5.4 Summary

In this section, we presented our repeated shot detection algorithm, a repeated

sequence detection technique which takes advantage of the results of temporal

segmentation. We demonstrated that the availability of shot boundaries in both query

and source sequences allows us to significantly reduce the number of sequence

comparisons necessary to detect repetitions in the source video. Because sequence

comparison is a costly operation, this reduction constitutes a substantial decrease in

execution time. In addition, the division of video sequences into shots greatly

simplifies detection of partially similar sequences.

Shot A Shot B Shot C

Shot D Shot E Shot B’

142

Because automatic temporal segmentation methods are not perfect, we also

considered the impact of imperfections in the shot detection data on the working of

the algorithm. We examined the influence of different types of inaccuracies in

temporal detection. We showed that our method can deal well with imprecision in

the gradual transition boundaries. The errors of over-segmentation and

under-segmentation proved to be more challenging, and can be handled reasonably

well only by the partial repetition detection techniques. We concluded that our

method performs better in the context of over-segmentation, rather than under-

segmentation.

This allows us to draw a conclusion regarding our temporal segmentation methods.

The performance of these methods is measured by two factors: recall and precision.

Recall represents the percentage of true shot transitions detected by temporal

segmentation, and may be thought of as a measure of under-segmentation.

Analogically, precision stands for the percentage of true transitions among all

transitions reported by the segmentation, and may be regarded as a measure of over-

segmentation. Considering the greater difficulty in dealing with under-segmentation,

we are more interested in the recall than we are in precision. Therefore, when we

perform temporal segmentation for the purposes of repeated sequence detection, we

can fine tune the parameters governing the process so as to increase recall at the

expense of precision.

3.6 Hashing and Filter ing Algor ithm

3.6.1 Overview

In the previous section, we demonstrated that the availability of shot boundaries

allows us to significantly reduce the number of direct sequence comparisons, and

consequently greatly improve execution time. While the algorithms presented in the

previous section are fast enough for the task of interactive repetition detection, they

143

still are not fast enough for the exhaustive repetition detection on live news

broadcasts. If we examine one hour of typical television broadcasting, we will see

that it consists of hundreds of video clips. Some may be as long as one minute in

length, while others are as short as one second. Thus, if we temporally segment 24

hours worth of video, we might find as many as 10,000 video clips. If we attempt a

brute force video comparison approach to detect repeated video clips, we would need

to perform approximately 10,000 video comparisons for every new clip. To complete

this task in real time, we would need to make these comparisons in less than 10

seconds. This is not viable using current commodity computers.

Since the direct shot comparison is a costly operation, we seek to further reduce the

number of comparisons needed for detection of repeated shots. In this section, we

introduce a filtering method which allows us to effectively eliminate shots whose

similarity to a given shot can be ruled out. Naturally, this approach will only be

advantageous if the filtering can be performed much faster than the direct shot

comparison, which means the method must be very fast. In order to develop the

filtering method, we reach for a heuristic technique based on quantization and

hashing of color moments.

In the remainder of this section, we describe this technique in detail. First, we discuss

color moment quantization and its impact on video sequence similarity. Later, we

examine hashing as the means to reduce spatial requirements of our algorithm. We

follow, by presenting the complete shot repetition algorithm using filtering, and we

close by presenting time and spatial constraints of the algorithm.

3.6.2 Color Moment Quantization

In the effort to limit the number of direct shot comparisons, we want to find ways of

quickly ruling out similarity between pairs of shots. Two shots can certainly be

deemed dissimilar if they contain no (or very few) similar frames. Therefore, if we

can devise a method of quickly determining for a given shot, which other shots have a

substantial number of similar frames, then we can later compare this shot only to

144

those shots. The trick is to do it without having to compare pairs of frames one by

one.

To accomplish this goal, we employ a quantization technique. We observe that the

color moment representation of every frame may be considered a point in a 9-

dimensional space. The space is finite in size, because every color moment has finite

range of values from 0 to 255. If we divide the color moment space into a number of

disjoint 9-dimensional hyper-cubes, every frame can be uniquely assigned to one of

them. Hence, given any frame of the video sequence we can quickly determine which

other frames belong to the same hyper-cube. Such division of color moment space

can be performed by quantizing the values of all nine moments. Each hyper-cube is

then defined by the unique set of quantized color moment values. Also, a pair of

frames belongs to the same hyper-cube if the quantized values of all their color

moments are equal. Therefore, we can formally introduce the following definition.

Definition 15: Two frames fa and fb are q-matching if the values of their

corresponding color moments quantized with step qs are equal:

ibiab

q

a qVqViff ,,: =∀⇔≈ , where �� ����
=

qs

V
qV ix

ix
,

, (38)

We note that this definition of frame match is substantially different from the ones

introduced in section 3.2.2. Due to quantization of the color moment values, two

frames which differ by more than the quantization step will always be considered

non-matching. On the other hand, frames whose moments differ by less than the

quantization step may or may not be regarded as matching depending on their values.

Let us consider the average moment difference similarity metric, for instance, and

assume we have two pairs of frames whose color moment values are identical, except

for mean of the red component M(r). For frames fa, fb, and fc let the values of the

mean be: Ma(r) = 4.1, Mb(r) = 3.9, Mc(r) = 5.9. Clearly, frames fa and fb are more

145

similar than fa and fc. However, if we use quantization step qs = 2.0, we get

Ma(r) = 2.0, Mb(r) = 1.0, Mc(r) = 2.0, which means that frames fa and fc q-match,

while fa and fb do not. This artifact of quantization is not desirable and may cause a

small number of pairs of very similar frames to be deemed dissimilar.

One could attempt to derive a video sequence similarity metric from the definition of

frame q-match analogically to ClipSim� in Definition 13. However, due to the artifact

of quantization described above, such a metric would be inadequate because the value

of sequence similarity it produces depends not only on the difference in color

moments between the corresponding frames, but also on the relative distance of those

moments from the quantization thresholds.

Therefore, another video sequence similarity metric must be developed. We will

devise such a metric from the total number of q-matching pairs of frames, regardless

of their temporal ordering. In order to do it, we first make the following observation.

Color moments of individual frames in a video sequence tend to change gradually

over time. As a result, the moment values usually differ slightly from frame to frame.

Consider two shots A and B, such that BA
β
≈ . If there exists a pair of frames

i
B

i
A fandf , such that i

B
i
A ff

β
≈ , but i

B

q
i
A ff ≠ , we can reasonably assume that there

exists a frame f j in shot B such that j
B

q
i
A ff ≈ , and conversely there exists a frame f k

in shot A such that j
B

q
k

A ff ≈ . These assumptions are heuristic in nature, and we are

not guaranteed that for every frame in shot A we can find a q-matching frame in shot

B, and vice versa. However, the probability of finding such q-matching pairs of

frames increases with the value of the quantization step. This relationship is depicted

in Figure 115, which shows the number of q-matching pairs of frames as a function of

the quantization step for a sample video sequence and two of its repetitions.

146

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6

Quantization Step

P
er

ce
n

ta
g

e
o

f
q

-M
at

ch
in

g
 F

ra
m

es

Figure 115 Dependency of the sequence q-similar ity on the quantization step

The discussion above allows us to formulate the following definition of heuristic

video sequence similarity, called q-similarity.

Definition 16: Given two video sequences Sa and Sb of length N, the q-similarity

between them is equal to the total number of q-matching pairs of frames, as defined

by the following equation.

() ()
=

=
N

i

i
b

i
abaQ ffhqFrameMatcSSClipSim

1

,, , (39)

where

() ��
���� ≈=

Otherwise

ffifffhqFrameMatc
i

b

q
i

ai
b

i
a

0

1, (40)

Clearly, q-similarity between any given pair of video sequences depends on the

quantization step chosen. If the value of the quantization step is too large, quite

147

dissimilar frames will q-match, and consequently very different sequences may score

a high q-similarity. Conversely, if the value is too small, many similar frames will

not q-match, and so some repeated video sequences may not be very q-similar. In

fact, the value of quantization step should be closely related to the value of the frame

match threshold chosen for the clip similarity metric (ClipSim�).
The goal of quantizing color moments for video frames is to allow us to filter out

dissimilar pairs of clips without directly comparing them frame by frame. So far in

this section, we discussed quantization and q-similarity in abstract terms. Now we

turn to the method which will allow us to perform filtering based on quantized color

moments. First, we note that given the definition of q-similarity between video

sequences, we can establish a threshold on q-similarity, and for every pair of video

sequences declare them dissimilar (or non-q-matching) if their q-similarity is below

the threshold. We could take every pair of video sequences and calculate their q-

similarity. This, however, would not be any faster than directly calculating similarity

between all pairs of sequences.

Instead, the advantage of using color moment quantization to assign frames to unique

hyper-cubes lies in the fact that this operation may be performed once only for each

frame. Namely, one can store a list of frames for every hyper-cube in memory.

Later, when detecting repetitions of a certain shot A, one can check the list of frames

assigned to every hyper-cube that contains at least one frame from shot A.

Combining frames from all these lists, one can quickly establish which shots in the

long video sequence q-match shot A. The actual frame-by-frame comparison may

then be performed only on shot A and all q-matching shots found. Assuming that the

number of q-matching shots is substantially smaller than the total number of shots in

the sequence, we conclude that the number of direct comparisons decreases

substantially, and so does the execution time. Detailed analysis of the achievable

speed-up is provided in section 3.7.

It is clear that in order to accelerate repeated shot detection by using this filtering

mechanism, we need to store lists of frames assigned to hyper-cubes of the quantized

148

space. However, if we consider quantization of color moments with step 2.0, we can

calculate that in the 9-dimensional space, the number of hyper-cubes is given as:

() 18639

2
1 102.92256 ∗≈=∗=H

Obviously, storing a list of frames for every such cube would exceed memory

capacity of any currently available computer. However, the number of frames in a

24-hour video sequence recorded at 30 fps is only on the order of 106. Therefore, a

vast majority of the hyper-cubes are empty, and no data needs to be stored for them.

Hence, one can achieve a high degree of storage requirement compression if memory

is allocated only for the non-empty hyper-cubes. Clearly, many dynamic memory

structures could satisfy this requirement. Not all of them, however, provide direct

constant-time access to data, which is crucial in making the filtering algorithm fast.

One data structure which satisfies both criteria is hash table, which proves ideal for

our purposes. The constant-time access to the appropriate hyper-cube for any given

frame is available by means of computing a hash value of the quantized moments of

this frame. This hash value serves as an index to a flat array. The size of this array is

proportional to the total number of frames in the sequence, and is therefore many

times smaller than the total number of hyper-cubes in the color moment space. The

performance of hash table depends on the properties of the hashing function, which

will be discussed in the next section.

3.6.3 Color Moment Hashing

A number of techniques have been developed for hashing images and video clips to

improve the performance of image and video retrieval [Chi01a, Oos01, Sab95].

Image hashing has also been used in image watermarking applications to uniquely

identify images for authentication purposes [Kal01]. Given the space/time constraints

on exhaustive repeated sequence detection, the constant time insertion/lookup

provided by image hashing makes it an ideal solution for our application.

149

The practical performance of hash table algorithms depends on the properties of the

hash function used to generate array indexes for the elements of a given data set.

Indeed, the very premise of constant-time insertion and lookup is dependent on the

distribution of the values generated by the function. For a given data set, in which

every element is represented by a certain key, an optimal hash function generates a

unique index for every unique key. In the past, much research has been devoted to

developing optimal hash functions for a variety of applications, and numerous

classical solutions exist. A good exposition of the basic hashing algorithms may be

found in [Knu97], which also provides additional references for more advanced

hashing techniques.

In this work, the data set is the sequence of video frames, each represented by the

vector of quantized color moment values, which serves as the key. We need to devise

a hash function which will map this set of keys into a set of indexes into an array. In

order to fully realize the potential savings in execution time, we need a good hash

function. However, we are not concerned with devising an optimal function, but

rather a computationally simple function of satisfying quality. We aim to create a

function which distributes the unique vectors of quantized color moments

approximately evenly between the array entries.

Pua [Pua02] devised a hashing function which relied on a string representation of the

frame color moments. He first quantized the nine color moment values with step 10

to integers in the range of 0 to 25. Quantized moment values for each video frame are

then converted to their string representation and concatenated to create fixed length

character strings. The hash value for the given frame is calculated by multiplying the

ASCII values of all characters in the string.

The conversion of integer moment values to strings in Pua’s method is unnecessary.

The operation is rather expensive computationally, and does not improve hash value

distribution. Therefore, in this work we employed a more straightforward approach.

In order to obtain a hash value for a given frame, we calculate the product of the

quantized moment values. To avoid multiplying by zero, we add one to every

150

quantized value before multiplication. In addition, we multiply the value of each

moment by its position in the moment vector, which introduces a difference in hash

value between moment vectors with the same set of values in different order. The

complete hash function is given by the following formula:

()∏
=

+⋅=
9

1

mod1
i

i izehashTableSqVihv (41)

Experiments is section 3.7.2 demonstrate that the hashing function posses the desired

distribution properties for a typical sequence of video frames.

3.6.4 Algor ithm

Our hashing and filtering repeated sequence detection algorithm consists of four

major components (see Figure 116): moment quantization, video frame hashing,

video sequence filtering, and video sequence comparison. In the first step we

quantize color moments for every frame of the source video sequence. We then insert

all frames into the hash table according to the hash value calculated for their

quantized color moments. In the sequence filtering phase, we identify all potentially

similar video sequences. Finally, in the last step we directly compare pairs of

sequences to determine if they are truly matching. The remainder of this section

describes the components of our algorithm and data structures in more detail.

Figure 116 Hashing and filter ing repeated sequence detection algor ithm diagram

Moment Quantization

Frame Hashing

Sequence Filtering

Sequence Matching

151

Color Moment Quantization

In this phase of the algorithm, we uniformly quantize color moment values for every

frame in the video sequence. As discussed in section 3.6.2, the quantization step was

chosen in relation to the frame match threshold, and determined as follows:

ThresholdframeMatchqs ⋅= 2 (42)

Frame Hashing

In order to perform hashing on a video frame level, we reuse the nine color moments

which we calculated prior to video segmentation. For every frame, we compute the

hash value according to (41), and store the frame number in the hash table slot

according to the hash value. Since we perform repeated sequence detection on a 24-

hour news broadcast at 30 frames per second, there are 1440 * 1800 = 2,592,000

video frames in our source video. Hence, the storage requirement on our hash table

of video frame moments is substantial.

Our hash table must provide space for at least 2.5 million frames. In addition, we

need to handle multiple frames with identical hash values. Such duplicate frames

may be the result of either moment quantization or frame hashing. In the first case,

we encounter truly duplicated frames. In the second, a collision occurs due to non-

unique mapping of the hash function. Regardless of the cause, the hash table must be

able to accommodate multiple entries with the same hash value. This can be done

using one of the two methods: separate chaining, multiple probing. While separate

chaining is often the preferred technique, it proved less desirable in this case due to

the overhead of dynamic memory handling. First, the amount of data stored for every

frame is very small, i.e. only the frame number. Therefore, the cost of using pointers

in the dynamically linked lists required for separate chaining effectively doubles the

size of the structure. More importantly, the linked list entries must be allocated

dynamically, which incurs the overhead of memory management. Taking these

factors into account, we decided to use linear probing to handle duplicate frames. In

152

order to alleviate problems with congestion, we allocated approximately three times

as many entries as there are frames in the source sequence: 10,000,001.

Experiments show (see section 3.7.2) that the average number of frames in a single

hash table bucket is 6.7, while the largest bucket contains over 1000 frames. Clearly,

this distribution is non-uniform, which introduces time jitter in the amount of time

needed to process individual video frames, but our overall performance is still well

within real time constraints.

Video Sequence Filtering

In this phase of the repeated shot detection process, we determine the pairs of shots

with a potential for a match, and eliminate all others. To this end, we examine all

shots in the query sequence one at a time, and find all shots in the source sequence

whose q-similarity to the given query shot exceeds a predetermined threshold. We

maintain a shot q-similarity counter array with a value for every shot in the source

sequence, as well as a Boolean array of encountered frames with an entry for every

frame of the query shot. For every frame in the query shot that has not been

encountered, we obtain the list of q-matching frames from the hash table. This is

done by first getting the list of all frames in the same bucket in the hash table, and

removing those whose quantized moments are different (i.e. the results of collisions).

We count the number of q-similar frames which came from the query shot, as well as

calculate the number of frames that came from each source shot. The entry of every

source shot in the q-similarity counter array is increased by the minimum of the

number of q-similar frames of the query shots and the number of q-similar frames of

the source shot. In addition, every q-similar frame of the query shot is marked as

encountered. This procedure guarantees that every q-similar frame is counted only

once. It also ensures that very still source shots do not receive artificially high q-

similarity scores, which could otherwise occur if many of their frames (all q-similar

to each other) shared a hyper-cube with at least one frame of the query shot. Once

this process is performed for every frame of the query shot, the q-similarity counter

153

array contains q-similarity scores for every shot in the source sequence. At this point,

all source shots whose q-similarity is less than the predetermined threshold are

removed.

In the next stage, if only complete shot repetitions are allowed, then we further

narrow down the list of q-similar source shots by imposing a restriction on the length

of the shot. We eliminate all source shots whose length does not match that of the

query shot. To account for imprecision in shot boundary detection, we allow a

difference in length of � L. On the other hand, if partial repetition is permitted, no

further restrictions are imposed.

Once the list of source shots has been filtered, we proceed to directly compare the

remaining source shots to the query shot.

Video Sequence Matching

After the completion of the previous phase, the list of pairs of shots is reduced to only

the q-matching pairs (Qgh, S jk). In this final step, the sequences Qgh and S jk are

compared using the complete or partial shot similarity algorithms described in section

3.5.2. If their similarity exceeds the predefined match threshold, then the shots are

reported as matching, and S jk is considered a repetition Qgh.

3.6.5 Time and Space Considerations

The video hashing and filtering method we proposed offers very significant reduction

of processing time at the expense of increasing the algorithm’s spatial requirements.

In order to achieve desirable performance, the size of the hash table must exceed the

number of frames by a factor of three. In our experiments, we operated on a 24-hour

video sequence.

Increase in sequence length requires an increase in memory size. In order to search

longer sequences for repetitions, we must impose a search window of certain length.

154

This window can slide along the video sequence. We can remove frames that are

outside of this window to accommodate new incoming frames.

3.7 Exper iments and Discussion

In this section, we discuss the results of several experiments we conducted to

establish certain parameters of our algorithms, critically examine our assumptions, as

well as evaluate the performance of our methods. We begin by testing our

assumption that corresponding frames of repeated video sequences have very similar

color moments. We then analyze the behavior of different clip similarity metrics

introduced in section 3.2.3 in the context of video news broadcasts. Later, we analyze

the properties of quantization and hashing using both similarity metrics. We end with

the discussion of the execution time reduction due to the filtering process, and

evaluation of the overall performance of our detection algorithm.

All experiments were done using the 24-hour video sequence recorded on a typical

day of the CNN News broadcast. In order to minimize the influence of on-screen

captions, all video frame features were calculated using only the top 75% of the

pixels in the frame.

3.7.1 Clip Similar ity Metr ics

In the previous section, we considered repeated sequence detection based on raw

color moments. This approach is consistent with the assumption that video sequences

taken from the same source do not undergo significant global changes or degradation,

which we adopted in the introduction to this chapter. In this section, we test this

assumption, and consider other similarity metrics and their application in our

techniques.

155

Metric Analysis

First, we compare the color moments of several repetitions of the same video clip.

We found that in the majority of repetitions, the moment values for the corresponding

frames in the matching clips are very similar. Occasionally, however, when the clip

is used in a different news program, the overall brightness differs somewhat, which is

illustrated in Figure 117. This issue was discussed in section 3.2.2, where we also

proposed to use a different similarity metric to deal with this problem. We showed

that for every frame in a given clip, one can normalize each color moment by

subtracting the average value of that moment calculated over the entire clip.

Similarity between two clips may then be measured by the difference in normalized

moments between their corresponding frames. We showed that this similarity

measure is invariant to global changes in brightness.

0

20

40

60

80

100

120

23
3

23
6

23
9

24
2

24
5

24
8

25
1

25
4

25
7

26
0

26
3

26
6

26
9

27
2

27
5

27
8

28
1

28
4

28
7

29
0

29
3

29
6

29
9

30
2

30
5

30
8

31
1

31
4

31
7

32
0

32
3

32
6

32
9

33
2

Red1 Green1 Blue1 Red2 Green2 Blue2 Red3 Green3 Blue3

Figure 117 Mean of red, green, and blue components for 100 frames of a repeated clip

Direct application of this similarity scheme requires information about precise clip

boundaries, so that average moment values may be computed correctly. Otherwise,

normalization by an average value computed over a clip boundary would most likely

lead to undesirable results. For example, consider adjacent clip pairs A and B, and A’

156

and C, in which A’ is a repetition of clip A. If the average moment values were

computed from the start of clip A to the end of clip B, and from the start of clip A’ to

the end of clip C, they will be influenced by the color moments of frames in clips B

and C, which may be very different. Consequently, the normalized moment values

for the frames in clips A and A’ would be dissimilar. Therefore, in the absence of

precise clip boundaries, the use of normalized moments is limited.

Moreover, if one is interested in detecting partial clip repetitions, moment

normalization is not straightforward, even when clip boundaries are known. Consider

clip A and its shorter version A’ . If the sequence of frames of clip A that are absent

from A’ is considerably different in color composition than the frames present in A’ ,

then the average moment values computed for A and A’ will differ substantially. As a

result, normalized moments for frames in clips A and A’ will be quite dissimilar.

Therefore, in order to apply moment normalization in the context of partial clip

repetition with uncertain clip boundaries, one needs to alter the metric’s definition.

Instead of computing average moment values over entire clips, one can impose a

window of size 2w + 1 around every frame in the video sequence, and determine the

average moment values for that window. The normalized moments for a given frame

can be obtained by dividing its moment values by the average moments for the

surrounding window. This approach is illustrated in Figure 118, which shows

normalized mean values for color components of three repetitions of the same clip.

One can easily see that the shift in moment values due to the change in brightness has

been eliminated.

157

-15

-10

-5

0

5

10

15

23
3

23
6

23
9

24
2

24
5

24
8

25
1

25
4

25
7

26
0

26
3

26
6

26
9

27
2

27
5

27
8

28
1

28
4

28
7

29
0

29
3

29
6

29
9

30
2

30
5

30
8

31
1

31
4

31
7

32
0

32
3

32
6

32
9

33
2

Red1 Green1 Blue1 Red2 Green2 Blue2 Red3 Green3 Blue3

Figure 118 Normalized mean of red, green, and blue components for 100 frames of a repeated

clip

This outcome indicates that the normalized moment difference metric – even in its

modified form – may be suitable for detection of repeated video sequences. In order

to compare the practical performance of the similarity metrics based on raw moment

values and their normalized counterparts, we conducted another experiment in which

repetitions of the same query clip were detected using the brute force method. The

clip chosen for the experiment is 10 seconds long, and is shown in full or in part 5

times in the 24-hour video sequence. The start times of all occurrences are shown in

Figure 119. With the exception of the 4th repetition, all matching sequences are at

least 5 seconds long. The 4th sequence – although also 5 seconds in length – matches

the query clip on only the last 2 seconds. The last sequence is slightly darker than the

query clip. In addition, the query sequence is shown several times as picture-in-

picture in a smaller window, often partially occluded by a view of an anchor person

or an interviewee. Such occurrences are difficult to classify as repetitions of the

query sequence, but they cannot be dismissed as false positives either.

In order to detect these repetitions, the brute force algorithm was run on the source

sequence. The algorithm was configured to report all similar sequences for which the

158

number of matching frames was equal to at least 30 with the frame match threshold

equal to 2.0. With these parameters, the raw-moment algorithm returned a reasonable

number of matches. In contrast, the normalized moment difference metric indicated

over 50,000 matching sequences. We adjusted the frame match threshold 0.5, and

increased the minimal number of matching frames to 120. The results of repetition

detection with these parameters are depicted in Figure 119 and Figure 120. While the

raw moment similarity reported all five occurrences of the query sequence, the last

detection must be regarded as accidental. The sequence at 22:54:36 actually matches

the query clip on over 8 seconds (240 frames), but only 36 frames match according to

the metric. The normalized moment metric indicated seven repetitions, three of

which are the picture-in-picture versions of the query clip. The other four are the

main screen repetitions of the query sequence. Finally, the normalized moment

metric misses the 4th repeated sequence, which matches the query clip on only 2

seconds.

0

100

200

300

400

500

600

700

10:37:02 11:36:35 11:53:14 12:39:20 22:54:36

Figure 119 Sample clip repetitions detected using raw moment difference metr ic

159

0

100

200

300

400

500

600

700

10:37:02 11:36:35 11:53:14 20:16:13 21:00:59 22:42:11 22:54:36

Figure 120 Sample clip repetitions detected using normalized moment difference metr ic

From these observations, we can derive a number of conclusions regarding the

applicability of the two metrics for repeated sequence detection in news broadcasts:

1. Repetitions of video sequences with somewhat changed global characteristics,

such as brightness, do occur. If the change is substantial, the raw moment

metric will not detect a match. On the other hand, normalized moment metric

handles these types of repetitions very well.

2. Normalized moment difference metric performs poorly if the overlap between

the original clip and its repetition is small. Since the moment averages are

calculated regardless of clip boundaries, their values may be determined by

frames belonging to more than one clip. Specifically, if a frame f lies within

w frames of a clip boundary, then its normalized moments will be affected by

frames in the current clip, as well as the previous or next clip. Consequently,

frames which belong to repeated clips but are close to clip boundaries may

have different normalized moment values. However, assuming that w is small

in comparison to the clip length, we conclude that for the majority of the

160

frames in the clip, the normalized moment values will be calculated correctly,

and will yield the same values for repetitions of the same clip.

3. Because color composition of consecutive frames in a single clip usually

changes in a gradual manner, the normalized moment values tend to be

relatively small for a vast majority of frames in a video sequence. If the

content of a sequence of frames does not change much over time, then the

average color moments for this sequence are almost equal to the moment

values of individual frames. As a result, the normalized moments are very

close to zero, as shown in Figure 121. This in turn leads to difficulties in

discerning between different clips, especially if they are relatively still. Even

if the original moment values for frames in such clips may have been

substantially different, their normalized values may be very small and quite

similar.

-15

-10

-5

0

5

10

15

27
26

27
29

27
32

27
35

27
38

27
41

27
44

27
47

27
50

27
53

27
56

27
59

27
62

27
65

27
68

27
71

27
74

27
77

27
80

27
83

27
86

27
89

27
92

Red Green Blue

Figure 121 Normalized mean for red, green and blue components of a very still clip

4. The normalized method indicates repetitions in the picture-in-picture mode.

This intriguing outcome is the result of the fact that the remainder of the

161

screen is still, and thus the differences in color moments are mainly due to

changes in the clip.

Summarizing these conclusions, we note that the normalized moment difference

metric outperforms the raw moment version in detection of somewhat altered

sequences. However, it is not suitable for detection of still clips.

In section 3.2.2, we suggested another similarity metric invariant to global color

changes in video, which relied on comparing first order differences of color moments.

In this method, one calculates the difference in color moments between pairs of

consecutive frames. The advantage of this approach is that it calculates correct values

for all frames except those directly after a clip boundary. However, the color

moments tend to differ very little between consecutive frames. As a consequence, the

first order differences used in this method are even smaller than the normalized

moment values, and thus the metric is even less useful for still clip comparison.

In view of the conclusions presented above, we can divide video sequences into two

groups: static and dynamic. Static sequences contain little motion or other changes,

and are characterized primarily by their color composition. On the contrary, the

content of the dynamic clips changes considerably, and thus the clips are better

represented by the change in color composition. The raw moment similarity metric is

designed to measure color composition, and so is better suited for static sequences,

whereas the normalized metric emphasizes similarity in the color composition change

patterns.

Video news broadcasts certainly contain both dynamic and static clips. The former

often appear in commercial sequences, as well as certain news content shots, while

the latter are typical of anchor persons, interviews and studio settings. Therefore it is

important that the similarity metric used was able to deal effectively with both types

of shots. As we discussed above, the similarity metrics relying on changes in frame

composition are ill-suited for still shots. Consequently, we chose to use the raw

162

moment metric for repeated sequence detection. In the next section, we examine the

practical performance of this metric in detecting repeated sequences in video news.

Raw Moment Metric Performance on Video News Broadcasts

In order to assess the accuracy of the raw moment similarity metric we conducted a

set of shot repetition detection experiments using a group of sample video clips. We

divide the pool of clips into three categories: commercials, studio clips, and news

content clips. Each of these three groups is different in nature and has a distinct

pattern of repetitions in a typical news broadcast. Consequently, we performed

separate tests for each of the groups. This section will describe in detail the results

obtained for news content shots, as the accuracy of their detection is essential for

effective story tracking. The evaluation for the other two groups will be discussed

briefly.

For the detection of repeated news content shots a set of 50 representative shots was

chosen from a 24-hour broadcast of CNN News. The shots varied in length from 60

frames to over 1000 frames, as well as differed in the amount of motion. Each of the

selected shots was compared to every shot in the entire broadcast using the repeated

shot detection algorithm described in section 3.5. The ground truth for the

experiment was established manually, and the performance was measured using recall

and precision, defined as follows.

broadcast the in A matching shotsall of number

A matching shotsreportedcorrectly of number
Rrecall AA == (43)

A matching as reported shotsall of number

A matching shotsreportedcorrectly of number
Pprecision AA == (44)

The two measures were combined into a single value of utility according to (9) with

� = 0.5. Since the accuracy of the metric depends on three parameters: significant

length threshold, frame match threshold, and clip match threshold, we used different

values of each parameter to establish the optimal settings. The results of the

163

experiment for different parameter values are presented in Table 8. One can see that

the repetition detection is the most accurate if the metric is used with frame similarity

threshold of 3.0, and clip similarity threshold set to 0.5. The values of recall and

precision as the function of frame similarity threshold are depicted in Figure 122.

 Frame Similarity Threshold

 5.0 4.0 3.0 2.0 1.0

0.25 48.50% 64.30% 79.28% 88.64% 78.44%

0.50 60.28% 72.06% 90.22% 87.47% 77.47%

Cl
ip

 S
im

ila
rit

y
Th

re
sh

ol
d

0.75 66.53% 75.97% 89.41% 87.23% 74.60%

Table 8 Raw moment metr ic per formance measured by the utility value

Subsequently, we ran the same set of tests using the significant length threshold L of

60 frames. The results we obtained were equivalent to the ones presented in Table 8.

Therefore we chose L = 30 frames as the optimal significant length threshold, because

it allows for detection of partially repeated shots of smaller length.

The outcome of these experiments can be summarized, in the following way. Two

shots are considered partially matching if they overlap on at least 30 frames, out of

which at least 50% differ in moments by at most 3.0.

164

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5.0 4.0 3.0 2.0 1.0

Recall Precision Utility

Figure 122 Raw moment metr ic per formance for the clip match threshold of 0.5 as a function of

the frame match threshold

A similar experiment was performed on a set of typical commercial shots. Because

commercials are always shown on the full screen, the color moment values are not

influenced by on screen captions. Consequently, moment values differ only slightly

between repetitions and the detection attains high recall (over 90%) even with very

small values of the frame match threshold. Precision values were found to be equally

high (over 90%) for frame match threshold of 1.0 through 3.0. Therefore, the raw

moment metric can be effectively used to detect repetitions of commercials with the

same parameter values as for news content sequences.

While commercials and news content clips exhibit certain similarities in the repetition

pattern, studio sequences are characterized by very different properties. Studio shots

are always filmed live, and are virtually never repeated in the news broadcast. The

exceptions to this rule are a few late night news shows which are usually re-broadcast

a few times throughout the night, but these are of no particular interest for story

tracking purposes. As a result, studio and anchor clips do not repeat in the strict sense

provided in Definition 4. On the other hand, different clips of this type shown during

the same news program are often visually very similar. Clearly, one can always

165

identify the original query clip in the source sequence, because the moment values of

its frames are identical to the ones in the query clip. Thus recall of 100% is always

attained. One can also obtain 100% precision by lowering the frame match threshold

to zero, thus eliminating all other sequences except the original query clip. In

practice, the optimal frame match threshold value determined above leads to

substantially lower precision. This issue represents a weakness of the similarity

metric and has an adverse effect on story tracking, which will be discussed in Chapter

4. In that chapter we will also propose a method which utilizes the locality of such

pseudo-repetitions to alleviate this problem to a certain extent.

Summarizing, we can say that the raw moment metric can be used to accurately

match both commercial sequences and news content clips. The best accuracy was

achieved with significant length threshold of 30 frames, frame match threshold of 3.0,

and clip match threshold of 0.5. The same parameters used for anchor and studio clip

matching result in low precision, which is cause by visual similarity of this type of

sequences.

3.7.2 Quantization and Hashing

In order to verify our assumptions regarding the properties of quantized color

moments, we examined the statistical distribution of video frames among the hyper-

cubes of the quantized moment space. The experiment we conducted demonstrates

that the frame distribution is approximately uniform, with a vast majority of the cubes

containing a very small number of frames. In the experiment we used the

quantization step determined by (42) as twice the value of the frame match threshold.

The best value of this threshold was established experimentally in section 3.7.1 as

3.0. Thus, the value of 6.0 was selected for the quantization step. We performed

quantization of a 24-hour video sequence, which contained a total of 2,589,052

frames. Prior to quantization, all monochrome frames were removed from the

sequence, leaving 2,563,990 frames to be quantized. Figure 123 depicts a histogram

of frame distribution between the hyper-cubes of the quantized space. The histogram

166

shows that over 50% of all cubes contained only single video frame, while close to

90% held 7 frames or less. The average number of frame per hyper-cube was 6.65

with the standard deviation of 47.39.

Cube Fill Histogram

51.34%

23.82%

11.99%

6.44%

3.30%
1.69% 0.82% 0.37% 0.15% 0.06% 0.02% 0.01% 0.00% 0.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1

2
to

 3

4
to

 7

8
to

 1
5

16
 to

 3
1

32
 to

 6
3

64
 to

 1
27

12
8

to
 2

55

25
6

to
 5

11

51
2

to
 1

02
3

10
24

 to
 2

04
7

20
48

 to
 4

09
5

40
96

 to
 8

19
1

81
92

 to
 1

63
83

Number of Frames per Cube

N
u

m
b

er
 o

f
C

u
b

es

Figure 123 Histogram of frame distr ibution between hyper-cubes of the quantized space

(step = 6.0)

The significance of this result lies in the fact that close to 90% of video frames share

hyper-cubes with a very small number of other frames. This implies that most video

frames are q-similar to very few other frames in the sequence, and as a result q-

similarity allows us to effectively discriminate between video frames, as well as video

sequences.

A similar experiment was performed to evaluate the quality of the color moment

hashing function. We examined the distribution of video frames into hash table

buckets with respect to the number of collisions. In this case a collision occurs if

frames with different quantized color moments are placed in the same hash table

bucket. If the average number of collisions is high, it may adversely influence the

167

hash table performance, and consequently slow down the shot matching process. In

our algorithm we utilize a hash table with 10,000,001 entries. In this experiment we

hashed the same 24-hour video sequence of 2,589,052 frames using the hash function

described in section 3.6.3. We observed a total number of 278,507 collisions, which

constitutes about 10% of the number of frames hashed. The average number of

collisions per hash table bucket was 2.61 with the standard deviation of 6.59, and the

maximum of 135 collisions was registered in a single bucket. The complete

histogram of the number of collisions is depicted in Figure 124.

Collision Frequency Histogram

52.38%

16.56%

13.09%

8.82%

5.33%

2.70%
0.97% 0.16% 0.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0 1 2 to 3 4 to 7 8 to 15 16 to 31 32 to 63 64 to 127 128 to 255

Number of Collisions

N
u

m
b

er
 o

f
B

u
ck

et
s

Figure 124 Histogram of the number of hash table collisions

This result shows that the hashing function chosen is not optimal, as it allows for a

considerable number of collisions. Nonetheless, the distribution of collisions is such

that the large majority – over 80% – of the hash table buckets contains frames from 3

or less hyper-cubes.

168

Summarizing, we can conclude that both the quantization scheme, as well as the

hashing function have the properties desired for effective filtering of dissimilar video

frames and sequences.

3.7.3 Execution Time

In order to quantitatively assess the reduction in execution time attained by the use of

our filtering technique, we conducted an experiment in which exhaustive video

sequence repetition detection was performed on video sequences of increasing length.

Due to the overwhelming complexity of the raw video clip matching algorithm, this

technique was not used for detection in this test. Instead, we compared the execution

times of shot matching methods with and without filtering. The results are

summarized in Table 9 and depicted graphically in Figure 125.

Length in
Minutes

Frame
Hashing

Frame
Matching

Direct Shot
Matching

Filtered Shot
Matching

5 00:00:00.020 00:00:00.180 00:00:14.531 00:00:02.223

10 00:00:00.050 00:00:00.200 00:00:55.740 00:00:06.009

15 00:00:00.090 00:00:00.210 00:02:06.191 00:00:09.163

20 00:00:00.130 00:00:00.240 00:03:37.333 00:00:12.899

25 00:00:00.160 00:00:00.250 00:05:29.173 00:00:13.900

30 00:00:00.170 00:00:00.270 00:08:18.527 00:00:17.125

Table 9 Execution time of direct vs. filtered shot matching

The plots of execution time curves in Figure 125 confirm the theoretically derived

complexity of the corresponding algorithms. The curve of the direct shot matching

method clearly has a parabolic shape, while the duration of filtered shot matching

grows linearly with the increase in video sequence length. As a result, direct shot

matching is not a viable option for real-time repeated sequence detection for live

news broadcasts. Conversely, identification of repeated shot using hashing and

filtering can be performed in a fraction of the time needed to broadcast and capture

the video sequence. This technique also scales well with the increase in the broadcast

length.

169

00:00:00

00:01:26

00:02:53

00:04:19

00:05:46

00:07:12

00:08:38

00:10:05

5 10 15 20 25 30

Video Sequence Length (in Minutes)

S
h

o
t

M
at

ch
in

g
 T

im
e

Direct Shot Matching Filtered Shot Matching

Figure 125 Execution time of direct vs. filtered shot matching

In addition, the results in Table 9 show that video frame hashing and subsequent

collection prior to shot matching are performed in a small portion of the total

execution time. Therefore, we can conclude that color moment hashing can be

effectively used to substantially reduce the average complexity of repeated shot

detection.

Naturally, the gain in execution time should not be realized at the expense of the shot

matching accuracy. Hence, in the next section we will demonstrate that the hashing

and filtering algorithm detects shot repetitions with recall and precision equivalent to

those attained by the direct shot matching method.

3.7.4 Repeated Footage Detection Per formance

The performance of our repeated footage detection method was evaluated on a group

of 50 news content shots of different lengths. For each shot in the group, the ground

truth was established by detecting repetitions using the repeated clip detection

algorithm with a high frame match threshold. Thus detected repetitions were

subsequently analyzed manually to remove all false detections, so that only true

170

repetitions were retained. In the first experiment, we compared the performance of

the repeated shot detection algorithm with and without filtering. Both algorithms

used the optimal parameter values established in section 3.7.1, i.e. frame match

threshold equal to 3.0, significant length threshold of 30 frames, and clip match

threshold of 0.50. The results of the direct shot repetition detection for the first 10

shots are shown in Table 10. The average performance for the entire set was 96%

recall and 84% precision, yielding the utility value of 90%.

Shot No.
No. of

Frames
True

Matches
Detected
Matches

True
Positives

False
Positives

False
Negatives Recall Precision

11501 321 6 8 6 2 0 100% 75%

9534 167 4 4 4 0 0 100% 100%

10767 616 5 5 5 0 0 100% 100%

10662 333 12 12 12 0 0 100% 100%

7994 106 8 10 7 2 1 88% 80%

7996 100 7 7 7 0 0 100% 100%

7998 100 9 9 9 0 0 100% 100%

8004 66 9 10 9 1 0 100% 90%

7545 120 6 6 6 0 0 100% 100%

9860 370 4 7 4 3 0 100% 57%

Table 10 Recall and precision of repeated shot detection without filter ing

The same test was conducted using repeated shot detection with filtering. The results

for the same 10 sample shots are shown in Table 11, while the average recall and

precision for all 50 shots were 86% and 91%, respectively. Hence, the overall utility

was 88.5%. This outcome allows us to conclude that the utility value did not

decrease substantially due to filtering. Therefore, in view of the great reduction of

execution time, repeated shot detection with filtering is by far a superior method.

171

Shot No.
No. of

Frames
True

Matches
Detected
Matches

True
Positives

False
Positives

False
Negatives Recall Precision

11501 321 6 5 5 0 1 83% 100%

9534 167 4 4 4 0 0 100% 100%

10767 616 5 5 5 0 0 100% 100%

10662 333 12 11 11 0 1 92% 100%

7994 106 8 4 4 0 4 50% 100%

7996 100 7 7 7 0 0 100% 100%

7998 100 9 9 9 0 0 100% 100%

8004 66 9 9 9 0 0 100% 100%

7545 120 6 4 4 0 2 67% 100%

9860 370 4 5 4 1 0 100% 80%

Table 11 Recall and precision of repeated shot detection with filter ing

In order to demonstrate the importance of partial shot repetition detection for story

tracking in news broadcasts we conducted the same experiment, but required that

repeated shots be of equal length. To account for imperfections in temporal video

segmentation, which lead to imprecision in transition boundary detection, we allowed

repeated shots to differ in length by up to 10%. This approach was used by Pua

[Pua02]. The detection results using this method for the 10 sample shots are

presented in Table 12, while the recall and precision for the whole set of shots were

45% and 100%, respectively.

This experiment confirms that video footage reused by television news stations is

indeed frequently repeated only in part. Complete shot repetition detection methods

fail to recognize such partial repetitions and consequently are not a good basis for

story tracking in television news broadcasts. Conversely, the partial repetition

detection technique introduced in this work is highly effective and attains recall of

86% and precision of 91%.

172

Shot No.
No. of

Frames
True

Matches
Detected
Matches

True
Positives

False
Positives

False
Negatives Recall Precision

11501 321 6 1 1 0 5 17% 100%

9534 167 4 1 1 0 3 25% 100%

10767 616 5 1 1 0 4 20% 100%

10662 333 12 8 8 0 4 67% 100%

7994 106 8 2 2 0 6 25% 100%

7996 100 7 1 1 0 6 14% 100%

7998 100 9 8 8 0 1 89% 100%

8004 66 9 5 5 0 4 56% 100%

7545 120 6 1 1 0 5 17% 100%

9860 370 4 4 4 0 0 100% 100%

Summary 45% 100%

Table 12 Recall and precision of the completely repeated shot detection with filter ing

3.8 Conclusions

In this chapter, we introduced a video sequence repetition detection algorithm for live

video news broadcasts. The method proposed works in real-time and can effectively

deal with partial shot repetition, which is essential for effective story tracking. In

order to create this algorithm, we first proposed a set of video sequence similarity

metrics. We analyzed their properties in the context of video news, and found that

the metric based on raw moments is most suitable for our purposes, although it is

sensitive to global image changes, such as brightness adjustments. We demonstrated

that repetition detection in the absence of shot detection results is extremely time

consuming, and showed that detection of repeated shots can be performed

substantially faster. We examined the impact of imperfections in temporal

segmentation, and concluded that our method of partial shot matching can handle

them relatively well. Finally, we described the hashing and filtering technique, which

allowed us to reduce the execution time requirements to within real-time constraints.

At the end of the chapter, we evaluated the performance of our repeated sequence

173

detection method, and showed that it attains high accuracy (86% recall, and 91%

precision).

 174

Chapter 4

Story Tracking

4.1 Introduction

In Chapter 1, we presented the problem of the lack of effective access to information

contained in video. We also indicated that this issue is particularly pronounced in the

domain of video news broadcasts. The contemporary world is awash with news from

all over the globe coming to us continuously from a multitude of television news

stations. In theory then, virtually anyone could have instantaneous access to the latest

news at almost any time. Practically, however, gaining such access would require

constant monitoring of all available news sources, which is humanly impossible.

Moreover, perpetual viewing of even a single news channel would prove very time-

inefficient, as a vast majority of information provided is of little or no interest to the

user. Also, quite commonly the ratio of truly new information in the news is fairly

small, and a lot of material is redundant. Thus, there is a need to create methods of

effectively accessing news information which is of relevance to the user.

In the realm of video news broadcasts, which provide an overwhelming amount of

information, it is important that the viewers be able to focus their attention only on

the news of interest to them. In addition, they should be able to access new

 175

information pertaining to their interest as it becomes available over time. This mode

of accessing video news is facilitated by a technique called story tracking. This

technique enables viewers to choose an interesting story in a news broadcast, follows

the development of that story over time, and provides an effective means of viewing

it entirely or in part. Thus, story tracking is essential for providing effective and

intuitive access to video news broadcasts.

In this chapter, we present a story tracking method inspired by the observation that

news stations frequently reuse video material when reporting the same story (see

section 1.1). Based on this fact, we developed an algorithm which identifies

repetitions in the video stream of the news broadcast, and then uses this information

to track the development of news stories.

Before we provide details of our story tracking technique, we need to precisely define

the problem of story tracking, as well as introduce the necessary terminology which

will be used throughout this chapter. We have already referred to the concept of a

news story. The following definition appeals to the intuitive understanding of the

notion.

Definition 17: A news story is the subject matter of news reporting, and consists of an

event or a set of related events which occur in the real world.

Television news stations exist to report news stories. As the news story is related

verbally, it is accompanied by video footage which may provide visual clues

regarding the news story. The video footage may be segmented into a sequence of

video shots, as it was described in Chapter 2. If a video news broadcast is temporally

segmented, each of the resulting shots may be associated with one or more news

stories, as in the following definition:

Definition 18: A shot s in the video news broadcast is relevant to a given news story
�

 if it is displayed while the news story is reported.

The definition above makes no restrictions on the number of shots which may be

relevant to any given news story. A news story may have a single relevant shot, or it

 176

may be associated with multiple relevant shots. A shot may also be relevant to more

than one news story. For instance, an anchor person may finish reporting one news

story and switch to another in a single video shot.

Having described the concept of shot relevance to a news story, we can now define

the notion of story in a video news broadcast, which from now on will be referred to

as a story for simplicity.

Definition 19: Given a news video sequence V consisting of N shots

NsssV ,, ,21 �= , a story { }�

l

��
� sssS ,, 21 �= in V is the set of all shots in V

relevant to a single news story
�

.

Although it is theoretically possible that the entire story may consist of only a single

shot, such stories rarely occur in practice. Usually, news story reports take at least a

few minutes and, therefore, their corresponding stories span several shots. In

addition, multiple reports on the same story may take place at different times during

the day, and be separated by other reports or commercials. Thus, it is logical to

divide a story into a number of disjoint segments, each corresponding to a single

report on the story during the broadcast. Each story segment consists of shots

relevant to the news story, which are consecutive in V.

Definition 20: Given a news video sequence V and a story S� , a story segment is a set

of shots in S� , which are consecutive in V, i.e.

{ } �
nk

�
k

�
i

�

nk

�

k

�

k
� SsSsSsnkki that such,sssE ∉∧∉∧∈+=∀= ++−++ 111 :,...,,, �

The set of concepts introduced above allows us to precisely describe the task of story

tracking in video news broadcasts, which is the focus of this chapter.

Definition 21: The problem of story tracking is as follows. Given a news video

sequence V consisting of N shots NsssV ,, ,21 �= , and a nonempty query set

{ }MqqqQ ,, ,21 �= consisting of shots relevant to the news story
�

, determine the

story S� in V.

 177

A story, as defined above, does not imply any particular ordering of the relevant

shots. It also, by definition, includes all repeated relevant shots. For purposes of

presenting the story to the user, the shots need to be arranged into certain order, and

not all of them need to be shown. The choice of the subset of shots to be shown, as

well as their ordering is determined by the purposes of performing story tracking, or

simply user preferences. A subset of story shots, along with their order, determines a

story view. In other words, a story view is a subset of shots in S� which has been

arranged for presentation, which may be formally defined as follows:

Definition 22: Story view is a subset W of shots in S� along with a partial order
�

defined on W, i.e. ≤,W .

If all shots are arranged in a sequence, in which case � becomes a total order, the

story view is called linear. The task of creating the story view for a given story is the

subject of story presentation.

In this chapter, we introduce a solution to the problem of story tracking in video news

broadcasts based on redundancies in video material. We rely on video sequence

repetition detection methods developed in Chapter 3 to identify story segments, and

combine them into a single cohesive story. We evaluate the performance of our story

tracking methods using the standard information retrieval parameters of recall and

precision. In addition, we explore techniques of automatically classifying news shots

based on their repetition patterns, as well as examine performance improvements in

story tracking which may be achieved using this classification. Finally, we propose

two different methods of story presentation and discuss their advantages and

disadvantages with different story tracking approaches.

The remainder of this chapter is organized as follows. Section 4.2 describes related

research. Section 4.3 presents our general approach to story tracking and explains

story representation used by our algorithms. In section 4.4, we present our story

tracking algorithm based on repeated shot detection. We evaluate the algorithm’s

performance on real-world news broadcast and discuss potential problems discovered

 178

in the course of the experiments. Section 4.5 discusses improvements which can be

introduced into our method by using news shot classification. We show how the

algorithm can be adapted to incorporate this additional information, and propose

automated methods of shot classification. Section 4.6 presents a conceptual overview

of different methods of story presentation. Finally, the chapter closes with section

4.7, which contains a summary and conclusions.

4.2 Related Work

The problem of story tracking is relatively new, and was first posed as part of the

Topic Detection and Tracking (TDT) initiative in 1997. Research in the field can be

classified into two broad categories: techniques that focus on textual information

(written and spoken), and methods that utilize visual information (images and video).

In both cases, domain specific information can be exploited to detect and track

stories.

4.2.1 Textual topic detection and tracking

The Topic Detection and Tracking (TDT) initiative started as a joint effort between

DARPA, the University of Massachusetts' Center for Intelligent Information

Retrieval, Carnegie Mellon's Language Technology Institute, and Dragon

Systems[All98a, All98b]. TDT is a research program investigating methods for

automatically organizing news stories by the events that they discuss. TDT includes

several evaluation tasks, each of which explores one aspect of that organization – i.e.,

splitting a continuous stream of news into stories that are about a single topic

(“segmentation"), gathering stories into groups that each discuss a single topic

(“detection"), identifying the onset of a new topic in the news (“ first story detection"),

and exploiting user feedback to monitor a stream of news for additional stories on a

specified topic (“ tracking”). The domain of TDT's interest is all forms of written or

spoken broadcast news, but does not include video.

 179

A year-long pilot study was undertaken to define the problem clearly, develop a test

bed for research, and evaluate the ability of current technologies to address the

problem. Results of that study were reported at a workshop in October of 1997, and a

final report was made at a related workshop. The groups involved in the tasks found

that current methods are capable of providing adequate performance for detection and

tracking of events, but that there is a high enough failure rate to warrant significant

research into how the state of the art can be advanced.

The name “Topic Detection and Tracking” suggests that TDT deals with topics,

whereas the description cited above defines TDT using the term event. This implies

that the terms are synonymous, which is not the case. Therefore, in order to avoid

confusion in the future, a distinction between the two needs to be made.

Let us consider an event that occurred in the real world at a certain time and place.

That event may later be reported in the news broadcast in the form of a story (strictly

episode of a story). Later, as additional facts surface, new reports may be broadcast,

and thus become new episodes of the same story. Moreover, new events related to

the original event may happen and be reported in the news, thus adding new episodes

to the same story, or if the event is significant enough in itself, starting a new story.

So, stories evolve over time to include new episodes describing or related to the

original event, but events themselves remain static, situated in their time and place.

Finally, if we collect all the stories describing or related to a certain type of events,

that collection becomes a topic.

Hence, we propose the following taxonomy:

Event: An event corresponds to something that occurred in the real world at a certain

time and place, e.g., President Bush’s trip to the Middle East in May 2001.

Episode: An episode is a temporally continuous description of an event, such as a

relation of the President’s visit to the Middle East in the morning news on a

certain day.

 180

Story: A story is a sequence of episodes describing or related to a certain event. The

entire coverage of the President’s visit in the news over a period of time is an

example of a story.

Topic: A topic refers to a general notion of some potential subject of interest, such as

politics, natural disasters, movies, etc. As such, it can be viewed as a

collection of stories sharing a certain theme, for example, U.S. foreign

politics, or East Coast hurricanes.

Because TDT deals primarily with events, it is perhaps more appropriately called

Event Tracking [All98b]. In fact, to be precise, we should say that since events occur

once and remain immutable over time, they can be detected but not tracked. Stories,

on the other hand, do not occur, strictly speaking, and are only a reflection of the

events in the news, but they do evolve over time. Therefore, their development over

time can be tracked. Hence, we will use the name Event Detection and Story

Tracking (EDST) in place of TDT throughout the rest of this work.

Event detection and story tracking

The problem of EDST can be divided into two subtasks: new event detection and

story tracking. These tasks were extensively analyzed by Allan et al. [All98a, All98b]

and described as follows.

“The goal of those tasks is to monitor a stream of broadcast news stories so as to

determine the relationships between the stories based on the real world events that

they describe. New event detection requires identifying those news stories that

discuss an event that has not already been reported in earlier stories. Event tracking

means starting from a few sample stories and finding all subsequent stories that

discuss the same event.” In this case the phrase “broadcast news stories” refers to

textual news services, and transcripts of TV news broadcasts, and does not include

video.

 181

As described above, EDST is closely related to the Information Retrieval (IR)

problems of Information Filtering and Routing. However, there are two important

differences:

First, EDST is restricted to the domain of news, which is an ideal medium for finding

coverage of events. Filtering and Routing, on the other hand, apply to unrestricted

corpora covering arbitrary topics.

Second, the “query” in EDST refers to an event, and is specified using a few

examples of stories about this event. By contrast, IR queries are generally at the

broader level of topic, and are described directly by the user.

Hence, the field of EDST is defined more narrowly than Filtering and Routing, and

allows for the evaluation measures to be more easily agreed upon.

Event detection methods

Allan et al. [All98b] created an algorithm which detects new events based on

commonly known word statistics in Information Retrieval. They represent episodes

and queries as vectors of weighted features, which were chosen to be all nouns, verbs,

adjectives, and numbers. The algorithm builds a query from one training episode

using the n most frequently occurring features. It also computes an initial similarity

threshold. All subsequent episodes are compared to the query by computing the

similarity measure. If its value is above the similarity threshold, then the episode is

pronounced to describe the same event. Otherwise, a new event is detected.

The authors observe that the likelihood that the episode describes the same event as

some earlier episode decreases with time. Therefore, they increase the threshold

value with the temporal difference between compared episodes.

Story tracking methods

Allan et al. [All98b] propose an event tracking algorithm based primarily on

Information Filtering. The algorithm uses a certain number of stories (Nt) to form a

 182

query and a threshold for matching episodes to the query. All subsequent stories are

then compared to the query and, if the match is above the threshold, the episode is

considered to be about the same event. A query is composed of a certain number (n)

of features most commonly occurring in the Nt training episodes. The authors show

that the performance of their method is stable across a range of n and appears to be

optimal for 10-20 features. They also demonstrate that, although increasing the

number of training stories (Nt) improves performance, raising the value of Nt above

four provides little help.

Allan et al. admit that this approach alone does not perform very well due to the

evolution of event coverage over time. Namely, in the initial phase of reporting

usually not much information is available, but as additional facts are discovered they

are included in the coverage and often become the focus of the story. Therefore the

word-based feature model of the story changes over time. To account for this

phenomenon, they introduce an adaptive tracking algorithm that amends the original

method by incorporating features of the detected episodes of the same story into the

query for further story tracking. This way, the query evolves along with the model of

the story.

Papka [Pap99] provides a brief description of other event tracking methods presented

for evaluation on TDT2. They demonstrate that all of the techniques shown perform

similarly according to the NIST evaluation. Considering that textual event tracking is

not a primary focus of our research, we will limit ourselves here to only briefly

mentioning other textual story tracking systems.

BBN The BBN tracking system is based on formulating a mixture of classifiers from

three models: Topic Spotting (TS), Information Retrieval (IR), and Relevance

Feedback (RF). The first two approaches are based on a probabilistic approach to

word occurrence distributions. The TS model assumes that words in the test story are

generated by the model from the training stories; the IR model assumes that the

training stories are generated by the model from the test story; and the RF approach

 183

used frequently occurring terms in the training stories. In their report, they also show

improvements using an adaptive query formulation approach. [Jin99]

CMU The group from Carnegie Mellon University tested Decision Trees (DT) and a

K Nearest Neighbors (KNN) approach to tracking. In their DT approach, they used

features in addition to word cooccurrence statistics including the location of a word

relative to the beginning of the story, whether the root of the word appeared in the

story, and an adaptive time window approach. The KNN 65 approach used a tf idf

document representation. Their analysis suggests that the KNN approach appeared

slightly more effective than the DT approach. [Car99]

DRAGON Dragon Systems uses statistical approaches based on a beta-binomial

model and a unigram language model. Their data suggest that a mixture of their

approaches leads to improved tracking effectiveness. They also apply background

models that are constructed from an auxiliary corpus. A document is considered

relevant to an event if it is more similar to the model resulting from the training

documents than to one resulting from a background model. [Yam99]

UPENN The system from the University of Pennsylvania is based on a similar

representation to the one used in [Pap99]. They used a tf idf representation for

classifiers and documents, where incremental idf was seeded with the document

frequencies from the TDT1 corpus. A cosine similarity function was used to compare

classifier and document vectors. [Sch99]

4.2.2 Multimodal techniques of video news organization

The concept of topic detection and tracking has been extended to include non-textual

sources of information. Although text-based techniques can be applied to the textual

transcripts of video news broadcasts, its methods completely ignore the rich layer of

visual information present in the video stream. Therefore, in recent years initial

research has been done on incorporating audio and visual characteristics of video into

news organization techniques.

 184

Ide et al. [Ide00] attempt to identify news scenes by comparing background images

using simple visual features. For this purpose, they manually remove the region

corresponding to the person in front of the camera, such as an anchor or reporter, and

compute basic color histogram and correlogram of the resulting image. These

features are then compared against a database of features calculated for some known

locations. The method was tested on a very small database of only 3 different

locations: parliament, cabinet meeting, and a news briefing. Although the

performance of location detection on a video sequence of about 3 hours was reported

to be very high, this approach is unlikely to scale well to a large database with

significant number of different locations.

A few papers have been published on the subject of classification of shots in news

broadcasts. Some simple commercial detection techniques use black frames to detect

commercials [Lie97, Hau98]. However, such simple approaches must fail for

television channels that do not use black frames to flag commercial breaks. Also,

black frames used in other parts of the broadcast will cause false alarms.

Furthermore, progress in digital technology obviates the need to insert black frames

before commercials during production. An alternative makes use of shorter average

shot lengths as in [Mar01]. However, this approach depends strongly on the ’high

activity’ rate which may not always distinguish commercials from regular broadcasts.

In more recent research, face recognition is used to identify anchor person shots

[Ide99b, Hau03]. Ide et al. [Ide99b] use face recognition to identify three additional

shot classes: speech, walking person, and gathering. They also distinguish graphics

shots by detecting large numbers of still frames in the shot. Duygulu et al. [Duy04a]

propose a commercial classification technique which relies on unique characteristics

of commercial sequences. First, they observe that commercials are frequently

repeated throughout news broadcasts. They also utilize visual and audio

characteristics which distinguish commercials from the rest of the broadcast. They

combine the results of detection of repetitions with the outcome of the video and

audio classifier to identify commercials. In their method, video shots are represented

 185

by keyframes, and this representation is used for both detection of repetitions, and

derivation of visual features. A number of image features are used to recognize

repetitions of keyframes. Duygulu et al. report very high accuracy of their combined

method (recall and precision around 90%).

In another article, Duygulu et al. [Duy04b] use shot classification based on visual

features to improve association of video shots with words for news videos. They

classify news video shots as: anchors, commercials, graphics and studio settings, and

other. They detect commercials using the method developed in [Duy04], and identify

anchor person shots using a classifier proposed in [Hau03]. In addition, they

manually detect graphics and studio shots by first clustering all remaining shots by

their color composition, and then visually inspecting representatives of the clusters.

After all these types of shots have been recognized, the authors divide the news

broadcast into segments by applying a heuristic based on the shot classification.

Their segmentation algorithm is as follows:

1. Start a new segment after a graphics shot or a commercial

2. End the current segment if the next shot is a commercial or a graphics shot

3. Start a new segment on an anchor shot which follows a non-anchor shot

4. End the current segment on an anchor shot followed by a non-anchor shot

Their method was tested on a relatively small data set of 114 story segments, and a

relatively low accuracy of approximately 60% was reported.

The story tracking technique we propose in this work relies solely on visual

characteristics of the television news broadcasts. It is, therefore, complementary to

textual story tracking and could be used in conjunction with it to discover correlations

between story segments that do not have textual similarity. For example, it may be

used when news is reported in different languages or when closed captions are not

available. Our method could also help distinguish between two story segments

related to the same person or place, but reporting different stories. On the other hand,

 186

textual story tracking could provide additional clues for linking story segments that

do not contain common video footage.

4.3 Method Overview

In this section, we describe the general concept of our story tracking method. We

present the input parameters and internal story representation used by our algorithm.

We also discuss evaluation strategy.

Our story tracking method addresses the following usage scenario. A person watches

a live news video channel and finds certain news story interesting. He or she selects

the interesting portion of the broadcast and provides it as the input for our algorithm.

The algorithm analyzes the query and begins tracking the story by means of detecting

repetitions of video shots contained in the query. At any later point in time, the

viewer may request to view the story of interest. In response, our algorithm returns a

desired view of the story.

4.3.1 Inputs

In addition to the query set Q described earlier, the story tracking algorithm takes as a

supporting parameter a partition of the source video sequence induced by a shot

match relation. The significance of this parameter is explained below.

The partition of the source video sequence V is determined by the shot match

relation, and groups together matching shots. A shot match relation is an equivalence

relation, which can be inferred from a video sequence similarity metric introduced in

Chapter 3. In that chapter, we also showed that given similarity metric , and a

threshold on the value of this metric, we could determine all pairs of matching shots

in a video sequence. If only complete shot matching is required, then the set of all

such pairs along with all the shots which did not match any other shots, forms an

equivalence relation in V. The three necessary properties of an equivalence relation:

reflexivity, symmetry, and transitivity follow directly from the definition of the

 187

similarity metric. Thus, for every shot si we can determine an equivalence class, as

the set of all shots sj which match si, i.e. () { }jij smatches ssi :=ε

On the other hand, if partial shot matching is allowed, the relation inferred may not be

transitive. This issue is best illustrated by a diagram. Suppose we have three shots A,

B, and C shown in Figure 126, which contain identical sequences of frames indicated

by the overlap between the shots. In this example, shot A partially matches B, and B

partially matches C. However, shots A and C do not share any sequence of frames,

and therefore do not match even partially. Consequently, pairs (A,B) and (B,C) are in

the relation, while (A,C) is not, and so the relation is not transitive.

Figure 126 An example of a non-transitive shot matching relation

In order to ensure transitivity of the shot match relation, we need to take a transitive

closure of the inferred relation. Thus, if any two pairs of shots (X,Y) and (Y,Z) match,

then the pair (X,Z) is automatically considered matching. This corresponds to the

example in Figure 126. Here shots A, B, and C must, in fact, be a shortened version

of some shot M which is the union of all three. Taking a transitive closure of the

match relation is equivalent to comparing each shot to the combined shot M.

Consequently, we can formally define the equivalence class for any shot si as:

() { } (){ }jkkji smatches sisssi :: εε ∈∃∪=

A set of all matching shot equivalence classes defines a partition � (V) on V.

The two input parameters are assumed to be available at the start of the algorithm.

However, in practice only the query Q is presumed entirely accurate, that is

containing only shots relevant to the news story in question. The partition P(V) may

M = A+B+C

C

A

B

 188

contain errors if the temporal segmentation or repeated shot detection are imperfect.

For instance, some pairs of shots may be determined matching, while in reality they

were not.

At the start of the algorithm, the input parameters are inserted into an internal

representation of the story, which will be described in the next section.

4.3.2 Internal Story Representation

The main task of the algorithm is to build the story S, i.e. create the set of shots

relevant to the news story, from the given query Q. The story is built gradually as the

video content becomes available using an iterative algorithm. In order to facilitate the

process of story building, the algorithm uses a story board – an internal structure

representing the story at a given time. The story board is a tuple

() δ,,, ΣΡΩΣ=�SB , in which
�

 is the story as detected by the algorithm, � is the

story core, � (
�

) is a partition of
�

, and � is the co-occurrence function.

The story core � is a subset of the story
�

 and comprises all shots whose occurrences

are tracked by the algorithm. � (
�

) is a partition induced by a shot match relation, and

is provided as a supporting input parameter. Co-occurrence function

{ }0: ∪→× NVVδ assigns a non-negative value to every pair of shots in V. The

value of the function is zero if the two shots do not co-occur in the same story

segment. If they do co-occur, the function � assumes a value equal to the temporal

distance between the two shots.

A story board can be represented as a non-directed graph whose vertices are all the

shots in
�

. The graph contains two types of edges: co-occurrence edges and shot

match edges. Co-occurrence edges connect pairs of shots for which the co-

occurrence function � is non-zero. Each edge of this type has a weight equal to the

value of the function � . Shot match edges join matching shots, and have no weight

assigned to them. In addition, we distinguish the core of the story as a sub-graph of

the story graph. The core contains the shots whose repetitions we want to track.

 189

Figure 127 depicts a sample story board graph consisting of two segments:

DC1,B,A1, and C2F,A2,E, . Each segment is depicted on a separate line. In the

graph, solid lines represent shot match edges, while dashed lines show the co-

occurrence edges. In addition, shots whose names are italicized belong to the story

core. In this story board, we have six shot equivalence classes: { A1, A2} , { B} , { C1,

C2} , { D} , { E} , and { F} , and the story core consists of { A1, A2, C1, C2} .

Figure 127 Sample story graph

The co-occurrence edges may be shown explicitly as in the diagram above. However,

thanks to the rule of depicting all shots in one episode on a single line, and separate

episodes on separate lines, these edges may be inferred to fully connect all shots in

the same line. This simplifies the graph diagram, and prevents the co-occurrence

edges from obscuring other details. As an example, Figure 128 depicts the same

graph in its simplified form. In the graph, the time runs left to right and top to

bottom, that is all shots in the same row were broadcast in their left to right order, and

all shots in row i precede all shots in row i+1. In the rest of this chapter, we will use

the simplified graph representation.

Figure 128 Simplified sample story graph

A1 C1 B D

A2 C2 F E

A1 C1 B D

A2 C2 F E

2

3

2

2 2

3

1 1 1

1 1 1

 190

The story tracking algorithms which will be presented in this chapter build a story

board in an iterative fashion starting from the set of query shots. In order to present a

story board, as it is created, in the broader context of the surrounding shots from V,

we adopt the following graphical notation.

Figure 129 Graphical notation for story graphs

Figure 130 depicts a graph representation of a sample story consisting of three

episodes: DC1,B,A1, , HG1,C2,F,A2,E1, , and G2E2, . Although the diagram

shows additional shots, only the shaded shots belong to the story graph. In the graph,

shots A1, A2, C1, C2, E1, E2, G1, and G2 belong to the story core. Shot C1 was

given as the query, and all shots X1 through X8 are irrelevant to the story. The graph

also shows matches between shots (A1, A2), (C1, C2), (E1, E2), and (G1, G2). The

temporal distance edges were omitted for simplicity and are implied to link all pairs

of shots in the same row. Each of them has an associated weight equal to the number

of shots separating the beginnings of the two shots.

Figure 130 Sample story graph

4.3.3 General Algor ithm

Given the input query, our story tracking algorithm begins to build the story in a

gradual fashion, iteratively adding shots until no more shots can be added. This is

X1 X2 A1 C1 B D

X3 X4 A2 C2 F E1

X6 X8 G2 X7 E2

G1 H

X5

 X

core shot story shot other shot

X

query shot

 191

shown on the block diagram in Figure 131. First, all the query shots are placed in the

story core. Then, the algorithm operates in three main steps which are repeated

cyclically. For every shot in the core, the algorithm selects the next repetition of that

shot from the corresponding equivalence class. Subsequently, a story segment is built

around the newly discovered matching shot. All shots in this segment are added to

the story
�

. In addition, some of the shots in this segment may be added to the core

depending on whether they satisfy certain criteria. Once this is done, another

matching shot is chosen for the current core shot, and all steps are repeated. If there

are no more matching shots for the current core shot, the next core shot is chosen.

When there are no more shots can be added to the core, the algorithm terminates and

the story
�

 is returned as the result.

Figure 131 Block diagram of the general story tracking algor ithm

Find next occurrence of a core shot

Build story segment

Expand the core

Found?

Yes

Start

End

No

Merge overlapping segments

Expanded?
Yes

No

Si
ng

le
 It

er
at

io
n

 192

In the following section, we present and evaluate an automatic story tracking method.

A number of variations of the technique are considered which differ primarily in the

strategies used to build story segments and expand the story core. Depending on the

strategy used, the story tracking algorithm may achieve very different performance,

which will be the subject of performance evaluation.

4.3.4 Evaluation Approach

In order to examine the accuracy of our story tracking methods on real world data, we

recorded a 24-hour video broadcast of a typical day of CNN News channel. The

video was captured using Windows Media Encoder 9.0 and stored in the Windows

Media format at a frame rate of 30 frames per second with frame size of 160 by 120

pixels. The resulting video file is 40 GB in size, and represents a reasonable

compromise between video quality and storage requirements.

The news broadcast contains several stories, some of which comprise only one

segment, while others contain several. For purposes of story tracking evaluation, we

chose one story which consists of a number of episodes. The story regards the arrest

of Michael Jackson in connection with alleged child abuse charges. All segments of

the story were manually annotated to establish the ground truth for the experiments.

The overall performance of a story tracking method may be evaluated using the

standard information retrieval measures of recall and precision. Both concepts were

introduced in section 2.4 and can be applied to story tracking results in the following

manner. By definition, a story is a set of shots, and so the tracking performance may

be viewed as the accuracy of story shot detection, and will be evaluated in terms of

shot recall and precision. Shot recall is the ratio of the number of correctly detected

story shots to the number of all shots in the actual story. Shot precision is equal to the

ratio of the number of correctly detected story shots to the total number of story shots

reported by the algorithm.

 193

 storythe in shotsall of number

ts story shoreportedcorrectly of number
Rshot =

 shotsreported all of number

ts story shoreportedcorrectly of number
Pshot =

The story tracking technique discussed in the following sections will be evaluated

using these two performance measures.

4.4 Implementation and Evaluation

In this section, we introduce our story tracking method, which relies on the shot

match information and shot co-occurrence function. We begin by presenting an

algorithm which tracks stories by simply detecting shot repetitions. We then discuss

our general strategies of building story segments around repeated shots, which is

followed by a presentation of two different story core expansion schemes. The

accuracy or our story tracking technique is evaluated on the experimental data

described above. At the end of this section, we summarize the results and examine

the main challenges.

4.4.1 Segment Building Strategies

One can conceive of a story tracking algorithm which does little more than detect

repetitions of the query shot or shots. In such a method, all query shots are placed in

the core, and the detection process starts. When a repetition is identified, it is added

to the story, as in the following example.

 194

Figure 132 Story graph a) of the actual story, b) as detected by the basic tracking method

The example shows that although the actual story consists of several shots in three

episodes, the algorithm recognizes only repetitions of the query clip C1 as belonging

to the story. Thus, the story detected by this technique is uninteresting. If the user

has already viewed shot C1 and selected it as the query, then viewing repetitions of

C1 will add little to his knowledge of the news story.

Clearly, the story detected by any tracking method should be extended beyond the

original query shot. We need a method of building an episode around every

repetition of the query shot. For this purpose, we need to determine the episode

boundaries. One approach is to assume that the every occurrence of a query shot is at

the center of the corresponding episode. Hence, we can examine a symmetric

neighborhood centered on the query shot, and consider all shots in the neighborhood

to belong to the episode. Once an occurrence of a query shot is detected, all shots in

the neighborhood may be added to the story. Let us assume the neighborhood size

was set to two shots. In the same example with shot C1 given as the query, this

extension would result in the following story (see Figure 133).

 A1 C1 B D

 A2 C2 F E

 A2 C3 G

a)

 A1 C1 B D

 A2 C2 F E

 A2 C3 G

b)

 195

Figure 133 Story graph a) of the actual story, b) as detected by the basic tracking method with

liberal segment extension

This example demonstrates that liberal segment extension offers much better

coverage of the actual story. Of all actual story shots, only one (E) was not included

as part of the story by this technique. On the other hand, this method of segment

extension may introduce some irrelevant shots into the story, especially if the query

shot appeared closer to the episode boundary. In the example above, shots X1, X2,

and X3 are not relevant to the story, but were included by the algorithm. Therefore,

this segment building method may be called liberal.

The accuracy of this segment building strategy depends on the chosen neighborhood

size. If the size is set to a large value, then the segments built by the algorithm will

be long and may include irrelevant shots. On the other hand, small neighborhood size

may lead to omission of story shots. The optimal value of this parameter could be

determined experimentally, as the average story segment length in a given video

domain.

To alleviate the shortcomings of the liberal method, one can devise a conservative

segment building technique. This method relies on a larger number of query shots.

 X1 A1 C1 B D

 A2 C2 F E

X3 A3 C3 G

G H

X2

 X1 A1 C1 B D

 A2 C2 F E

X3 A3 C3 G

G H

X2

a)

b)

 196

In our example, if both A1 and C1 were given as the query, then the algorithm could

detect shots A2 and A3 as repetitions of A1. If repetitions of both A1 and C1 are

detected in close proximity to each other, one can assume that the shots between them

belong to the episode of the story. Thus, the conservative segment building technique

adds such shots to the story, as shown in Figure 134. The story shots lying outside of

the shot span defined by the query shots are not added to the story. Naturally, if only

one core shot is found in a new episode, that episode is not expanded.

Figure 134 Story graph a) of the actual story, b) as detected by the basic tracking method with

conservative segment extension

 The two segment-building strategies may be combined into a single algorithm.

When an occurrence of a core shot is identified, the algorithm searches for

occurrences of other core shots in a neighborhood of a certain size, called a search

window. The size of the search window should be determined experimentally based

on the average length of a story segment in a given new source. If another core shot

is found, then the search continues also around that shot. Once all core shots in the

segment have been found, the algorithm marks the new segment as stretching from

the earliest to the latest core shot. In addition, the segment is extended by a small

 A1 C1 B D

 A2 C2 F E

 A3 C3 G

G H

 A1 C1 B D

 A2 C2 F E

 A3 C3 G

G H

a)

b)

 197

number of shots beyond the bounding core shots. This algorithm combines the

advantages of both earlier techniques, as it allows for the segment to become quite

large if multiple core shots are discovered. At the same time, if only one core shot is

found, the segment built around it is relatively small, but contains more than just the

core shot.

In all methods presented so far, the story core remained the same, and contained only

the query shots. These methods may, therefore, be classified as static core methods,

and all share one weakness. As the story develops over time, new video footage

becomes available, which may be more relevant to the latest events. Thus, old

footage may be gradually phased out, while the new footage is introduced. After a

few story segments, the original query shots may not appear any more. As a result,

static core methods would be unable to continue tracking the story past the point of

the last occurrence of any of the original query shots. On the other hand, footage

introduced later is likely to be reused in later segments. Therefore, if such new

footage is recognized, the tracking may continue. This issue is addressed by the

dynamic core techniques, which are presented in the next section.

4.4.2 Dynamic Core Expansion

In this section, we discuss our dynamic core story tracking approach, which deals

with the problem of evolution of the video footage used in story segments over time.

To this end, our dynamic core technique expands the core to include certain shots

found in the new segments of the story. When the story tracking algorithm identifies

a new segment and determines its boundaries by the liberal or conservative building

strategy, some or all of the shots in the new segment may be added to the core,

according to the core expansion scheme.

In the optimistic expansion scheme, all shots in the new segment are added to the

core. Using this approach, we assume that all shots in the segment are, in fact,

relevant to the news story. If this is the case, the optimistic scheme maximizes our

chances of detecting new segments of the story. However, if some of the shots

 198

belong to a different story (which is possible because of the imperfections in segment

building), our algorithm will begin to track two stories simultaneously, and the

resulting story will likely be a combination of the two. To illustrate this point, we can

examine the example shown in Figure 135. The diagram depicts segments of two

different stories, one consisting of shots A through H, and the other comprising shots

M through P. In part b) the liberal segment building strategy was used, and

consequently shot M1 was included in the segment. If the core is expanded

optimistically, shot M1 becomes part of the core. As a result, the next segment of the

story M-P is considered part of the story A-H. This incorrect expansion adversely

affects the precision of story tracking.

Figure 135 Story graph a) of the actual story, b) as detected by the tracking method with

optimistic core extension scheme

This issue may lead to multiple stories combined into a single story board. In the

extreme case, the entire source video sequence may be returned in response to the

given query, which is certainly undesirable.

In order to alleviate this problem, one can use the pessimistic expansion scheme. In

this scheme, only shots that occur in other segments of the story are added to the core.

 A1 C1 B D1

 A2 C2 F E

 A3 C3 H

G D2

a)

b)

M1 O

P

 A1 C1 B D1

 A2 C2 F E

 A3 C3 H

G D2

M1

M2 P

N

M2

O N

 199

When a new story segment is detected, all shots in the segment are examined with

respect to their matching shots. The shots which match at least one shot found in

some previously discovered segment are added to the core. Although in this scheme

much fewer shots are added to the core, the ones which are added are less likely to be

irrelevant to the news story. Intuitively, if a shot is used more than once in the story,

it is likely to be a part of the recorded footage used by the news station. In addition,

the potential for inclusions of shots from other stories is considerably diminished. If

this were to happen, two segments of two different stories would have to be aired

adjacent to each other at least twice.

The following example (Figure 136) demonstrates the advantage of the pessimistic

core expansion. The story graphs show that even though the greedy segment building

strategy erroneously classified M1 as part of the story A-H, the shot was not included

in the core because no occurrence thereof was found in other segments of the story.

Thanks to that, the following segment of the story M-P was not misclassified as

belonging to story A-H. At the same time, shot D1, whose repetition was found in the

new segment, was incorporated into the core. Hence, subsequent segments may be

detected based on the repetition of that shot.

 200

Figure 136 Story graph a) of the actual story, b) as detected by the tracking method with

pessimistic core extension scheme

In summary, the pessimistic core expansion scheme may, at times, exclude shots from

the core that could be valuable in detection of subsequent story episodes. However, it

is generally more accurate than the optimistic scheme, and will be used in our

algorithms.

4.4.3 Evaluation

This section discusses the performance of out story tracking technique on a typical

news broadcast. For this purpose, we selected an 18-hour video sequence of CNN

News channel, and chose a story regarding Michael Jackson’s arrest for evaluation

purposes. This story was deemed the most interesting during the whole broadcasts, as

it is reported over many hours and contains some new developments, as well as

discusses different aspects of the events. The story consists of 16 segments of various

lengths. The shortest of them is only 30 seconds long, and consists of merely 3 shots,

while the longest lasts almost 10 minutes, and contains a large number of shots. The

entire story contains 17 repeating shots, some of which occur as many as 8 times in

 A1 C1 B D1

 A2 C2 F E

 A3 C3 H

G D2

a)

b)

M1 N O

M2 P

 A1 C1 B D1

 A2 C2 F E

 A3 C3 H

G D2

M1 N O

M2 P

 201

different episodes, while others are shown only twice. The whole 18-hour broadcast

was viewed by a human observer, and all segments of the story were manually

detected to establish the ground truth for the experiment. The resulting story graph is

depicted in Figure 137, where story segments are represented as schematic film strips,

and repeated shots are shown as keyframes.

 202

Figure 137 Graph of the entire story used in the exper iment

 203

To test our algorithm we chose a set of three different queries, each corresponding to

a single segment of the story (see Table 13).

Segment Segment Duration Query Size

3 0:35 1

5 0:21 3

6 4:22 6

Table 13 Exper imental quer ies

Each query was used as an input for the story tracking algorithm with liberal segment

building and pessimistic core expansion. The algorithm, as described earlier, is

controlled by two parameters:

1. Neighborhood size, which determines the size of a story segment build around

each repetition of a core shots.

2. Co-occurrence threshold, which governs the process of core expansion.

We conducted several experiments using different values for these two parameters.

Since the algorithm executes iteratively by first detecting new story segments and

then expanding the core, we ran it until ten iteration steps were performed, or until the

story converged, and no more episodes could be added.

We first observed that for the vast majority of the input parameter settings, the story

tracking process did not cease until the entire video sequence was included in the

story, thus yielding 100% recall, and unacceptably low precision. Therefore, we

decided to examine the values of recall and precision after different number of

iterations. Figure 138 and Figure 139 depict recall and precision achieved by the

algorithm starting with query 3. In the graphs, iteration 0 corresponds to the initial

query, and each subsequent value represents the recall and precision for the story

detected by the algorithm after n core expansions.

The graphs indicate that recall grows gradually with the number of iterations as the

algorithm discovers new episodes of the story and extends the existing ones.

Conversely, precision decreases in the same manner due to inclusion of irrelevant

 204

shots. For a given neighborhood size, the rate of the increase in recall and decrease in

precision depends on the co-occurrence threshold. A similar pattern was observed for

the other queries (5 and 6).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

R
ec

al
l

5 4 3 2 1Coocurrence Threshold

Figure 138 Story tracking recall after different number of iteration for query 3 with

neighborhood size of 2.0 minutes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

P
re

ci
si

o
n

5 4 3 2 1Coocurrence Threshold

Figure 139 Story tracking precision after different number of iteration for query 3 with

neighborhood size of 2.0 minutes

 205

These observations have the following significance. Although the algorithm usually

does not stop on its own accord until the entire broadcast is contained in the story, it

is possible to obtain the desired level of accuracy by limiting the number of iterations

the algorithm executes. For instance, the story tracking process yields 75% recall and

70% precision after 3 iterations with neighborhood size of 2 minutes, and co-

occurrence threshold of 2.

In order to establish the optimal set of parameters for the algorithm, we aggregate

recall and precision into a single performance estimator – utility function. The utility

function – first introduced in Chapter 2 - is a weighted sum of recall and precision as

presented in (45), where � is a coefficient regulating the relative importance of the

two measures.

precisionrecall utility ⋅−+⋅=)1(αα (45)

For this evaluation we chose � = 0.5, thus assigning equal importance to recall and

precision. Figure 140 presents a graph of the utility function for different number of

iterations of story tracking with query 3 using neighborhood size of 2 minutes. The

function exhibits a characteristic pattern. Its values first increase to reach a maximum

at a certain small number of iterations. Subsequently, the values diminish and

stabilize around the starting level. The same pattern is also present for detection

starting with queries 5 and 6, as well as for different values of the neighborhood size.

This allows us to conclude that the story tracking algorithm attains highest accuracy

after a small number of iterations, during which the gain in recall outweighs the loss

of precision. Afterwards, precision drops quickly decreasing the overall performance.

 206

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

P
re

ci
si

o
n

5 4 3 2 1Coocurrence Threshold

Figure 140 Story tracking utility after different number of iteration for query 3 with

neighborhood size of 2.0 minutes

Analysis of the utility function for all queries over the whole range of parameters

shows that the algorithm achieves the best performance using a neighborhood of 2.0

minutes. The optimal value of the co-occurrence threshold was 2 for query 3, and 3

for queries 5 and 6. The graphs of recall, precision and utility function for all three

queries with their respective optimal parameters are shown in Figure 141 and Figure

142.

 207

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

R
ec

al
l a

n
d

 P
re

ci
si

o
n

3 5 6 3 5 6

Figure 141 Recall and precision curves for all three quer ies with optimal parameters

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10

Iteration Number

U
ti

lit
y

3 5 6

Figure 142 Utility function for all three quer ies with optimal parameters

The graphs in Figure 141 and Figure 142 demonstrate that our story tracking

algorithm described in this section is capable of achieving recall and precision in the

range of 70% to 80%, which is an excellent result compared to the values of recall

and precision for the original query.

 208

4.4.4 Summary and Discussion

In this section, we presented a novel story tracking technique which relies on shot

repetition patterns to identify story segments related to the user’s query. We showed

that repeated shot detection combined with episode creation and story core expansion

may be used to track stories with very good accuracy. The experiments we

performed show that the algorithm achieves the best performance after a small

number of iterations. With the increase in the number of iterations, the algorithm

detects larger portions of the story and increasing recall, while simultaneously

including some irrelevant shots, which causes a gradual decrease in precision.

Consequently, the number of iterations could be used as a parameter which controls

the trade-off between recall and precision. This would allow the user to adjust the

algorithm performance to their individual preferences.

Throughout this section, we also identified a number of challenges in our automated

story tracking method, which were confirmed by the experiments and will now be

discussed in more detail. We showed earlier that the set of all repetitions of the query

shots is an uninteresting result of a story tracking algorithm. Thus, we proposed two

strategies (liberal and conservative) of discovering story segments around the

repeated shots. Both approaches have potential weaknesses. The liberal strategy

builds an episode of all shots within a certain time span, whose size must be

determined a priori. If the time span is too small, very few shots are incorporated

into the story. On the contrary, if it is large, the algorithm may include irrelevant

shots (from commercials, or other stories) into the story being built. Irrelevant shots

may also be included if the core shot is not centered in the episode. The conservative

strategy attempts to alleviate this problem by adding to the story only the shots which

lie between two or more repeated core shots. This approach eliminates the need for

the a priori parameter determining the episode length. However, it requires that at

least two core shots be repeated in every segment of the story in order to effectively

detect segment boundaries.

 209

In the experiments described in section 4.4.3, the liberal story building strategy was

used. Even though it was shown that the optimal performance was achieved with

neighborhood size of two minutes, this neighborhood substantially exceeds the size of

several segments of the actual story. For instance, segments 3 and 5 are only about

30 seconds in length. Consequently, when either of the shots was detected, the story

was extended to include several irrelevant shots. We also observed that a few of the

story segments were surrounded by commercial blocks. Although it is clear that

commercials are not part of the story being tracked, the algorithm proceeds to include

them as long as they are within the neighborhood size of some core shot.

Earlier in this section, we demonstrated that in order to effectively track stories over

time, we must allow the story core to evolve and include additional shots as they

become available. This proposition was confirmed by the experimental results.

When we attempted to track the story using co-occurrence threshold of 5.0 (see

Figure 138), no shots were added to the core. As a result, the story did not expand

past the repetitions of the original query shot, and the recall remained at a mere 5%.

To alleviate this problem, we devised two story core expansion schemes. In the first,

we optimistically add all shots in the episode to the core. This scheme would be

optimal if the segment building strategies were perfect. Because they are not, some

number of irrelevant shots from other stories may become part of the story segment.

If such shots are also added to the core, the tracking method will inadvertently

combine multiple stories into one. This problem is rectified to a large extent by the

pessimistic expansion scheme, which requires that only shots repeated in other

segments of the story be added to the core. However, it is still possible for the same

commercial to be aired next to two or more different segments of the same story. If

this occurs, the shots belonging to the commercial may be added to the story and the

core. Since commercials repeat throughout the news broadcast independently of any

particular story, including any of the commercial shots in the core may lead to the

story growing far beyond its true boundaries, and even include the entire broadcast.

This occurred in most of the experiments conducted in section 4.4.3. For example, in

 210

the second iteration of story tracking with query 3, neighborhood of two minutes, and

co-occurrence threshold equal to 2, several shots from a BWM commercial were

added to the core. In the subsequent iteration a number of new “story segments” were

detected around the repetitions of the same commercial.

All of the deficiencies discussed above may manifest themselves, even if the shot

match relation given as the input to the algorithm is perfectly accurate. In the

presence of imperfections in shot matching, some of the problems become more

acute. Specifically, the shot matching techniques introduced in Chapter 3 do not

distinguish well between different anchor or studio shots. Shots of these types tend to

be visually very similar, and hence are often regarded matching, even if they are not

strictly repetitions of one another. This poses a problem because usually during a

single news program, one anchor person reports several different stories, and thus

anchor shots are present in story segments of multiple unrelated stories. If any of

them make their way to the story core, then the tracking algorithm will quickly

incorporate all other segments reported by the same anchor into a single story. As a

result, the story may grow out of control and is very likely to include the entire news

broadcast. This problem was exemplified by the second iteration of the same

experiment with query 3. In this iteration a studio shot, which accidentally matched

two another studio shot already in the story, was included in the core. Consequently,

in the next iteration the algorithm added two unrelated segments, which in turn

contributed to the uncontrollable growth of the story.

Clearly, the issues discussed in this section hamper the story tracking performance.

In particular, their impact prevents the algorithm from converging before the story

comprises the entire broadcast. In the course of working with the story tracking

algorithm, we discovered that some of these problems could be alleviated if the

algorithm had information about classes of news shots involved in the story building.

In the next section, we will consider a number of improvements that could be made

by classifying news shots.

 211

4.5 Shot Classification

In the previous section, we introduced a story tracking algorithm which relied solely

on matching shot information. We also demonstrated that the algorithm performs

reasonably well, but pointed out certain shortcomings, and suggested that some of

them may be addressed by making use of news shot classification. Most of the shots

in television news broadcasts can be categorized into a small number of classes, such

as anchor persons, studio shots, commercials, news content, etc. Thus, we could

introduce a shot classification function � , which provides a label for each shot in the

original video sequence. The function �V →:γ assigns a shot class from the set �

to every shot in V. The function � could be used as an additional input parameter of

the story tracking algorithm.

In this section, we explore improvements which can be made to the story tracking

algorithm by utilizing the category labels assigned to every shot. We consider a

classification scheme which groups shots into four categories: anchor person or

studio, commercial or promo, logo or graphics, and news content. Hence, the shot

class set � may be defined as follows:

{ }news graphics, ,commercial anchor,
�

=

We also suggest methods of automatic shot classification for the classes anchor and

commercial based on shot repetition pattern.

4.5.1 Improvements from Shot Classification

The problems with the basic story tracking algorithm concerned two phases of the

tracking process: segment building and core expansion. Due to imprecision of these

two steps, irrelevant shots could be included in the story or even incorporated into the

story core. In the following two sections, we discuss ways of rectifying these

problems by shot classification.

 212

Segment Boundary Detection

The main deficiency of the segment building used by our algorithm the assumption

that all segments are of approximately the same size and centered around the repeated

shots. Clearly, this simple approach cannot fit all types of segments and all locations

of repeated shots within the segments. As a result, some relevant shots are not

included in the story, while certain irrelevant shots may be. Although this problem

cannot be entirely eliminated by using shot classification, some improvement can be

made.

A closer examination of the experimental results obtained in section 4.4.3 indicates

that news segments regarding one story very rarely span a commercial block. Most

often, the anchor person finishes reporting the story, and only then the station goes to

a commercial break. Therefore, detection of a commercial shot in the neighborhood

of a repeated shot is a very good indication that the story segment ends before the

commercial.

Hence, the following algorithm may be used to build story segments. Start with the

last shot preceding the repeated shot. For every preceding shot within the

experimentally determined distance of the repeated shot check the shot class. If the

shot is labeled as a commercial, do not add it to the story and stop building the

segment in this direction. Repeat the process for the shots succeeding the repeated

shot. This process is depicted on the block diagram in Figure 131.

 213

Figure 143 Block diagram of the segment building algor ithm

Core Expansion

Errors in core expansion have more severe consequences than imperfections in

segment building. As discussed earlier, inclusion of irrelevant shots in the query may

result in an uncontrollable story growth.

If every shot in the news segment is labeled according to its class, we may elect to

include in the core only the news content shots. This way we eliminate the issue of

placing commercials in the core and finding their repetitions at random places in the

broadcast. Simultaneously, we also filter out anchor shots, which may be matched to

other shots by an imperfect shot matching technique.

Yes

Take next potential shot

Commercial or
Stop Shot?

Add shot to story

Stop

No

Start

Outside the
neighborhood?

Yes

No

Find next occurrence of a core shot

Build story segment

Expand the core

Found?

Yes

Start

End

No

Merge overlapping segments

Expanded?
Yes

No

 214

Figure 144 Block diagram of the core expansion algor ithm

If we combine this method with the pessimistic core expansion scheme, we could

virtually eradicate the possibility of including any irrelevant shots in the core.

4.5.2 Automatic News Shot Classification

In the previous section, we proposed a method by which correct shot classification

can be used to improve the results of our story tracking algorithm. In this section, we

suggest techniques of automatic shot classification based primarily on repetition

patterns typical for different types of shots. We propose algorithms for automatic

recognition of three classes of shots common in video news: commercials and

promos, anchor and studio shots, and news content shots. In addition, we identify the

most commonly repeating shots, named stop shots.

Yes

Take next potential shot

News Content Shot?

Add shot to core

Stop

No

Start Find next occurrence of a core shot

Build story segment

Expand the core

Found?

Yes

Start

End

No

Merge overlapping segments

Expanded?
Yes

No

 215

Stop Shots

In the field of textual information retrieval, words that occur very frequently contain

little semantic information and are called stop words. Similarly, in video news

broadcasts certain shots occur so often that they provide nothing relevant to news

stories, and could analogically be called stop shots. Examples of such shots may be

sequences of black frames between fade-outs and fade-ins, or television station logos

which appear between news segments. Therefore, it is beneficial to identify stop

shots and make sure they are never added to a story.

The classification technique for this type of shots is quite straightforward. Given a

shot match partition on the source video sequence V, one can simply label a certain

percentage of the most frequently repeating shots as stop shots. The specific

percentage value may be chosen experimentally depending on the video source.

In order to verify this proposition, we calculated a histogram of shot repetition in the

18-hour CNN News broadcast used in other experiments in this chapter. The

resulting histogram is depicted in Figure 145. The graph shows that indeed the

broadcast contains a small percentage of shots which repeat frequently, while the

majority of shots occur only a few times. More detailed investigation revealed that

the most frequently occurring shots were anchor persons and certain promos.

However, we also observed that a large number of anchor person shots, commercials,

and studio shots, appeared were matched to less than 10 other shots. Considering that

certain news content shots belonging to our story were repeated a similar number of

times, we found it difficult to establish an optimal frequency threshold separating

important shots from potential stop shots.

 216

13,627

2,785

1,316
1,639

1,128

389
106 1

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 1 2 3 to 4 5 to 8 9 to 16 17 to 32 33 to 64

Number of repetitions

N
u

m
b

er
 o

f
sh

o
ts

Figure 145 Shot repetition histogram in an 18-hour CNN News broadcast

Nonetheless, we chose to perform a story tracking experiment in which stop shots

were excluded from the story core expansion. Having precise knowledge of the story

shot repetition patterns – none of the shots repeated more than 10 times – we selected

the stop-shot frequency threshold equal to 10. Contrary to our initial expectations,

the removal of the most frequent shots did not improve the story tracking

performance. This result may be better understood, if one remembers that the

majority of anchor person and commercial shots were not eliminated by this

frequency threshold. Apparently their presence in close proximity to the actual story

segments was sufficient to introduce a large number of false segments into the story.

This experiment shows that in order to substantially improve the story tracking

accuracy, frequency-based classification is insufficient and classification methods for

the specific types of news shots are needed. In the next sections we suggest such

automated methods for detection of commercials and promos, as well as anchor

person and studio shots.

 217

Commercials and Promos

Commercials and promos have a number of characteristics that help distinguish them

from the rest of the news broadcast. First, they repeat regularly at various times

during the broadcast (see Figure 146). They tend to consist of several shots, and

usually are either 30 or 60 seconds long. In addition, they occur in blocks of several

commercials at a time. These characteristics could be used to create a classification

method which could use multiple criteria to correctly identify commercials and

promos. Such a technique could detect sequences of multiple shots, which appear

several times during the broadcast, especially in close proximity to other sequences of

shots of similar repetition pattern. Commercial classification is beyond the scope of

our work, but shows potential for improvement of story tracking performance.

Frequency

0

1

2

3

4

5

00
:0

0:0
0

00
:4

0:0
0

01
:2

0:0
0

02
:0

0:0
0

02
:4

0:0
0

03
:2

0:0
0

04
:0

0:0
0

04
:4

0:0
0

05
:2

0:0
0

06
:0

0:0
0

06
:4

0:0
0

07
:2

0:0
0

08
:0

0:0
0

08
:4

0:0
0

09
:2

0:0
0

10
:0

0:0
0

10
:4

0:0
0

11
:2

0:0
0

12
:0

0:0
0

12
:4

0:0
0

13
:2

0:0
0

14
:0

0:0
0

14
:4

0:0
0

15
:2

0:0
0

16
:0

0:0
0

16
:4

0:0
0

17
:2

0:0
0

18
:0

0:0
0

18
:4

0:0
0

19
:2

0:0
0

20
:0

0:0
0

20
:4

0:0
0

21
:2

0:0
0

22
:0

0:0
0

22
:4

0:0
0

23
:2

0:0
0

Figure 146 Typical repetition pattern of a commercial shot

Anchors and Studio Shots

In this section, we propose an automatic method of identifying anchor and studio

shots. By analyzing typical news shows, we observed that during a single show,

anchor persons appear multiple times to relate different stories. Although in the strict

sense those shots are not repetitions of one another, they are visually very similar, and

 218

are frequently reported as matching by an automatic shot matching algorithm. This

shortcoming of the shot matching mechanism may be used to our advantage.

Frequency

0

2

4

6

8

10

12

14

16

18

20
00

:0
0:

00

00
:4

0:
00

01
:2

0:
00

02
:0

0:
00

02
:4

0:
00

03
:2

0:
00

04
:0

0:
00

04
:4

0:
00

05
:2

0:
00

06
:0

0:
00

06
:4

0:
00

07
:2

0:
00

08
:0

0:
00

08
:4

0:
00

09
:2

0:
00

10
:0

0:
00

10
:4

0:
00

11
:2

0:
00

12
:0

0:
00

12
:4

0:
00

13
:2

0:
00

14
:0

0:
00

14
:4

0:
00

15
:2

0:
00

16
:0

0:
00

16
:4

0:
00

17
:2

0:
00

18
:0

0:
00

18
:4

0:
00

19
:2

0:
00

20
:0

0:
00

20
:4

0:
00

21
:2

0:
00

22
:0

0:
00

22
:4

0:
00

23
:2

0:
00

Figure 147 Typical repetition patter for an anchor person shot

Figure 147 shows a typical distribution of shots matching a sample anchor person. In

this experiment, a 60-frame portion of an anchor person shot was selected and all its

repetitions were detected and grouped within 10-minute time spans. It is clear that in

a time window of 08:30:00 to 10:20:00, a large number of occurrences is found. This

corresponds to a single news show lasting about 2 hours. On the other hand, no

matching sequences are found any other time during the day, except for some

accidental matches to different anchor person shots in another news show. Thus,

unlike commercials and promos, which occur frequently during the entire broadcast,

anchor and studio shots tend to appear in close proximity to one another.

Therefore, frequent local repetition may be used as good anchor classifier. If a

certain shot matches a large number of other shots within a certain distance

corresponding to the length of a typical news show, but does not match many shots

outside of this range, it may be labeled as an anchor shot. The characteristic length of

a news show may be established experimentally depending on the news source.

 219

In addition, anchor shots usually contain very little motion. As a result, the video

features of their individual frames remain very stable across the whole shot. This fact

may be used to augment anchor classification. To this end, one can measure the auto-

similarity of every shot. Naturally, if one compares any video sequence to itself by

measuring the difference in features of the corresponding frames, one will find all

sequences matching. This is not very helpful in establishing auto-similarity. On the

other hand, if one can consider the number of non-corresponding frames that match,

one will notice that relatively still shots contain a large number of them, while

sequences with substantial motion do not. Thus, the total number of matching frames

could be calculated by comparing all pairs of frames in the shot. This process,

however, would be very time consuming. Alternatively, we could use quantized

color moments (see section 3.6.2). The auto-similarity of a given shot may be

quickly assessed by counting the total number of frames which share a single hyper-

cube of the quantized color moment space.

The combination of the two criteria introduced above, i.e. high frequency of local

repetition and high auto-similarity, shows promise as an anchor shot classification

technique. Implementation and evaluation of this approach are beyond the scope of

this research, and could constitute an interesting extension of our work.

News Content Shots

Due to a great variety of video footage used by news stations as visual clues for

reported stories, it is difficult to provide a direct classification technique for news

content shots. Instead, we will assume that all shots not categorized into other shot

classes will be considered news content shots. This approach is not perfect, but it

substantially limits the number of shots used for story core expansion, and thus

reduces the odds of uncontrollable story growth.

 220

4.5.3 Summary

In this section, we proposed news shot classification as a source of improvement for

the story tracking algorithm. We explained how shot classification could be used to

address problems in our technique discovered in earlier sections, and suggested how

this information can be incorporated into the algorithm. Finally, we proposed

methods of automatic shot classification based on shot repetition patterns and basic

visual features of typical news shots.

4.6 Story Presentation

The problem of story presentation may be regarded very broadly, as an effort to

devise optimal ways of presenting news stories to the viewers. Traditional video

news media, i.e. television stations, are limited by their nature, and can report news

only in a linear fashion. With the advent of the Internet, as well as proliferation of

various electronic multimedia devices several other models of story presentation are

possible. As these new media become more dominant sources of video news, the

domain of story presentation is bound to gain more importance. Detailed analysis of

the various alternatives of news story presentation using modern media is certainly

beyond the scope of this work. Hence, in this section we do not attempt to provide

definitive solutions to the general problem of story presentation. Instead, we focus on

the issue of presenting the stories resulting from story tracking in television news

broadcasts.

As discussed in section 4.1, the problem of story tracking is intricately connected

with the issue of story presentation. Once the story has been identified by the story

tracking algorithm it must be presented to the user in a manner which facilitates

intuitive browsing and viewing. To this end, we propose to create a story view,

which comprises a subset of all story shots, and arranges them according to a certain

order. In this section we discuss a few alternative story views which follow naturally

 221

from our story tracking technique. A brief exposition of graphical presentation of the

story views is also given.

4.6.1 Complete Story View

The story tracking algorithm developed in this chapter returns a story as a set of video

shots. A straightforward way of presenting the story to the user is to simply show all

the shots in their chronological order. If, in addition, the associated audio is played

while the shots are shown, such presentation constitutes the most comprehensive

coverage of the story. On the other hand, it may contain a considerable amount of

visually redundant information. This could be eliminated by retaining only the first

occurrence of any story shot, and removing all of its repetitions. In this case, the

information in the audio signal may be difficult to understand due to the removal of

the audio associated with the repeated shots.

4.6.2 Visual Content View

Our tracking algorithm detects stories using visual features of the broadcast. It is,

therefore, natural and more interesting to focus on the visual aspects of the story. It

turns out the story board used by the algorithm lends itself to creation of a story view

which focuses on visual aspect of the story.

This approach to story presentation emphasizes the visual content of the story. While

video shots of anchor persons and reporters convey important portions of the story in

the associated audio, they are of little importance visually. If the user is interested

primarily in the visual aspects of the story, it may be beneficial to present to him only

the news content shots. To this end we propose to use the story core created by our

story tracking algorithm. Thus, we select a story view (see section 4.1) which consists

of the set of all shots comprising the core along with a partial or total order on these

shots. In this section we discuss two possible shot orderings, which result in two

different story core views.

 222

One story view may be constructed by arranging all core shots in the order of their

chronological appearance. This simple arrangement captures an important aspect of

story development. As the news story evolves over time and comprises new events,

television news stations obtain new video material and show it to the viewers. Thus,

by viewing only the core shots in the order they were shown by the station, the user

may deduce the temporal development of the story.

Perhaps the main disadvantage of presenting the story in this fashion is the significant

proportion of redundant visual information. The story core, as constructed by our

algorithm, contains every repetition of every news content shot in the story. Thus,

viewing the entire story core the user would be shown the same shots multiple times.

This issue can be rectified by reducing the view to only the unique shots in the core,

which may be accomplished by using the equivalence classes in the story board. For

every equivalence class a single representative shot may be selected and placed in the

view. The choice of the representative shot allows for three alternatives. First, one

can simply take the chronologically earliest shot in the class. However, since shots in

the class often vary in length and may match only partially, the earliest shot may be

very short, and contain little information. A better choice is to use the longest shot in

the class. Finally, in order to maximize the visual content, one can construct a video

sequence constituting the union of all shots in the class, as depicted in Figure 148.

Figure 148 Example of shot merging to obtain maximum of visual content

In the end, after every equivalence class has been reduced to a single shot, the

chronological story view becomes a linear sequence of unique shots presenting the

maximal portion of the visual content of the story in the shortest amount of time.

M = A+B+C

C

A

B

 223

The chronological story view utilizes temporal relationships between core shots.

Certainly other relationships exist and could be exploited for story view creation.

Here, we will consider one alternative, which explores the core shot organization

within story segments. The news content shots in the story segments are arranged by

the director of the news program during the production process. This arrangement

may correspond to some logical connections between the shots, and thus presenting

the story in a manner most accurately reflecting these connections may be beneficial.

We can utilize the story board created by our algorithm to construct such a story

view.

Figure 149 Sample story

To this end we form a co-occurrence matrix C[M,M] , where M is the number of

equivalence classes in the core. Every entry cij of this matrix is the total number of

times a shot from class i preceded a shot from class j in any segment of the story.

Consider the story depicted in Figure 149, which has a core whose shots belong to

three equivalence classes: A, B, and C. The co-occurrence matrix for this story is

shown in Table 14.

 A B C Total

A 0 4 0 4

B 1 0 0 1

C 3 2 0 5

Table 14 Sample co-occurrence matr ix

A B

 A B A

B A

C

C

B A

 224

Given the co-occurrence matrix, one can construct a partial order on the core shots in

the following way. For every shot x a co-occurrence score cs(x) can be calculated as

the sum of all entries in the corresponding row of the matrix. The partial is the set of

all pairs of shots (x,y) with different scores, such that cs(x) > cs(y). In the example

above, the resulting partial order becomes { }BABCAC ,,,,, .

In this simple example the partial order is also a total order, but in general several

shots may have the same co-occurrence score, and therefore cannot be ordered with

respect to each other. However, a total order may always be constructed by

considering the chronology of the shots in question. If multiple shots share the same

score, they can be ordered according to the time of their first occurrence in the news

broadcast.

In summary, the story core, which comprises the visual content of the story, may be

presented in either a chronological order, or arranged according to the order of shot

appearance in the story segments.

4.6.3 Graphical Story Presentation

Regardless of the choice of story view and the method used to create it, the story view

must be presented to the user in a form that facilitates intuitive browsing and viewing

of the story. In this section we briefly describe a concept of a graphical story

presentation interface which serves this purpose.

In order to graphically display the complete view of the story one can use a

representation visually similar to the story graph used throughout this chapter. All

segments of the story should be arranged chronologically, and displayed on separate

lines, as shown in Figure 150. The shots within individual segments can be depicted

by icons showing corresponding keyframes. To avoid displaying a very large number

of icons, especially for long segments, only the keyframes representing the core shots

could be used.

 225

Figure 150 Sample user inter face for a complete story view with two segments

Presented with this interface, the user could click on the displayed icons to play the

corresponding core shots. Alternatively, the entire segment could be played by

clicking on the area between the keyframes.

The visual story content view is not inherently divided into segments. Rather, the

view presents the story core in either a linear or non-linear fashion. For the linear

view, an interface resembling a film strip could be adopted, as shown in Figure 151.

The user’s interaction with this interface could be analogical to the one used for

complete story view.

Figure 151 Sample user inter face for a linear story core view

The non-linear view of the story core requires a different representation. Since only

certain pairs of core shots are strictly ordered, the story view could be shown as a

graph, in which vertices correspond to shots and edges represent ordering, as in

Figure 152. This interface requires the user to select individual shots for playback

one at a time. Alternatively, the user could mark a path in the graph and have all

shots in this path played sequentially.

 226

Figure 152 Sample user inter face for a story with two segments

All of the user interfaces presented could be used to efficiently and intuitively view

the results of story tracking. However, since the development of a graphical user

interface for story viewing was not the focus of this work, we restricted ourselves to

implementing a simple linear view of either the complete story or the story core. The

view is shown to the user in the form of a list of video clips described by their start

and end time, as shown in Figure 153. Each such list item may be clicked in order to

play the video clip in the associated video window. In addition, the user can

randomly access any portion of the video clips by entering the time at which they

would like to begin playback. This simple interface has proven very useful in the

development and testing of our story tracking algorithm.

 227

Figure 153 Simple list representation of a complete story view

Summary

In this section we briefly discussed the problem of story presentation. Far from

attempting to provide definitive solutions for the general question of optimal

presentation of news stories in modern media, we were primarily interested in the

methods of organizing and displaying the results of our story tracking technique. To

this end we described two story views which follow most naturally from the tracking

algorithm. In the complete story view all shots in the story are arranged in their

chronological order and presented along with the corresponding audio, whereas in the

visual content view emphasizes the visual aspect of the story, by displaying only the

story core. At the end, we gave a conceptual overview of a graphical user interface

which may be used to present both story views to the user in an interactive fashion.

4.7 Conclusions

This chapter discusses the design of a story tracking algorithm based on repetition of

video footage in television news broadcasts. In this chapter we first provided the

definition of the problem of story tracking in video, as the detection of all shots

relevant to a particular news story. We designed and implemented an algorithm

which creates a story from a set of relevant query shots. The story is built gradually,

 228

one segment at a time, as the video content becomes available. The algorithm detects

story segments by identifying new occurrences of shots already in the story.

To evaluate this technique in real-world conditions we performed a story tracking

experiment on a CNN News broadcast. The results showed that our fully automated

story tracking algorithm can achieve good performance (recall and precision around

75%), even using imperfect input data. The experiments also proved that there are

some aspects our approach which could be further improved. We observed that the

repetitions of anchor person shots and commercials confuse our algorithm and cause

it to expand the story past its actual boundaries. Therefore, we postulated that

accurate shot classification could be used to enhance our story tracking method, and

showed how the method could be extended to incorporate the shot classification

information. Finally, we suggested methods of automatic labeling of shots as

commercials and anchor persons based on their characteristic repetition patterns.

The research discussed in this chapter demonstrates that repetitions in the visual

content of video news broadcasts can be used to successfully track stories. This

tracking method constitutes a viable alternative to the textual topic tracking

techniques. The two approaches could be combined in order to improve the overall

story tracking performance.

 229

Chapter 5

Conclusions

This dissertation considered the problem of inadequate access to video information,

particularly in the domain of video news broadcasts. In our research, we addressed

one of the main aspects of the problem, which is the tracking of news story

development over time. We designed and implemented an effective story tracking

technique based on visual characteristics of television news broadcasts. Our method

is complementary to textual topic tracking techniques, and may be used in

conjunction with them to improve the overall performance. The story tracking

method we developed comprises three major components, which required us to tackle

the corresponding challenges of effective temporal video segmentation, fast and

accurate video sequence repetition detection, and story tracking based on detected

repetitions.

Temporal Segmentation

An analysis of typical television news broadcasts showed that effective story tracking

requires precise detection and effective matching of very short video sequences.

After evaluation of some simple shot detection methods and finding their

performance insufficient, we designed a more advanced technique based on

mathematical models of the main types of video transitions. We chose the three

primary color moments – mean, standard deviation, and skew – as video frame

 230

features, and used this representation to create a temporal segmentation algorithm.

The algorithm detects cuts, fades, and dissolves by identifying their characteristic

patterns in the time series of the color moments. The algorithm was tested on a video

sequence obtained from a typical broadcast of the CNN News channel, and compared

with other techniques using less compact video features. Our method achieved

similar performance in cut and fade detection, but outperformed the other techniques

in the identification of dissolves, yielding a 15% improvement in precision and recall

for this task.

Repeated Sequence Detection

In order to track news stories in live video broadcast using repeated video footage, we

developed a real-time video sequence matching algorithm. Considering that video

clips reused by new stations are often very short and their length is adjusted to the

demands of live television, we introduced a number of video sequence similarity

metrics which can deal with partial sequence repetition. We examined the advantages

and disadvantages of using different metrics for detection of repetitions in the news

video stream. We demonstrated that direct calculation of partial similarity between

all potential sequences in a live video stream is not viable on state-of-the-art

commodity hardware. Consequently, we adopted a heuristic filtering technique based

on quantization and hashing of the frame color moments, which substantially reduces

the average time complexity of repeated sequence detection, and allows the detection

to be performed in real time. We analyzed the effects of color moment quantization

on video sequence similarity, and introduced a sequence similarity measure based on

equality of quantized color moments between video frames regardless of their

temporal ordering. We showed that this measure is a good approximation of the

actual video sequence similarity, and used it to filter out dissimilar video sequences

without performing direct comparison. Experimental evaluation showed that our

repeated sequence detection technique with heuristic filtering successfully detected

partially repeated video sequences achieving very high recall and precision.

 231

Story Tracking

Using the results of our temporal segmentation and repeated sequence detection

method, we designed and developed a novel story tracking algorithm for television

news broadcasts based on repetitions of video footage. Our method builds a set of

shots relevant to the news story being tracked, called a story core, and identifies new

story episodes by detecting occurrences of shots belonging to this set. The story core

is allowed to evolve dynamically over time to account for additional video footage as

it becomes available. This technique was evaluated on a 24-hour broadcast of CNN

News channel and was found to achieve good performance (recall and precision of

approximately 75%). We subsequently demonstrated that a number of improvements

may be made using the classification of shots into categories typical for video news.

Finally, we proposed a set of automated classification methods for commercials and

anchor shots using their characteristic repetition patterns.

Future Work

Our work demonstrates that visual characteristics of news video streams may be used

to track news stories over time. Nonetheless, there are several research areas which

this dissertation does not address, and which certainly deserve further investigation.

In the domain of temporal video segmentation, little attention has been devoted to the

detection of computer generated transition effects. Due to advances in computer and

video production technology, such sophisticated effects are increasingly used by the

television news stations. Therefore, an interesting research direction would be the

development of effective detection methods for computerized effects in video.

In this dissertation, we focused on detecting repeated footage shown in the full video

frame, and obscured only by the on-screen captions at the bottom of the frame. We

observed, however, that in certain news programs, video footage is displayed in a

smaller window and occupies only part of the screen. Effective methods of

recognizing the presence of such windows could improve the story tracking

 232

performance. Hence, the design and implementation of automatic techniques of on-

screen window detection constitutes a promising extension to our work.

In Chapter 4, we indicated that information regarding news shot classification could

substantially improve the accuracy of our story tracking technique. We believe,

therefore, that the area of automatic news shot classification should be further

explored. Automatic shot classifiers could be created based on shot repetition

patterns, as suggested in this work. Alternatively, other methods could be devised,

for instance relying on facial recognition, or speaker identification. Such techniques

would not only advance the research in story tracking, but would also be a valuable

contribution to the broad domain of video retrieval.

Finally, our work could be a starting point for an entirely new research area of

multimodal story tracking. The primary efforts in this area should concentrate on the

creation of story tracking algorithms which combine the visual characteristics of the

news video stream with the associated textual and audio information. For instance,

closed captions included in the news broadcasts could be effectively exploited to

improve performance of all three phases of the visual story tracking. Similarly,

repeated video footage data could be used to enhance the textual topic tracking

techniques. Therefore, the convergence of different modes of news communication

should be explored so that the merits of visual, as well as textual and aural

information may be fully realized.

 233

Bibliography

1. [Adj98] D. A. Adjeroh, M. C. Lee, and I. King, A Distance Measure for Video

Sequence Similarity Matching, In Proceedings of International Workshop on

Multimedia Database Management Systems, pages 72-79, Dayton, OH, August

1998.

2. [Aku92] A. Akutsu, Y. Tonomura, H. Hashimoto, Y. Ohba, Video Indexing

Using Motion Vectors, Proceedings of Visual Communications and Image

Processing, SPIE vol. 1818, 1992.

3. [Ala97] A. M. Alattar, Detecting Fade Regions in Uncompressed Video

Sequences, IEEE International Conference on Acoustics, Speech, and Signal

Processing (ICASSP), 1997.

4. [Ala93] A. M. Alattar, Detecting and Compressing Dissolve Regions in Video

Sequences with a DVI Multimedia Image Compression Algorithm, IEEE

International Symposium on Circuits and Systems (ISCAS), vol. 1, 1993.

5. [All98a] J. Allan, V. Laverenko, R. Papka, Event Tracking, CIIR technical report

IR-128, April, 1998.

6. [All98b] J. Allan, V. Laverenko, R. Papka, On-line New Event Detection and

Tracking, Proceedings of ACM SIGIR 1998, August, 1998.

7. [AsfWeb] J. Assfalg, M. Bertini, C. Colombo, A. Del Bimbo, Solutions in Video

Retrieval by Content,

 234

http://delosnoe.iei.pi.cnr.it/activities/researchforum/Brainstorming/PositionState

ments/del-bimbo.pdf

8. [Ber00] M. Bertini, A. Del Bimbo, P. Pala, Content Based Annotation and

Retrieval of News Videos, International Conference on Multimedia and Expo

2000, 2000.

9. [Bor96] J. S. Boreczky, L. A. Rowe, Comparison of Video Shot Boundary

Detection Techniques, Proceedings of Storage and Retrieval for Still Image and

Video Databases IV, SPIE Proceedings vol. 2664, January, 1996.

10. [Car99] J. Carbonell, Y. Yang, J. Lafferty, R. Brown, T. Pierce, X. Liu, CMU

Report on TDT2: Segmentation Detection and Tracking, Proceedings of the

DARPA Broadcast News Workshop, 1999.

11. [Car97] C. Carrick, C. Watters, Automatic Assiociation of News Items,

Information Processing & Management 33(5), 1997.

12. [Cha98] S-F. Chang, W. Chen, H. Meng, H. Sundaram, D. Zhong, A Fully

Automated Content Based Video Search Engine Supporting Spatio-Temporal

Queries, IEEE Transaction on Circuits and Systems for Video Technology, Vol.

8, No. 5, September, 1998.

13. [Chi01] V. Chitkara, Color-based Image Retrieval Using Compact Binary

Signatures, Master’s Thesis, Department of Computer Science, University of

Alberta, 2001.

14. [Chr02] M. G. Christel, A. G. Hauptmann, H. D. Wactlar, T. D. Ng, Collages as

Dynamic Summaries for News Video, Proceedings of the Tenth ACM

International Conference on Multimedia, December 2002.

15. [Dai95] A. Dailianas, R. B. Allen, P. England, Comparison of Automatic Video

Segmentation Algorithms, Proceedings of Integration Issues in Large

Commercial Media Delivery Systems, SPIE vol. 2615, October, 1995.

 235

16. [Dun97] M. D. Dunlop, Time, Relevance and Interaction Modeling for

Information Retrieval, Proceedings of ACM SIGIR 1997, 1997.

17. [Duy04a] P. Duygulu, M. Y. Chen, A. Hauptmann, Comparison and

Combination of Two Novel Commercial Detection Methods, International

Conference on Multimedia and Expo (ICME'04), Taipei, Taiwan, June 27-30,

2004.

18. [Duy04b] Duygulu, P., Hauptmann, A., What's News, What's Not? Associating

News Video with Words, Proceedings of the 2004 International Conference on

Multimedia and Expo (ICME'04), Taipei, Taiwan, June 27-30, 2004.

19. [Fer99] W. A. C. Fernando, C. N. Canagarajah, D. R. Bull, Fade and Dissolve

Detection in Uncompressed and Compressed Video Sequences, Proceedings of

IEEE International Conference on Image Processing (ICIP) 1999, vol. 3, 1999.

20. [Gar00] U. Gargi, R. Kasturi, S. H. Strayer, Performance Characterization of

Video-Shot-Change Detection Methods, IEEE Transaction on Circuits and

Systems for Video Technology, vol. 10, no. 1, February, 2000.

21. [Gar98] U. Gargi, R. Kasturi, S. Antani, Performance Characterization and

Comparison of Video Indexing Algorithms, Proceedings IEEE Conference on

Computer Vision and Pattern Recognition, Santa Barbara, CA, June, 1998.

22. [Gar96a] U. Gargi, S. H. Strayer, S. Antani, R. Kasturi, Evaluation of Color

Histogram Based Methods in Video Indexing, Technical Report, May, 1996.

23. [Gar96b] U. Gargi, R. Kasturi, An Evaluation of Color Histogram Based

Methods in Video Indexing, Proceedings of International Workshop on Image

Databases and Multimedia Search, 1996.

24. [Gar95] U. Gargi, S. Oswald, D. Kosiba, S. Devadiga, R. Kasturi, Evaluation of

Video Sequence Indexing and Hierarchical Video Indexing, Proceedings of

Storage and Retrieval in Image and Video Databases, SPIE, 1995.

 236

25. [Gau99] J. Gauch, S. Gauch, S. Bouix, X. Zhu, Real Time Video Scene

Detection and Classification, Information Processing and Management 33, 1999.

26. [Gau98] S. Gauch, J. Gauch, K. M. Pua, The VISION Digital Video Library

Project, Encyclopedia of Library and Information Science '98, 1998.

27. [Gau97] S. Gauch, W. Li, J. Gauch, The VISION Digital Video Library,

Information Processing and Management 33(4), 1997.

28. [Gau96] S. Gauch, J. Gauch, K. M. Pua, VISION: A Digital Video Library,

Digital Libraries '96, Bethesda, MD, USA, 1996.

29. [GauWeb] J. Gauch, Video Authentication: Overview,

http://www.ittc.ukans.edu/~jgauch/research/video/vidwatch_overview.html

30. [Hac00] M. S. Hacid, J. Kouloumdjian, A Database Approach for Modeling and

Querying Video Data, IEEE Transactions on Knowledge and Data Engineering,

12(5), September 2000.

31. [Ham97] A. Hampapur, A. Gupta, B. Horowitz, C-F. Shu, C. Fuller, J. Bach, M.

Gorkani, R. Jain, Virage Video Engine, Proceedings of Storage and Retrieval for

Image and Video Databases V, SPIE Proceedings vol. 3022, 1997.

32. [Ham95] A. Hampapur, R. Jain, T. E. Weymouth, Production Model Based

Digital Video Segmentation, Multimedia Tools and Applications, 1(1), 1995.

33. [Hau03] A. Hauptmann et.al., Informedia at TRECVID 2003: Analyzing and

Searching Broadcast News Video, TREC (VIDEO) Conference, 2003.

34. [Hau98] A. Hauptmann, M. Witbrock, Story Segmentation and Detection of

Commercials in Broadcast News Video, Advances in Digital Libraries

Conference (ADL’98), Santa Barbara, CA, April 22 - 24, 1998.

35. [Hoa03a] T. C. Hoad, J. Zobel, Video Similarity Detection for Digital Rights

Management, Proceedings of 26th Australian Computer Science Conference,

Adelaide, Australia, 2003.

 237

36. [Hoa03b] T. C. Hoad, J. Zobel, Fast Video Matching with Signature Alignment,

Proceedings of the 5th ACM SIGMM International Workshop on Multimedia

Information Retrieval 2003, Berkeley, CA, November 2003.

37. [Hua00] Q. Huang and A. Puri, Multimedia Search and Retrieval: New Concepts,

System Implementation and Application. IEEE Transactions on Circuits and

Systems for Video Technology, 10(5):679-692, August 2000.

38. [Hua97a] J. Huang, S. R. Kumar, M. Mitra, Combining Supervised Learning

with Color Correlograms for Content Based Image Retrieval, ACM Multimedia

1997, 1997.

39. [Hua97b] J. Huang, S. R. Kumar, M. Mitra, Image Indexing Using Color

Correlograms, Proceedings of Computer Vision and Pattern Recognition 1997,

1997.

40. [Ide03] I. Ide, H. Mo, N. Katayama, S. Satoh, Topic-Based Inter-Video

Structuring of a Large-Scale News Video Corpus, 2003 IEEE International

Conference on Multimedia and Expo (ICME2003), vol.3, pp.305-308, Baltimore

MD, July 2003.

41. [Ide03] I. Ide, H. Mo, N. Katayama, Threading news video topics, Proceedings of

the 5th ACM SIGMM International Workshop on Multimedia Information

Retrieval 2003, Berkeley, CA, November 2003.

42. [Ide02] I. Ide, N. Katayama, S. Satoh, Visualizing the Structure of a Large Scale

News Video Corpus Based on Topic Segmentation and Tracking, Proceedings of

ACM Multimedia 2002 Workshop on Multimedia Information Retrieval, Juan-

les-Pins, France, Dec. 2002.

43. [Ide01a] I. Ide, R. Hamada, S. Sakai, H. Tanaka, An Attribute Based News Video

Indexing, Proceedings of ACM Multimedia 2001 Workshops -Multimedia

Information Retrieval, pp.70-73, Ottawa ON, Canada, Oct. 2001.

 238

44. [Ide01b] I. Ide, K. Yamamoto, R. Hamada, H. Tanaka, An Automatic Video

Indexing Method Based on Shot Classification, Systems and Computers in Japan,

vol.32, no.9, pp.32-41, Aug. 2001.

45. [Ide00] I. Ide, R. Hamada, S. Sakai, H. Tanaka, Scene Identification in News

Video by Character Region Segmentation, Proceedings of ACM Multimedia

2000 Workshops, pp.195-200, Marina del Rey CA, Nov 2000.

46. [Ide99a] I. Ide, R. Hamada, S. Sakai, H. Tanaka, Identification of Scenes in

News Video from Image Features of Background Region, First International

Workshop on Multimedia Intelligent Storage and Retrieval Management

(MISRM'99), Orlando FL, Oct. 1999.

47. [Ide99b] I. Ide, K. Yamamoto, H. Tanaka, Automatic Video Indexing Based on

Shot Classification, Advanced Multimedia Content Processing -First

International Conference AMCP'98, Osaka, Japan, 1998.

48. [InfWeb] Informedia Web Site, http://www.informedia.cs.cmu.edu/

49. [Jin99] H. Jin, R. Schwartz, S. Sista, F. Wall, Topic Tracking for Radio, TV

Broadcast, and Newswire, Proceedings of the DARPA Broadcast News

Workshop, 1999.

50. [Kal01] A. A. C. Kalker, J. A. Haitsma, J. C. Oostveen, Issues with Digital

Watermarking and Perceptual Hashing, Proceedings of SPIE Conference on

Multimedia Systems Applications, 2001.

51. [Kan00] M. S. Kankanhalli, T. S. Chua, Video Modeling Using Strata-Based

Annotation, IEEE MultiMedia Vol. 7, No. 1, January-March 2000.

52. [Kas98] R. Kasturi, S. H. Strayer, U. Gargi, S. Antani, An Evaluation of Motion

and MPEG Based Methods for Temporal Segmentation of Video, Technical

Report CSE-98-014, Department of Computer Science and Engineering, Penn

State University, 1998.

 239

53. [Knu97] D. E. Knuth, The Art of Computer Programming, Addison-Wesley,

1997.

54. [Kop98] I. Koprinska, S. Carrato, Temporal Video Segmentation: A Survey,

http://citeseer.nj.nec.com/378900.html

55. [Lew97] D. Lewis, The TREC-5 Filtering Track, The Fifth Text Retrieval

Conference (TREC-5), NIST Special Publication 500-238, November, 1997.

56. [Lie01a] R. Lienhart, Reliable Transition Detection in Videos: A Survey and

Practitioner's Guide, International Journal of Image and Graphics, vol. 1, no. 3,

2001.

57. [Lie01b] R. Lienhart, Reliable Dissolve Detection, Proceedings of Storage and

Retrieval for Media Databases, SPIE vol. 4315, January, 2001.

58. [Lie99] R. Lienhart, Comparison of Automatic Shot Boudary Detection

Algorithms, Proceedings of Storage and Retrieval for Still Image and Video

Databases VII, SPIE vol. 3656-29, January, 1999.

59. [Lie97] R. Lienhart, C. Kuhmunch, W. Effelsberg, On the Detection and

Recognition of Television Commercials, Proceedings of IEEE International

Conference on Multimedia Computing and Systems, 1997.

60. [Lin02] W. Lin, A. Hauptmann, News Video Classification Using SVM-based

Multimodal Classifiers and Combination Strategies, Proceedings of the Tenth

ACM International Conference on Multimedia, December 2002.

61. [Lup98] G. Luptani, C. Saraceno, R. Leonardi, Scene Break Detection: A

Comparison, Research Issues in Data Engineering, Workshop on Continuous

Media Databases and Applications, 1998.

62. [Man94] U. Manber, Finding Similar Files in a Large File System. Proceedings

of 1994 Winter USENIX Technical Conference, San Francisco, CA, Jan. 1994.

 240

63. [Mar01] S. Marlow, D. A. Sadlier, K. McGeough, N. O’Connor, N. Murphy,

Audio and Video Processing for Automatic TV Advertisement Detection,

Proceedings of ISSC, 2001.

64. [Mar97] A. Martin, T. Kamm, G. Doddington, M. Ordowski, M. Przybocki, The

DET Curve in Assessment of Detection Task Performance, Proceedings of

EuroSpeech '97, 1997.

65. [Mcg83] M. J. McGill, G. Salton, Introduction to Modern Information Retrieval,

McGraw-Hill, New York, 1983.

66. [Nag92] A. Nagasaka, Y. Tanaka, Automatic Video Indexing and Full-Video

Search for Object Appearances, Visual Database Systems II, 1992.

67. [Nap03a] M. Naphade, J. Smith, A Framework for Moderate Vocabulary

Semantic Visual Concept Detection, IEEE ICME 2003.

68. [Nap03b] M. Naphade, et al., IBM Research TRECVID-2003 Video Retrieval

System, TREC (VIDEO) Conference, 2003.

69. [Nap00a] M. Naphade, A Probabilistic Framework for Semantic Indexing and

Retrieval in Video, IEEE International Conference on Multimedia and Expo,

New York, 31 July-2 August 2000.

70. [Nap00b] M. Naphade, A Factor Graph Framework for Semantic Indexing and

Retrieval in Video, Content-Based Access of Image and Video Library 2000

June 12, 2000 held in conjunction with the IEEE Computer Vision and Pattern

Recognition 2000.

71. [Ngo03] C. Ngo, A Robust Dissolve Detector by Support Vector Machine,

Proceedings of the Eleventh ACM International Conference on Multimedia,

November 2003.

72. [Oos01] J. C. Oostveen, A. A. C. Kalker, J. A. Haitsma, Visual Hashing of

Digital Video: Applications and Techniques, SPIE Applications of Digital Image

Processing XXIV, San Diego, July 2001.

 241

73. [Pap99] R. Papka, On-line New Event Detection, Clustering, and Tracking, Ph.D.

Dissertation, University of Massachusetts Amherst, September, 1999.

74. [Pas99] G. Pass, R. Zabih, Comparing Images Using Joint Histograms,

Multimedia Systems, vol. 7, no. 3, 1999.

75. [Pas96] G. Pass, R. Zabih, Histogram Refinement for Content-Based Image

Retrieval, Proceedings of 3rd IEEE Workshop on Applications of Computer

Vision, 1996.

76. [Pet01a] D. Petkovic, Content-Based Video Retrieval, VII Conference on

Extending Database Technology (EDBT), Ph.D. Workshop, Konstanz, Germany,

March, 2001.

77. [Pet01b] D. Petkovic, W. Jonker, Content-Based Video Retrieval by Integrating

Spatio-Temporal and Stochastic Recognition of Events, IEEE International

Workshop on Detection and Recognition of Events in Video, Vancouver,

Canada, July, 2001.

78. [Pet96] D. Petkovic, P. Aigrain, H. Zhang, Content-based Representation and

Retrieval of Visual Media: A State-of-the-Art Review, Multimedia Tools and

Applications, Vol. 3 No.3, pp179-202, 1996.

79. [Pon98] D. Ponceleon, S. Srinivasan, A. Amir, D. Petkovic, D. Diklic, Key to

Effective Video Retrieval: Effective Cataloging and Browsing, ACM Multimedia

1998, 1998.

80. [Pua03] K. M. Pua, J. M. Gauch, S. E. Gauch, J. Z. Miadowicz, Real Time

Repeated Video Sequence Identification, Computer Vision and Image

Understanding, pp. 310-327, 2004.

81. [Pua02] K. M. Pua, Feature-Based Video Sequence Identification, Ph.D.

Dissertation, The University of Kansas, May, 2002.

 242

82. [Pua99] K. M. Pua, S. Gauch, J. Gauch, VIDSEEK: Dynamic Multidimentional

Browsing of Video Archives, Proceedings of ACM SIGIR '99, Berkeley, CA,

USA, 1999.

83. [Row94] L. A. Rowe, J. S. Boreczky, C. A. Eads, Indexes for User Access to

Large Video Databases, SPIE Proceedings 2185, February, 1994.

84. [Sab95] C. L. Sabharwal, S. K. Bhatia, Perfect Hash Table Algorithm for Image

Databases Using Negative Associated Values, Pattern Recognition 28 (7), 1995.

85. [Sch99] J. M. Schultz, M. Liberman, Topic Detection and Tracking Using idf-

Weighted Cosine Coefficient, Proceedings of the DARPA Broadcast News

Workshop, 1999.

86. [Sha95] B. Shahraray, Scene Change Detection and Content-Based Sampling of

Video Sequences, Proceedings of Digital Video Compression, Algorithm and

Technologies, SPIE Proceedings vol. 2419, 1995.

87. [Shi03] F. Shipman, A. Girgensohn, L. Wilcox, Generation of Interactive Multi-

level Video Summaries, Proceedings of the Eleventh ACM International

Conference on Multimedia, November 2003.

88. [Shi95] N. Shivakumar, H. Garcia-Molina, SCAM: A Copy Detection

Mechanism for Digital Documents, In Proceedings of the Second International

Conference on Theory and Practice of Digital Libraries, Austin, Texas, June

1995.

89. [Sin97] A. Singhal, M. Mitra, C. Buckley, Learning Routing Queries in a Query

Zone, Proceedings of ACM SIGIR 1997, 1997.

90. [Smi96] J. R. Smith, S. F. Chang, VisualSEEk: A Fully Automated Content-

Based Image Query System, Proceedings of ACM Multimedia 1996, Boston

MA, USA, 1996.

91. [Spa97] K. Spark Jones, P. Willet, Readings in Information Retrieval, Morgan

Kaufmann Publishing, San Francisco, 1997.

 243

92. [Str96] M. Stricker, A. Dimai, Color Indexing with Weak Spatial Constraints,

SPIE Proceedings vol. 2670, 1996.

93. [Tag92] J. Tague-Sutcliffe, Measuring the Informativeness of a Retrieval

Process, Proceedings of ACM SIGIR 1992, 1992.

94. [Tru00a] B. T. Truong, C. Dorai, S. Venkatesh, New Enhancements to Cut, Fade,

and Dissolve Detection Processes in Video Segmentation, ACM Multimedia

2000, November, 2000.

95. [Tru00b] B. T. Truong, C. Dorai, S. Venkatesh, Improved Fade and Dissolve

Detection for Reliable Video Segmentation, Proceedings of IEEE International

Conference on Image Processing (ICIP) 2000, vol. 3, 2000.

96. [Xu94] J. Xu, J. Broglio, W. B. Croft, The Design and Implementation of a Part

of Speech Tagger for English, Technical Report IR-52, University of

Massachusetts Center for Intelligent Information Retrieval, 1994.

97. [Yam99] J. Yamron, I. Carp, L. Gillick, S. Lowe, P. van Mulbregt, Topic

Tracking in a News Stream, Proceedings of the DARPA Broadcast News

Workshop, 1999.

98. [Yan03] H. Yang, L. Chaisorn, Y. Zhao, S. Neo, T. Chua, VideoQA: Question

Answering on News Video, Proceedings of the Eleventh ACM International

Conference on Multimedia, November 2003.

99. [Zab99] R. Zabih, J. Miller, K. Mai, A Feature-Based Algorithm for Detecting

and Classifying Production Effects, Multimedia Systems, vol. 7, 1999.

100. [Zab95] R. Zabih, J. Miller, K. Mai, A Feature-Based Algorithm for Detecting

and Classifying Scene Breaks, Proceedings of ACM Multimedia 1995, San

Francisco, CA, November, 1995.

