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Abstract

Minimization of system overhead and jitter is a fundamental challenge in the

design and implementation of a Real-Time Operating System (RTOS). Modern

FPGA devices, which include (multiple) processor core(s) as diffused IP on the

silicon die, provide an excellent platform for embedded systems and offer new op-

portunities to meet these fundamental RTOS challenges. In particular, it is pos-

sible to use the hardware resources of an FPGA to handle scheduling of threads.

This paper presents the design of such a scheduler for a multithreaded RTOS

kernel built on a hybrid FPGA/CPU system. The scheduler module currently

provides FIFO, round-robin, and preemptive-priority scheduling services that co-

ordinate both software-resident threads (SW threads) and threads implemented

in programmable logic (HW threads). The design has been implemented and

experiments show that the hardware-based scheduler module is able to signifi-

cantly reduce system overhead and jitter due to the ability of the scheduler to

field scheduling requests in parallel with application execution. The scheduler

module provides constant time scheduling services for up to 256 active threads

with a total of 128 different priority levels, while using uniform APIs for threads

requesting OS services from either side of the hardware/software boundary.
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Chapter 1

Introduction

Embedded systems are becoming more sophisticated and universal in our so-

ciety, and are increasingly relying on Real-Time Operating Systems (RTOS) to

deliver precise, predictable, and robust behavior. Two fundamental challenges

in the design of RTOS kernels are the minimization of system overhead and jit-

ter [17]. With a shared computational resource such as a CPU, the execution

of system services themselves takes away from much needed application process-

ing time. By minimizing the system overhead, more computational cycles are

available to the application. Minimizing the jitter in the system allows for more

precise, deterministic scheduling of threads which allows the system to respond to

real-time events and deadlines in a reliable and repeatable fashion. For any given

system, there is a certain amount of jitter that must exist. However, this jitter

is usually caused by non-deterministic, asynchronous events such as interrupts,

branch mispredictions, and cache misses [11].

This minimum level of system overhead and jitter can be dramatically re-

duced by careful redesign and migration of portions of the RTOS into concurrent

co-designed hardware modules [10, 15, 22]. Migrating these services off the CPU
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also helps in eliminating the hidden overhead of context switch times associated

with entering and exiting the RTOS. Hardware module versions of RTOS com-

ponents can be configured as specialized co-processors that run concurrently with

applications running on the CPU. Perhaps the biggest benefit of this approach is

the ability to effectively eliminate the overhead and jitter associated with running

the actual RTOS scheduler. The key reason for development of our scheduler

module is to service all scheduling operations from within the FPGA. This allows

the CPU and other computational resources, i.e custom hardware components, to

use the scheduler module’s services without any burden of executing traditional

scheduling operations themselves. The HybridThreads system [3, 5, 6, 18] allows

for all computations, whether implemented in hardware or software, to use uni-

form, high-level APIs provided by the HW/SW co-designed components resident

within the fabric of the FPGA. This development methodology has also been used

in the context of the HybridThreads project for other RTOS services including

semaphores, thread management, and hardware thread control mechanisms.

With a software-based scheduler, a timer-interrupt representing a scheduling

event goes off in order to provide a trigger that will eventually force the CPU into

an interrupt service routine (ISR). The ISR usually invokes the scheduler via a

context switch, the scheduler makes its scheduling decision, and another context

switch is done to run the thread selected by the scheduler. A hardware-based

scheduler is capable of running in parallel with the CPU, thus granting it the

ability to calculate a scheduling decision before a scheduling event (i.e. timer-

interrupt or change in the ready-to-run queue) takes place. This greatly reduces

the system overhead of scheduling because when a scheduling event takes place,

the scheduling decision has already been made, and the ISR routine now just
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makes a single context switch to invoke the newly selected thread. The HW-

based scheduler enables the system to perform pre-scheduling without having to

periodically interrupt the CPU. This provides serious performance benefit when

considering that HW-based computations in a hybrid FPGA/CPU system may

want to be scheduled to run, however these computations do not require any CPU

resources to do so. Therefore a HW-based scheduler is capable of acting as a non-

intrusive scheduling coprocessor, interrupting the CPU only when necessary for

preemption; whereas a normal SW-based scheduler would have to be invoked on

the CPU in order to schedule routines that do not even require CPU support.

Figure 1.1. Scheduling sequences for SW and HW schedulers

The advantage of a hardware-based scheduler in terms of reduction of system

overhead is demonstrated in figure 1. This figure contrasts the ordering of events

between a system with a parallel hardware scheduler and a traditional software-

based scheduler. The act of fielding an interrupt and jumping into an ISR is

the same in both types of schedulers, however the actions of the ISRs are quite

different. In a traditional SW-based scheduler, the ISR must first invoke the

scheduler in order to calculate the next thread to run before it can context switch

to that thread. With our HW-based scheduler, the job of the ISR is to read the

ID of the next thread to run that has already been calculated by the scheduler
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module, and then context switch to that thread. Thus, the HW-based scheduler

reduces system overhead and jitter by allowing the usage of a simple, deterministic

ISR that simply fetches the predetermined scheduling decision from the scheduler

module.

Our system does not simply use a HW-based scheduler for just acceleration,

but rather for the way that the system is always preparing itself for the next

scheduling event, rather than waiting for the scheduling event to occur and then

preparing itself. This preparedness is demonstrated in figure 1 by the status of

the scheduling decision. With a SW-based scheduler, the scheduling decision is

not known until it is absolutely required for the context switch to occur. Once

the context switch is complete, the scheduling decision for the next event remains

unknown until that event actually occurs. With a parallel HW-based scheduler,

the scheduling decision is always known, except immediately following the a status

change in the ready-to-run queue caused by enqueue and dequeue events. Changes

in the ready-to-run queue are immediately followed by re-calculation of the next

scheduling decision which readies the system for the next scheduling event before it

actually occurs. During a context switch, the act of reading the scheduling decision

from the scheduler module signifies that a context switch is currently occurring,

so a new scheduling decision needs to be made. A hardware-based scheduler

allow for the new scheduling decision to be calculated concurrently with context

switch execution. Our HW-based scheduler is capable of calculating a scheduling

decision in a shorter amount of time than a comparable SW-based scheduler,

but its ability to do so in parallel with CPU execution drastically reduces the

variability and absolute amount of scheduling overhead in our system.

The use of a hardware-based scheduler can also reduce the amount of schedul-
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ing jitter in an RTOS. The scheduling jitter in an RTOS can be thought of as

the unwanted variation in timing for a periodic thread [21]. In an RTOS with a

software-based scheduler, scheduling jitter can be introduced by the cache, mispre-

dicted branch instructions, variation in branch instruction length in the scheduler

code, and dependence on the number of active threads in the system [21]. The

hardware-based scheduler described in this paper is designed as a finite state-

machine (FSM) that takes a fixed number of clock cycles to complete, regardless

of the number of active threads in the system. The predictability [8] of execu-

tion time for scheduling operations along with calculation of scheduling decisions

in parallel with the CPU allows for a drastic reduction of scheduling jitter and

scheduling overhead and thus provides more precise scheduling within the Hy-

bridThreads operating system.

The rest of the paper is organized as follows. The problem statement of this

thesis work is developed in chapter 2. The subject of improved precision and

predictability of scheduling within an RTOS are discussed in chapter 3. Related

works in the subject area are discussed in chapter 4. Chapter 5 describes the it-

erative redesigns of the scheduler module over the course of my thesis work. The

initial design of the scheduler module [2] is discussed in section 5.1. The second

redesign of the scheduler module is covered in section 5.2, which includes the work

done to further reduce scheduling overhead and jitter. Section 5.3 covers the final

scheduler module redesign which extends thread management and scheduling ser-

vices to both hardware and software-based threads in the HybridThreads system.

Performance results of the various versions of the scheduler module, both as an

independent entity and actual integrated performance measurements are shown in

chapter 6. The evaluation of the design and implementation of the scheduler mod-
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ule, and comments on future work to be done on the scheduler module and other

components within HybridThreads, a multithreaded RTOS kernel [3, 5, 6, 18, 20],

are discussed in chapter 7.
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Chapter 2

Statement of Problem

2.1 Programmability of Hybrid Systems

Hybrid CPU/FPGA systems form a union between two different areas of ex-

pertise: hardware design and software programming. These two fields have began

to converge with the advent of modern high-level synthesis (HLS) tools that allow

hardware to be ”programmed” in a fashion similar to that of software. For decades

it was the job of electrical and computer engineers to build digital systems. The

designers of these systems worked at very low levels of abstraction, with RTL

being the highest. Compilers are then required in order to make the hardware

accessible by traditional software programmers working at the abstraction level

of high-level languages (HLLs). A traditional software-compiler breaks the HLL

constructs down into smaller portions easily translatable to the instruction-set,

or the abstraction level, of the hardware itself. This is the point at which FP-

GAs differ from a typical programmable microprocessor. The functionality of a

microprocessor is abstracted by an instruction-set architecture (ISA), but what is

the abstraction level of an FPGA? Current practices use netlists to describe what
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components should be used and describes how these components are connected

within the fabric of an FPGA at an RTL level. Traditional software-compilers

take a program that describes the functionality of an algorithm as input, and

map that algorithm onto a fixed architecture known during compile-time. HLS

compilers take a program that describes the architecture of an algorithm, either

structurally or behaviorally, as well as the functionality of the algorithm and pro-

duce a netlist that represents the datapath and the control flow of the source

program that is essentially at the same abstraction level as RTL [9]. This shows

why HLS tools have such a higher complexity that that of traditional software-

compilers: software-compilers can target an ISA which is at a higher abstraction

level than that of RTL, while HLS tools must target the RTL level themselves.

The additional complexity of HLS techniques for FPGAs has made it extremely

difficult for HLLs to be translated into hardware - thus requiring the designer of a

hybrid system to have expertise in both software and hardware design techniques.

2.2 Uniformity of Services in a Hybrid System

FPGAs provide a ”blank” slate of computational components. Standard in-

terfaces and services have not yet been established, thus forcing hybrid system de-

signers to literally build systems from ”scratch”. On the converse, many common

interfaces and services have been established in the world of software, and these

have been standardized in the form of operating systems (OSes). The purpose of

an operating system is to provide common services to the user in a convenient

and efficient manner [25]. Operating systems often work as an intermediary that

manages the lower-level details of the hardware in a system. An OS provides ser-

vices that enforce how programs, or more abstractly, computations, execute and
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communicate. Operating systems typically provide the idea of a task in the form

of threads or processes. Traditionally, tasks are defined in software, and are able

to execute, usually on a set of CPUs, in a pseudo-concurrent fashion. Addition-

ally, operating systems are typically implemented solely in software, which means

that the OS requires CPU-execution time in order to provide services to tasks ex-

ecuting in the system. Hybrid CPU/FPGA systems provide the ability for tasks

to execute in either hardware or software. This means that OS services must be

uniformly accessible to both hardware and software-based computations. If an OS

is solely implemented in software, management of hardware-based computations

will require CPU time to execute, therefore software tasks must be interrupted in

order to field calls to the OS coming from hardware tasks. This is a very ineffi-

cient method of organizing OS services that must be uniformly accessible by all

tasks in a hybrid system. In order to provide a uniform service interface for both

software and hardware-resident tasks the OS must not be tied to a shared compu-

tational component (i.e. CPU) that the OS also relies on for task execution. This

means that an additional CPU can be used in a system as an OS ”coprocessor”;

a CPU on which the OS runs and all OS service calls are directed towards it.

This approach does indeed provide a uniform service interface for both software

and hardware-based tasks, however the allocation of a microprocessor used solely

for OS service execution is quite wasteful in terms of hardware utilization and

does not allow for full exploitation of parallelism within OS services. Instead a

specialized OS coprocessor capable of all typical OS functions could be developed.

This would allow the ISA of the OS coprocessor to be tailored to perfectly suit

OS services, thus raising the abstraction-level of the hardware itself to that of the

level of an OS. Additionally, what if each component of the OS is implemented
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as a separate hardware component within an FPGA; allowing each portion of

the OS to execute in parallel with application execution? This would provide

uniform OS services to both software and hardware resident tasks, however the

concurrent execution of different OS services allows for a large reduction in system

overhead and jitter without the need of a general-purpose processor to perform

OS services. Additionally, the parallel nature of FPGAs allow for the exploitation

of both coarse-grained (task-level) and fine-grained (instruction-level) parallelism.

Therefore the operations within each OS component can be parallelized, thus im-

proving overall system performance by reducing the overhead and jitter normally

incurred by executing these OS services on a sequential CPU [19]. For instance,

bit-shifting and boolean arithmetic are highly sequential operations when exe-

cuted on a CPU, but are highly parallel operations that often require little or no

intermediate steps (states) when executing within an FPGA.

2.3 Contributions of this Thesis

The main goal of this work is to develop IP cores capable of providing run-

time scheduling services to all threads, both software and hardware resident, in

a hybrid CPU/FPGA system. Additionally, the scheduling services are to be

designed in such a way that maximizes parallelism within the OS and within

the components that comprise the scheduler IP itself. This will hopefully result

in a massive reduction in the amount of overhead and jitter normally incurred

through executing traditional OS scheduling services on a CPU, thus producing

a more deterministic and accurate OS. Additionally, the scheduling services resi-

dent within the FPGA will provide support for standard scheduling services, thus

improving accessibility to the FPGA fabric in a general purpose fashion. The
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run-time scheduling services also provide a platform in which hybrid FPGA/CPU

systems can be viewed as standard multi-threaded environments in which threads

are not restricted to only running in software. Hybrid CPU/FPGA environments

allow for threads can be implemented in either hardware or software, and the OS

services implemented within the FPGA provide all of the standard mechanisms

and interfaces for communication and synchronization; thus allowing the system

designer to focus on the application program instead of worrying about providing

standard support services that an application may need in order to execute. The

accessibility and programmability of hybrid systems can be greatly increased by

providing IP cores capable of performing operating system services to computa-

tions based in either hardware, software, or a combination of the two. The main

goal for this thesis work is to provide scheduling services for threads resident in

either hardware or software that are accessible through uniform, high-level APIs.

Additionally, the design of the scheduling services themselves should provide their

functionality with low overhead and jitter in order to increase the predictability

of the HybridThreads operating system.
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Chapter 3

Background

There are both obvious short-term performance advantages, but more impor-

tantly subtle significant long-term advantages that can be gained by migrating an

operating system scheduler into hardware. First, migration of functionality from

software to hardware should result in decreased execution times associated with

the targeted software-based scheduling methods [1]. Iterative control loops, used

for searching through priority lists, can easily be decomposed into combinational

circuits controlled by finite state machines that perform parallel sorting using fast

decoders in a fixed number of clock cycles. Additionally, the parallel sorting hard-

ware can run concurrently with an application program resulting in a significant

reduction in overhead and jitter. The literature reports many examples of a hard-

ware/software co-designed scheduler providing lower overhead and jitter than that

of a traditional software-based scheduler. As a good example, [10] reports a hard-

ware scheduler implementation that incurs zero overhead for a hardware-based

scheduler that runs in parallel with the currently running application. Although

an important result, these short-term advantages only minimize the overhead and

jitter associated with the scheduling method itself and do not dramatically affect
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the precision of the entire system overall. In fact, existing software techniques

for systems that require precise scheduling times can minimize the overhead and

jitter by calculating overhead delay times and presetting the next event timer to

expire a set number of timer ticks before the next event should be scheduled.

A second subtle but more significant advantage a hardware-based scheduler

offers is the ability to modify the semantics of traditional asynchronous invocation

mechanisms that introduce the majority of system jitter. By creating a hardware

component that manages the scheduling of threads, the asynchronous invocations

can be directed to the scheduler and not the CPU. From a system perspective, this

has the positive effect of resolving the relative inconsistencies that exist between

the scheduling relationships of the application threads and the ability of external

interrupt requests from superseding and perturbing this relationship. Resolving

these inconsistencies can be achieved by translating interrupt requests into thread

scheduling requests directed towards the hardware-based scheduler. The external

interrupt device is simply viewed as requesting a scheduling decision for a device

handler “thread” relative to all other threads. These device handler “threads”

often do the work of interrupt service routines (ISRs), so these ”threads” are

often referred to as interrupt service threads (ISTs) [12]. This use of ISTs allows

the scheduler to consider the complete state of the system in determining when

an interrupt request should be handled because ISTs and user-level threads can

be viewed as falling in the same class of priorities.

This approach also results in a changing of the order of the traditional sched-

uler invocation mechanism itself, consisting of a timer interrupt expiring, followed

by the execution of the scheduler. Under this new approach, the timer inter-

rupt request is simply an event, similar to the unblocking of a semaphore, that

13



is directed to the scheduler and factored into the scheduling decision. As the

scheduling decision should have been made before the timer interrupt expires, a

software scheduler interrupt routine then reduces down to a simple context switch-

ing routine with the next thread to be scheduled already known. More far reaching

is this approaches alteration of the semantics of current software-based operating

systems that must allow external devices to interrupt an application program in

order to determine the necessity of servicing the request. By eliminating the need

to perform a context switch for every possible interrupt request, the jitter asso-

ciated with non-deterministic invocations of an ISR to determine if an interrupt

request should be processed or simply marked as pending with control returned

back to the original application program is eliminated. These capabilities can only

occur if the scheduler is truly independent of the CPU and the interrupt inter-

faces are transformed into scheduling requests. Additionally, traditional interrupt

semantics treat interrupt requests as threads with a priority level of infinity, while

the HybridThreads approach transforms interrupt requests into ISTs that have

priority levels falling within the ranges of typical user-level threads. Thus allow-

ing the system to take into account the importance of interrupt requests in a

framework that treats all threads in the system as equals.

This new approach should provide a significant increase in scheduling precision,

and reduction of overall system jitter over current software-based methods that

must rely on interrupts. Most real-time operating systems, such as RTLinux

[28], attempt to minimize the jitter introduced by asynchronous requests by pre-

processing external requests within a small, fast interrupt service routine that

determines if the request should be immediately handled, or can simply be marked

as pending for future service. While this approach does reduce jitter, it is still
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based on the semantics of allowing asynchronous invocations to interrupt the CPU,

and incurring the overhead of a context switch to an interrupt service routine.
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Chapter 4

Related Works

The migration of scheduling functionality into hardware is not a a new tech-

nique in the world of real-time and embedded systems as shown in [1,14,23]. All

of these approaches use a high-performance systolic array structure to implement

their ready-to-run queues in a similar fashion as the structure described in [16].

Systolic arrays are highly scalable through the process of cell concatenation due

to the uniform structure of their cells. However each cell in the array, as shown in

figure 4.1, is composed of storage registers, comparators, multiplexers, and con-

trol logic; which requires a non-trivial amount of logic resources to implement.

Systolic arrays enable parallelized sorting of entries in a priority queue, however

this comes in the form of high cost in terms of logic resources within an FPGA. In

a system such as HybridThreads, operating system components as well as user-

defined hardware threads must share the logic resources of an FPGA, therefore

conservation of logic resources within each operating system component (such as

the scheduler) becomes an issue. Logic resources within operating system com-

ponents must be minimized in order to maximize the amount of logic resources

available for user-defined hardware threads. Although systolic array cells are fast
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and allow parallel accesses, they take up a considerable amount of space within an

FPGA. This is evident in Georgia Tech’s hardware-based scheduler [14], where a

systolic array implementation of a ready-to-run queue structure requires 421 logic

elements (slices) and 564 registers for a queue size of only 16 entries. In the Hy-

bridThreads system, on chip BRAMs are used to store data structures, such as the

scheduler module’s ready-to-run queue, in order to conserve logic resources (slices,

registers, etc.). The first implementation of the scheduler for the HybridThreads

system, described in sections 5.2 and 6.2 only requires 484 logic slices and 573

flip-flops for a queue size of 256. BRAMs allows for excellent scalability of queue

size with minimum effects on logic resource usage. Although more BRAMs might

be used to increase the size of the ready-to-run queue, only slightly more logic

resources are used for decode logic and pointer registers. Additionally, BRAM

access times are almost on par with that of registers; only requiring 1 clock cycle

for writes and 2 clock cycles for reads.

The HybridThreads scheduler differs from other existing hardware-based sched-

ulers in that it must be able to perform scheduling operations for both software

and hardware threads. This requires the HybridThreads scheduler to incorporate

new properties that distinguish between hardware and software threads, as well

as different mechanisms that handle the scheduling of each type of thread.

Additionally, the entire HybridThreads system is built around APIs that are

fully compatible with the POSIX thread (pthread) standard [7]. Both Malardalen

University’s Real-Time Unit (RTU) and Georgia Tech’s configurable hardware

scheduler [14] use their own custom APIs for interacting with OS services. Us-

ing POSIX thread compatible APIs has enabled the HybridThreads system to be

extremely accessible to those familiar with the POSIX thread standard. Addition-
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Figure 4.1. Structure of Typical Systolic Cell

ally, simple library wrappers can be used to port applications written for use on

the HybridThreads system to a POSIX thread application capable of running on

a desktop computer equipped with POSIX thread libraries. This allows for rapid

prototypes of HybridThreads applications to be debugged on a typical desktop

machine, and then later ported for use on the HybridThreads architecture at no

cost to the system programmer.
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Chapter 5

Design & Architecture

5.1 First Scheduler Redesign

The initial scheduler in the HybridThreads system used a simple FIFO schedul-

ing mechanism that was internal to the Thread Manager (TM) [4]. The add thread

system call would be routed to the Thread Manager and the TM would then insert

the thread into a singly-linked FIFO ready-to-run queue. The main problem with

this scheduling structure is that the ready-to-run queue was built in to the Thread

Manager’s attribute structures used for data storage for thread management sta-

tus. This means that thread management (allocation, creation, and control) and

thread scheduling (ready-to-run queue management, and scheduling decisions)

activities could not occur in parallel. Additionally, any changes in scheduling

mechanisms and scheduling data arrangement would also affect the management

mechanisms, and vice-versa, so maintenance of the management and scheduling

services would be difficult, cumbersome, and error-prone.

Both the thread management and thread scheduling mechanisms would have

to be modified if either were to be extended in their functionality or data storage
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requirements. The scheduling mechanism was going to be upgraded to allow

for priority scheduling and eventually would have to handle the scheduling of

both SW and HW threads, so it was decided to make the scheduler a separate IP

module that would have its own interface to the HybridThreads system bus. Many

thread management operations result in the invocation of scheduling operations,

so essentially the TM uses the scheduler module as a coprocessor for any and

all scheduling operations. Many of these coprocessor operations can only occur

as a result of a management operation so the TM will always be the ”caller” in

these cases. This, in conjunction with the scheduler becoming a separate module,

means that all outgoing operations from the TM to the scheduler will result in a

bus operation; however if the TM is using the scheduler to complete a management

operation, then the bus will already be locked by the caller of the TM operation.

This meant that a special interface must be created between the TM and the

new scheduler module to allow access to scheduling operations while the system

bus was locked. Additionally, since other scheduler specific operations are not

ever called as the result of a thread management operation, then these scheduling

operations can be called via the new interface used to attach the independent

scheduler module to the HybridThreads system bus.

It was decided that the new scheduler module must be able to schedule threads

according to priority-levels to allow the user to tailor the order in which threads

in the system run. This meant that APIs must be defined to allow the user to

both change and read priority-levels for threads. Additionally, APIs are required

to add threads to the ready-to-run queue, remove threads from the ready-to-run

queue, and to calculate a new scheduling decision. The addition, removal, and

scheduling decision operations are only called as the result of thread management
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operations, so these operations will be callable through the TMcom interface.

Operations used to change and read thread’s priority-levels are callable from any

user thread, therefore these operations will be callable through the bus interface

which connects the scheduler module to the HybridThreads system bus. The

architecture of the new scheduler module consists of the TM command (TMcom)

interface, the Bus command (BUScom) interface, as well as a single ready-to-run

queue as shown in figure 5.1.

The TMcom interface is a dedicated hardware interface between the sched-

uler module and the TM that consists of a total of seven control and data

signals as well as access to a read-only interface (B-port) of the TM’s Block

RAM (BRAM). The data signals include Next Thread ID, Current Thread ID,

and Thread ID 2 Sched. The Next Thread ID signal represents the identifier

of the thread chosen to run next on the CPU. This signal is writable by the

scheduler module and readable by the TM. The Current Thread ID signal repre-

sents the identifier of the thread that is currently running on the CPU (PowerPC

405). This signal is readable by the scheduler module and writable by the TM.

The Thread ID 2 Sched signal contains the identifier of the thread that is being

added to the ready-to-run queue by the TM. This signal is readable by the sched-

uler and writable by the TM. The control signals include Next Thread Valid,

Dequeue Request, Enqueue Request, and Enqueue Busy. The Next Thread Valid

signal represents whether or not that the scheduling decision available from the

scheduler module on the Next Thread ID signal is valid or not (Valid = 1, In-

valid = 0). This signal is writable by the scheduler module and readable by

the TM. The Dequeue Request signal is used by the TM to request the sched-

uler module to perform a dequeue operation of the thread whose identifier is on
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the Next Thread ID signal. This signal is readable by the scheduler module and

writable by the TM. The Enqueue Request signal is used by the TM to request

the scheduler module to perform an enqueue operation of the thread whose iden-

tifier is on the Thread ID 2 Sched signal. This signal is readable by the scheduler

module and writable by the TM. The Enqueue Busy signal represents whether or

not the scheduler is currently busy performing an enqueue operation (Busy = 1,

Not Busy = 0). This signal is writable by the scheduler module and readable by

the TM. The B-Port interface to the TM’s BRAM allows the scheduler module

to query thread management information in order to perform error-checking that

concerns the parent-child relationships of threads that the TM’s data structures

hold. The purpose of the TMcom interface is to allow the TM to request schedul-

ing operations as a result of thread management operations whose side-effects alter

the scheduling status of the system (i.e. the status of the ready-to-run queue).

The operations available through the TMcom interface can be seen in table 5.1.

Table 5.1. Command Set of Scheduler Module, Build 1
Type Name Actions

TMcom Enqueue Schedules a thread
TMcom Dequeue Removes a thread from the ready-to-run

queue
BUScom Get Entry Returns a thread’s table attribute entry
BUScom Toggle Preemption Toggle preemption interrupt on/off
BUScom Get Entry Returns a thread’s table attribute entry

(for debug use)
BUScom Get Priority Returns the priority-level of a thread
BUScom Set Priority Sets the priority-level of a thread
BUScom Set Default Priority Sets the priority-level of a thread (no error-

checking)

The BUScom interface allows the services provided by the scheduler module

to be accessed through bus transactions on the HybridThreads system bus (IBM
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CoreConnect On-Chip Peripheral Bus, OPB). This interface consists of an OPB-

IPIF attachment that is configured to be a slave on the bus. Scheduling operations

accessible over the BUScom interface are memory-mapped in the address space

of the scheduler module in the form of opcodes and parameter fields encoded in

the address and data lines of the bus. All BUScom operations are atomic in that

they keep the bus in a locked state until completely finished. This is done by

suppressing bus timeouts and making a guarantee that the scheduler module will

not acknowledge (ACK) the bus until its operation is complete. The operations

available through the BUScom interface can be seen in table 5.1.

During the design phase of the ready-to-run queue (R2RQ) there was much

debate as to whether the R2RQ should be kept in FIFO or sorted order. A ready-

to-run queue kept in sorted order allows for quick scheduling decisions to be made

because the highest-priority entry is kept at the head of the queue, however all

enqueue operations require a sorted insert operation that involves list traversal.

A FIFO ordered ready-to-run queue provides quick enqueue operations (adding

to the tail of the queue), however scheduling decisions require list traversal to find

the queue element with the highest priority-level. An enqueue operation occurs as

the result of an add thread operation to the Thread Manager, which occurs during

the time in which a thread is doing useful work (i.e. not context switching). A

state-machine diagram of the enqueue operation in a FIFO ordered queue can be

seen in figure 5.3.

A dequeue operation occurs as the result of a scheduling decision being used:

the next thread scheduled to run has just become the running thread, thus remov-

ing it from the ready-to-run queue and calculating a new scheduling decisions as

a result. The dequeue operation actually occurs as the result of a context switch,
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Figure 5.1. Block Diagram of Scheduler Module, Build 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Q? N0 N1 N2 N3 N4 N5 N6 N7 L0 L1 L2 L3 L4 L5 L6 - - - - - - - - - - - - - - - -

Field    Width     Purpose
 Q?        (1-bit)     1 = Queued, 0 = Not Queued.
 N0:N7     (8-bit)     Ready-to-run queue next pointer
 L0:L6     (7-bit)     Scheduling priority-level

Thread_Data BRAM

Figure 5.2. Scheduler Attribute Table Entry Format, Build 1
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Enqueue Begin
TID = Thread_ID to EnQ
t_entry = Thread_Data[TID]
old_tail_ptr = tail_ptr
old_entry = 
Thread_Data[old_tail_ptr]
de-assert next_thread_valid
empty_flag = (queue_empty == 1)
empty_flag = 1 empty_flag = 0

Add_To_Empty_Q
t_entry.Q = 1
head_ptr = TID

Add_To_Non_Empty_Q
t_entry.queue = 1
old_entry.next = TID

Write_Back_Entries
Thread_Data[TID] = t_enry
Thread_Data[old_tail] = old_entry
tail_ptr = TID
queue_empty = 0

Lookup_Next_Entry
n_entry = Thread_Data[next_thread_id]
decision_flag = (t_entry.pri < n_entry.pri)

decision_flag= 1

decision_flag = 0New_Entry_Is_Now_Next
next_thread_id = TID
n_entry = t_entry

Lookup_Current_Entry
c_entry = Thread_Data[current_thread_id]
assert next_thread_valid
intr_flag = (n_entry.pri < c_entry.pri)

intr_flag = 1
intr_flag = 0

Throw_Preemption_Intr
raise preemption interrupt

Figure 5.3. State Diagram for Enqueue Operation, Build 1
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and is able to be carried out in parallel with setting up a new thread to run

on the CPU; therefore allowing the dequeue operation to have higher overhead

without actually resulting in any degradation of system performance. This means

that a fast enqueue operation paired with a slower dequeue operation represents

the best balance in scheduling performance and can be achieved through the us-

age of a ready-to-run queue implemented as a linked-list kept in FIFO order. A

FIFO ordered ready-to-run queue structure is implemented as a singly-linked list

data structure resident in on-chip BRAMs as shown in figure 5.2. Additionally,

a new scheduling decision must be made when a dequeue operation occurs, so

the entire ready-to-run queue must be traversed to find the highest priority-level

thread in the system. The currently running thread, which is also the thread to

be dequeued, is simply ”unlinked” from the ready-to-run queue during this traver-

sal. Therefore only a single, linear queue-traversal, O(n), is used to find the next

scheduling decision and to remove the currently running thread from the queue.

A state-machine diagram of the dequeue operation showing the traversal of the

data structure is shown in figure 5.4.

The scheduler module can constantly monitor the priorities of the threads in

the ready-to-run queue as well as the priority-level of the thread currently running

on the CPU, so it can determine exactly when the running thread should be pre-

empted. Additionally, it can do so without introducing any scheduling overhead

that could adversely affect the execution time of application-threads running on

the CPU because it is an independent module executing within the reconfigurable

fabric of an FPGA. Preemption occurs only when a thread enters the ready-to-run

queue that has a higher-priority level than the currently chosen next thread to

run and the currently running thread. This preemption mechanism does not need-
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Dequeue_Begin
TID = Thread_ID to DeQ
t_entry = Thread_Data[TID]
de-assert next_thread_valid
assert dequeue_busy

Check_Queue
t_entry.Q = 0
empty_flag = (head_ptr == tail_ptr)

empty_flag = 1 empty_flag = 0

Return_Next_Thread_Invalid
queue_empty = 1
Thread_Data[TID] = t_entry
de-assert dequeue_busy

Begin_Search_4_Next_Thread
change_nxt = (lk_entry.pri < best_pri)
deq_now = (lk_entry.next == TID)
deq_tail = (tail_ptr = TID)
at_tail = (lk_id == tail_ptr)
done = (at_tail) | (deq_tail)

if (deq_now)
    lk_entry.next = t_entry.next
    Thread_Data[lk_id] = lk_entry
       if (deq_tail)
         tail_ptr = lk_id
    end if
end if
if (change_nxt)
    best_pri = lk_entry.pri
    next_thread_id = lk_id
end if

lk_id = lk_entry.next

Initialize_Search
lk_id = head_ptr
lk_entry = Thred_Data[lk_id]
best_pri = lk_entry.pri

deq_head = (head_ptr == TID)
if (deq_head)
     lk_id = lk_entry.next de

q_
he

ad
 =

 1

do
ne

 =
 0

deq_head = 0

Write_Back_And_Complete
Thread_Data[TID] = t_entry
de-assert dequeue_busy
assert next_thread_valid

done = 1

Figure 5.4. State Diagram for Dequeue Operation, Build 1
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lessly interrupt the CPU in cases where a context switch is not needed, therefore

eliminating jitter usually found in periodically checking to see if the currently run-

ning thread should be preempted. An example of the preemption process being

invoked is shown in figure 5.5. It shows that the scheduler decides when the CPU

should be preempted, unlike a system with a SW-based scheduler that requires a

periodic CPU interrupt during application execution used to update scheduling

decisions.

CPU

Software Interface

Software 
Thread

Software 
Thread

HWTI
ID: 7

HWTI
ID: 8

Hardware 
Thread

Thread 
Manager

Scheduler Shared 
Memory

CBISConditional 
Variables

Mutexes

System Bus

ID: 3 ID: 4 ID: 6
Software 
Thread

M2: Queue
6...7

Ready
4...6

Hardware 
Thread

A

F
D

C

B

A: Software thread 3 unlocks mutex M2 by calling hthread_mutex_unlock(M2), 
which sends signal to Mutex Manager.
B: Mutex Manager inspects M2's queue and decides ID 6 will own mutex next.
C: Mutex Manager sends add_thread(6) to Thread Manager.
D: Thread Manager sends enqueue(6) to Thread Scheduler.
E: Thread Scheduler adds ID 6 to ready-to-run queue and makes new 
scheduling decision - ID 6 has highest priority in the system.
F: Thread Scheduler sends preemption interrupt to the CPU.
G: CPU receives preemption interrupt and context switches to software thread 
ID 6 from software thread ID 3.

E

G
Current ID

3...6

Initial conditions:
* Software threads: IDs 3,4,6
      * Priority(4) << Priority(3) << Priority(6)
* Hardware threads: IDs 7,8

Figure 5.5. Scheduler Preemption Example

Once the architecture of the scheduler module was decided upon, it was then

implemented in VHDL and incorporated into the HybridThreads system. The
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Thread Manager was modified slightly so that it would interact with the new

independent scheduler module through the TMcom interface instead of using its

previous built-in FIFO scheduling mechanism. The scheduler module was first

tested in a ModelSim simulation environment in which the functionality of the

module was verified, and then performance figures were collected. Synthesis tests

were then conducted using the Xilinx EDK tool set (XPS + ISE) and the resulting

bit streams were tested on Xilinx Virtex-II Pro FPGAs. The timing results for the

simulation and synthesis tests of the O(n) scheduler module are shown in chapter

6.

5.2 Second Scheduler Redesign

The main goal of the second redesign of the scheduler module is to further

reduce the amount of overhead and jitter involved in thread scheduling operations.

The first scheduler module, although fast, still required a variable amount of time

for it to make scheduling decisions. This variability in operation execution time

introduces unwanted jitter into applications running on top of the HybridThreads

operating system which can be very harmful to real-time applications in which

deterministicity of program execution times is required. The first build of the

scheduler module established an interface for all scheduling operations to occur as

well as added priority scheduling to the system. The second build would adhere

to the interface designed during the first build, however the internal structure of

the ready-to-run queue would be altered to allow for the reduction of overhead

and jitter involved in all scheduling operations.

The first scheduler module contains a ready-to-run queue composed of a single

linked-list that was kept in FIFO order. Enqueue operations for a structure such
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as this simply add a thread entry to the tail of the list, which can be done in a

fixed amount of time. Scheduling decisions, invoked via dequeue operations, in

this configuration require a single traversal of the ready-to-run queue from head

to tail which occurs in O(n) time, where n is the number of entries in the ready-

to-run queue. If the single linked-list was kept in sorted order the complexity of

the operations would reverse: dequeue operations would take a constant amount

of time, while enqueue operations would require queue-traversal to find where

the entry should be inserted. A ready-to-run queue structure with constant time

execution for enqueue and dequeue operations is needed for optimal performance

in terms of reduction of scheduling overhead and jitter.

A O(1) ready-to-run queue structure would allow for the elimination of all jitter

at the hardware execution level of the scheduler module. One such ready-to-run

queue structure contains multiple queues, one for each priority-level, paired with

some sort of decision module that can calculate the highest priority-level in the

system is capable of constant time execution of enqueue and dequeue operations,

assuming that the decision module is also O(1). This type of structure assumes

that threads within the same priority-level can be thought of as being in the same

”class” and can therefore be scheduled in FIFO order. With this assumption, each

priority-levels queue can be kept in FIFO order which allows for constant time

execution of enqueue and dequeue operations. Enqueue operations simply add

an entry to the tail of the queue, while dequeue operations just remove an entry

from the head of the queue. Now the scheduling decision can be made by finding

the highest priority-level in the system, which is handled by the decision module,

and then dequeuing the entry at the head of that priority-level’s queue. In our

design, the decision module would be implemented as a priority encoder capable
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of executing in constant time. The input to the priority encoder is a bit field in

which each bit represents whether or not a priority-level has any threads resident

in its queue. The priority encoder’s output represents the highest priority-level in

which a thread is queued.

The ready-to-run queue within the scheduler module was first implemented as

a single linked-list kept in FIFO order [2] described in section 5.1. This imple-

mentation requires that the entire queue be traversed in order to find the highest

priority thread in the system, thus making the execution times of scheduling op-

erations vary directly with the number of active threads. The second scheduler

module redesign produced a partitioned ready-to-run queue with a parallel priority

encoder in order to provide constant time scheduling operations without adding

significant complexity to the scheduler module. A system-level block diagram of

this scheduler architecture is shown in figure 5.6. This implementation uses two

Block RAMs (BRAMs) to implement the ready-to-run queue: the Priority Data

BRAM and the Thread Data BRAM. The Priority Data BRAM is indexed by pri-

ority value, and contains the head and tail pointers for the queue for each individ-

ual priority level. The Thread Data BRAM is indexed by thread ID, and contains

the thread attribute information described in figure 5.8. Additionally, a parallel

priority encoder calculates the highest priority level in the system using a 128-bit

register field that represents which priority levels have active (queued) threads as-

sociated with them. The parallel priority encoder calculates the highest priority

in the system only when a change occurs in its 128-bit input register and can do so

in a quick and predictable four clock cycles. The parallel priority encoder shown

in figure 5.7 is implemented as an FSM combined with a 32-bit priority-encoder.

The FSM splits the 128-bit input register into four 32-bit chunks, and in parallel,
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checks to see which ”most significant” chunk has a non-zero value. The ”most

significant” chunk with a non-zero value is then used as input to the 32-bit prior-

ity encoder. The output of the 32-bit priority encoder is then concatenated with

the chunk number to then form the highest active priority-level in the system.

The partitioned ready-to-run queue along with the priority encoder eliminate the

need to traverse the scheduler module’s data structures because individual prior-

ity queues can be located using the Priority Data BRAM and individual thread

information can be located using the Thread Data BRAM. The data formats of

the Priority Data and Thread Data BRAMs can be seen in figure 5.8.

With this data organization, enqueue operations work by first adding a thread

to the tail of the priority-levels queue in which that thread resides, and adjusting

the priority field to show that this priority-level does indeed have active (queued)

threads in it. Next the scheduling decision is adjusted by checking the output

of the parallel priority encoder, and looking up the head pointer of the queue

associated with the encoder’s output. The behavior of the enqueue operation can

be seen in figure 5.9. Dequeue operations work by removing a thread from the

head of the highest priority-levels queue, and then immediately calculating the

next scheduling decision. The behavior of the dequeue operation can be seen in

figure 5.10. New scheduling decisions are simply calculated by looking up the head

pointer of the highest priority-levels queue from the Priority Data BRAM using

the output of the priority encoder and placing the head pointer’s thread identifier

into the SCH2TM next cpu tid register. From figure 5.9 and figure 5.10, one can

see that the partitioned ready-to-run queue along with the priority encoder allow

for extremely simple enqueue and dequeue semantics that are able to operate in

constant time regardless of queue length.
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Figure 5.6. Block Diagram of Scheduler Module, Build 2

The new O(1) ready-to-run queue structures were fully integrated into the

existing scheduler module. Next the scheduler module was subjected to a variety

of simulation and synthesis tests to verify correct functionality and to test the

performance of the new O(1) ready-to-run queue structure. The timing results

for these tests can be found in chapter 6.

33



Encoder FSM

Priority Field

Highest Active Priority-Level in System

32-bit 
Priority 

Encoder

32-bit

4-bit

7-bit

128-bit

Figure 5.7. Priority Encoder Structure

Thread_Data BRAM
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Q? N0 N1 N2 N3 N4 N5 N6 N7 L0 L1 L2 L3 L4 L5 L6 P0 P1 P2 P3 P4 P5 P6 P7 - - - - - - - -

Field    Width     Purpose
 Q?        (1-bit)     1 = Queued, 0 = Not Queued.
 N0:N7     (8-bit)     Ready-to-run queue next pointer
 L0:L6     (7-bit)     Scheduling priority-level
 P0:P7     (8-bit)     Ready-to-run queue previous pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
H0 H1 H2 H3 H4 H5 H6 H7 T0 T1 T2 T3 T4 T5 T6 T7 - - - - - - - - - - - - - - - -

Priority_Data BRAM

Field    Width     Purpose
 H0:H7     (8-bit)     Priority-queue head pointer
 T0:T7     (8-bit)     Priority-queue tail pointer

Figure 5.8. Scheduler Attribute Table Entry Format, Build 2
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Enqueue Begin
TID = Thread_ID to EnQ
t_entry = Thread_Data[TID]
de-assert next_thread_valid

Lookup_Priority_Entry
PRI = t_entry.priority
t_entry.Q = 1
p_entry = Priority_Data[PRI]

Check_Encoder_Input
old_tail = p_entry.tail
old_tail_entry = Thread_Data[old_tail]
empty_flag = encoder_input[PRI]

Add_To_Empty_Q
encoder_input[PRI] = 1
p_entry.head = TID
p_entry.tail = TID

Add_To_Non_Empty_Q
t_entry.prev = old_tail
p_entry.tail = TID
old_tail_entry.next = TID

Write_Back_Entries
Thread_Data[TID] = t_entry
Thread_Data[old_tail] = old_tail_entry
Priority_Data[PRI] = p_entry

Lookup_Highest_Priority_Entry
h_entry = Priority_Data[encoder_output]
c_entry = Thread_Data[current_thread_id]

Preemption_Check
next_thread_id = h_entry.head
assert next_thread_valid
if (encoder_output < c_entry.priority)
         then raise interrupt

empty_flag = 0 empty_flag = 1

Figure 5.9. State Diagram for Enqueue Operation, Build 2
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Dequeue_Begin
TID = Thread_ID to DeQ
t_entry = Thread_Data[TID]
de-assert next_thread_valid

Lookup_Priority_Entry
PRI = t_entry.priority
t_entry.Q = 0
p_entry = Priority_Data[PRI]

Check_Encoder_Input
old_head = p_entry.head
old_entry = Thread_Data[old_head]
equal_flag = (p_entry.head == p_entry.tail)

Set_Q_To_Empty
encoder_input[PRI] = 0

Update_Q_Head_Ptr
p_entry.head = old_entry.next

Write_Back_Entries
Thread_Data[TID] = t_entry
Thread_Data[old_head] = old_entry
Priority_Data[PRI] = p_entry

Lookup_Highest_Priority_Entry
h_entry = Priority_Data[encoder_output]
exist_flag = (encoder_input != 0)

equal_flag = 1 equal_flag = 0

Return_Next_Thread_Valid
next_thread_id = h_entry.head
assert next_thread_valid

Return_Next_Thread_Invalid
No active threads in the system
(No threads are Q'd)

exist_flag = 1 exist_flag = 0

Figure 5.10. State Diagram for Dequeue Operation, Build 2

5.3 Third Scheduler Redesign

One of the main goals of the HybridThreads system requires the capability to

manage and schedule both SW and HW threads, therefore the thread manager

and scheduler module must be aware of all threads, whether they are CPU-bound

or not. The third scheduler module redesign was needed to incorporate support

for the scheduling and management of both software and hardware-based threads.
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Initially, thread management and scheduling activities were only concerned with

software-resident threads (SW threads), while hardware-resident threads (HW

threads) were just treated as memory-mapped coprocessors that the OS was rel-

atively unaware of. The main goal of this redesign was to allow the OS to control

HW threads just as it does SW threads so that they could be managed, sched-

uled, and synchronized using the standard APIs provided by the HybridThreads

operating system. The changes brought about by this redesign will allow for HW

and SW threads to be treated as ”equals” by modifying the TM and scheduler

module so that these components will be aware of all interactions between threads

whether they are resident in SW or HW.

By examining the policies of thread management and scheduling it was de-

termined that thread management operations are identical for both SW and HW

threads, however, scheduling operations do have different meanings for SW and

HW threads. Thread management policies deal with allocation of thread identi-

fiers as well as operations that deal with manipulation of thread status, therefore

thread management does not have any concern for where a thread is running.

Scheduling policies are concerned with calculating scheduling decisions and dis-

patching threads to run, so scheduling operations must be cognizant of whether a

thread is to be run in hardware or software. This allows for the Thread Manager

to treat all threads in the same way, and it will be the job of the scheduler module

to keep track of which threads are resident in HW or SW. Furthermore, this makes

it possible for all the thread management and scheduling APIs to remain uniform

for both software and hardware threads.

The differences in scheduling operations for SW and HW threads comes about

because a HW thread is an independent execution unit: a stand-alone computation
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that does not require queuing, or mapping of the computation onto a shared

resource for execution. Thus, a HW thread can be in either one of two states:

running or not-running (stopped or blocked). Because a HW thread has dedicated

computational resources, it never needs to be queued. On the other hand, a SW

thread is a computation, but it requires some sort of computational unit (i.e.

a shared CPU) to execute it. This means that a SW thread can be ready to

begin running, but has not yet run, so it can be in one of three states: running,

ready-to-run (queued), and not ready-to-run (blocked). A HW thread physically

exists, it takes up physical space within the reconfigurable fabric of an FPGA,

it has a base address, and its execution perfectly represents the program that

it was derived from. A SW thread is merely a set of instructions that take up

space in memory somewhere, and this group of instructions are scheduled to be

executed on a computational unit. When that SW thread is chosen to be run,

the instructions are gathered (fetched) and are then executed by a computational

unit, thus making the computational unit emulate the behavior of the program

that the SW thread was derived from.

The traditional method for scheduling a thread, whether it is a HW or SW

thread, is the add thread command. An add thread command for a SW thread

will add the thread to the ready-to-run queue and change the thread’s status to

queued. The SW thread’s location in the queue is determined by its priority level

which is encoded in its scheduling parameter. An add thread command for a HW

thread will do a ”pseudo-add” which basically tells the HW thread to start its

execution. A HW thread is not queued during an add thread command because

the HW thread itself is not a shared resource and can begin executing immediately.

The HW thread’s execution is started by writing a start message to the address of
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its command register which is encoded in its scheduling parameter that is stored

within the scheduler module. Because the scheduling parameter is being used to

store the address of the command register for HW threads, it is required to be

a 32-bit value. HW and SW threads are thus distinguished by their scheduling

parameters: a scheduling parameter whose value is between 0 and 127 denotes

a SW thread with the parameter being its priority level; a scheduling parameter

greater than 127 denotes a HW thread with the parameter being the address

of its command register. This method of distinguishing between SW and HW

threads allows for all thread management and scheduling APIs to remain the same

regardless of the type of thread because the only difference in system operation

for the two types of threads is the result of scheduling a thread by invocation

of the add thread command. Additionally, migration of computations between

SW and HW can now be done trivially for computations in which both types of

implementations exist by simply changing the scheduling parameter during run-

time. The status of whether a thread is queued or not used to be known by

both the TM and the scheduler module in the first and second builds because

all add thread commands resulted in a thread being added to the ready-to-run

queue. The third scheduler build resulted in total management and scheduling

control of both HW and SW threads, so add thread commands do not result in

any ready-to-run queue changes for HW threads. This meant that the status of

being queued must only be held by the scheduler module, and the TM would have

to request this information if it was needed. This change in the behavior of the

add thread operation led to the addition of the is queued operation as well as

the migration of idle thread functionality to the scheduler module. The is queued

operation is used by the TM to check whether a thread is queued or not, and
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the idle thread functionality is based upon the scheduling of an user-defined idle

thread whenever there are no threads in the ready-to-run queue.

Both the Thread Manager (TM) and the scheduler module were implemented

in the programmable logic of an FPGA. The system level architecture is shown

in figure 5.11. Both components communicate directly and are attached to the

HybridThreads system bus (IBM CoreConnect On-Chip Peripheral Bus, OPB)

that allows the CPU to communicate with the modules. The purpose of the TM is

to control all thread management operations, while the scheduler module controls

all thread scheduling operations. The dedicated hardware interface between the

scheduler module and the TM consists of a total of eight control and data signals as

well as access to a read-only interface (B-port) of the TM’s Block RAM (BRAM).

This interface has the same capabilities as the previous TMcom interface set forth

in section 5.1, however in this redesign it was modified to be more generic and

extensible. Four of these interface signals are writable by the TM and readable by

the scheduler module (TM2SCH), and are used for signaling the scheduler module

to perform certain operations on behalf of the TM. The remaining four signals are

writable by the scheduler module and readable by the TM (SCH2TM), and are used

for return values as well as synchronization with the TM. The B-Port interface

to the TM’s BRAM allows the scheduler module to query thread management

information in order to perform error-checking on certain scheduling operations

just as in the previous builds.

The TM2SCH current cpu tid data signal contains the identifier of the thread

currently running on the CPU. The TM2SCH opcode signal contains the encoded

form of the operation that the scheduler module is to perform upon the TM’s

request. The TM2SCH data signal contains any necessary parameters needed for
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an operation requested by the TM. The TM2SCH request control signal is used to

signify that the TM has a pending operation request for the scheduler module.

The SCH2TM busy control signal is used to signify that the scheduler module

is currently busy performing an operation and cannot accept any more incoming

operations at this time. The SCH2TM data signal is used to carry return value

information back to the TM. The SCH2TM next cpu tid data signal contains the

identifier of the thread that will be scheduled to run next on the CPU. The

SCH2TM next tid valid control signal is used to signify whether the data found

on SCH2TM next cpu tid is valid or not.

The eight control and data signals implement a handshake protocol used to

reliably coordinate communication between the scheduler module and the TM.

The scheduler module has two main categories of operations: bus commands

(BUScom), and TM commands (TMcom). The TM commands are only issued

from the TM and are requested via the dedicated hardware interface. The bus

commands can be issued from any device that is a bus-master, and are requested

via the bus command register interface. The command set of the scheduler module

can be seen in table 5.2.

The third scheduler redesign uses the O(1) ready-to-run queue structure de-

scribed in section 5.2 with augmentations so that both SW and HW threads

can be controlled by the scheduler module. This implementation uses a par-

titioned ready-to-run queue with a parallel priority encoder in order to provide

constant time scheduling operations for both HW and SW threads without adding

significant complexity to the scheduler module. This implementation uses three

Block RAMs (BRAMs) to implement the ready-to-run queue: the Priority Data

BRAM, the Thread Data BRAM, and the Param Data BRAM. The Param Data

41



Thread Manager Thread Scheduler

current thread reg

next thread reg

current thread reg

next thread reg

current cpu thread id

next cpu thread id

State Table B-Port Interface

opcode

data in
request

busy

data out

next id valid

THREAD_DATA

PARAM_DATA

PRIORITY_DATA

Priority Encoder

system bus

bu
s

in
te

rfa
ce

bu
s

in
te

rfa
ce

128-bit Priority Field

Highest Active Priority

Figure 5.11. Block Diagram of Scheduler Module, Build 3

BRAM is used to store the 32-bit scheduling parameter for each thread which

is an overloaded field used to distinguish between software or hardware resident

threads. The Thread Data and Priority Data BRAMs, as well as the parallel

priority encoder remain unchanged and are used in the exact same fashion as

described in section 5.2. The Param Data BRAM is indexed by thread identifier

and can the addition of this BRAM can be seen as an extension to the width

of the Thread Data BRAM without affecting existing logic that interfaces to the

Thread Data BRAM.
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Table 5.2. Command Set of Scheduler Module, Build 3
Type Name Actions

TMcom Enqueue Schedules a thread
TMcom Dequeue Removes a thread from the ready-to-run

queue
TMcom Is Queued Checks to see if a thread is queued
TMcom Is Empty Checks to see if the ready-to-run queue is

empty
BUScom Toggle Preemption Toggle preemption interrupt on/off
BUScom Get Entry Returns a thread’s table attribute entry
BUScom Set Idle Thread Sets the identifier of the idle thread
BUScom Get Sched Param Returns the scheduling parameter of a

thread
BUScom Check Sched Param Error-checks a thread’s scheduling param-

eter
BUScom Set Sched Param Sets the scheduling parameter of a thread

Thread_Data BRAM
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Q? N0 N1 N2 N3 N4 N5 N6 N7 L0 L1 L2 L3 L4 L5 L6 P0 P1 P2 P3 P4 P5 P6 P7 - - - - - - - -

Field    Width     Purpose
 Q?        (1-bit)     1 = Queued, 0 = Not Queued.
 N0:N7     (8-bit)     Ready-to-run queue next pointer
 L0:L6     (7-bit)     Scheduling priority-level
 P0:P7     (8-bit)     Ready-to-run queue previous pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
H0 H1 H2 H3 H4 H5 H6 H7 T0 T1 T2 T3 T4 T5 T6 T7 - - - - - - - - - - - - - - - -

Priority_Data BRAM

Field    Width     Purpose
 H0:H7     (8-bit)     Priority-queue head pointer
 T0:T7     (8-bit)     Priority-queue tail pointer

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27 s28 s29 s30 s31

Param_Data BRAM

Field    Width     Purpose
 s0:s31    (32-bit)    Scheduling parameter

Figure 5.12. Scheduler Attribute Table Entry Format, Build 3

43



With this data organization, enqueue operations work by first determining

whether a thread is resident in HW or SW by examining its scheduling parameter.

If it is a hardware-resident thread (HW thread) then a RUN command is sent to

the hardware thread and no ready-to-run queue manipulation is needed. If it is a

software-resident thread (SW thread) then an enqueue operation results in adding

a thread to the tail of the respective priority levels queue, and then adjusting the

scheduling decision if needed based on the priority levels of the currently running

thread and the thread that is scheduled next to run. The behavior of the enqueue

operation can be seen in figure 5.13. Dequeue operations work by removing a

thread from the head of the highest priority levels queue, and then immediately

calculating the next scheduling decision. The behavior of the dequeue operation

can be seen in figure 5.14. A new scheduling decision is calculated by looking up

the head pointer of the highest priority queue from the Priority Data BRAM

using the output of the priority encoder and placing the head pointer’s thread

identifier into the SCH2TM next cpu tid register. From figure 5.13 and figure

5.14, one can see that the partitioned ready-to-run queue along with the priority

encoder allow for extremely simple enqueue and dequeue semantics that are able

to operate in constant time regardless of queue length in the presence of both

software and hardware resident threads. One important fact to note is that once

the scheduler module was modified to support both HW and SW threads the

entire HybridThreads system is capable of supporting HW and SW threads. This

is due to the fact that thread management, status, and synchronization policies

are not concerned with where a thread runs; only scheduling policies need to be

cognizant of where a thread is running. All pre-existing APIs that result in the

calling of scheduling operations now have support for both SW and HW threads,
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thus making ”hybridizing” the entire system.

Enqueue Begin
TID = Thread_ID to EnQ
t_entry = Thread_Data[TID]
s_entry = Param_Data[TID]

Lookup_Priority_Entry
de-assert next_thread_valid
PRI = t_entry.priority
t_entry.Q = 1
p_entry = Priority_Data[PRI]

Check_Encoder_Input
old_tail = p_entry.tail
old_tail_entry = Thread_Data[old_tail]
empty_flag = encoder_input[PRI]

Add_To_Empty_Q
encoder_input[PRI] = 1
p_entry.head = TID
p_entry.tail = TID

Add_To_Non_Empty_Q
t_entry.prev = old_tail
p_entry.tail = TID
old_tail_entry.next = TID

Write_Back_Entries
Thread_Data[TID] = t_entry
Thread_Data[old_tail] = old_tail_entry
Priority_Data[PRI] = p_entry

Lookup_Highest_Priority_Entry
h_entry = Priority_Data[encoder_output]
c_entry = Thread_Data[current_thread_id]

Preemption_Check
next_thread_id = h_entry.head
assert next_thread_valid
if (encoder_output < c_entry.priority)
         then raise interrupt

empty_flag = 0 empty_flag = 1

Check_Thread_Type
sched_param = s_entry.param
is_hw = PRI = (sched_param > 127)

is_hw = 0 is_hw = 1

Start_HW_Thread
IP2BusAddr = sched_param
IP2BusData = hw_thread_start_cmd
IP2BusWriteReq = 1

Figure 5.13. State Diagram for Enqueue Operation, Build 3

The new hardware components used to schedule both SW and HW threads

were fully integrated into the existing scheduler module. Results from simulation

and synthesis tests to verify scheduler correct scheduler functionality of the new

hybrid features along with O(1) ready-to-run queue structure can be found in

chapter 6.
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Dequeue_Begin
TID = Thread_ID to DeQ
t_entry = Thread_Data[TID]
de-assert next_thread_valid

Lookup_Priority_Entry
PRI = t_entry.priority
t_entry.Q = 0
p_entry = Priority_Data[PRI]

Check_Encoder_Input
old_head = p_entry.head
old_entry = Thread_Data[old_head]
equal_flag = (p_entry.head == p_entry.tail)

Set_Q_To_Empty
encoder_input[PRI] = 0

Update_Q_Head_Ptr
p_entry.head = old_entry.next

Write_Back_Entries
Thread_Data[TID] = t_entry
Thread_Data[old_head] = old_entry
Priority_Data[PRI] = p_entry

Lookup_Highest_Priority_Entry
h_entry = Priority_Data[encoder_output]
exist_flag = (encoder_input != 0)

equal_flag = 1 equal_flag = 0

Next_Thread_From_R2RQ
next_thread_id = h_entry.head
assert next_thread_valid

Next_Thread_Not_From_R2RQ
idle_valid = idle_thread_valid

exist_flag = 1

exist_flag = 0

idle_valid = 1 idle_valid = 0

Next_Thread_Idle
next_thread_id = idle_thread_id
assert next_thread_valid

Next_Thread_Idle
keep next_thread_valid de-
asserted

Figure 5.14. State Diagram for Dequeue Operation, Build 3
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Chapter 6

Implementation Results

The modules from each of the scheduler redesigns have undergone a series

of tests in both simulated and synthesized forms. These tests help show the

performance differences between the different ready-to-run queue structures in

terms of scheduling overhead and jitter as well as the effects of the hybridization

of the scheduler on the entire HybridThreads operating system.

6.1 Results of the First Redesign

The scheduler module was implemented on a Xilinx [27] ML310 development

board which contains a Xilinx Virtex-II Pro 30 FPGA. Synthesis of the first

redesign of the scheduler module yields the following FPGA resource statistics:

484 out of 13,696 slices, 573 out of 27,392 slice flip-flops, 873 out of 27,392 4-input

LUTs, and 1 out of 136 BRAMs. The module has a maximum operating frequency

of 166.7 MHz, which easily meets our goal of having a 100 MHz global system

clock within the FPGA.

This version of the scheduler module has a O(n) ready-to-run queue struc-

47



ture. This structure requires a sequential queue traversal in order to calculate the

next scheduling decision. Scheduling decisions are calculated during a dequeue

operation, which is invoked when a thread begins running on the CPU and must

be unlinked from the ready-to-run queue. The process of unlinking the newly

running thread and calculating the next thread to run is handled by the dequeue

operation of the scheduler module. Table 6.1 shows that it takes approximately

40 ns (4 clock cycles) per thread in the ready–to-run queue to perform the de-

queue operation, with a small amount of setup cost due to the setup of the queue

traversal. These results show that in the worst case scenario (250 threads in the

ready-to-run queue) a dequeue operation will take about 10 µs to complete, run-

ning concurrently while the thread on the CPU is context switched to and begins

to run. This variability in execution-time of the dequeue operation provided the

impetus for redesigning the ready-to-run queue structure. The first redesign of the

scheduler module provides low overhead scheduling operations that run in parallel

with application execution, however there is still jitter evident in the process of

making a scheduling decision. The goal of the second redesign of the scheduler

module is to reduce or eliminate the jitter within the scheduler module.

Table 6.1. ModelSim Timing Results of Dequeue Operations, Build
1

No. of Threads in R2RQ Time (ns) Est. Time/Thread (ns)
250 10060 40.24
128 5140 40.16
64 2610 40.78
32 1330 41.56
16 690 43.13
2 130 65

To test the scheduler in synthesized form it must be fully incorporated into

the HybridThreads operating system. This involves attaching the BUScom inter-
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face of the scheduler module to the HybridThreads system bus and the TMcom

interface to the thread manager. The first performance measurement taken of

the synthesized and integrated scheduler module is end-to-end scheduling delay.

End-to-end scheduling delay in our system is defined as the time delay between

when a timer interrupt fires to when the context switch to a new thread is about

to complete (old context saved, new context is about to be switched to). The

end-to-end scheduling delay was measured using a hardware counter that begins

clocking immediately after a timer interrupt goes off and would stop timing as

soon as the context switch was complete. The hardware counter measures this de-

lay in an non-invasive way by monitoring the interrupt lines attached to the CPU.

This allows for clock-cycle accurate measurements to be made without bias. Fig-

ure 6.1 shows a histogram of the end-to-end scheduling delay measurements for

our system with 250 active threads, where each thread is in an infinite loop. The

shaded region of figure 6.1 and figure 6.2 highlight the data range of the measure-

ment from minimum to maximum delay. The end-to-end scheduling delay over a

course of 150,000 events was approximately 2.0 µs with 250 active threads, with

approximately 2.4 µs of jitter. Where the jitter is defined as being the differ-

ence between the maximum and mean delays. The results of both the average

end-to-end scheduling delay and jitter are quite low when compared to the 1.3

ms scheduling delay of Linux [26] and the 40 µs scheduling delay of Malardalen

University’s RTU [24], and further tests have shown that the jitter is caused by

cache misses during context switching as well as jitter and delay in the time it

takes for the CPU to respond to the interrupt and jump into its ISR.

The second performance measurement taken of the system is raw interrupt

delay. Raw interrupt delay is the time delay in our system from the time an inter-
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rupt signal fires to when the CPU actually enters its ISR. The raw interrupt delay

was also measured using a hardware module that would begin timing immediately

after a timer interrupt goes off and would stop timing when the CPU sent a signal

to the hardware timer from its ISR. Figure 6.2 shows a histogram of the interrupt

delay in our system with various numbers of active threads, where each thread is

infinitely looping. This measurement shows that the average raw interrupt delay

over a course of 2,500,000 events with 250 active threads is approximately 0.79

µs with approximately 0.73 µs of jitter. One can see that the raw interrupt de-

lay makes up a significant portion of the end-to-end scheduling delay and jitter.

The interrupt delay is relatively constant, and its jitter is primarily caused by

the variable execution length of atomic instructions that prevent the CPU from

acknowledging the interrupt immediately.

Figure 6.1. Histogram of Integrated End-To-End Scheduling Delay,
Build 1 (250 Active SW Threads)

During a context switch, the CPU does not interact with the scheduler module,

which gives the scheduler module the perfect opportunity to calculate the next

scheduling decision. This scheduling decision is calculated in parallel with the
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Figure 6.2. Histogram of Raw Interrupt Delay, Build 1
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CPU as shown in the timeline shown in figure 1, thus eliminating much of the

processing delays normally incurred by calculating a new scheduling decision.

Also, the scheduling decision being calculated is for the next scheduling event so

that when a timer interrupt goes off, the next thread to run has already been

calculated. This pre-calculation of the scheduling decision allows the system to

react very quickly to scheduling events because when a scheduling event occurs,

the OS simply reads the next thread to run out of a register and performs a

context switch, and then during this context switch, the register is refreshed with

the thread that should run at the next scheduling event by the hardware scheduler

module. The overhead of making a scheduling decision is hidden because it occurs

during a context switch. However, if a scheduling event occurs very soon after

a thread is initially context switched to, the system may have to wait for the

scheduler to finish calculating the next scheduling decision resulting from the

context switch. This is more likely to happen with more threads in the ready-to-

run queue, due to increased execution-times of scheduling operations due to the

O(n) nature of the queue itself. Although the amount of jitter is in the microsecond

range, it can still be further reduced by restructuring the ready-to-run queue so

that its functions are able to operate in constant amounts of time.

6.2 Results of the Second Redesign

Synthesis of the second redesign of the scheduler module targeting a Xilinx [27]

Virtex-II Pro 30 yields the following FPGA resource statistics: 1,034 out of 13,696

slices, 522 out of 27,392 slice flip-flops, 1,900 out of 27,392 4-input LUTs, and 2

out of 136 BRAMs. The module has a maximum operating frequency of 143.8

MHz, which easily meets our goal of a 100 MHz clock frequency.
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This version of the scheduler module has a O(1) ready-to-run queue structure.

This structures uses a high-speed priority encoder to select the highest priority-

level active in the system. The output of the priority encoder is used to access

the first entry of the highest priority-levels queue. This type of data structure

requires the use of more BRAM (2 versus 1), however no data structure traver-

sals are required to make scheduling decisions. This makes for a ready-to-run

queue structure that has fixed execution-times for making scheduling decisions as

shown in table 6.2. This table shows that the time required to execute a dequeue

operation is constant (240 ns) regardless of the length of the ready-to-run queue.

Table 6.2. ModelSim Timing Results of Dequeue Operations, Build
2

No. of Threads in R2RQ Time (ns)
250 240
128 240
64 240
32 240
16 240
2 240

After being synthesized and fully integrated into the HybridThreads system,

the second redesign of the scheduler has an average end-to-end scheduling delay of

1.9 µs with 1.4 µs of jitter with 250 active threads as shown in figure 6.3. The raw

interrupt delay of this system with 250 active threads is shown in figure 6.4. This

figure agrees with the results in figure 6.2, thus showing that raw interrupt delay

remains constant in the system, regardless of any changes in the HybridThreads

architecture itself. The O(1) ready-to-run queue structure is able to reduce the

amount of end-to-end scheduling jitter in the system by about 1 µs. However, the

scheduler module must still be modified further in order to uniformly handle both

SW and HW threads within the HybridThreads system.
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Figure 6.3. Histogram of Integrated End-To-End Scheduling Delay,
Builds 2 & 3 (250 Active SW Threads)

Figure 6.4. Histogram of Raw Interrupt Delay, Builds 2 & 3 (250
Active SW Threads)

6.3 Results of the Third Redesign

Synthesis of the third redesign of the scheduler module targeting a Xilinx [27]

Virtex-II Pro 30 yields the following FPGA resource statistics: 1,455 out of 13,696

slices, 973 out of 27,392 slice flip-flops, 2,425 out of 27,392 4-input LUTs, and 3

out of 136 BRAMs. The module has a maximum operating frequency of 119.6

MHz, which easily meets our goal of a 100 MHz clock frequency.

This version of the scheduler module retains the O(1) ready-to-run queue struc-

ture, however it incorporates functionality to support the scheduling of both soft-

ware and hardware threads. This scheduler module requires storage of a larger

scheduling parameter to distinguish between hardware and software threads, thus

requiring an additional BRAM (3 for this redesign versus 2 for the second re-

design). Additionally, the scheduler module must be able to master the Hy-

bridThreads system bus in order to send commands to hardware threads. This
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requires the addition of a bus master interface attachment (Master IPIF) to the

scheduler which causes a slight increase in the amount of logic resources needed

to implement the module. These additions to the scheduler module result in

fixed execution-time scheduling operations that are uniformly accessible to both

software and hardware threads.

The primary scheduler operations have been simulated with ModelSim to char-

acterize their execution times. Worst-case timing results for the scheduler’s oper-

ations are shown in table 6.3. These results were verified by comparison against

the expected results based on the number of states and transitions in the FSMs

that implement the operations.

Table 6.3. ModelSim Timing Results of Scheduling Operations,
Build 3

Operation Time (clock cycles)
Enqueue(SWthread) 28
Enqueue(HWthread) 20 + (1 Bus Transaction)
Dequeue 24
Get Entry 10
Is Queued 10
Is Empty 10
Set Idle Thread 10
Get Sched Param 10
Check Sched Param 10
Set Sched Param(NotQueued) 10
Set Sched Param(Queued) 50

From table 6.3, one can see that all of the scheduling operations execute in 500

ns (50 clock cycles) or less. This is extremely fast, especially when considering how

much processing is being done, and that the FPGA and the scheduler module are

only being clocked at 100 MHz. These measurements do not vary with the number

of active (queued) threads, which makes for jitter-free scheduling operations at the

base hardware level, and thus more predictable and precise scheduling of threads
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within the OS.

In synthesized form, the third redesign of the scheduler has the same perfor-

mance as that of the second redesign of the scheduler because all modifications to

the scheduler module involve adding functionality to support both hardware and

software thread scheduling operations. Therefore all scheduling operations that

involve only software threads will have the same system performance when using

the scheduler module from build 2 or 3. The end-to-end scheduling delay and raw

interrupt delay for the third scheduler redesign are the same as for the second

scheduler redesign and are thus shown in figures 6.3 and 6.4 (found in section 6.2)

respectively. These figures show that system with 250 active threads in it has a

mean end-to-end scheduling delay of 1.9 µs with 1.4 µs of jitter, and with raw

interrupt delay of of 0.79 µs with approximately 0.73 µs of jitter. These results

are the same for both the second and third scheduler builds because the tests

do not involve any hardware threads, and the mechanisms for handling software

threads remained the same in both of the redesigns. Overall, this redesign resulted

in a system capable of uniform OS services for both SW and HW threads with

significant reductions in scheduling overhead and jitter by combining the hybrid

scheduling mechanism together with the O(1) ready-to-run queue structure from

the second scheduler redesign.
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Chapter 7

Conclusion

In this paper we have presented the design of our scheduler module imple-

mented in programmable logic. This design takes advantage of current FPGA

technology to provide important operating system services that operate concur-

rently with the processor core(s). The scheduler module supports FIFO, round-

robin, and priority-based scheduling algorithms. The system currently supports

up to 256 active threads, with up to 128 different priority levels. The scheduler

module provides constant time scheduling operations that execute in under 50

clock cycles (500 ns) or less at the base hardware level. From the system level,

the hardware scheduler module provides very fast scheduling operations with an

end-to-end scheduling delay of 1.9 µs with 1.4 µs of jitter with 250 active threads

running on a Xilinx [27] Virtex-II Pro FPGA. The integrated system level tests

have shown that the migration of scheduling services into the fabric of the FPGA

have drastically reduced the amount of system overhead and jitter related to the

scheduling of threads, thus allowing for more precise and predictable scheduling

services. Migration of scheduling and management services has also allowed for

uniform operating system services to be provided for both SW and HW threads.
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This effectively raises the abstraction level of the hardware into the domain of

threads and OS services. SW and HW computations have been encapsulated as

threads which allows the computations to be treated as ”equals” as they are now

able to communicate and synchronize with all threads in the system through the

use of uniform, high-level APIs commonly seen in the world of multithreaded

software programming. Overall, this thesis work has enabled uniform operat-

ing system support for both software and hardware based computations. Addi-

tionally, system overhead and jitter have been greatly reduced by designing and

implementing a scheduling module in hardware whose operations all have fixed

execution-times.

Immediate future work is now focused on creating a more flexible organiza-

tion that will allow the user to reconfigure the scheduler module to support an

arbitrary number of threads and priority levels, as well as user-defined scheduling

algorithms. We are also working on optimizing the scheduler module in terms of

FPGA resource utilization. The goal of this work is to try to shrink the size of the

hardware implementation of the scheduler module as much as possible in order to

free up additional FPGA resources for use by additional hardware modules.

The capability of migrating traditional operating system services into hard-

ware allows system designers to improve concurrency, and reduce system overhead

and jitter, which has the possibility of making real-time and embedded systems

more precise and accurate. Complete systems can be built by integrating these

HW/SW co-designed modules into an FPGA so as to provide fast and precise op-

erating systems services to the embedded domain while still adhering to standard

programming models and APIs. Additionally, the final redesign of the scheduler

enables full OS support across the hardware/software boundary. Allowing all com-
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putations in the system, whether implemented in software or within the FPGA,

to communicate and synchronize through the use of high-level APIs compatible

with the POSIX thread standard. The APIs used in the HybridThreads system

provide accessibility to the services and computations within the FPGA at level

of abstraction familiar to that of software programmers without the need for such

programmers to knowledge of hardware design principles.

New research projects have spawned from the development methodologies of

the HybridThreads project [29], which furthers the future impacts of the project

even more. More detailed descriptions of the hybrid threads project can be found

in [13].
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