
University of Kansas

Jason Agron
jagron@ittc.ku.edu

Run-Time Scheduling Support forRun-Time Scheduling Support for
Hybrid CPU/FPGA SoCsHybrid CPU/FPGA SoCs

University of Kansas

Acknowledgements

• I would like to thank…
• Dr. Andrews, Dr. Alexander, and Dr. Sass for assistance and

advice in both research and class work.

• Wes, Garrin, and Erik for help with tools and coding problems.

University of Kansas

Publications
• Jason Agron, Wesley Peck, Erik Anderson, Ed Komp, Ron Sass, David Andrews, Run-Time

Support for Hybrid CPU/FPGA Systems on Chip, Submitted to Transactions on Embedded
Computing Systems, December 2005.

• Erik Anderson, Jason Agron, Wesley Peck, Jim Stevens, Fabrice Baijot, Ed Komp, Ron Sass,
David Andrews, Enabling a Uniform Programming Model Across the Software/Hardware
Boundary, In Proceedings of the Fourteenth Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM 2006), April 2006.

• David Andrews, Wesley Peck, Jason Agron, Erik Anderson, Jim Stevens, Fabrice Baijot,
Presentation on the KU Hybrid Threads Project, MOCHA Design Conference, January 2006

• D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and R. Sass. hThreads: A
Hardware/Software Co-Designed Multithreaded RTOS Kernel. In Proceedings of the 10th
IEEE International Conference on Emerging Technologies and Factory Automation (ETFA
2005), September 2005.

• J. Agron, D. Andrews, M. Finley, E. Komp, and W. Peck. FPGA Implementation of a Priority
Scheduler Module. In Proceedings of the 25th IEEE International Real-Time Systems
Symposium, Works in Progress Session (RTSS WIP 2004), December 2004.

• W. Peck,J. Agron, D. Andrews, M. Finley, and E. Komp. Hardware/Software Co-Design of
Operating System Services for Thread Management and Scheduling. In Proceedings of the
25th IEEE International Real-Time Systems Symposium, Works in Progress Session (RTSS WIP
2004), December 2004.

University of Kansas

Overview

• HybridThreads Project.
• Primary Goals

• Basic Architecture

• Purpose of my work.

• Comparison to related works.

• Designs, Implementations, Results.

• Conclusion.

• Questions.

University of Kansas

HybridThreads Project
• Hybrid architecture = CPU + FPGA.

• Portions of programs can now be in SW or HW.

• Create a unified programming model.
• Threaded programming model based on POSIX standard.
• All computations are viewed as threads.

– HW, SW, or both.

• HW/SW co-design of OS services.
• OS services can be implemented in HW to give a uniform interface to hybrid

computations.
– Anyone that can “talk” on the bus can use the services.
– No need to interrupt the CPU to access services.

• HW implementations allow for more parallelism to be exploited.
– OS services themselves run in parallel with application execution (coarse-

grained).
– Internals of each OS service can be parallelized (fine-grained)

• Improves accessibility to resources of the FPGA.

University of Kansas

Traditional Architecture (All SW)

University of Kansas

 HybridThread Architecture

University of Kansas

Purpose of my work

• Provide scheduling support for “hybrid” threads.
• Uniform APIs, regardless of thread “type”.

• Allow for high-level scheduling policies.
• Add priority scheduling.

• Separate OS policy concerns

– More modular (scheduling != management).

– Easier to extend and scale within the framework.

• Minimize overhead and jitter!!!
• Reduce overhead/jitter of system by streamlining the scheduler.

University of Kansas

Benefits of a HW-based Scheduler

• SW-based scheduler is “invoke on demand”.
• Starts to get “ready” when needed.

• HW-based scheduler is “ready on demand”.
• Always “ready” ASAP.

University of Kansas

Benefits of a HW-based Scheduler

• Scheduler can be invoked without interrupting the CPU.
• Scheduler is the sole “bookkeeper” of the R2RQ.

– Scheduler doesn’t require CPU time to execute.

• Traditional ISRs are translated into ISTs (Interrupt
Service Threads).
• Traditional ISRs are akin to threads with priority level of ∞.
• CPU can be shielded from external interrupts by transforming them

into scheduling requests.
– Interrupts are then fielded by the scheduler, not the CPU.
– Scheduler decides when to interrupt CPU based on status of

R2RQ.
– Jitter from interrupts can be controlled:

– Critical interrupts = high priority  interrupt all user threads.
– Non-Critical interrupts = low priority  interrupt some user threads.

• Scheduling algorithm can be parallelized.
• Reduction of overhead and jitter.

University of Kansas

Related Works
• RealFast/Malardalen – RTU: Real-

Time Unit, A Real-Time Kernel in
Hardware.

• Systolic array implementation of R2RQ.
• EDF, PRI, RM capable.
• Can handle 16 tasks with 8 priority levels.

• Georgia Tech – Configurable
Hardware Scheduler for Real-Time
Systems.

• Systolic array implementation of R2RQ.
• EDF, PRI, RM capable.
• 421 logic elements (slices), and 564

registers for queue of size 16.

• Valencia/Valle – A Hardware
Scheduler for Complex Real-Time
Systems.

• Systolic array implementation of R2RQ.
• EDF capable.

University of Kansas

Problems with Systolic Arrays
• Systolic arrays are fast and easily allow for dynamic changes in priority.

• Registers within cells allow for parallel accesses
• Systolic arrays are easily scaled through cell concatenation.

• Each cell requires registers, multiplexers, comparators, and control logic.
– Scaling systolic arrays requires lots of logic resources!

• But HW threads require logic resources of FPGA!
• HybridThread OS modules need to be as small as possible to save space for

HW threads.
• BRAMs are to be used instead of registers to hold ready-to-run queue structure.
• Pros:

– Scalable: more space  use more BRAM and slightly more logic.
– BRAMs don’t take up CLBs
– BUT address decode logic and pointers will grow slightly.

– Fast: 2 clock cycle reads, 1 clock cycle writes.
– Almost as fast as registers.

• Cons:
– Serial: Only 1 or 2 accesses at a time.

– Dynamic priority changes can’t happen in parallel.

University of Kansas

Comparison to Related Works
• HybridThreads is compatible with the POSIX (Pthread) thread standard.

• RealFast/GaTech/Valencia use their own custom APIs.
– Doesn’t allow for easy portability between systems.

• HybridThreads R2RQ is of size 256.
• RealFast/GaTech only have R2RQs of size 16.

– Systolic queue of size 16 requires ~421 slices
– BRAM queue of size 256 requires ~484 slices.

• HybridThreads must support scheduling of both SW and HW resident
tasks.
• Other systems only handle SW threads.

• HybridThreads system is real  simulatable, synthesizable, and usable.
• Valencia’s scheduler is only theoretical.
• RealFast/GaTech have real systems

– BUT you must learn their custom APIs to use their systems.
– Pthreads applications can be ported to HybridThreads for “free”

– Using our pthread to hthread wrapper.

University of Kansas

Initial Design
• Break scheduling services

out of TM.

– Define a standard
interface.

– Create a R2RQ that is
separate from
management data
structures.

• Add priority scheduling
services (while still
remaining backwards
compatible).

University of Kansas

Internals of First Redesign

University of Kansas

Initial Results

• R2RQ of size 256 with 128 priority levels.
• Linear traversals  O(n).

• Synthesized on Virtex-II Pro 30:
• 484 out of 13,696 slices, 573 out of 27,392 flip-flops, 873 out

of 27,392 4-input LUTs, 1 out of 136 BRAMs.

• Max. operating frequency of 166.7 MHz.

• Scheduling decision requires ~40 ns per thread
in R2RQ.
• Variable execution-time based on R2RQ length.

University of Kansas

O(n) Timing Results

• O(n)  Variable scheduling decision delay based on R2RQ length.
• Context switch requires ~ 2µs

• (R2RQ ≤ 32 threads)  decision completes before C.S. completes
• (R2RQ > 32 threads)  decision completes after C.S. completes

• As R2RQ length increases so does the possibility of a scheduling
event occurring while the next scheduling decision is still being
calculated, thus introducing jitter into the system.

University of Kansas

O(n) Timing Results

• Raw interrupt delay = time from when an interrupt fires to when the CPU
enters the ISR.

• System dependent, cannot be changed – due to variable length execution times of atomic
instructions that delay interrupt acknowledgement.

– Not affected by number of threads in R2RQ
• Mean = 0.79 µs. and Jitter = (Max – Mean) = 0.73 µs.

• End-to-end scheduling delay = time from when an interrupt fires to when
the C.S. is about to complete (old context saved, new context about to be
loaded).

• Mean = 2.0 µs. and Jitter = (Max – Mean) = 2.4 µs with 250 threads in R2RQ.
– Jitter is caused by scheduler module and cache.

• Raw interrupt delay makes up a significant portion (~ 1/3) of end-to-end scheduling delay.

University of Kansas

Accomplishments of 1st Design
• Developed a standard scheduling interface.

• Enforces policy, while leaving the mechanism abstract.

• Provides HPF, FIFO, Round-Robin scheduling services.
• O(n) – scheduling decisions.

• FIFO R2RQ – requires traversal.
• Decision is slower than context switch sometimes.

– Long R2RQ = Long traversal.

• Conclusion:
• Performance could be better.

– 2.0 µs. end-to-end scheduling delay with 250 threads with 2.4 µs.
of jitter is pretty good.

– Linux delay is in the millisecond range!
– RealFast/Malardalen’s RTU is in the 40 µs range!

• Still need control of both SW and HW threads.

University of Kansas

Second Redesign

• Change R2RQ structure
to reduce overhead and
jitter.

• Solution = Partitioned
R2RQ + Priority
Encoder!

University of Kansas

Priority Encoder

• Priority Encoder calculates the highest priority level
active in the system.
• Input register: 1-bit per priority level. (1 = active, 0 = non-active).

• Output register: highest active priority level in the system.

• Requires 4 clock cycles to execute.

University of Kansas

Internals of Second Redesign

University of Kansas

2nd Redesign Results

• R2RQ of size 256 with 128 priority levels.
• No traversals needed  fixed execution times.

• O(1).

• Synthesized on Virtex-II Pro 30:
• 1,034 out of 13,696 slices, 522 out of 27,392 flip-flops, 1,900

out of 27,392 4-input LUTs, 2 out of 136 BRAMs.

• Max. operating frequency of 143.8 MHz.

• Scheduling decision executes in fixed amount of
time (~ 24 clock cycles).

University of Kansas

O(1) Timing Results

• O(1)  Constant scheduling decision delay regardless
of R2RQ length.

• All scheduling operations execute in fixed amount of
time that is less than C.S. time.
• Scheduling operations do not inject any jitter into the system!

University of Kansas

O(1) Timing Results

• Raw interrupt delay was re-measured and found to be the same as
in the system with O(n) R2RQ.

• Mean = 0.79 µs. and Jitter = (Max – Mean) = 0.73 µs.

• End-to-end scheduling delay changed based on redesign of
scheduler.

• Mean = 1.9 µs. and Jitter = (Max – Mean) = 1.4 µs with 250 threads in R2RQ.
– Jitter is caused by the cache.

• O(1) R2RQ helped to reduce the jitter by approximately 1 µs!

University of Kansas

2nd Redesign Accomplishments

• Partitioned R2RQ + Priority Encoder:
• Executes quickly and in constant time.

– O(1).

– ~ 24 clock cycles.

• Priority Encoder:
• Responsible for scheduling decision (priority level selection).

– Functionality can be changed (hierarchical).

• Conclusion:
• Scheduling overhead and jitter have been reduced.

• Still need support for both SW and HW threads.

University of Kansas

Third Redesign
• Provide services for “hybrid”

threads.
• SW threads – covered.
• HW threads - ???.

• What else changes?
• All policies deal with threads;

which ones need to know
“where” they are?

– Management – allocation,
creation, status of TIDs.

– Scheduling – which TID
should run when and where.

• Only the scheduler needs to be
changed in order to
“hybridize” the system!

• Could these changes be encoded
in the scheduling parameter...

University of Kansas

Internals of Third Redesign

University of Kansas

3rd Redesign Results

• R2RQ of size 256 with 128 priority levels.
• O(1).

• Synthesized on Virtex-II Pro 30:
• 1,455 out of 13,696 slices, 973 out of 27,392 flip-flops, 2,425

out of 27,392 4-input LUTs, 3 out of 136 BRAMs.
• Max. operating frequency of 119.6 MHz.

• Scheduling decision executes in fixed amount of
time (~ 24 clock cycles).

• Uniform support for both SW and HW threads.
• Thread type encoded in scheduling parameter

– Low-overhead and jitter scheduling support for SW and
HW threads!

University of Kansas

3rd Redesign Accomplishments

• Encode HW/SW distinction in sched. parameter.
• SP < 128  (SW thread, priority)
• SP >= 128  (HW thread, address of cmd. reg.)

• Only the scheduler had to change!
• Add Master-IPIF.
• Add storage for larger SP.
• ENQ – check SP.

– SW threads: Add SW thread to R2RQ.
– HW threads: Send “START” command to HW thread.

• Entire system is now truly “hybridized”.

University of Kansas

Hybrid O(1) Timing Results

• Timing results for tests involving only SW threads
remain the same as for non-hybrid O(1) scheduler.

• System is now “hybrid” compliant.
• Operations can be used by both SW and HW threads.

University of Kansas

Overall Accomplishments
• HW/SW co-design of scheduling services allows for:

• Complexity of OS to be pushed into hardware.
– Relieves CPU of duties

– OS coprocessors do the work.
– Less kernel code.

• More parallelism within the system can be exploited.
– Internals of scheduler are parallelized, and application and OS run

in parallel.

• Breaking up management and scheduling through a
standard interface allows for:
• Greater maintainability

– Mechanisms of each can be modified independently.
• Separation of concerns

– All OS components became “hybridized” by “hybridizing” the
scheduler.

University of Kansas

Results & Conclusion
• Three design iterations:

• 1st - Enable priority scheduling  O(n).
– Still needed to improve performance.

• 2nd - Improve performance  O(1).
– Needed to provide hybrid support.

• 3rd - Combine O(1) with “hybrid” features.
– Provides FULL system support for ALL threads in a system!!!

• The Result:
• OS services with generalized support for SW and HW threads.

– Super low overhead and jitter.
– Highly scalable due to on-chip BRAMs.

• Standard interface defined for scheduling operations and data storage.

University of Kansas

Questions???

• More information at…
• http://wiki.ittc.ku.edu/hybridthread.

• I can be contacted at…
• jagron@ittc.ku.edu.

