Run-Time Scheduling Support for
Hybrid CPU/FPGA SoCs

Jason Agron
jagron@ittc.ku.edu

- Information and . :
Technology Center

Acknowledgements

[would like to thank...

* Dr. Andrews, Dr. Alexander, and Dr. Sass for assistance and
advice in both research and class work.

* Wes, Garrin, and Erik for help with tools and coding problem:s.

- Information and . :
Technology Center

Publications

« Jason Agron, Wesley Peck, Erik Anderson, Ed Komp, Ron Sass, David Andrews, Run-Time
Support for Hybrid CPU/FPGA Systems on Chip, Submitted to Transactions on Embedded
Computing Systems, December 2005.

* Erik Anderson, Jason Agron, Wesley Peck, Jim Stevens, Fabrice Baijot, Ed Komp, Ron Sass,
David Andrews, Enabling a Uniform Programming Model Across the Software/Hardware
Boundary, In Proceedings of the Fourteenth Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM 2006), April 2006.

* David Andrews, Wesley Peck, Jason Agron, Erik Anderson, Jim Stevens, Fabrice Baijot,
Presentation on the KU Hybrid Threads Project, MOCHA Design Conference, January 2006

* D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, and R. Sass. hThreads: A
Hardware/Software Co-Designed Multithreaded RTOS Kernel. In Proceedings of the 10th

IEEE International Conference on Emerging Technologies and Factory Automation (ETFA
2005), September 2005.

« J. Agron, D. Andrews, M. Finley, E. Komp, and W. Peck. FPGA Implementation of a Priority
Scheduler Module. In Proceedings of the 25th IEEE International Real-Time Systems
Symposium, Works in Progress Session (RTSS WIP 2004), December 2004.

W. Peck,J. Agron, D. Andrews, M. Finley, and E. Komp. Hardware/Software Co-Design of
Operating System Services for Thread Management and Scheduling. In Proceedings of the
25th IEEE International Real-Time Systems Symposium, Works in Progress Session (RTSS WIP
2004), December 2004.

- Information and . :
Technology Center

Overview

« HybridThreads Project.
* Primary Goals

 Basic Architecture

* Purpose of my work.

« Comparison to related works.

* Designs, Implementations, Results.
e Conclusion.

e Questions.

- Information and . :
Technology Center

HybridThreads Project

* Hybrid architecture = CPU + FPGA.

* Portions of programs can now be in SW or HW.

» C(Create a unified programming model.
* Threaded programming model based on POSIX standard.

« All computations are viewed as threads.
— HW, SW, or both.

« HW/SW co-design of OS services.

* OS services can be implemented in HW to give a uniform interface to hybrid
computations.

— Anyone that can “talk” on the bus can use the services.
— No need to interrupt the CPU to access services.
« HW implementations allow for more parallelism to be exploited.
— OS services themselves run in parallel with application execution (coarse-
grained).
— Internals of each OS service can be parallelized (fine-grained)
» Improves accessibility to resources of the FPGA.

- Information and . :
Technology Center

Traditional Architecture (All SW)

CPU

Monolithic SW Kernel

. ' Information and . :
_. | Technology Center

HybridThread Architecture

' Information and _ _
' ~ Telecommunica tion =———————————-— Universi ty of Kansas
_. | Technology Center

Purpose of my work

e Provide scheduling support for “hybrid” threads.
« Uniform APIs, regardless of thread “type”.

* Allow for high-level scheduling policies.
* Add priority scheduling.
» Separate OS policy concerns
— More modular (scheduling != management).
— Easier to extend and scale within the framework.

e Minimize overhead and jitter!!!

* Reduce overhead/jitter of system by streamlining the scheduler.

- Information and . :
Technology Center

Benetits of a HW-based Scheduler

SW-Based Scheduler Events

ISR context switches to scheduler] [Scheduler makes a decision|

[New thread begins to run|

[Timer interrupt goes off|
[Scheduler begins running|

[Context switch to new thread|

CPUinvokes ISR
h 4 v ¢ v

v 'Y

Sched. Decision Status

L4
)‘(XXXXXXXXXXXXXXXXXXXXXXXX)()(XXXXXXXXXXXXXXXXXXXXXXX_ Sched. decision is known__ XXXXXXXXX&(XXXXXXXXXXXXXXXXXX Time

A | SelhedufingBelay

L4

HW_Based Scheduler Events

ISR retrieves sched. decision from HW| [New thread begins to run|

Timer interrupt goes off
mtext switch to new thread|

CPUinvokes ISR

Sched. Decision Status

Time

h 4 h 4 h 4
__ Sched. decision is known, XOOOOXXXXXX___ Sched. decision is known
d SehedulinegDelay: b
b | wLATET ey .4

(Additional Application Time)

e SW-based scheduler 1s “invoke on demand”.
» Starts to get “ready” when needed.

« HW-based scheduler 1s “ready on demand”.
» Always “ready” ASAP.

- Information and
— Telecommunication

Technology Center

University of Kansas

Benetits of a HW-based Scheduler

* Scheduler can be invoked without interrupting the CPU.
* Scheduler is the sole “bookkeeper” of the R2RQ.
— Scheduler doesn’t require CPU time to execute.

e Traditional ISRs are translated into ISTs (Interrupt
Service Threads).
» Traditional ISRs are akin to threads with priority level of co.

* CPU can be shielded from external interrupts by transforming them
into scheduling requests.

— Interrupts are then fielded by the scheduler, not the CPU.
— Scheduler decides when to interrupt CPU based on status of
R2RQ.
— Jitter from interrupts can be controlled:
— Critical interrupts = high priority = interrupt all user threads.
— Non-Critical interrupts = low priority = interrupt some user threads.

e Scheduling algorithm can be parallelized.
* Reduction of overhead and jitter.
- Information and

Technology Center

Related Works

RealFast/Malardalen — RTU: Real-
Time Unit, A Real-Time Kernel in
Hardware.

» Systolic array implementation of R2RQ.
 EDF, PRI, RM capable.

* (Can handle 16 tasks with 8 priority levels.

Georgia Tech — Configurable
Hardware Scheduler for Real-Time
Systems.
» Systolic array implementation of R2RQ.
 EDF, PRI, RM capable.

» 421 logic elements (slices), and 564
registers for queue of size 16.

Valencia/Valle — A Hardware
Scheduler for Complex Real-Time
Systems.

» Systolic array implementation of R2RQ.
» EDF capable.

- Information and
~ Telecommunication
Technology Center

[

[Identifier + SortValue]

/' Multiplexer

— Data from Data from —
left cell right cell
Control
Comparator Logic
Comparison results New Data Comparison results

from right cell

University of Kansas

Problems with Systolic Arrays

» Systolic arrays are fast and easily allow for dynamic changes in priority.
* Registers within cells allow for parallel accesses
» Systolic arrays are easily scaled through cell concatenation.
» Each cell requires registers, multiplexers, comparators, and control logic.
— Scaling systolic arrays requires lots of logic resources!
» But HW threads require logic resources of FPGA!
» HybridThread OS modules need to be as small as possible to save space for

HW threads.
« BRAMs are to be used instead of registers to hold ready-to-run queue structure.
e Pros:

— Scalable: more space = use more BRAM and slightly more logic.
— BRAMs don’t take up CLBs
— BUT address decode logic and pointers will grow slightly.

— Fast: 2 clock cycle reads, 1 clock cycle writes.
— Almost as fast as registers.

e Cons:

— Serial: Only 1 or 2 accesses at a time.

— Dynamic priority changes can’t happen in parallel.

- Information and . :
Technology Center

Comparison to Related Works

HybridThreads is compatible with the POSIX (Pthread) thread standard.
» RealFast/GaTech/Valencia use their own custom APIs.
— Doesn’t allow for easy portability between systems.
 HybridThreads R2RQ is of size 256.
» RealFast/GaTech only have R2RQs of size 16.
— Systolic queue of size 16 requires ~421 slices
— BRAM queue of size 256 requires ~484 slices.

» HybridThreads must support scheduling of both SW and HW resident
tasks.

* Other systems only handle SW threads.
» HybridThreads system is real = simulatable, synthesizable, and usable.
« Valencia’s scheduler is only theoretical.
» RealFast/GaTech have real systems
— BUT you must learn their custom APIs to use their systems.

— Pthreads applications can be ported to HybridThreads for “free”
— Using our pthread to hthread wrapper.

- Information and . :
~ Telecommunication =————————————— University of Kansas

Technology Center

Initial Design

* Break scheduling services
out of TM.

— Define a standard
interface.

— Create a R2RQ that 1s
separate from
management data
structures.

» Add priority scheduling
services (while still
remaining backwards
compatible).

- Information and
~ Telecommunication
Technology Center

Thread Manager Thread Scheduler
current cpu thread id poommmm e
current thread reg 1 currentthread reg
Ve |
"""""""" %t cpu thread id
nextthreadreg ro o7 cpn e next thread reg
st Tae T
tail_pointer
thread_id_2_sched i
enqueue_request
™ || THREAD_DATA
dequeue_request
-
B enqueue_busy
<}
- nextid valid
ol ol
2% 2%
E E
L J system bus L J

&

University of Kansas

Y

Internals of First Redesign

Threqd_Data BRAN

TID = Thread_ID to DeQ
t_entry = Thread_Data[TID]
de-assert next_thread_valid
assert dequeueibusy

W

tentryQ=0
empty_flag = (head_pir = tail_ptr)

Ik_id = head_pir

Thread_Data[TID] = t_entry

de-assert dequeue_busy

Ik_entry = Thred_Data[lk_id]

deq_head = (head_ptr = TID)
if (deq_head)

[hread_Invalid ’ best_pri = lk_entry_pri

O]2 304 567 8)5[10/11)12)13]14]15)16/17) 18] 15 20) 21| 22

o e e e I Il e e I I A s

Field Width Purpose

Il (10it) 1= Queued, 0 = Not Queusd,
M7 (8-mt) Ready-to-run queue next potnter
Wle (7-bit) Scheduling priority-level

- Information and
~ Telecommunication
Technology Center

Ik_id = Ik_entry.next

1

deq_head

deq head=0 |

N

Begin_Search_4 Mext Thread
change_nxt = (Ik_entry.pri < best_pri)
deq_now = (lk_entry_next =— TID)
deq_tail = (tail_ptr = TID)
at_tail = (Ik_id == tail_ptr)
done = (at_tail) | (deq_tail}

if (deq_now)
lk_entry_next = t_entry_next
Thread_Dataflk_id] = lk_entry
if (deq_tail)
tail_ptr = Ik_id
end if
end if
if (change_nxt)
best_pri = Ik_entry. pri
next_thread_id = Ik_id
end if

=0

done

lk_id = lk_entry_next

done =1 |

de-assert dequeue_busy

Write Back And_ Complete
Thread_Data[TID] = t_entry
assert next_thread_valid

D

University of Kansas J

Initial Results

« R2RQ of size 256 with 128 priority levels.

» Linear traversals =2 O(n).

» Synthesized on Virtex-1I Pro 30:

* 484 out of 13,696 slices, 573 out of 27,392 flip-flops, 873 out
of 27,392 4-input LUTs, 1 out of 136 BRAMs.

* Max. operating frequency of 166.7 MHz.

* Scheduling decision requires ~40 ns per thread
in R2RQ).

« Variable execution-time based on R2RQ length.

- Information and . :
Technology Center

O(n) Timing Results

Modelsim Timing Results of Dequene COperations, Build 1
No. of Threads in R2R() Time (ns) Est. Time/Thread (ns)

2500 100G 40.24
128 5140 40.16
G4 2610 40.78
32 1330 41.56
16 G0 43.13
2 130 65

* O(n) = Variable scheduling decision delay based on R2RQ length.

« Context switch requires ~ 2us
* (R2RQ <32 threads) = decision completes before C.S. completes
* (R2RQ > 32 threads) = decision completes after C.S. completes

* As R2RQ length increases so does the possibility of a scheduling
event occurring while the next scheduling decision is still being
calculated, thus introducing jitter into the system.

- Information and . :
Technology Center

O(n) Timing Results

140,000 |
130,000
120,000 -
1i0,000 |
100,000 -
90,000 -

Mean: 2001 ns
S5td Dewv: 344
Mimimum: 1910 ns

g0.000 - Maxinmum: 4420 ns
Fo,000 |
GO,000
So,000 |
40,000
20,000
20,000
to,008 4
o - L v L | oy e

a 500 1000 1500 Zooo 2500
Tirme in Manaseconds

3000 ‘I500 4000 4500

Raw interrupt delay = time from when an interrupt fires to when the CPU
enters the ISR.

« System dependent, cannot be changed — due to variable length execution times of atomic
instructions that delay interrupt acknowledgement.

— Not affected by number of threads in R2ZRQ
* Mean = 0.79 ps. and Jitter = (Max — Mean) = 0.73 pus.

End-to-end scheduling delay = time from when an interrupt fires to when
the C.S. is about to complete (old context saved, new context about to be
loaded).
* Mean = 2.0 ps. and Jitter = (Max — Mean) = 2.4 us with 250 threads in R2RQ.
— Jitter 1s caused by scheduler module and cache.
* Raw interrupt delay makes up a significant portion (~ 1/3) of end-to-end scheduling delay.

- Information and . :
Technology Center

Accomplishments of 1st Design

Developed a standard scheduling interface.
» Enforces policy, while leaving the mechanism abstract.

Provides HPF, FIFO, Round-Robin scheduling services.

O(n) — scheduling decisions.
* FIFO R2RQ — requires traversal.
» Decision is slower than context switch sometimes.
— Long R2RQ = Long traversal.

Conclusion:
* Performance could be better.
— 2.0 ps. end-to-end scheduling delay with 250 threads with 2.4 us.
of jitter 1s pretty good.
— Linux delay is in the millisecond range!
— RealFast/Malardalen’s RTU is in the 40 pus range!
« Still need control of both SW and HW threads.
- Information and

Technology Center

Second Redesign

e Change R2RQ structure | —— 1 oumeas lf".'.ef".’f"f."f'ff-,
current thread reg 3 _c_u _rr_eilt_ t_h Ee_afi_r(_e? N
to reduce overhead and el e v
jitter. |
J tte Stale Table S Forineiace > THREAD_DATA
e Solution = Partitioned otz w0t
R2RQ + Priority e e |
EnCOdeI'! [728-bit Priority Field_]
- snqueus_busy Priority Encoder
next id valid
-+ [Highest Active Priority |
o8 o8
2% 25
E E
L] system bus ¥ -

&

- Information and
~ Telecommunication
Technology Center

University of Kansas

Priority Encoder

I Priority Field '

128-bit

32-bit —+
32-bit
Encoder FSM Priority
Encoder
4-bit

7-bit

¥

‘ Highest Active Priority-Level in System '

* Priority Encoder calculates the highest priority level
active 1n the system.
» Input register: 1-bit per priority level. (1 = active, 0 = non-active).
» Output register: highest active priority level in the system.

« Requires 4 clock cycles to execute.

- Information and . :
Technology Center

Internals of Second Redesign

TID = Thread_ID to DeQ
t_entry = Thread_Data[TID]

de-assert nexi_thread_valid

Thread_Data BRAM

PRI = t_entry.priority

lol1lalalals]e]7]s]a]tn]t1]12]13]14]15]16[17] 18] 1] 20]21]22] 23] 24]25] 26] 27] 28] 23] 30] 31] t entry.Q =0
Loz mo 1 [Nz [n3|na[ns ne [N7[of e[izfa[e[is[ie[po[pa[oa[pz[pafps[eeler] - [- [-[-[-[-[-[-] p__enlryzFriorily_DathF{l]
Field Width Purpese

Q7 (1-bit) 1 = Queued, & = Not Queusd. W

N :N7 (8-bit) Ready-to-run queue next pointer

6:L6 (7-bit) Scheduling priority-level old_head = p_entry head

PO:P7 (8-bit) Ready-to-run gueue previous polnter

old_entry = Thread_Data[old_head]
equal_flag = (p_entry head == p_entry tail)

equal_flag =1 | equal flag=0

Priority_Data BRAM

lolilzlal4alslsl7els]iol11]12{13]14]15] 6] 17| 1a] 5] 20]21]22]23 2425 28] 27] 28] 23] 30] 31] encoder_input{PRI =0 '
[Ho[H1[H2 [Ha[He[s [nsnr|To[Ta|Ta[Ta[Ta[Ts[te[T7] - [- [- [-[-[-[-[-[-J-T-[-[-[-]-1-]

[
Field Width Purpose } [
Ho:H? (8-bit) Priority-queue head pointer
TO:T7 (8-bit) Priority-queue tail pointer

Update Q Head Pir
p_entry.head = old_entry.next

Thread_Data[TID] = t_entry
Thread_Datafold_head] = old_entry
Priority_Data[PRI] = p_entry

y

Lookip Tiighest Priority Exi
h_entry = Priority_Data[encoder_output]
exist_flag = (encoder_input = 0)

exist_flag = 0

Beturn Next Thread Valid Beturn Next Thread Invalid
next_thread_id = h_entry.head No active threads in the system
assert next_thread_valid (No threads are C'd)

(@

Information and

~ Telecommunication === [Jnijversity of Kansas
Technology Center

2nd Redesign Results

« R2RQ of size 256 with 128 priority levels.

* No traversals needed = fixed execution times.
 O(1).

» Synthesized on Virtex-1I Pro 30:

* 1,034 out of 13,696 slices, 522 out of 27,392 flip-flops, 1,900
out of 27,392 4-input LUTs, 2 out of 136 BRAMs.

« Max. operating frequency of 143.8 MHz.
* Scheduling decision executes 1n fixed amount of
time (~ 24 clock cycles).

- Information and . :
Technology Center

O(1) Timing Results

Modelsim Timing Results of Dequens Operations, Build 2
MNo. of Threads in R2ZR0) Tune (ns)

2500 240
128 240
G4 240
32 240
1 240
2 240

* (1) = Constant scheduling decision delay regardless
of R2RQ length.

* All scheduling operations execute 1n fixed amount of
time that 1s less than C.S. time.

* Scheduling operations do not inject any jitter into the system!

- Information and . :
~ Telecommunication =————————————— University of Kansas

Technology Center

O(1) Timing Results

[Mean ! 1975 ns

E 30,000 Std Dew: 225
Minimum: 1910 ns

'§ 20,000 Maximum: 3380 n=

§ 10,000

=]

=

1] z:t:l-t:l:-u-l:-um1m1mlm1_mlmmmmmmm:mym
T in Manoseconds

* Raw interrupt delay was re-measured and found to be the same as
in the system with O(n) R2RQ.
* Mean = 0.79 ps. and Jitter = (Max — Mean) = 0.73 us.

» End-to-end scheduling delay changed based on redesign of
scheduler.
* Mean = 1.9 ps. and Jitter = (Max — Mean) = 1.4 us with 250 threads in R2RQ.
— Jitter is caused by the cache.
* O(1) R2RQ helped to reduce the jitter by approximately 1 ps!

- Information and . :
Technology Center

2nd Redesign Accomplishments

 Partitioned R2RQ + Priority Encoder:
» Executes quickly and in constant time.
— O(1).
— ~ 24 clock cycles.

* Priority Encoder:

» Responsible for scheduling decision (priority level selection).

— Functionality can be changed (hierarchical).

e Conclusion:

» Scheduling overhead and jitter have been reduced.
 Still need support for both SW and HW threads.

- Information and . :
Technology Center

Third Redesign

* Provide services for “hybrid”
threads.
e SW threads — covered.
e HW threads - 7??.

 What else changes?

« All policies deal with threads;
which ones need to know
“where” they are?

— Management — allocation,
creation, status of TIDs.

— Scheduling — which TID
should run when and where.
* Only the scheduler needs to be
changed in order to
“hybridize” the system!

* Could these changes be encoded
in the scheduling parameter...

- Information and
~ Telecommunication
Technology Center

Thread Manager

current cpu thread id

current thread reg
I

next cpu thread id

Thread Scheduler

State Table

next thread reg

bus
interface

B-Port Inferface ’ THREAD_DATA
opcode A
gatain o PRICRITY_DATA
request
= =
PARAM_DATA
- busy —
. data out
- next id valid 128-bit Priority Field
Prionty Encoder
Highest Active Prioril
o8
2%
E
system bus ¥

F 3

University of Kansas

¥

Internals of Third Redesign

Enqueue Begin
TID = Thread_ID to EnQ
{_entry = Thread_Data[TID]
s_eniry = Param_Data[TID]
de-assert next_thread_valid

Y

sched_param = s_entry.param

is_hw = PRI = (sched_param > 127)

' Check_Thread Type
Thread_Dota BRAM

I
loJi[z]3]a]s[s[7][e]ls[infi1]12]13[14[15]16]17] 18] 15[z0]z1]22[23]24]25]26] 27] 28] 25 30 z1] l(is_hw=0 is_fw=1 \L
Loz mo[mi[nz]nz]na[ns|ne[wzf o iz i3] 45| s]poei|p2| pa] palpslpalpr] - [- [-[-[-1[-[-[-] [ookun Prioriy Exi
Field Width Purpose PRI=t entry priority IP2BusAddr = sched_param
Q7 (1-bit) 1 = Queusd, ® = Not Queued. t_entryQ = IP2BusData = hw_thread_start_cmd
NG:N7 (8-bit) Ready-to-run queue next pointer p_entry = Pnonty DatalPAI] IPZBusWiiteReq = 1
Lé:Le (7-bit) Scheduling priority-level

Po:P7 (8-bit) Ready-to-run queue previous pointer

old_tail = p_entry.tail
old_tail_entry = Thread_Data[old_tail]
empty_flag = encoder_input[PRI]

Priority_Data BRAM emply flag =0 l empty flag =1

lolilzlzl4als]s]7]elsliol11]12[13]14[15) 1617 16]15]z0]21]22]23]24[25] 28] 27] 28] 23] 30] 31]

[Ho[H1[Hz [Hz| e[ms[ne r7[To|Ta| Ta| Ta[veTs[Ta[va] - [- [-] -[-]-[-]-]-[-J]-]-T-T-]-[-] encoder_inputiPRI] = 1 t_ entry.prev = old_tail
Field Width Purpose p_entry head = TID p_entry tail = TID
HB:H7 (8-bit) Priority-queue head pointer

p_entry ail = TID
[

old_tail_entry.next = TID
TO:T7 (8-bit) Priority-queue tail pointer

7

Thread_Data[TID] = t_entry
Thread_Data[old_tail] = old_tail_entry
Priority_Data[PRI] = p_entry

v

[ookun Fiigiest Proriy il

h_entry = Priority_Data[encoder_outpuf]

c_eniry = Thread_Data[current_thread_id]
—

!

Preemption_Check

next_thread_id = h_entry head

assert next_thread_valid

if (encoder_output < c_eniry.priority)
then raise interrupt

Parom_Data BRAM

lolilzlz]4]s5]s]7[s]s[tol11]12[13]14]15[16]:7[18]15]z0]21[22]23]24[25 28] 27 28] 25]30]31]
s0]s1[s2]s3]s4]s5]s6]s7 |8]8[s10[s11]s12]s13]s14]s15]s15]s17] s18[s15s20(s21[sa2[s23[s24[s25]s26]527 s28 529 s30[s31]

Field Width Purpose
sh:s3l (32-bit) Scheduling parameter

®
Information and

— Telecommunication
Technology Center

University of Kansas

3rd Redesign Results

 R2RQ of size 256 with 128 priority levels.
. O(1).
» Synthesized on Virtex-1I Pro 30:

e 1,455 out of 13,696 slices, 973 out of 27,392 flip-flops, 2,425
out of 27,392 4-input LUTs, 3 out of 136 BRAMs.

e Max. operating frequency of 119.6 MHz.
* Scheduling decision executes 1n fixed amount of
time (~ 24 clock cycles).

e Uniform support for both SW and HW threads.

« Thread type encoded in scheduling parameter

— Low-overhead and jitter scheduling support for SW and
HW threads!

- Information and . :
~ Telecommunication =————————————— University of Kansas

Technology Center

3rd Redesign Accomplishments

 Encode HW/SW distinction 1n sched. parameter.
« SP <128 = (SW thread, priority)
o SP>= 128 - (HW thread, address of cmd. reg.)

* Only the scheduler had to change!
* Add Master-IPIF.
* Add storage for larger SP.
 ENQ — check SP.
— SW threads: Add SW thread to R2RQ.
— HW threads: Send “START” command to HW thread.

* Entire system 1s now truly “hybridized”.

- Information and . :
~ Telecommunication =————————————— University of Kansas

Technology Center

Hybrid O(1) Timing Results

Medel®im Timing Besults of Scheduling Cperations, Build 3

Uperation Time {clock cycles)
Enquene{ SWithread) 28
Enquene{ HWthread) 20 + (1 Bus Transaction)
Deaquene 24
Get_Entry 10
[s_Chened 10
lzs_Empty 10
Set_1dle_Thread 10
Get_Sched_Param 10
Check_Sched _Param 10
Sot_Sched_Parami NotCuened) 10
Set_Sched_ParamiCQuenad) Al

e Timing results for tests involving only SW threads
remain the same as for non-hybrid O(1) scheduler.

e System 1s now “hybrid” compliant.
» Operations can be used by both SW and HW threads.

- Information and . :
~ Telecommunication =————————————— University of Kansas

Technology Center

Overall Accomplishments

« HW/SW co-design of scheduling services allows for:

» Complexity of OS to be pushed into hardware.
— Relieves CPU of duties

— OS coprocessors do the work.
— Less kernel code.

* More parallelism within the system can be exploited.

— Internals of scheduler are parallelized, and application and OS run
in parallel.
e Breaking up management and scheduling through a
standard 1nterface allows for:

» (Greater maintainability
— Mechanisms of each can be modified independently.

» Separation of concerns

— All OS components became “hybridized” by “hybridizing” the
scheduler.

- Information and . :
Technology Center

Results & Conclusion

* Three design iterations:
» [st- Enable priority scheduling = O(n).
— Still needed to improve performance.
« 2nd - Improve performance = O(1).
— Needed to provide hybrid support.
« 3. Combine O(1) with “hybrid” features.
— Provides FULL system support for ALL threads in a system!!!

e The Result:

» OS services with generalized support for SW and HW threads.
— Super low overhead and jitter.

— Highly scalable due to on-chip BRAMs.
» Standard interface defined for scheduling operations and data storage.

- Information and . :
Technology Center

Questions???

e More information at...
e http://wiki.ittc.ku.edu/hybridthread.

e | can be contacted at...
e jagron(@ittc.ku.edu.

. ' Information and . :
_. | Technology Center

