Using Time Division Multiplexing to support
Real-time Networking on Ethernet

Hariprasad Sampathkumar
25" January 2005
Master’s Thesis Defense

Committee
Dr. Douglas Niehaus, Chair
Dr. Jeremiah James, Member
Dr. David Andrews, Member

- Information and

Technology Center

Outline

| ntroduction
Related Work
Objectives
Background

| mplementation
Evaluation
Conclusion
Future work

- Information and

Technology Center

| ntroduction

Ethernet dominant LAN technology in office and
educational environment

Advantages — Low cost and ease of installation

|deal technology for industrial automation, if it can
support applications with time constrained QoS

Traditional Ethernet based on CSMA/CD

Disadvantages — Collisions and exponential back-off
causing random delay in packet transmission

Unable to support real-time applications due to non-
determinism in packet transmission

- Information and

Technology Center

Related work

« Hardware Approaches
o EXxpensive, require specialized hardware and software

« Token bus and Token Ring Architectures
— Token passing protocol, collision free, deterministic transmission

e Switched Ethernet
— Private collision domain for machines on destination port
o SCRAMNEet — Shared Common Random Access Memory Network

— Write to shared memory to transmit, reflects data throughout the
network in bounded time

- Information and
— TelecommuniCation m— University of Kansas
Technology Center

Related Work

« Software Approaches

e RTnet —Hard Real-Time Networking for Linux/RTAI
— TDMA based collision free transmission
— separate network stack for real-time processes

« RETHER Protocol
— Timed-token protocol suitable for video transmission
« Traffic Shaping
— statistical guarantees for collision-free transmission
— controls rate of transfer of non-real-time packets
« Master/Save Protocols
— Master controls transmission of packets

- Information and

Technology Center

Objectives

Make Ethernet suitable to support real-time applications by
providing collision-free packet transmission

Solution should support existing Ethernet Hardware

Modifications need to be minimal without affecting existing
network and transmission protocols

Proposed Solution
« Implement Time Division Multiplexing on Ethernet
e Usetheframework provided by KURT-Linux

- Information and

Technology Center

Background

UTIME — High Resolution Timers

Datastreams Kernel Interface (DSKI)

Group Scheduling Framework

Time Synchronization in a Distributed Network

Control Flow of a Packet through the Linux kernel
during transmission and reception

NetSpec

- Information and

Technology Center

UTIME

« Standard Linux notion of timeisjiffies —timing resolution of
10msin 2.4.20 kernel — not sufficient for real-time
applications

UTIME modifications to support subjiffy resolution,
typically in microseconds

UTIME offset timers take into account timer interrupt
overhead and schedul e accurate timer events

UTIME provides a privileged timer that allows timer
handling routines to be executed in interrupt context

- Information and

Technology Center

Datastreams Kernel Interface (DSKI)

Method to gather data relating to operating system'’s state or
performance

Used to log and timestamp events as they happen inside the kernel
Data collected as events, counters or histograms
Datais presented in a standard XML format

Post-processing applied on the collected datato generate graphs

Supports visualization of events collected from adistributed network
on aglobal timescale

Accessed by standard device driver conventions and allows to collect
only eventsthe user isinterested in

- Information and

Technology Center

Group Scheduling

Unified scheduling model used to control scheduling and
execution semantics of different computational components

Computational components are processes, hardirgs, softirgs,
tasklets and bottom halves

Components represented in a hierarchic decision structure

Groups — nodes in scheduling hierarchy that direct the
decision path
Each group has a name and scheduler associated with it

Groups contain members which are computational
components or other groups

Associated scheduler determines scheduling semantics
Imposed by a group on its members

- Information and

Technology Center

Group Scheduling

Scheduler associated with root group is invoked, which
recursively invokes schedulers of member groups, if any

Decisions of member groups propagated to the root of the
hierarchy which decides the member to be scheduled next

Can be used to achieve customized scheduling and execution

semantics for computational components

Framework defines function pointer hooks to scheduling and
execution routines of different computational components, that
map to VanillaLinux semantics by default

Define custom routines that map on to these function pointers
to have custom semantics

Used in defining TDM Model

- Information and

Technology Center

Group Scheduling

« VanillaLinux Softirg semantics
e Linux 2.4.20 kernel has following softirgs:
— HI_SOFTIRQ — Handle high priority tasklets and bottom halves
— NET_TX_SOFTIRQ — Process transmission of network packets
— NET_RX_SOFTIRQ — Process reception of network packets

— TASKLET SOFTIRQ —Handle low priority tasklets
« Maintains pending softirq flags for each CPU

« A snapshot of pending softirgsistaken and are executed in
decreasing order of priority

« Invokes akernel thread to perform the processing in case of large
number of softirgs

- Information and

Technology Center

Group Scheduling

Top Group

S

HI_SOFTIRQ TASKLET_SOFTIRQ

NET_TX_SOFTIRQ NET RX SOFTIRQ

o Linux Softirg model under Group Scheduling
« Top group with the 4 softirgs as its members
« S0ftirgs added in decreasing order of priority
« Members are selected sequentially

o If the pending bit of the selected softirq is enabled, the
member is selected for execution

- Information and

Technology Center

Time Synchronization in a Distributed Network

Time synchronization among nodes needed to gather real-
time data in a distributed network

Modified Network Time Protocol (NTP) support under

KURT-Linux offers synchronization on order of
microseconds

Precision is about £ 5 s on an average and £ 16usin the

worst case
Provides time synchronization for supporting TDM

Informatlon and

- Technology Center

Linux Network Stack

Data structures : Socket buffer (sk_buff) and Socket (sock)

sk_buff represents a packet in the network stack and contains
pointers to different headers of the protocol stack

Processing of apacket in alayer is manipulation of the
corresponding header in the socket buffer structure

Movement of a packet between layersis achieved by ssimply
passing a pointer to socket buffer

Sock is created when a socket Is created in user space

Sock maintains state of a TCP or avirtual UDP socket
connection

- Information and

Technology Center

Linux Network Stack — Packet Transmission

« Packet Transmission
Starts from the application in process context
Packet gets queued in the net-device layer

If deviceis free packet transmission occurs in process
context

If not, NET_TX_ SOFTIRQ is enabled to carry out
transmission in Softirg context

- Information and

Technology Center

Linux Network Stack — Packet Transmission

Application Layer Process Context

Application writes to Socket writes to the Socket writes to the
the Socket INET Layer protacol
1 2 3

Transport Layer l
(TCFIUDFP)

Transzport Lawer Tranzsport Laver
create= the packet builds header

4 =

Network Layer l
(IP)

IP receives packet IP fragments the
& @adds IP Heacder packet if required
] 7

Link Layer l

Packet is added to
the device gueue ’
=]

SChEdUljﬁfr checks Scheduler checks it Packet iz processed Packet goes out on
the dewice gueue the device iz free by the dewvcie the medium
=] 10 11 12

L

Raizes Softiry if thie
clevice i not free
13

Softirg Context

-

Device irterrupts -
transmission complete

Hardlrg Context 14

- Information and

— Telecommunication University of Kansas
Technology Center

Linux Network Stack — Packet Reception

« Packet Reception
« Hastwo flows of execution
« Application layer to Transport Layer
— Process blocks for incoming packets
— Execution carried out in process context
« Physical layer to Transport layer

— Packet received from network is sent up to the queue
In transport layer

— Execution carried out in both hardirg and softirq
contexts

- Information and

Technology Center

Linux Network Stack — Packet Reception

Process Conte:h

f:.;"é:fﬂn Q Application reads Add message header Sockel receive routine
from socket to data received calls transport layer Application gets
L » routine data and
1 2 3 continues
TRAMNSFORT LAYER Call the TCP Call the UDP On receml-rg
receive mutine receire routine data copy it to
{TCPIUDP) 4 5 the user space

\ Wait till there is data to be read from the queue //

// TRANSPORT LAYER Add dalato TCP Add data to UDP Soft IRQ Corlt‘%
{TCPIUDP) sm:ke: ;peue s-:-cke: :;;Eueue
NETWORK LAYER (IP) Processthe packet inthe IP

layer's eceie routine
10,11

NETWORK DEVICE t
LAYER Process the recewed packet when

the softim is scheduled
\ 89 //

1
& NETWORK DEVICE Network device internpt handiing Hard IRQ Cortext‘\‘
LAYER routine isrun
T

t

Packet arrives to the network

PHYSICAL LAYER 'l‘lerfage card

N oy

- Information and
~ Telecommunication
Technology Center

University of Kansas

NetSpec

Tool used to automate schedule of experiments
Involving several machines in a distributed network

Daemons run in machines that are part of
experiment

NetSpec controller passes experiment schedules to
the daemons, which carry out the experiment

Experiments specified in script file
Supports transfer of configuration files and
collection of output files

- Information and

Technology Center

| mplementation

o« Kernd Modifications

« Reduce latency in packet transmission
« Packet transmission in softirq context
« TDM Modd under Group Scheduling
« TDM Scheduler

e User Interface

« TDM Master-Slave configuration
« User space programs to configure TDM

- Information and

Technology Center

Reducing Latency in Transmission

« Perform only transmission during time-slot, delay all non-
critical operations

NET TX SOFTIRQ handling routine first frees socket
buffers of packets that have been transmitted and then starts
packet transmission

Handling routine modified to just perform packet
transmission

Create new low-priority NET_KFREE SKB SOFTIRQ that
performs the garbage collection

- Information and

Technology Center

Packet transmission in Softirg Context

Transmission can occur in both Process or Softirg context

Time-triggered transmissions require control over
computation performing the transmission

Force transmissions to occur in softirg context beyond the net
device layer

Packet is added to queue and NET_TX_ SOFTIRQ is enabled
to transmit the packet

- Information and
~ Telecommunication
Technology Center

University of Kansas

Packet transmission in Softirg Context

dev_queue_xmit

i

| 7=
] =N
softin
qdisc_enqueue i
! Y
Y
h 4
YES
] Is queue
qdisc_restart available ?
¥

i

qdisc_requeue
Y

netif_schedule

YES

cpu_raise_softirq
NET_TX_SOFTIRQ
\

|
|
|
|
|
|
|
|
|
. Ne |
qdisc_dequeue
|
|
|
|
|
|
|
|
|
|

hard_start_xmit

Packet is sent out L

Normal Execution Flow

Information and
~ Telecommunication
Technology Center

When
softirq is
scheduled

cpu_raise_softirq
NET_TX_SOFTIRQ
A

o e B =

do_softirg | When softirg ‘
i is scheduled

dev_queue_xmit | |

net_tx_action

qdisc_enqueue
Y NO YES
send_packet ’7
Y qdisc_run
netif_schedule
qdisc_restart

Y

Y

S qdisc_dequeue
| Schedule ‘
‘ the softirq | i

Is device
free ?

l YES
hard_start_xmit

qdisc_requeue

Packet is sent out

Transmission in softirg context

University of Kansas

TDM Mode under Group Scheduling

Time related updates must be provided to the machine’' s
clock immediately.

Transmission must take place at scheduled intervals of time
when TDM is enabled - higher priority for
NET TX SOFTIRQ

When TDM isnot enabled NET_TX_ SOFTIRQ has default
priority

NET KFREE SKB_ SOFTIRQ to have the lowest priority

- Information and
~ Telecommunication
Technology Center

University of Kansas

TDM Mode under Group Scheduling

. Sequential

Top Group Scheduler

TIMER_BH

TDM
Scheduler

i Sequential

Softirq Group Schedul
cheduler

NET_TX_SOFTIRQ

NET_KFREE_SKB_SOFTIRQ
HI_SOFTIRQ

NET_TX_SOFTIRQ TASKLET_SOFTIRQ
Y

NET_RX_SOFTIRQ

. | Information and
- ~ Telecommunication University of Kansas
__ . Technology Center

Time Division Multiplexing Scheduler

Creates aprivileged UTIME kernel timer
time _to_transmit flag denotes the transmission slot

Two timer handling routines for the start and end of
transmission intervals

Timer handling routine for start of time slot
e Setstime to transmit to true
o Setskernel timer to expire for the end of time-dlot
Timer handling routine for end of time dlot
e Setstime to transmit to false
o Setskernel timer to expire for the start of time-slot
« calculates start and end expirations for next cycle

- Information and

Technology Center

TDM Scheduling Decision Function

Program 4.3 Pseudo-Code for the TDM Scheduling Decision Function

group member tdm scheduler (previous task struct, this cpu,
group member) |
group member = get member from member list();
if (group member == NET T¥ SOFTIRQ) {
if (tdm status == TDM ENAELED) {
if (time to transmit == TRUE) {
if (net tx softirg is pending) |
return group member;

}

1
e
3
4
5
&
7
8
o

;
}

return glebal pass member;

. | Information and
- ~ Telecommunication University of Kansas
__ . Technology Center

TDM Master —Slave Configuration

« Any machine can be configured as TDM Master

« TDM Daemon started in remaining machines which act as
slaves

« Determine number of machines in setup — initial handshake
between the master and slaves

« Broadcastsa‘hello’ message to all machinesin LAN
segment

« Slave machines part of TDM reply for the broadcast message
« Master computes the schedule for each machine

« Each dave machineis provided with its TDM schedule
through a new connection

o Slaves submit scheduleto the kernel to start TDM

- Information and

Technology Center

Calculating Transmission Schedules

Total Transmission Period =T
Number of Machines=N

ldeal TimeSlot Size=TS ., 4,.= T/N
Buffer Period between timeslots = B

For amachine of ordinality ‘n’
« Timesdlot Begintime

TS pgin = =((N-1) * TS jea-s520) + (B/2)
e Timeslot Endtime

TS = (N* TS jesz) - (B2)

Informatlon and

- Technology Center

User Space Commands

 Interface through standard device driver conventions

e Tosubmit TDM schedule

o tdm master <broadcast address> <minutes> <seconds> <total
transmission cycle>

Where

<broadcast address> - broadcast address of LAN segment where
TDM isto be enabled

<minutes> - time in minutes from now when TDM is to be started
<seconds> - time in seconds from now when TDM isto be started

<total transmission cycle> - time in nanoseconds including the
transmission time-sots of all the machinesin the TDM network

« Tostop TDM schedule
e tdm stop

- Information and

Technology Center

Evaluation

o Determine the transmission times of packets of
varying sizes

« Selection of asuitable buffer period based on the
time synchronization achieved

e Setting up TDM schedule based on the transmission
time and buffer period determined

e Testing TDM schedulesfor collisions for packet
transmissions of various Sizes

- Information and

Technology Center

Determining Packet Transmission Time

e Tota Theoretical Transmission Time
T = T T T Propagation delay

T =M/L and
T =D/C where

otd where

convert bits into signals
convert bitsinto signals

Propagation delay

« M —Message sizein bits

e L —Link Capacity in Mbps

e D —length of physical link in meters

e C— Speed of light in the physical medium in m/s
« Propagation delay isnegligible as D issmall

e ThereforeT ~ T

- Information and

Technology Center

convert bits into signals

Determining Packet Transmission Time

Two 500 MHz machines running KURT-Linux
without any TDM modifications

Measure time intervals between successive reception
of packets using DSKI histograms

A stream of about 400,000 packets were transmitted
from a UDP application

The transmission times were recorded for varying
message Sl zes.
Tests performed for both 10 and 100 Mbps Ethernet

- Information and

Technology Center

Determining Packet Transmission Time

A
°
]
3
2
=
o
v
kol
g
S
S
3
=
S
@
3
=
@
2
=
k3
°
=z

No of values in each bucket <log scale>

Packet_Transmission_Histogram_for_64_bytes_of_data_over_10_Mbps

100000

T T T T T T
Min Value=82.9.Max Val=1971773.5:Underflow=0.Overflow=1
Total number of values : 414961

——

120 160 200 240 280 360

Bucket ranges in us (in us on a 497 Mhz machine)

Packet_Transmission_Histogram_for_1472_bytes_of_data_over_10_Mbps

399.987

100000

1

T T T T T T
Min Value=-3364563.3,Max Val=1670.6;Underflow=25,0verflow=0
Total number of values : 414960 ——

650

800 950 1100 1250 1400 1550 1700 1850 2000

Bucket ranges in us (in us on a 497 Mhz machine)

Information and
~ Telecommunication
Technology Center

Lcket <log scale>

No of values in each bl

No of values in each bucket <log scale>

100000

100000

Packet_Transmission_Histogram_for_64_bytes_of_data_over_100_Mbps

T T T T T T T T
Min Value=74.6 Max Va=1333177.6;Underflow=0.0Overflow=50
Total number of values : 414912

120 160 200 240 280
Bucket ranges in us (in us on a 497 Mhz machine)

Packet_Transmission_Histogram_for_1472_bytes_of_data_over_100_Mbps

T T T T T T T T
Min Value=-1727457.7,Max Val=1438961.4;Underflow=1,0verflow=10
Total number of values : 414954

40

80 120 160 200 240 280 320 360
Bucket ranges in us (in us on a 497 Mhz machine)

399.987

University of Kansas

Determining Packet Transmission Time

Size of Data
(in bytes)

Total Packet Size
(in bytes)

10Mbps Ethernet
(im ps)

100Mbps Ethernet
(in ps)

upto 18

64

51.2

512

64

110

88

8.8

128

174

139.2

13.92

256

302

241.6

24.16

512

558

1164

4464

1024

1070

856

85.6

1472

1518

12144

121.44

Table 5.1: Theoretical Transmission times for 10Mbps and 100Mbps Ethernet

Size of Data
(in bytes)

Total Packet Size
(in bytes)

10Mbps Ethernet
(in ps)

100Mbps Ethernet
(i s

upto 18

64

100.05

95.17

64

110

100.49

94,94

128

174

140.11

96.31

256

302

27495

S6.01

512

558

45003

98.87

1024

1070

850.04

99,64

1472

1518

1275.14

122.51

Table 5.2: Observed Average Transmission times for 10Mbps and 100Mbps Ethernet

~ Telecommunication
Technology Center

nformation and

===

University of Kansas

Buffer Period between time-slots

« Precision of time synchronization from NTP modification
scheme is£5 ps on average and £16 s in worst case

« Machines can be asfar apart as 32 s

o We settle on avalue of 40 ps for buffer period

Global Transmission Cycle of 1040 us

220us 220us
Time-slot Time-slot

220us
Time-slot

220us
Time-slot

e g e g e 00 A e

A B

C

D

— il —e--
20 ps 40 ps
Buffer Buffer
period period

- Information and
~ Telecommunication
Technology Center

g .

40 ps 20 ps
Buffer Buffer
period period

University of Kansas

Setting up TDM Ethernet

Four 500M hz machines
with TDM modifications on

A

KURT-Linux TDM Slave
Achieving time A

synchronization

« Clock Calibration B C

» Clock Synchronization TDM Slave TDM Slave
i | i
' | |
' |
i '

Time Server sends updates
every 5 minutes |

Start TDM Daemons and] D
submit schedule from the TDM Master
TDM Master

- Time Synchronization updates

Time Synchronization server

- Information and

Technology Center

Two Sources and a Sink

« TCP application
transferring about 10,000

packets from both
sources to the sink

Time slot of 1300us for |

1500 bytes of dataon S : Data Sour
1OM bps I | ala 20[]1(2{‘.‘

Number of collisions I - I

Observed 10 be Zero ' Time Synchronization Updates '

DSKI events were . T
collected on Sink ' Synchronization -

Server

- Information and
~ Telecommunication
Technology Center

University of Kansas

Visualization of Transmission Time-dlotsin TDM Ethernet

Event denoting start of transmission time-slot

Event denoting end of transmission time-slot
Interval denoting transmission time-slot

- Information and

Technology Center

TDM Schedules for varying packet sizes

« Multiple UDP transmissions

generating over amillion packets o
. . . est
« Transmission times measured for
data of 64, 256 and 1472 bytes N ; —_—
. packets . 200K packets
o Tested with 1700Mbps Hub |
« MTU wasvaried based on the L ORpakes |
different packet sizes Testbed B 7 ! |
« Suitable time-slots obtained ; ; i
when there were no collisions or - | |
paCk et IOSS P : 300K paci:kets
:L ---------- Testbed D |ri=memin—s l
Size of Data | Total Packet Size | Time slot in 100Mbps Ethernet . —
(in bytes) (in bytes) (in ps) Time Synchronization Server
64 110 220
25h 302 260 —» UDP transmission
142 1518 i - Time Synchronization

Table 5.3: Transmission time-slots for 100Mbps Ethernet comnection

. | Information and
- ~ Telecommunication University of Kansas
__ . Technology Center

Conclusion

Time Division Multiplexing can be employed to achieve
collision-free deterministic transmission on Ethernet

Suitable time-dlots for transmission for different packet sizes
have been measured for 100M bps Ethernet

Accomplished with minimal modifications to network stack

It is a software solution, will support any common Ethernet
Hardware

Suitable for Industrial Automation applications requiring
periodic transmission

Can be used even on Switched Ethernet to avoid packet 1oss
and queuing latency

- Information and

Technology Center

Future work

e PorttoLinux 2.6 kernel

« Has 2 additional softirgs

« Delayed Timer bottom half handling is a softirg

« Modificationto TDM Group Scheduling hierarchy
e Creation of aTDM Schedule Server

e Creates TDM schedules taking more constraints into
account

« Machine with larger volume of datais given alarger time
slot for transmission

- Information and

Technology Center

Thank Y ou

. ' Information and
| ~ Telecommunigation ==—————————————"yjyersity of Kansas
_. , Technology Center

