
1

Abstracting the Hardware /
Software Boundary through a

Standard System Support
Layer and Architecture

Erik Anderson
4 May 2007



2

Agenda

• Publications and proposal review.
• Problem background.
• Abstracting HW/SW boundary.
• Analysis, comparing HW and SW.
• Results
• Conclusions



3

Special Thanks to

• David Andrews
• Perry Alexander
• Douglass Niehaus
• Ron Sass
• Yang Zhang

• Jason Agron
• Fabrice Baijot
• Ed Komp
• Andy Schmidt
• Jim Stevens
• Wesley Peck
• Seth Warn



4

Academic Background

• Bachelor of Science in Computer
Science, University of Kentucky, 1993 -
1997, Magna Cum Laude

• Doctoral Candidate in Electrical
Engineering, Kansas University, 2003 -
2007



5

Publications
• “Enabling a Uniform Programming Model Across the

Software/Hardware Boundary,” FCCM 2006
• “Supporting High Level Language Semantics within Hardware Resident

Threads,” submitted to FPL 2007
• “Memory Hierarchy for MCSoPC Multithreaded Systems,” ERSA 2007
• “Achieving Programming Model Abstractions for Reconfigurable

Computing,” Transactions on VLSI, to appear in 2007
• “Hthreads: A Computational Model for Reconfigurable Devices,” FPL

2006
• “The Case for High Level Programming Models for Reconfigurable

Computing,” ERSA 2006
• “Run-time Services for Hybrid CPU/FPGA Systems on Chip,” RTSS

2006



6

Proposal Review
• Augment the HWTI

• Extend support for key
subset of Hthread API.

• Semantic and
implementation differences.

• Hthread test suite.

• Application suite.

• Augmented HWTI with:
– User interface and protocol.
– Globally distributed local

memory.
– Function call stack.

• Extended support for key
subset of Hthread API.
– Remote procedural calls.

• Chapter 5 in dissertation
– Context similarities.

• Hthread test suite.
– Abstractions held.

• Application suite.
– Framework for HLL to HDL.

Proposed Completed



7

History of Reconfigurable
Computing

• 1959: Gerald Estrin’s
Fixed plus Variable
Architecture.

• 1984: Xilinx is founded.
• 1993: Athana proposed

PRISM-I
• 2006: First 65nm FPGA

released.

IEEE Annals of History of Computing, Oct -
Dec 2002, page 522FPGA 2006

30FPL 2006

25FCCM 2006

PapersConference



8

Reconfigurable Computing
Technology

• Post-fabrication
circuit design.

• Embedded cores,
memory, and
multipliers.

From xilinx.com



9

“Blessing and a Curse”

• FPGA’s can take on
any computational
model post-
fabrication.

• But which one to
use?

MISDSISD

MIMDSIMD

Instruction Stream
D

at
a 

St
re

am

Flynn’s Taxonomy



10

Hardware Acceleration Model
• SISD or SIMD.
• Advantages:

– Can be successful.
– C to HDL tools.

• Disadvantages:
– Custom interfaces between

HW and SW.
• Write once, run once.

– Costly design-space
exploration.

– Does not use today’s MIMD
programming models.



11

Abstract Interfaces
• Parallel programming

models to abstract CPU
/ FPGA interface.

• CPU and FPGA both
target an equivalent
abstract interface.

• OS / Middleware layer
provides
communication and
synchronization
mechanism.



12

Thesis Statement

Programming model and high level language
constructs can be used to abstract the

existing hardware/software boundary that
currently exists between CPU and FPGA

components.



13

Extending the Shared Memory Multi-
Threaded Model to Hardware

Conceptual Reality

•Pthreads programming



14

Extending the Shared Memory Multi-
Threaded Model to Hardware

• Key Challenges
– HW access to API

library.
– HW access to

application data.
– Eliminate custom

interface to HW.



15

Extending the Shared Memory Multi-
Threaded Model to Hardware

• Hthread’s Solutions
– Access to the same

communication
medium.

– Equal or equivalent
synchronization
services migrated to
HW.

– Standard system
support layer. Hybridthreads System



16

Hardware Thread Interface

• HWTI provides a standard register set for
communication and synchronization services.



17

Creating a Meaningful
Abstraction

• Communication and synchronization
are solved.

• Problems persist:
– “scratchpad” memory:

• How to instantiate?
• How to maintain the shared memory model?

– System versus user function calls?
– Creating threads from hardware?



18

Globally Distributed Local
Memory

• Dual ported BRAM.
• “Globally Distributed” = All threads have access.
• “Local” = User logic access is through LOAD and

STORE protocols.



19

Function Call Stack

• Abstract access to local
memory.

• Consistent function call
model.
– Recursion.

• Works analogously to
software based stack.
– Only difference, user

logic pushes “return
state” value instead of
“return instruction.”

7RETURN

3CALL

1ADDRESSOF

1WRITE

3READ

1DECLARE

5POP

1PUSH

Clock CyclesOperation



20

Remote Procedural Calls

• Some functions too
expensive to
implement in HWTI.

• Utilize existing
synchronization
primitives to callout
to a special software
system thread to
perform function.



21

Hardware / Software Duality



22

Hthread System Call
Implementation Differences

• HW has dedicated resources allocated
at synthesis time.
– HW explicitly blocks.

• SW has shared resources allocated at
runtime.
– SW context switches.



23

Hthread Size and
Performance Comparison

• Size
– Definition
– hthread_create /

hthread_join
– hthread_yield

• Performance
– Definition
– HW outperforms SW

• Create/join notable
exception

– Hardware’s bus
transactions



24

Demonstrating an Abstract
Interface

• POSIX Test-suite adapted for Hthreads.
• Conformance tests

– Version for SW, HW, and mixed.
• Stress tests

– Version for SW, HW, and mixed.
• Abstractions held across SW/HW.



25

Demonstrating HLL
Constructs

Sharing data between HW and SWHuffman

Task level parallelism, local
variables.

IDEA

Local array access, access to
shared memory.

Haar DWT

Recursion, local variables.Factorial

Recursion, local variables, access
to shared memory.

Quicksort
DemonstratesAlgorithm



26

Function Call Stacks and
Recursion

• Quicksort
– Recursive
– O(nlogn)

performance



27

Memory Latency

• IDEA encryption
– Key and data

location
comparison.



28

Task Level Parallelism

• Haar DWT
– Software’s pseudo-

concurrency.
– Hardware’s true

concurrency.
• Performance

– 2 SW = 31.1ms
– 1HW/SW = 16.5ms
– 2 HW = 16.6ms



29

Future Work

• Memory latency for hardware threads.
• Leveraging reconfigurable computing.
• High level language to hardware

descriptive language translation.



30

Conclusions

• Parallel programming models may be
used to abstract CPU/FPGA boundary.
– Threads communicate and synchronize

with other threads without regard to
location.

• Abstract virtual machine can be
implemented in either HW or SW.
– Created a framework for HLL to HDL.



31

Questions?



32

Supplemental Material



33

Function Call Stack Example



34

Globally Distributed Local
Memory



35

Dynamic Memory Allocation

• Pre-allocated Heap.
• Light version of

malloc, calloc, and
free.



36

Demonstration HLL
Constructs: Quicksort

• HWTI maintains
O(nlogn) behavior.

• Cache-like
performance.



37

Demonstration HLL
Constructs: IDEA

• Benefits of task level parallelism.
• Comparison with Vuletic’s hardware threads.



38

Demonstration HLL
Applicability: Huffman

• Abstract data
passing between
SW and HW
threads.

• Data cache on CPU.



39

Demonstration HLL
Applicability: Haar DWT

• Abstract interface vs
meaningful abstract
interface.

• Performance.
• Complexity.



40

Globally Distributed Local
Memory

• “Cache like” performance.
• Maintains shared memory

model.
• User access without bus

transactions.
HWTILocalGlobalOperation

19128Store

19351Load



41

Join Danger



42

Remote Procedural Calls

• Advantages:
– HW Access to

shared libraries.
– Complete support for

hthread APIs.
• Disadvantages:

– Interrupts the CPU.
– Comparatively slow. 114µsstrcmp (string.h)

450µscos (math.h)
1.66msprintf (stdio.h)
120µsfree (stdlib.h)
122µsmalloc (stdlib.h)
130µshthread_join (hthread.h)
160µshthread_create (hthread.h)

ExecutionLibrary Call


