Modeling and Simulation of a Mobile Robot for Polar Environments

Thesis Presented by Eric Akers October 20, 2003

Committee Chair – Professor Agah Committee Member – Professor Minden Committee Member – Professor James

Overview

- Introduction
 - PRISM
 - Goal of this thesis
 - Modeling and Simulations
- Model and Design
- Experiments
- Results
- Conclusions

Introduction PRISM

- Polar Radar for Ice Sheet Measurements
- Goal
 - Measure ice thickness
 - Determine bedrock condition beneath ice sheets
- SAR (synthetic aperture radar) gives a 2D picture
 - Monostatic or bistatic mode

Introduction PRISM

- Autonomous rover carries necessary radar equipment and antenna
 - Survive for extended periods of time
 - Navigate in sometimes harsh arctic terrain
- Many areas of research involved
 - Robotics
 - Radar
 - Geology
 - Artificial intelligence

Introduction Goal

- Build an accurate model of the rover
- Test the model to determine how the rover performs and some safe running parameters
 - Knowledge required to keep the rover running for long periods of time

Introduction Modeling and Simulations

- Modeling Software
 - MSC.visualNastran 4D
 - ADAMS
 - Mechanical Desktop
 - SolidWorks
 - Solid Edge

- Simulation Software
 - MSC.visualNastran 4D
 - ADAMS
 - Khepera and Webots
 - RoboCup

Introduction Modeling and Simulations

- Related Works
 - Modeling of a Snow Track Vehicle
 - University of Perugia
 - Test and improve on design of snow cat vehicles
 - Simulation of a Three-Wheeled All Terrain Vehicle
 - University of Arkansas
 - Demonstrate handling and suspension of threewheeled ATVs

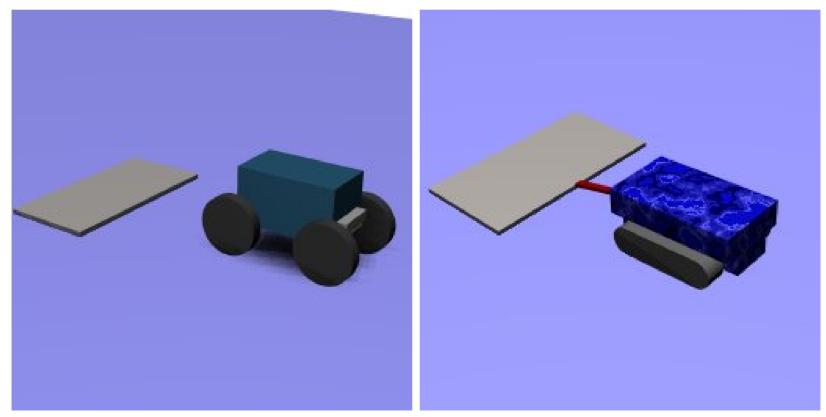
Introduction Modeling and Simulations

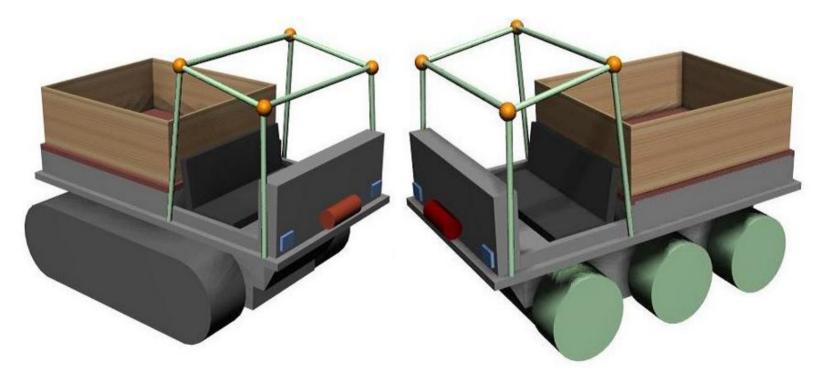
- Related Works (continued)
 - Modeling Tracked Vehicles Using Vibration Modes
 - University of Michigan
 - Predict durability of track and the vibration inside the vehicle caused by the track

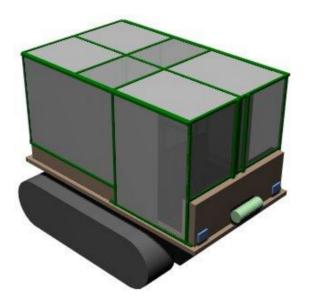
- Several different versions of the model were created as the design of the rover changed
 - Rover base
 - Wheel and track version
 - Roll cage and completely enclosed frame

- Design objective
 - Dimensions, weight, weight distribution as accurate as possible
 - Specifications manual and measurements
- Problems
 - Weight distribution not completely known
 - Where unknown, equal distribution used
- Objects such as engine, tires, track, and winch all had known weights

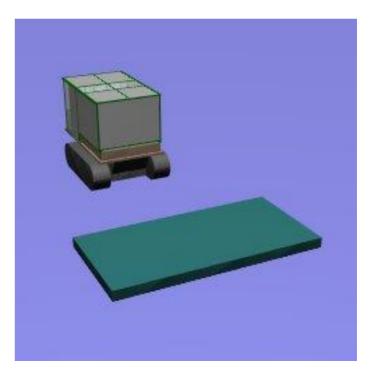
- Model consists of objects and constraints
- Constraints "constrain" two objects to allow movement in a specific way relative to each other
 - Revolute joints
 - Solid joints act as one body
 - Belts and gears
 - Spherical joints
 - Rods and Ropes


• Vehicle before modifications


• Current vehicle


• Old models – different rover base

• Old models – current rover base



• Current model – current rover base

- Antenna modeled simply as a box
 Dimensions and weight easily changeable
- Antenna Configurations
 - 2m x 4m 400 pounds
 - 4m x 2m 400 pounds
 - 2m x 2m 200 pounds

- Knowledge to determine
 - Slope vehicle can climb (pitch)
 - Angle the vehicle can handle (roll)
 - Turn radius
- This information gives us safe running parameters and some handling capabilities of the rover

- Model configurations
 - Empty with no antenna
 - With antenna
 - Three different antennas
 - Four different towing mechanisms
 - With antenna and with different load distributions
 - One antenna used for these tests 2m x 4m at 400 pounds

- Antenna towing mechanisms
 - Single rope constraint
 - Two rope constraints
 - Single rod constraint
 - Two rod constraints
- Rope constraint allows a maximum distance between two bodies
- Rod constraint has a maximum and a minimum distance between two bodies
- Both allow rotation on both points of contact

- Three different load distributions
 - Three locations for weight (front, middle, back)
 - 100, 400, 400 pounds
 - 100, 500, 300 pounds
 - 200, 400, 300 pounds
- A box with the specified weight was used to add the necessary weight

- Experiments performed
 - Flat ground test
 - 15 meters with no obstacles or slope
 - Maximum slope test (pitch)
 - Turn radius test
 - Max roll test (roll)

- Same experiments performed on each configurations of the model
- Turn radius experiments performed at different speeds

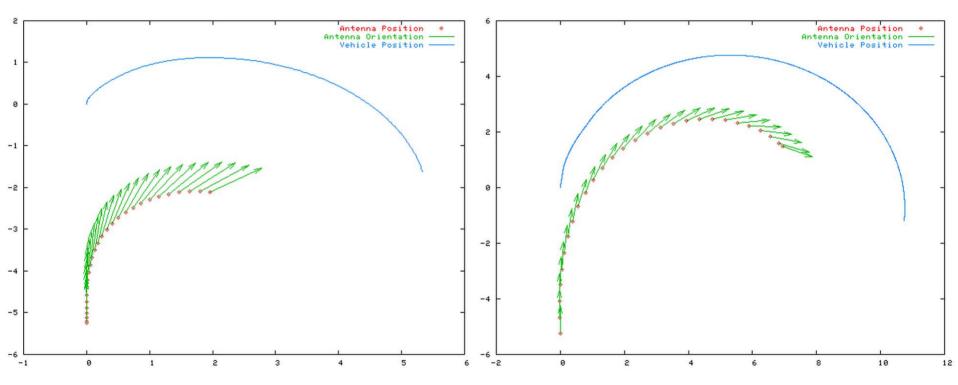
• Empty model configuration

Flat ground test	5.88 seconds
Max slope test	18 degrees
Max roll test	58 degrees

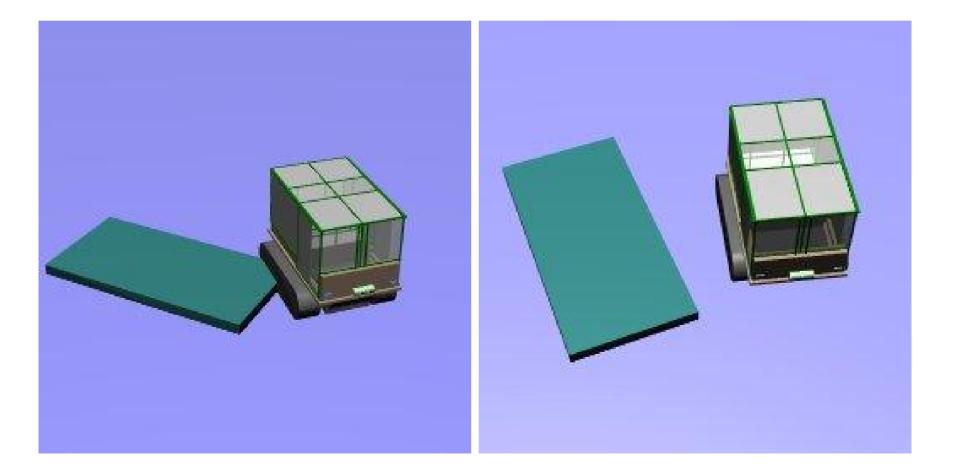
Test with	2 x 4	4 x 2	2 x 2
single rope			
Flat ground	6.26 s	6.24 s	6.02 s
Max slope	10 degrees	11 degrees	14 degrees
Max roll	58 degrees	58 degrees	58 degrees

Test with	2 x 4	4 x 2	2 x 2
two ropes			
Flat ground	6.24 s	6.24 s	6.02 s
Max slope	11 degrees	11 degrees	14 degrees
Max roll	58 degrees	58 degrees	58 degrees

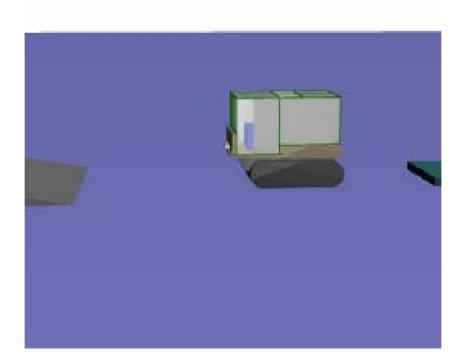
Test with	2 x 4	4 x 2	2 x 2
single rod			
Flat ground	6.24 s	6.24 s	6.02 s
Max slope	11 degrees	11 degrees	14 degrees
Max roll	58 degrees	58 degrees	58 degrees


Test with	2 x 4	4 x 2	2 x 2
two rods			
Flat ground	6.24 s	6.26 s	6.02 s
Max slope	11 degrees	11 degrees	14 degrees
Max roll	58 degrees	58 degrees	58 degrees

• With load distribution configuration


Test	Load 1	Load 2	Load 3
Flat ground	6.06 s	6.06 s	6.06 s
Max slope	13 degrees	13 degrees	13 degrees
Max roll	46 degrees	46 degrees	46 degrees

- Weight is the single largest factor in how the rover performs
 - Antenna shape had little effect
- Slower speed better (turning)
- Two rods and two ropes better than single rod and single rope towing mechanisms
- No steep hills while towing the antenna


Results 10 km/hr vs 2 km/hr with two ropes

Results 1 Rope vs 2 Ropes at 8 km/hr

• Simulation from successful test

- Turn radius simulations
 - 1 day for each series at all speeds
 - 2 weeks to finish all turn radius tests
- Average of 5 simulations for both max slope and max roll tests

Conclusions Contributions

- Make decisions on the design and construction of the rover
- Give some approximate safe running parameters
- Give approximation of how vehicle handles while towing the antenna

Conclusions Limitations

- Model and terrain an approximation of the world
 - Results are also an approximation
- Environment and terrain
 - Bumps, holes, obstacles
 - Actual terrain may vary greatly and cause rover to perform better or worse an some areas
 - Wind and blowing snow not accounted for

Conclusions Limitations

- Model
 - Two motors instead of one
 - No testing of torque, all kinematics tests
 - Shape, weight, and weight distribution differences could cause incorrect results

Conclusions Future Work

- Modeling of bumpy environment and testing how the different antennas handle
 - Modeling an environment with bumps and holes will allow a larger variation of results between the antenna towing mechanisms
- Make improvements to the simple antenna towing mechanisms

Conclusions Future Work

- Any major changes such as adding accumulation radar to the front and depth sounder antennas to the sides
- Add more environmental conditions such as wind to the simulation

Questions

• Thank you to the committee members, the PRISM robotics team, my wife Vicki, and all who have attended