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Abstract

The current command-and-control regulatory structure for licensing the RF

spectrum has been unable to cope with the growing demand for spectrum. This

has given rise to an ‘artificial scarcity’ of usable spectrum. Numerous studies

have thus begun to examine how the licensed spectrum is actually used, with the

goal of not only reforming the spectrum licensing regime but also opening certain

underutilized spectrum to unlicensed secondary usage. The technologies such as

frequency agile radios and dynamic spectrum access networks can enable unli-

censed users to access the underutilized spectrum in a manner that is transparent

to the licensed users.

A thorough understanding of the spectrum utilization and interference issues

can be helpful in devising solutions to maximize the spectrum utilization and assist

in the design of secondary spectrum access technologies. A spectrum survey can

be conducted in order to collect data on spectrum utilization and process the data

in order to extract useful information about the spectrum activity.

In this thesis, a generic framework for spectrum surveying has been proposed.

This framework outlines the procedures and techniques for the collection, analysis

and modeling of spectrum measurements. Techniques have been proposed to

perform analysis and extract important parameters of spectrum occupancy. The

proposed framework introduces standardization to spectrum surveying as well

as automation to the processing of the measurements. The proposed processing

techniques have been tested on spectrum measurements collected from the FM

band, TV bands, cellular band, and paging band and the results are also presented.

The television spectrum is being underutilized, making it a prime candidate for

dynamic spectrum access. Nevertheless, the quality of this spectrum for enabling

secondary transmissions has never been assessed. The proposed spectrum survey

framework has been implemented and used to examine how non-ideal transmis-

sion properties of television broadcasts can potentially impair the performance of

secondary transmissions. The framework has also been incorporated into a novel

wideband spectrum sensing architecture. The thesis presents the results of the

feasibility study as well as simulation results obtained for the proposed spectrum

sensing architecture.
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Chapter 1

Introduction

The radio frequency (RF) spectrum is a significant and reusable resource [1]

which can be described as a virtual hyperspace, called the electrospace [2]. The

primary dimensions of the spectrum are: frequency, time, spatial extent, and

signal format. The spectrum is an integral part of any wireless system, and a

thorough understanding of its behavior is important for effective wireless commu-

nications. Fig. 1 shows the transmit and receive spectrum masks that regulate

the wireless system’s access to the spectrum. The wireless channel acts as a filter

that influences the signal that is transmitted through it.

There are two aspects to spectrum management [1]. The technical aspect of

spectrum management is concerned with the technology, and the physical world

phenomena that affect the spectrum utilization. The policy aspect takes into

account the economic and political factors that affect the spectrum market. In

the United States, the Federal Communications Commission (FCC) regulates the

spectrum access for commercial purposes. Under the legacy command-and-control

regulatory structure for spectrum management, the spectrum is divided into sev-

eral segments and each segment is allocated for a specific wireless service. A

2007/02/02
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Transmitter Transmit 
Spectrum Mask

Wireless
Channel

Receive 
Spectrum Mask Receiver

Figure 1.1. Wireless communication block diagram showing RF
spectrum and wireless channel.

licensed user has exclusive rights within a specified geographical area to access a

fixed number of frequency channels in a segment [3].

1.1 Research Motivation

The current spectrum allocation policy allows the use of low cost standardized

communication equipment and it can ensure that there will be no conflicts in the

access to the licensed spectrum [4]. However, it possesses some serious drawbacks

that are of concern for future spectrum management.

The entire spectrum has been fully allocated [5], leaving very little space for

additional wireless services. In addition, the current spectrum policy makes it

difficult for the rapid deployment of new services, which is particularly crucial for

emergency services [6].

Moreover, it has been found that the spectrum is underutilized temporally,

spatially and spectrally [3, 7]. This has lead to the creation of large portions of

underutilized and vacant spectrum, which are termed as spectrum white spaces

or spectrum holes. For instance, the dynamic nature of the spectrum utilization

by mobile telephony services has resulted in an inefficient usage of the spectrum

temporally [3]. In the television and FM broadcast bands, buffer spaces have

been created in order to maintain safe distances between broadcasting stations

operating on the same frequency channel. In addition, guard bands have been

assigned between adjacent station frequency channels in order to avoid adjacent
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channel interference.

Furthermore, the demand for wireless services has been steadily increasing

due to the growing need for wireless broadband connectivity. There has been an

increase in the number of users of wireless services, as well as new wireless ser-

vices that are constantly evolving. Moreover, the requirements of federal agencies

and emergency services place high and uncompromising constraints on the spec-

trum [1]. The current regulatory structure does not possess the flexibility to allow

the dynamic reuse of the licensed spectrum even when it is idle as well as fast

deployment of new wireless services. This rigid spectrum management system is

the main cause for a potential spectrum scarcity in the near future.

1.2 Solutions to the Spectrum Scarcity Problem

There has been substantial research efforts aimed at improving the spectrum

utilization. New services can be accommodated by redefining the spectrum that

has been assigned to existing services that utilize the spectrum sparsely [7]. How-

ever, in the current spectrum regime, any potential reallocation of the spectrum

can have many political and commercial consequences [8].

In June 2002, the FCC commissioned the Spectrum Policy Task Force (SPTF),

which is a body that makes recommendations on reforming the spectrum policy.

In its final report [9], the SPTF has suggested various methods to improve the

spectrum utilization, such as exploitation of the spectrum along all its dimensions,

reuse of the underutilized spectrum, and transformation of the current command-

and-control regime into a more flexible market-based system.
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Figure 1.2. Underutilized portions of spectrum (9 kHz - 1 GHz
band).

1.2.1 Unlicensed Bands

The FCC has allocated several portions of spectrum for unlicensed usage 1 and

has been encouraging the use of these bands for the demonstration of innovative

spectrum sharing techniques [8]. This can improve the spectrum utilization as well

as allow any FCC-approved wireless service to be deployed without pre-allocation

of spectrum. Spectrum sharing in the unlicensed spectrum can be achieved with

the ultra wide band (UWB) radio technology that operates in the 3.1-10.6 GHz

frequency range [11]. However, since the unlicensed users have to coexist with the

licensed users, there are many restrictions on the transmit power [10].

1.2.2 Secondary Usage of Underutilized Spectrum

Past studies have shown that the spectrum utilization can be significantly

improved by the reuse of spectrum white spaces [7] (see fig. 1.2). The white

spaces comprising of buffer spaces, guard bands, unlicensed bands, and sparsely

utilized licensed spectrum are potential candidates for secondary spectrum usage.

1For a list of unlicensed bands refer to [10].



5

A secondary (i.e. unlicensed) user can access the underutilized spectrum in a

manner that is transparent to the primary (i.e. licensed) user.

The secondary usage of spectrum white spaces requires a technology that can

reliably operate over a large portion of the spectrum including the licensed and

unlicensed bands. A frequency agile radio is one such technology that possesses

the flexibility to change its transmit parameters, such as its frequency of operation,

bandwidth and transmit power, as well as transmit in any frequency channel which

has been identified as a potential white space. A network of these radios can form

a dynamic spectrum access (DSA) network, which can optimize the secondary

usage of the spectrum. In addition, DSA networks can enable rapid deployment

of new wireless services [6].

There has been regulatory and legislative activity that could allow unlicensed

devices to access TV band white space on a per market basis. In May 2004, the

FCC released the Notice of Proposed Rulemaking (NPRM) [12] allowing unli-

censed devices to utilize unused spectrum in the TV band. In addition, an IEEE

standard for DSA networks has also been proposed [13].

1.2.3 NRNRT Project Overview

At the University of Kansas, the NSF-sponsored National Radio Network Re-

search Testbed (NRNRT) is being developed to support the research and devel-

opment of agile radios and DSA networks [1]. It is also hoped that the results

from the testbed will provide significant input to debates on future spectrum

management issues.

The testbed includes a field deployable measurement and evaluation system

for long term spectrum data collection, and an experiment facility. The RF data,
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which comprises of the RF spectrum utilization measurements and wireless chan-

nel propagation measurements, can help in the design of radio technology and

medium access protocols for wireless systems. The experiment facility can be

used to test prototypes of new radios and wireless networks in a real world situ-

ation. The RF data and test measurements taken using this experiment facility

can be incorporated into an accurate emulation/simulation model, which will be

useful for improved analysis of the new wireless systems.

1.3 Scope and Contributions of Thesis

The main objective of this thesis is: To conceptualize and implement a generic

framework for spectrum surveying that would aid in the research on DSA networks.

Our study of the spectrum will yield important information that will be useful

in devising techniques for improving the utilization of the spectrum. In the past,

several spectrum surveys [3, 7, 14] have been performed. However, they lacked a

formalized structure that can enable collaborations on spectrum surveying and in

addition, the processing of the data was not completely automated. This thesis

contributes to the research on spectrum surveying by presenting the following:

• A formalized framework for spectrum surveying,

• Statistical methods to process the spectrum survey data,

• Tools to analyze the spectrum data and extract information on spectrum

utilization,

• A comprehensive model for the spectrum measurements, and
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• Application of the framework to research and implementation of DSA net-

works.

A novel framework to collect, store, and analyze spectrum utilization data

has been conceptualized and implemented. The proposed framework introduces a

formal structure to the different stages of a spectrum survey thereby introducing

standardization to spectrum surveying.

Techniques for processing and analyzing the spectrum data have been proposed

and the efficacy of these techniques has been verified with the help of real world

spectrum data. In contrast to the previous spectrum studies, the proposed statis-

tical methods introduce automation to the analysis of the spectrum survey data.

A set of parameters of spectrum utilization have been identified, and tools have

been developed to extract these features from the processed data. Furthermore,

a comprehensive model for the spectrum measurements has been presented.

The thesis also presents the application of this framework to assess the feasi-

bility of secondary usage of spectrum and a novel architecture derived from this

framework that can enable efficient spectrum surveying in future communication

systems.

1.4 Organization of Thesis

The rest of this thesis is organized as follows:

Chapter 2 begins with an introduction to DSA. The need for the study of the

spectrum utilization is stressed along with the possible applications of spectrum

surveying to research activities in DSA networks. The chapter also provides a

summary of the past research works on spectrum surveying and other related

aspects such as processing of the spectrum measurements.
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In Chapter 3, the proposed framework for the study of the spectrum utilization

is presented along with a description of the various components of the framework

including the modeling of the spectrum data. The chapter also describes the

preliminary efforts on the processing of spectrum data. Chapter 4 discusses the

challenges associated with the processing of spectrum data. The techniques that

have been proposed to counter these challenges are presented followed by the

results of their performance evaluation.

Chapter 5 describes two applications of the proposed framework. The frame-

work has been applied for assessing the feasibility of secondary usage of the televi-

sion spectrum. The framework has also been incorporated into a novel architecture

for monitoring the spectrum activity in dynamic spectrum access networks.

Chapter 6 presents the conclusions of the thesis and provides directions for

future work.
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Chapter 2

Background Literature Review

This chapter builds upon the last chapter by providing an overview of DSA net-

works and spectrum surveying. The secondary access of underutilized spectrum

by Opportunistic Spectrum Access (OSA) or Dynamic Spectrum Access (DSA) is

discussed in Section 2.1. This discussion leads on to the importance of spectrum

surveys to the research in DSA networks. Section 2.2 provides an introduction

to spectrum surveying along with its applications. In Section 2.3, the existing

techniques for processing the spectrum data are presented. The different param-

eters with which the spectrum utilization can be characterized are described in

Section 2.4.

2.1 Dynamic Spectrum Access by Frequency Agile Radios

Past studies [3, 7] have assessed the feasibility of secondary usage of spec-

trum white spaces by a frequency agile operation, and it has been shown that

this approach can improve the spectrum utilization. However, there are sev-

eral challenges to implement this approach. The spectrum operating conditions

2007/02/02
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including the spectrum utilization and the spectrum regulations can vary as a

function of frequency, time of the day, azimuth, polarization, and geographical

location. These changes have to be considered for effective frequency agile radio

operation [4]. Furthermore, the secondary user might encounter different types of

primary users, such as television broadcasters, terrestrial microwave services, and

cellular mobile services. Each of these primary users possess different transmis-

sion characteristics, such as duty cycle, transmit power, and bandwidth. More-

over, some primary users transmit in bursts, with the transmission characteristics

varying with time [10].

To counter these challenges and operate in a manner that is transparent to

the existing primary users, the radio must be able to adapt to the varying operat-

ing conditions and also dynamically detect the unused spectrum before accessing

it. To permit this dynamic spectrum access by secondary users, changes have to

be made to the current spectrum management framework in order to allow dy-

namic and flexible spectrum access management [3]. In addition, we need reliable

technology to enable DSA.

These challenges have motivated research on radios that have the ability to

learn and adapt to the current spectrum conditions. The DARPA XG program 1

has been pursuing research on a novel approach wherein frequency agile radios

can perform dynamic reuse of the underutilized spectrum. This approach basi-

cally involves the following stages [6]:(i) The radio dynamically senses its spectrum

environment. Spectrum sensing is the process of sampling the channel utilization

in order to collect data that would help in identifying potential opportunities for

1The Next Generation (XG) program has been initiated by the United States Defense Ad-
vanced Research Program Agency (DARPA) and it drives the research and development of next
generation communication systems.
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secondary usage of the spectrum [15]. Using the spectrum sensing data, the radio

detects the presence of primary signals and other secondary signals, and then char-

acterizes the spectrum utilization. (ii) The radio uses the information gathered

by spectrum sensing and characterization of spectrum to identify the frequency

channels that are suitable for secondary usage. (iii) Using the spectrum sensing

and channel sounding data, the radio adapts to the current wireless environment

and transmits in these frequencies in a manner that is transparent to the primary

users. This OSA approach has several benefits: It has the potential to maximize

the spectrum utilization, it allows the secondary user to coexist with the primary

spectrum users in a transparent manner, and it enables secondary access in sce-

narios where there are discontinuities in the available spectrum and the spectrum

utilization varies dynamically.

While a frequency agile radio can dynamically detect spectrum opportunities

and transmit in spectrum holes located anywhere in the spectrum [6], a cognitive

radio is a radio platform that is both agile and capable of adapting to the current

wireless environment so that its communication does not cause any harmful in-

terference to the primary users of the spectrum [16]. In a dynamic environment,

cognitive radios can also make intelligent decisions on the transmit parameters to

set in order to optimize the performance of the communication system [7]. Besides

cognitive radios, DSA is also being considered for multiband OFDM systems [11]

and carrier sense multiple access/collision avoidance (CSMA/CA) networks [17].

Although DSA has several benefits, it is not trivial to implement it. Dynamic

sensing requires searching for spectrum holes on a instant-by-instant basis so that

the interference to the primary users is limited. The challenges faced by real-time

sensing include degraded channel environments [18], detection of weak signals, and
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the presence of intermodulation products [10]. Prior knowledge of the spectrum

occupancy and the characteristics of the primary signals can greatly help in exe-

cuting DSA in an effective manner. This knowledge can be gained by surveying

the spectrum activity.

2.2 Spectrum Surveying

Precise information on the spectrum behavior cannot be inferred directly from

licensing information since it varies with several factors. Hence, there is a need

for real world spectrum data in order to characterize its behavior.

Spectrum surveying involves the long term collection of spectrum data by spec-

trum sensing over a wide range of frequencies. Information about the spectrum

activity can be extracted by analyzing the data.

2.2.1 Applications of Spectrum Surveying

Table 2.1 provides a list of previously conducted spectrum studies including

the studies conducted at the Radio Spectrum Engineering Lab of Georgia Institute

of Technology (GIT) [3,19], the Institute of Telecommunication Sciences (ITS) in

USA [14], the Mobile Portable Radio Group (MPRG) at Virginia Tech [7], and

the Shared Spectrum Company (Virginia, USA) [20].

The spectrum data can be used to extract patterns of transmission activity, as

well as for interference analysis [19]. A thorough understanding of the spectrum

behavior and interference issues can be helpful in devising solutions to maximize

the spectrum utilization and assist in the design of secondary spectrum access

technologies [21]. Spectrum study 1 in Table 2.1 has been performed [14] to

assess the usage of the land mobile radio bands (138-174 MHz) by federal agencies.
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Table 2.1. Previously Conducted Spectrum Studies

Name Frequencies Purpose of Survey

1. ITS LMR bands Improve usage of LMR bands, prediction of usage.

2. MPRG 30-300 MHz Assess feasibility of DSA.

3. SS Co. 54-3000 MHz Quantify spectrum occupancy.

4. GIT 0.4-7.2 GHz Determine spectrum occupancy, interference to
radiometric services.

These studies were performed to determine how the spectrum utilization can be

improved, and to provide a basis for prediction of the future usage of these bands.

The amount of unused spectrum can be quantified in order to assess the feasi-

bility of broadband communication through cognitive radio operation in spectrum

white spaces [7] (spectrum study 2 and 3 of Table 2.1). The spectrum utilization

can be quantified using a metric, called spectrum occupancy, which is defined as

“the probability that a signal is detected above a certain threshold power level” [7].

Resolving the spectrum usage along all the dimensions of the spectrum will

provide important information that will help in exploiting the spectrum effi-

ciently [21]. In the real time scenario, the knowledge obtained from spectrum

surveying can be input to DSA networks in order to help them in identifying

potential opportunities for secondary access. In addition, multi-dimensional spec-

trum data can be used to identify the characteristics of the primary transmitters

such as polarization type and azimuth location [3].

Furthermore, the results of a spectrum survey can also help in interference

avoidance (spectrum study 4). The 6.75 - 7.1 GHz band is primarily used to

provide fixed microwave services, while radio astronomy studies are also performed

in this band. The interference from the primary users can potentially hinder the

astronomy studies [19, 22]. In such scenarios, the temporal characteristics of the
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primary users can be studied in order to identify periodic spectrum users, and

methods can be developed that allow the passive services to dynamically use the

spectrum when the primary user is absent.

Besides collecting the spectrum data, a spectrum study mainly involves pro-

cessing the data in order to detect the presence of signals, and then analyzing the

data in order to characterize the spectrum occupancy.

2.3 Processing of Spectrum Survey Data

Improvements in hardware can result in the effective measurement of the spec-

trum utilization and the detection of signals. However, defects in the measurement

data introduced by broadband impulse noise, intermodulation products, and sys-

tem noise can be conveniently removed by post-measurement data processing [14].

Moreover, processing of the data can improve the sensitivity of the RF front end by

providing a processing gain in the detectable signal-to-noise ratio (SNR), and also

help in extracting signal features which can be used for the detection of primary

signals [23].

2.3.1 Refining of Spectrum Data

Several techniques were proposed in reference [14] to refine the data. The

broadband impulse noise affects measurements only at the instant when it occurs.

This fact can be used to identify those sweeps of data that are contaminated

with it. In the case of a receiver that determines the power at all frequencies

simultaneously, the impulse noise affects all the frequencies equally. Sweeps of

data with a comparatively higher average noise level can be identified and removed

from consideration for further processing [14]. Alternatively, several sweeps of data
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can be averaged in order to reduce the average noise power.

In the presence of a strong signal at the input to the RF receiver, when the local

oscillator (LO) output is mixed with the strong signal, the LO noise sidebands

produce an adjacent-channel response that adds to the signals occurring adjacent

to the strong signal. In order to remove the effect of these sidebands, a typical

noise sideband response can be measured, and these power levels can be subtracted

from the measured power spectrum [14]. In a similar manner, the intermodulation

products can be predicted and then subtracted from the measured data. By

removing the intermodulation products, the effects of the LO noise sidebands,

and the impulse noise, the occurrence of signal-like noise spikes in the measured

data is greatly reduced, thereby reducing false alarms.

2.3.2 Detection of Primary Signals

In the literature, the signal detection techniques have been classified into:

match filtering, energy detection, and cyclostationary feature detection [23]. Match

filtering is achieved by correlating the received unknown signal with a replica of

the signal to be detected. While this method performs well even under low SNR

conditions, this method requires a priori information about the signal character-

istics and the type of signal to be expected in the band of interest. This technique

has been applied for the feature detection of weak television signals [24].

Cyclostationary feature detection gives the best performance among the three.

However, it is a complicated approach that requires both phase and magnitude

information [23]. If only power measurements of the spectrum utilization are

available, then energy detection is the optimal detection approach [25]. Due to

its simplicity and relevance to the processing of power measurements, energy de-
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Figure 2.1. Block diagram of energy detection.

tection has been a preferred approach for several past spectrum studies [7,10,14].

Experiments have been conducted on the performance of energy detectors [26,27].

However, it possesses some drawbacks [23]: It cannot distinguish between signal

and interference, and it cannot be used to detect signals that occur below the

noise level, such as signals from distant transmitters and spread spectrum signals.

2.3.3 Energy Detection

Fig. 2.1 shows the block diagram of energy detection that is implemented with

a swept-type measurement system. The received time domain signal is filtered,

down-converted, digitized, squared and then integrated over a certain period of

time, in order to obtain the average power at the filter’s center frequency. The

signals can be detected based on a decision threshold, i.e. power measurements

above this threshold are identified as signals.

The decision threshold can be estimated in several different ways such as:

1. Empirical analysis of data [10, 20],

2. Computation of threshold from system properties such as noise floor [7,10],

3. Using a priori knowledge of statistics of noise [14, 17], and

4. Estimation of threshold directly from data.

The simplest approach to determining the threshold is via an empirical analysis

wherein the collected measurements can be visually inspected. In the second
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approach, the decision threshold can be computed as a function of the sensitivity

and noise figure of the system.

By measuring a vacant channel that is free from external interference, samples

of the system and ambient noise can be collected, and be used to compute an

inverse cumulative density function (CDF). If S is a random variable representing

the measured noise power, the inverse CDF of S can be defined as ICDF (S, X) =

P (S ≥ X). If X is the threshold then the corresponding false alarm probability

will be ICDF (S, X). From the inverse CDF, the threshold can be chosen for

a fixed false alarm probability. For the specific case of Gaussian distribution of

noise, the threshold can be determined from the following expressions:

PFA =
1√

2πσN

∫ ∞

T

e−(x−μN )2/2σ2
N dx, (2.1)

Pd =
1√

2πσSN

∫ ∞

T

e−(x−μSN )2/2σ2
SN dx, (2.2)

where x represents the power levels of the measurements, PFA and Pd are, respec-

tively, the probabilities of occurrence of false alarms and miss detection, σN and

σSN are the standard deviations of the noise and signal (signal samples represent

sum of signal and noise) samples, and μN and μSN are the mean power levels of

the noise and signal samples.

In all these methods, by averaging the data the noise variance is reduced

and for the same false alarm rate the threshold can be set lower, resulting in an

increase in the probability of detection of weak signals. The drawbacks of these

threshold estimation techniques are: (i) The threshold estimated is specific to the

receiver, and hence they fail to detect the presence of signals that occur below the

receiver’s noise floor, (ii) These methods require a priori knowledge of the noise
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Table 2.2. Characteristics of Spectrum Utilization

Spectrum Parameter Information Provided

Temporal-spectral Potential bandwidth-time capacity, temporal and
statistics on occupancy spectral agility required, spectrum models

Primary signal features Algorithms for detection/identification of
primary users, to distinguish between primary
and secondary users, minimum detection rate.

Ambient noise power Interference and noise levels, SNR, sensitivity,
characteristics detection threshold

statistics, and (iii) They fail to perform well in the presence of noise power that

varies throughout the frequency band of interest.

While the above methods require prior knowledge of the noise statistics, in

this thesis, we address the problem of estimating the threshold directly from the

data itself without requiring any a priori knowledge.

2.4 Characterization of Spectrum Behavior

The information gathered by spectrum surveying can be used to characterize

the short term as well as the long term occupancy of the spectrum. The activity

in the spectrum can be described in terms of certain parameters which can be

computed from the spectrum measurements. Broadly, there are two kinds of pa-

rameters: the statistics of white space availability, and the parameters describing

the other aspects of spectrum activity including the features of the signals occu-

pying the spectrum [28]. Table 2.2 presents a list of these parameters and the

information that can be gained from knowledge of these parameters [28].

The unoccupied spectrum can be characterized in terms of temporal statis-

tics of the channel availability and statistics on the available bandwidth. These
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statistics indicate the potential capacity (bandwidth-time product) that can be

supported by the underutilized spectrum for secondary usage [7]. These statistics

can also be used to deduce the minimum agility in frequency and time that is re-

quired by the radios in order to access the target spectrum in a DSA manner [28].

If the bandwidth availability is represented by the random variable SB, the proba-

bility distribution of the availability of contiguous bandwidth, P (SB = k), can be

computed. Similarly, if the periods of inactivity for a particular frequency chan-

nel is represented by random variable St, the inverse CDF of channel availability,

ICDF (St, t) = P (St ≥ t), can be computed. Based on these statistics, the future

availability of the spectrum white spaces can be predicted. For instance, if the

channel has been observed to be inactive for tn time units, then the probability

that the channel will be inactive for the next tm time units is computed as [17]:

Pn,m =
ICDF (St, tn + tm)

P (St = tn)
. (2.3)

The statistics of spectrum occupancy can also be incorporated into spectrum

models which have several applications: (i) For long term and short term forecast-

ing of spectrum occupancy, (ii) To provide a summary of the spectrum behavior,

and (iii) Aid in the design of protocols for DSA. There are two popular spec-

trum occupancy models: The Laycock-Gott model and the Markov model. While

the Laycock-Gott model requires extensive procedures for fitting the data into a

model [29, 30], the markov model is relatively simpler and requires the computa-

tion of channel availability probabilities [31].

The features of the primary signal such as signal bandwidth, transmission

patterns, duty cycle, and parameters describing the transmitters which utilize the

spectrum, can be extracted from the spectrum data. These parameters can be used
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in the feature detection of primary signals. The duty cycle and the transceiver

mobility specify the minimum rate at which the channel needs to be sensed in

order to detect the primary signal. On comparing the mean and maximum power

levels among the measurements collected in a certain frequency channel, we can

infer the following [7]: If they are nearly equal, we can assume that there is no

significant fading of the signal power in that channel. The absence of fading

may also mean that the transceiver is not mobile. If the mean is significantly

smaller than the maximum, it can be deduced that the channel is being utilized

intermittently.

The range of the measurements specifies the minimum dynamic range required

by the agile radio’s RF front-end [7]. Measurements of the noise power in the

underutilized spectrum can be used to determine the transmit power to be main-

tained for Z% of the time such that the transmit SNR is fixed at a certain value for

the satisfactory operation of a wireless communication system [32]. Since different

measuring instruments have different receiver properties, such as sensitivity, noise

floor, and spectral resolution, the characterization of the spectrum utilization is

a function of the device and the decision threshold used.

2.5 Chapter Summary

This chapter has provided an introduction to OSA. The challenges to OSA

have been discussed followed by an introduction to cognitive radios. The appli-

cations of spectrum surveying to OSA have been discussed. This was followed by

a discussion on the previously used techniques for the processing of the spectrum

data. The parameters of spectrum occupancy have been presented along with a

brief introduction to the modeling of spectrum occupancy.
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Chapter 3

A Framework for Study of

Spectrum Utilization

DSA networks and spectrum policy reforms rely on accurate spectrum uti-

lization statistics which can be computed from the data collected by spectrum

surveying. The different stages involved in our spectrum survey are: First, the

spectrum activity in the target spectrum is captured by collecting spectrum mea-

surements, with the measurement data archived in a suitable format. Second, the

spectrum data is processed in order to distinguish the signal and noise measure-

ments. The data is then analyzed in order to extract the characteristics of the

spectrum utilization. Third, the occupancy in the target spectrum is modeled for

further analysis.

In this chapter, we present a framework that can formalize the spectrum sur-

vey by providing a layout for the different stages of the survey and defining the

procedures involved in each stage in a convenient mathematical form.

The Spectrum Survey Framework (SSF) is expected to aid in the research of

cognitive radio networks and provide necessary statistics helpful for debates on

2007/02/02
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spectrum policy. The SSF enables an automated and efficient approach for per-

forming a spectrum survey. It also facilitates collaborations on collecting and

analyzing spectrum measurements. This overcomes the limitations of localized

spectrum utilization studies. The proposed framework provides standardized pro-

cedures for recording, storing and sharing the measurements. Such standardiza-

tion will provide a uniform basis for the collaborative study of spectrum utilization.

This chapter also presents the proposed model for the spectrum measurements.

This model considers the different random processes that influence the spectrum

utilization, including noise, signal power, and the dynamics of the spectrum oc-

cupancy. The motivation behind this model is that the different aspects of the

spectrum environment, such as signal-to-noise-ratio (SNR), are important in ad-

dition to the statistics of channel occupancy.

An introduction to the framework is provided in Section 3.1 followed by a

description of each component of the framework. In Section 3.2, we define the

metrics to evaluate the efficacy of the spectrum survey results. Section 3.3 presents

our implementation of the SSF along with the results for some preliminary data

processing algorithms.

3.1 Introduction to Spectrum Survey Framework

Fig. 3.1 shows the high level structure of SSF1. The energy (power) in the

spectrum is measured by the measurement subsystem. The data management

block formats the measurement data and transfers it to a storage device or to

a centralized database where it can be archived for processing and analysis. It

enables collaborations on the study of the spectrum by supporting distributed

1This framework which was developed by Dinesh Datla has been published in reference [33]
and has been reproduced here with the written permission of all the authors.
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Figure 3.1. High level structure of SSF representing the different
phases of spectrum surveying.

and simultaneous data collection, and also providing a mechanism to easily share

data among researchers. For instance, the archived data can be published to the

research community via the world wide web.

In the processing and analysis block, statistical methods are used to process

the data. The processed data is analyzed in order to retrieve information about

the spectrum utilization, which in turn is used to model the spectrum occupancy

in the modeling block. Together, the processing and analysis block, as well as the

modeling block, perform the characterization of the spectrum.

3.1.1 Measurement Subsystem and Parameters of Spectrum Sensing

A swept-type spectrum analyzer can be used to measure the power distribu-

tion in a certain frequency band. The term measurement test is used to refer to an

experiment designed to collect spectrum measurement data. During a measure-

ment test, the measuring instrument scans across the sweep bandwidth Bs, whose

limits are specified by Fstart and Fstop. The sweep across Bs does not occur in a

continuous manner but in steps of Br, where Br is the bandwidth resolution. Ev-

ery time Bs is scanned, a bandpass filter of bandwidth Bd is stepped in frequency
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increments [29] of Br, where Bd is referred to as the binwidth. At each frequency

step, the filter bandwidth is centered about channel center frequency fi, the time

domain signal is passed through the filter, and the measurements are collected for

a certain period of time. This period of time is referred to as the dwell time, Td.

The average of the measurements collected across Bd over the time Td is stored

as the power at that frequency channel. Thus, the sensing mechanism cannot

resolve the power of frequencies within the resolution bandwidth. For statistical

independence of measurements collected from two adjacent channels, it should be

ensured that Bd ≤ Br is satisfied.

The power across all the frequencies in the band Bs is not measured simul-

taneously, but with a certain delay. The sweep time Ts is the total time taken

to complete a single sweep over the bandwidth Bs. The sweep time depends on

several factors. In addition to the time taken by the measuring instrument to step

across the bandwidth, time is consumed by the software that provides control sig-

nals to specify the sweep parameters to the measurement subsystem and the data

management block also consumes time for transferring the data through buffers to

the database. Let this additional time be denoted by Ta. The measurement test is

conducted over a certain period of time as specified by the measurement test du-

ration T . Within the duration of a measurement test, the measuring instrument

can perform one or more sweeps across the sweep bandwidth.

Since Ts is finite, the instantaneous power residing in a certain frequency chan-

nel cannot be measured continuously over time, but instead it is measured in time

steps as specified by the sweep time resolution Tr. Thus, Tr specifies the time

elapsed between two consecutive measurements of a certain frequency channel,

which implies that Tr is directly proportional to Ts. Fig. 3.2 illustrates spectrum
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Figure 3.2. (a) Instantaneous channel states where ‘1’ represents
the channel being occupied and ‘0’ represents the channel being avail-
able, (b) Representation of spectrum sensing as sampling with a pulse
train.

sensing to measure the activity in frequency channel fi. The instantaneous chan-

nel occupancy state u(fi, t) is a continuous function of time t. For time duration

T beginning from time instance t0, the measurement subsystem collects samples

of u(fi, t), and the resulting sequence of Nt samples {x(n)} can be represented as:

x(n) = u(t0 + nTr), n = 1, 2, . . .Nt. (3.1)

Note that Ts and Br are inversely proportional to each other resulting in a

trade off between Tr and Br. A measurement sweep can be specified by sweep

time, sweep bandwidth (Fstart, Fstop) and the bandwidth resolution. Equations (3.2)

through (3.6) represent the relationship between all the sensing parameters:

Ts = ( Nf Td ) + Ta , (3.2)

Nf = Bs/Br, (3.3)

Nt = T/Ts, (3.4)
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Tr ∝ Ts, (3.5)

M(fi, tj) =
1

Bd Td

∫ tj+
Td
2

tj−Td
2

∫ fi+
Bd
2

fi−Bd
2

P (f, t) ∂f ∂t, (3.6)

where P (f, t) represents the instantaneous power measured by the measuring in-

strument, and both f and t are continuous time variables of frequency and time

respectively. M(fi, tj) represents a measurement sample collected at frequency

channel fi and time instance tj (see Eq.(3.7)).

The accuracy of the measurements depends on the receiver properties like sen-

sitivity and selectivity, as well as on the resolution parameters of the measurement

subsystem.

3.1.2 Representation of Spectrum Measurement Data

The dimensions of the spectrum, namely frequency, time, spatial extent, and

signal format, are independent of each other such that any measurement sample

can have a unique set of coordinates in the electrospace. The electrospace can

be defined with respect to a specific receiver, i.e, it describes the RF operating

environment of a receiver in units of radio field strength [2].

The frequency and time attributes refer to the frequency of the RF energy and

the time it occurs. Spatial extent is the spatial volume that the receiver senses.

It can be specified by the geographical location of the receiver (location type:

urban, suburban, rural), the angle-of-arrival (azimuth) of the signal and the beam

pattern of the antenna. Theoretically, if an isotropic antenna is used, the spatial

extent is a sphere around the receivers antenna.

Signal format can be specified in terms of the type of polarization and mod-

ulation. It accounts for the use of orthogonal signal spaces, such as horizontal
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polarization, vertical polarization, and code space2. In CDMA, two signals can

be transmitted at the same time and on the same frequency channel but with

different spread codes. In order to resolve between these two signals, knowledge

about the specific spreading codes that have been used is required in order to

de-spread the signals.

The measurements used for our analysis were taken with an omni-directional

antenna, so the spatial extent is not relevant since the angle-of-arrival cannot be

resolved. The measurements only include the power of the received signal, so the

signal format is also not relevant. This is due to the fact that the power mea-

surements do not convey any information about the polarization of the signal and

also we do not attempt to de-spread signals in order to resolve the occupancy at

different power levels. From our measurements, we can only resolve the spectrum

occupancy along the frequency and time dimensions.

The spectrum measurements were collected along frequency and over a period

of time. Accordingly, a set of measurements can be represented as an Nt × Nf

matrix M defined as [33]:

M = [M(fi, tj)] , (3.7)

where Fstart ≤ fi < Fstop , Tstart ≤ tj < Tstop,

i = 1, . . . Nf , j = 1, . . . Nt,

given that M(fi, tj) is a sample of the RF power (expressed in dBm) residing in

frequency channel fi at sweep time instance tj , Fstart and Fstop specify the start

and stop frequencies for the measurement sweep, Tstart and Tstop specify the start

and stop time instances for the sweep, and Nt and Nf are the number of time

2Achieved using spreading codes.
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instances and the number of frequency channels for which the measurements are

collected. The sweep time parameters can be set such that the measurements can

be collected over a few minutes or hours or days.

Across the sweep bandwidth (along frequency), the first measurement sample

is collected at frequency Fstart. Thereafter, the measurements are taken in steps

of Fstep at frequencies specified by:

fi = Fstart + (i − 1 × Fstep) , i = 1...Nf (3.8)

where Nf =
Fstop − Fstart

Fstep
.

Note that the power at Fstop is not measured, instead the sweep ends at Fstop−Fstep.

Likewise, the measurement test duration is quantized into steps of Tstep. The time

instances at which the measurements are collected are:

tj = Tstart + (j − 1 × Tstep) , j = 1...Nt (3.9)

where Nt =
Tstop − Tstart

Tstep

.

While Tstep can be set by the user, the minimum time step is directly proportional

to the sweep time. The parameters Fstep and Tstep correspond to the bandwidth

resolution and the sweep time resolution of the measurements.

For analysis purposes, we can represent a sub-matrix of M by MF,T which is

defined over a range of frequencies and time instances specified by F and T , where

F represents a sub-range of the frequency range [Fstart . . . Fstop) and T represents

a sub-range of the time range [Tstart . . . Tstop).
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Figure 3.3. Stages involved in the processing and analysis of spec-
trum measurements.

3.1.3 Pre-processing and Classification of Spectrum Data

The data can be retrieved from the database for processing and analysis.

Fig. 3.3 presents the block diagram of the different stages of processing involved

in the processing and analysis block.

Initially, pre-processing operations involving data enhancement are performed

on the data, followed by classification of the data. Data enhancement is done to

condition the data and make it more suitable for classification. The pre-processed

data can be represented as Mp = [Mp(fi, tj)].

In a given matrix of enhanced data Mp, each matrix element Mp(fi, tj) is

classified into two classes, namely signal and noise, based on a decision threshold.

The decision threshold η can be an estimate of the average noise power above

which the signals occur. The threshold η is used for bilevel classification as:

Mc(fi, tj) =

⎧⎪⎨
⎪⎩

1,Mp(fi, tj) ≥ η

0,Mp(fi, tj) < η

⎫⎪⎬
⎪⎭ , (3.10)

where Mc = [Mc(fi, tj)] represents the matrix of classified data which is called

the spectrum availability function.

The threshold needs to be optimum in order to achieve classification with min-

imum errors. If the threshold is set too high, weak signals may not be identified.

If the threshold is set too low, then even some noise samples can get classified
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as signals. Either of the two cases result in erroneous classification. For crit-

ical applications such as spectrum sensing for cognitive radios, highly accurate

classification techniques are required.

3.1.4 Characterization of Spectrum Utilization

The processed spectrum data is analyzed in order to determine the charac-

teristics of the spectrum occupancy from the data. Since the frequency channel

is treated as the fundamental unit for the purposes of dynamic spectrum man-

agement [15], the characterization of the spectrum can be done on a channel

by channel basis. The following spectrum utilization parameters (SUPs) can be

determined from the spectrum measurements:

1. Statistics on channel availability,

2. Received signal power,

3. Ambient noise power, and

4. Signal characteristics such as duty cycle, ‘on’ and ‘off’ times of a bursty

signal, and signal bandwidth.

The matrix M, in conjunction with Mc, can be used to extract samples of

the parameters, compute the probability distributions of the parameters from

these samples, and estimate statistics, such as mean and variance, from these

distributions.
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Signal and Noise power Statistics: We can define mathematical functions to

convert a measurement sample x expressed in dBm to milliwatts and vice versa:

linear(x) = 10x/10 (mW) = y (3.11)

decibelm(y) = 10 log10 y (dBm) (3.12)

Given a column vector of measurements collected from frequency channel fi, along

with their classification {M(fi, tj), Mc(fi, tj)}, samples of signal power and noise

power can be extracted. The measurements M(fi, tj) and the decision threshold

η can be converted to the linear scale as:

Ml(fi, tj) = linear(M(fi, tj)), (3.13)

ηl = linear(η). (3.14)

Note that, η can be the local or global decision threshold which has been used

to classify the measurement M(fi, tj), or it can be the average noise level in the

channels that are adjacent to the signal.

From the spectrum availability function, Mc, the number of time instances

when the signal has been present in the channel can be determined as:

K =
Nt∑
j=1

Mc(fi, tj). (3.15)

A measurement which has been classified as signal has both signal and noise power

components. A set of K samples of the signal power can be extracted from the
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spectrum data M(fi, tj) as:

S(fi) = { s(k) : s(k) = Ml(fi, tj) − ηl, ∀ tj where Mc(fi, tj) = 1} ,(3.16)

where k = 1, 2, . . . , K.

In a similar manner, a set of Nt − K samples of the noise power N(fi) can be

extracted as:

N(fi) = { n(r) : n(r) = Ml(fi, tj), ∀ tj where Mc(fi, tj) = 0} , (3.17)

where r = 1, 2, . . . , Nt − K.

The extracted samples can be used to compute histograms of the signal and noise

power in the channel and statistics such as mean, standard deviation, dynamic

range = Max {S(fi)} − Min {S(fi)}, and threshold crossing rate P (S(fi) ≥ s).

For instance, the signal-to-noise ratio can be determined as:

S(fi) = Mean {S(fi)} , (3.18)

N(fi) = Mean {N(fi)} , and (3.19)

SNR(fi) = 10 log10

(
S(fi)

N(fi)

)
. (3.20)

Signal Characteristics: Given a row vector of classified spectrum data from

Mc, the signal edges can be identified in order to determine the signal bandwidth.

In a similar manner, given a column vector from Mc, the start and stop times

of signal transmissions can be identified in order to determine the ‘on’ and ‘off’

times of the signals.



33

3.1.5 Modeling of Spectrum Measurements

The SUPs extracted from the measurements can be incorporated into the pro-

posed comprehensive model of the spectrum measurements that characterizes both

the dynamics of (a) spectrum utilization, and (b) primary signal characteristics.

In our spectrum model, a measurement can be represented as a function of various

components, such as signal, noise, and channel occupancy, using:

M(fi, tj) = (Mc(fi, tj) × S(fi, tj)) + N(fi, tj) , (3.21)

where M(fi, tj) ∈ M.

S(fi, tj) and N(fi, tj) are the signal and additive noise power components of the

measurement sample M(fi, tj). Each component of the model can be modeled

as a random variable. For instance, the channel occupancy is represented by a

random variable Xfi
and Mc(fi, tj) represents a sample of the random variable.

To model the spectrum occupancy in a channel, we propose a modified Markov

model that incorporates the time varying nature (non-stationarity) of the channel

occupancy. While the Laycock-Gott occupancy model is complicated and not

suited for real time applications, the previously proposed Markov models [34]

assumed the channel to be stationary. However, in practice the model parameters

may be time varying. For instance, the usage of cellular mobile channel varies

drastically with the time of the day with the peak usage being during the business

hours.

The dynamics of Xfi
can be modeled by a two-state Markov chain, which is

shown in Fig. 3.4. The parameters of the markov model are the state probabilities

denoted by P0 and P1 corresponding to the states ‘0’ and ‘1’ and the state tran-
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Figure 3.4. A simple markov model of a channel’s occupancy states

sition probabilities P00, P01, P10, and P11. A weighted approach has to be taken

to compute the model parameters where, more weight is given to the current and

most recent instantaneous channel states. For a particular frequency channel fi

and at a particular time instance tk, the weighted count of past occurrences of

state ‘1’ is determined from Mc and is denoted by Nw(Mc(fi, tj) = 1) and the

corresponding weighted state probability is defined by:

P i
1(tk) =

Nw(Mc(fi, tj) = 1)

Ntk

(3.22)

P i
0(tk) = 1 − P i

1(tk) (3.23)

where j = 1, . . . Ntk .

The weights are given based on the time of occurrence of the channel state

relative to tk. The variable tk is a discrete time variable, where the total number

of measurement samples collected from time tj= 1 to (tk − 1) is denoted by Ntk .

The estimate of the true probability P i
1(tk) is computed from the finite set of

measurement samples using:

P̄ i
1(tk) =

1

Ntk

Ntk∑
j = 1

Mc(fi, tj) · exp (γ(tk − j)) (3.24)

where γ is the forgetting factor for 0 ≤ γ ≤ 1. The forgetting factor has been in-
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troduced into 3.24 in order to give more weightage to the most recent samples and

less weightage to past samples. Similarly, the weighted probability of transitions

from state ‘0’ to state ‘1’ in channel fi is computed as:

P i
01 =

Nw(Mc(fi, tj+1) = 1,Mc(fi, tj) = 0)

Ntk − 1
,

where j = 1, ...Ntk − 2. (3.25)

Note that the term in the numerator represents the weighted number of occur-

rences of transitions from state ‘0’ to state ‘1’ in channel fi. In the same manner,

the other transition probabilities and model parameters can be computed.

3.1.6 Efficient Characterization of Spectrum Utilization

The time taken tk to estimate a statistically accurate markov model has to

be kept to a minimum so that the characterization period is small. In the case

of a stationary random process, as the number of measurement samples used

for computing the estimates increases, the accuracy of the estimates increases,

assuming that a consistent estimator is used. There arises a question on what

is the minimum number of measurement samples that is required in order to

estimate the parameters of the model, given finite measurement data and the

sampling limitations of the spectrum sensing mechanism. In this discussion, the

model parameters represent statistics of the random variable Xfi. We make an

assumption that the channel occupancy is piecewise stationary. We base our

discussion over a segment of time when the channel occupancy is stationary. We

also assume that the random variable Xfi is ergodic and that the measurement

samples are observed independently and under similar experimental conditions.

With these assumptions, the Ntk measurement samples that are collected from
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the frequency channel fi can be viewed as constituting the sample space of Xfi.

The time spacing, Tr, between the samples is the sweep time resolution of the

sensing mechanism. If T is the total time duration for which the measurement

samples are collected then T = Ntk · Tr. If the resolution is improved then the

number of samples Ntk is increased. The relationship between the measurement

test parameters and the statistical error 3 of the estimated parameters can be

derived.

Consider the following expression for estimation of the true probability P i
1 for

the case of the stationary channel occupancy:

P̄ i
1 =

1

Ntk

Ntk∑
j = 1

Mc(fi, tj), (3.26)

σ2
s =

1

Ntk − 1

Ntk∑
j = 1

(Mc(fi, tj) − P̄ i
1(tk))

2. (3.27)

In Eq. (3.26), Mc(fi, tj) represents a sample of the two state random variable

Xfi and the summation of the samples, which is the number of instances when

the channel has been occupied, follows a binomial distribution B(Ntk , P
i
1). P̄ i

1 is

a consistent estimator of P i
1 and it can be treated as a random variable with a

certain sampling distribution. For large Ntk (Ntk > 10), the binomial distribution

can be approximated with a normal distribution4 and P̄ i
1 can be treated as a

Gaussian random variable with normalized form denoted as z ∼ N (0,1). If α is

the confidence coefficient, we can denote the 100α percentage point by zα [35]:

P (zα) =

∫ zα

−∞
p(z) dz = Prob[z ≤ zα] = 1 − α. (3.28)

3Statistical error is the error between the estimate of a parameter and the actual parameter
itself and it arises due to estimation from a finite number of samples.

4The normal distribution is N (Ntk
P i

1, Ntk
P i

1(1 − P i
1)).
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Let tn be the corresponding random variable with a student t distribution of n

(n = N − 1) degrees of freedom and its 100α percentage point is denoted as tn,α.

χ2
n represents the corresponding random variable with a chi-square distribution

of n (n = N − 1) degrees of freedom with 100α percentage point denoted as

χ2
n;α. In the derivation of the sampling distribution, we make an assumption that

the samples of the channel occupancy are not correlated with each other and this

assumption can be met by sampling the channel occupancy at random intervals

as described in [36]. From the sampling distribution of P̄ i
1, the confidence interval

for P i
1 can be defined as [35]:

P
[

P̄ i
1 − d ≤ P i

1 < P̄ i
1 + d

]
= 1 − α, (3.29)

d =
σs tn,α√

Ntk

. (3.30)

It is seen from Eq. (3.29) that for a given degree of uncertainty, as the number

of samples Ntk increases, the confidence interval narrows and the accuracy of the

estimate increases.

This discussion is applicable to the estimation of statistics of the other SUPs

and parameters of the markov model where we can treat the SUP as a random

variable X (or a random process) with true mean μx and true standard deviation

σx, represent a statistical parameter of X by Φx, and its estimate by Φx. Φx can

be treated as a random variable with a certain sampling distribution [35]. The

estimators of mean and variance of X, are shown below:

x =
1

Ntk

Ntk∑
j=1

xj , (3.31)
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s2 =
1

Ntk − 1

Ntk∑
j=1

(x − xj)
2. (3.32)

The corresponding confidence intervals are [35]:

P [ x − d ≤ μx < x + d ] = 1 − α, (3.33)

where d =
s tn;α/2√

Ntk

=
σx zα/2√

Ntk

,

P

[
n s2

χ2
n;α/2

≤ σ2
x <

n s2

χ2
n;1−(α/2)

]
= 1 − α, (3.34)

where n = Ntk − 1.

3.2 Evaluation of Spectrum Survey Results

To evaluate the efficacy of the SSF and compare the performance among dif-

ferent implementations of this framework, a uniform performance evaluation pro-

cedure is required.

3.2.1 Quantitative Performance Evaluation

The processed data that appears at the output of the classification algorithm

is compared with the ground truth. The ground truth which is obtained from

a reliable source represents knowledge about the true presence or absence of a

signal at a particular frequency and time instance. The decision made by the

classification algorithm may or may not conform with the ground truth, which

results in correct or incorrect classification. A false alarm occurs when a noise

sample has been incorrectly classified as signal, and a miss detection occurs when

a signal sample has been incorrectly classified as noise.

The ground truth can be obtained from the licensing database maintained
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by the spectrum regulatory agencies. For instance, the FCC maintains licensing

information on the channel allocations of the FM broadcast spectrum (88-108

MHz). The FCC website provides a database of all the radio stations within a

certain radius around the measurement site which is located in Lawrence, Kansas,

USA, along with the height and GPS coordinates of the towers5. Using this data,

along with FM propagation curves provided by the FCC, we can determine the

approximate ERP (effective radiated power) that the measurement subsystem

should be recording [33]. This data yields a list of FM stations (center frequencies

of the FM stations) that can be captured above a specified power level (this has

been assumed to be -100 dBm). This list constitutes the ground truth. All the

frequency bands of 150 kHz each with the center frequencies obtained from this list

are tagged as ‘occupied’ (represented as ‘1’). In this way, a matrix T = [T(fi, tj)],

of the same dimensions as the spectrum utilization matrix Mc, can be constructed

from the ground truth. By comparing every element of Mc with the corresponding

element of T, we can construct a model contingency table as shown in Table 3.1.

From this table, we can compute the false alarm rate and the miss rate [37].

Table 3.1. Model contingency table showing relationship between
ground truth and measurement classifications

Decision by
classification algorithm

Signal Noise Total

Ground Signal a b a + b

Truth Noise c d c + d

Total a + c b + d N = a + b + c + d

In Table 3.1, the quantities a, b, c, and d represent the count of the joint

5http://www.fcc.gov/mb/audio/fmq.html, coordinates of Lawrence: 38o 57’ 36”N, 95o 15’
12”W
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occurrences of the respective variables. The false alarm rate, the miss rate, and

the weighted error can be computed as:

FA ( % ) =
c

c + d
× 100, (3.35)

Miss Rate ( % ) =
b

a + b
× 100, (3.36)

WE ( % ) =
w1 b + w2 c

N
× 100. (3.37)

In the case of dynamic spectrum access systems, the highest priority must be

given to minimizing the miss rate. This is to prevent the radio from inadvertently

identifying transmissions from other services as noise and subsequently transmit-

ting to cause interference to them. On the other hand, the false alarm rate should

also be kept to a minimum so that the largest available area of spectrum can

be identified and used [33]. Thus, for our evaluation a miss detection has been

penalized more than a false alarm by considering w1 = 0.85 and w2 = 0.15.

3.2.2 Qualitative Performance Evaluation

A linear transformation from a matrix of measurements M, into a matrix of

gray scale values I, is given by:

I(fi, tj) =
1.0 − 0.0

Max {M} − Min {M} × ( M(fi, tj) − Min {M} ) . (3.38)

The matrix I = [I(fi, tj)], can be displayed as a discrete image or a gray scale

intensity plot. The range of the pixel values is 0.0 ≤ I(fi, tj) ≤ 1.0, where 0.0

represents the luminance of the darkest pixel and 1.0 represents the luminance of

the brightest pixel. This image is termed as a spectrum image. In the absence of

the ground truth, the performance of the classification algorithms can be evaluated
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Figure 3.5. Spectrum images generated from FM band measure-
ments (88-92.99 MHz) (left) and upper TV band measurements (72.99-
77.99 MHz)(right).

qualitatively by viewing the spectrum image which is generated from the matrix

of classifications that occurs at the output of the classification algorithm. It is

called so since the signal and noise data in the measurement data set have been

segmented. This method may not be as accurate as the quantitative evaluation.

Fig. 3.5 displays the spectrum images that were generated from FM band

measurements and the upper TV band (54-87 MHz) measurements. In these

images, bright patterns (straight lines) can be observed against a dark background.

The bright patterns are either due to signals or intermodulations, while the dark

background is mostly due to noise.

3.3 Implementation of Spectrum Survey Framework

Fig. 3.6 shows the block diagram of our implementation of the SSF. A HP

8594E spectrum analyzer has been used as the measurement subsystem. The

Spectrum Miner 6 software implements the measurement subsystem’s user inter-

face, the software module that controls the measurement subsystem, and the data

6The spectrum miner software has been developed in-house at the University of Kansas
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Figure 3.6. Implementation of SSF

management layer. The Spectrum Miner is a software tool designed to automate

the collection and storage of spectrum measurements. These measurements can

be exported from the database into analysis programs in Matlab or Mathematica

or can be archived in a web-based spectrum data repository. Reference [33] gives

more details on the architecture of the spectrum miner software and the database.

In this implementation, the main focus of this thesis is the processing and analysis

of spectrum measurements7.

Simple techniques have been used for performing preliminary investigation on

the processing of the spectrum measurements which are discussed next.

3.3.1 Classification Based on Analysis of Cumulative Density Function

Let S be a random variable, representing the measured power. A cumulative

distribution function (CDF) of S, computed from the measurement data M, can

be defined as:

CDF (S,M) = P (S ≤ M(fi, tj)) , M(fi, tj) ∈ M (3.39)

Based on this CDF, simple techniques can be used to determine the decision

threshold. The next two examples will illustrate this approach.

7In this implementation, the MySQL database, the spectrum miner software, and the Matlab
codes to import data from MySQL into Matlab have been developed by Ted Weidling and Rory
Petty at the University of Kansas.



43

−100 −80 −60 −40 −20 0
0

0.5

1

Measured power (dBm)

C
D

F(
S,

M
)

Empirical CDF

T = − 87.2 dBm
p = 0.5

Figure 3.7. CDF plot of the FM band measurement data. Thresh-
old T for p = 0.5 is determined from CDF.

Example 1: p-tile thresholding -

The threshold is chosen based on a priori knowledge about the spectrum uti-

lization [38]. For instance, if it is known that the fraction of the spectrum being

utilized is p, then choose a threshold T such that p fraction of the measurements

have values greater than T , i.e.

1 − p = CDF (S = T,M) (3.40)

Fig. 3.7 shows the CDF computed from the FM band measurements.

Example 2: Compute a marginal CDF, denoted by CDFfi
, for each frequency

in the sweep bandwidth and classify a frequency channel fi based on a statistic

of CDFfi
. For example, determine the maximum measurement for frequency

channel fi and if the maximum is above a certain threshold, classify fi as an

occupied frequency channel. This threshold can be manually set based on some

factors such as the noise floor of the measurement subsystem.

These techniques possess the following limitations: First, a priori knowledge

about the spectrum occupancy is required for the classification, and second, the
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Figure 3.8. Histogram of the FM band (88-108 MHz) measure-
ments.

classification is dependent upon manually selecting a threshold value. Due to these

drawbacks, these classification techniques cannot be implemented in an automated

fashion in a cognitive radio.

3.3.2 Classification Based on Histogram Analysis: Mode Method

The global histogram of the measurements can be expected to be bimodal8.

In the bimodal histogram, the two peaks belong to the signal and noise samples

respectively. The measurement values at the edges9 of the signals occur less fre-

quently in the measurement data, as compared to the signal and noise values.

Thus, the valley between the peaks in the histogram may belong to the measure-

ment values at the edges of the signals. The value of the local minimum between

the two peaks or the center point (mean) between the peaks can be chosen as

the decision threshold [38] (see Fig. 3.8). Table 3.2 presents the performance

evaluation of this method.

If we consider a sparsely occupied band, such as the upper TV band (54-

87 MHz) where there is presence of a large percentage of background noise, the

8A bimodal histogram has two peaks.
9Boundary separating a signal pattern from the noise in the vacant adjacent channels.
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Table 3.2. Performance evaluation of mode method applied on FM
band (88-108 MHz) data.

Threshold Miss FA Error Weighted
(dBm) (%) (%) (%) error (%)

Local Minima = -81 17.3194 23.6210 21.9196 6.5613

Mean of peaks = -82.5 15.3942 26.0085 23.1426 6.3809

histogram may not be bimodal as seen from Fig. 3.9. In such cases, additional

processing has to be done to make the histogram bimodal [38]. The Laplacian op-

erator is applied on M. The Laplacian forms the spatial second partial derivative

of a function F (x, y) (i.e., the rate of change in slope) and has the mathematical

form [38]:

G(x, y) = −∇2 { F (x, y) } (3.41)

where ∇2 =
∂2

∂x2
+

∂2

∂y2
.

Consider the case when a signal is surrounded by uniform noise10 present in the

adjacent channels. Ideally, at the signal edges the gray values increase from a

low plateau level (belonging to the uniform background noise) to the peak power

level of the signal waveform in a smooth ramp-like manner. In the plateau and

along the ramp where the slope is constant, the Laplacian is zero. However, in

the regions where there is a transition from the low plateau to the ramp or from

the ramp to the signal peak, the Laplacian has a large magnitude. A histogram

formed only from measurement samples that lie at coordinates corresponding to

a high magnitude of Laplacian is expected to be bimodal [38].

A threshold11 L(n) = μL + (n σL) is used to identify the high magnitude

10Uniform noise refers to noise which does not vary much across the target frequency band.
11This threshold is different from the decision threshold.
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Figure 3.9. Normalized histogram of the Upper TV band (54-87
MHz) measurement data (left), and normalized histogram of selected
samples in the TV band data (right).

Laplacian values, where μL and σL are the mean and standard deviation of the

Laplacian values, and n is a positive integer which can be specified. Fig. 3.9

shows the normalized histogram of the TV band (54-87 MHz) measurements with

Laplacian greater than L(4). Fig. 3.10 shows the results of classification of the

TV band (54-87 MHz) data for different values of L(n). As seen from Fig. 3.10,

the best classification has been obtained for n = 4.

The drawback in the mode method is that, the local minima has to be selected

manually. This approach can be automated by analytically representing the shape

of the histogram and then performing an optimization of this analytical expression.

However, such methods are not always accurate [38].

3.4 Chapter Summary

The high level structure for the Spectrum Survey Framework has been pre-

sented followed by discussion of each component of the framework. In this frame-

work, the procedures involved with the collection, processing, and analysis of

spectrum measurements have been described in terms of mathematical expres-
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Figure 3.10. Results of classification of TV band (54-87 MHz) mea-
surements using various values of L(n) (from top to bottom):(a) Orig-
inal spectrum image, (b) Image of data classified with n = 2, (c) n =
4.

sions and suitable notations. A modified markov model that accounts for the

time varying nature of the channel occupancy was also presented. The issue of

efficient characterization of the channel occupancy was addressed by presenting

an expression to determine the minimum time required to estimate the channel

model parameters. Our implementation of the SSF has been presented along with

preliminary processing methods.
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Chapter 4

Threshold-Based Classification of

Spectrum Measurements

In this chapter, we discuss the various challenges for classifying the spectrum

measurements (Section 4.1). In Sections 4.2-4.5, techniques have been proposed

to over come these challenges and process the data. The proposed classification

algorithms can estimate the threshold based on the statistical properties of the

data and do not require any a priori knowledge about the signals present in the

spectrum. The proposed techniques have been applied to the spectrum data and

the results are shown in Section 4.6.

4.1 Challenges for Threshold-Based Classification of

Spectrum Data

There are several factors that affect the performance of the classification algo-

rithms:

Range of ambiguous classification - Due to the presence of weak signals that

2007/02/02
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Figure 4.1. Histograms of noise and signal measurement samples
taken from FM band (88-108 MHz) measurement data. The his-
tograms are seen to overlap over a large area.

occur below the noise level, there can be some overlap between the histograms of

the signal1 and noise samples present in the measurement data (see Fig. 4.1 2).

Across the range of measurement values over which the histograms overlap, there

can be ambiguity in the classification of the measurements. Due to this overlap in

the histograms, by setting a certain threshold there is always a tradeoff between

the miss detection rate and the false alarm rate.

Variance in signal and noise power levels- The noise and signal samples

in the data can have a wide range of values. In addition, the signal-to-noise ratio

can vary across the data.

Biasing effect- The spectrum measurements may capture signals received from

distant transmitters as well as transmissions from nearby sources. As a result,

weak signals need to be detected in the presence of strong signals. When the

statistical classification techniques are applied on this data which contains a high

dynamic range of signals, the stronger signals in the data set may bias the thresh-

1The signal being referred here is not the pure signal but contains noise added to it.
2The signal and noise samples were sorted from the data with the help of the ground truth.
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old estimation process. The resulting threshold may be so high that it may not

detect weak signals, thereby leading to miss detection.

Ghost signals and ghost noise- An inherent property of threshold-based tech-

niques is that they bifurcate a set of data into two classes, irrespective of whether

samples from both the classes are present or not in the data. Thus, when applying

thresholding techniques on a data set containing only noise samples, the stronger

noise samples get wrongly classified as signals. Such signals are termed as ghost

signals and they results in false alarms. Similarly, ghost noise samples can appear

when classifying data that contains only signals resulting in miss detection.

To counter these problems, we propose the following techniques for the classi-

fication of measurement data:

1. Optimum thresholding,

2. Data enhancement and noise suppression,

3. Recursive thresholding, and

4. Adaptive thresholding.

Ideally, optimum thresholding can achieve the best classification results in sce-

narios where there is overlap in the signal and noise histograms. Furthermore, by

suppressing the noise without affecting the signals, the noise histogram is shifted

to lower power levels such that the overlap in the histograms is reduced. Recur-

sive thresholding and adaptive thresholding can be used to counter the biasing

effect and the problem of non-uniform power levels. Otsu’s algorithm and the

data enhancement techniques have been presented from existing concepts [38–40].

The algorithms for recursive thresholding are being proposed in this thesis. The
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adaptive thresholding algorithm presented in this thesis has been built upon the

original sliding window approach which has been proposed in [10].

4.2 Optimum Thresholding using Otsu’s Algorithm

Otsu’s algorithm [39] selects an optimum threshold based on the properties of

the histogram of the data and it does not assume any model for the histogram. The

optimum threshold results in the maximum separation between the two classes of

data, namely the signal and the noise classes. The algorithm also returns a metric

that indicates the separability of the two classes, which is useful to quantify the

goodness of the threshold. Before applying Otsu’s algorithm, the measurement

data in M is converted to the gray scale image I.

The data is quantized into L levels with values s × [1, 2, ..L], where s is a

scaling factor. Let the ith gray level value be denoted by gi and its probability of

occurrence is denoted as pi. The mean of the distribution is defined as:

μT =
L∑

i=1

gi · pi.

A threshold, T = gk, can be used to bifurcate the probability distribution into

the noise class C0 and the signal class C1, with the levels [1, 2, .. k] ∈ C0 and levels

[k+1, ..L] ∈ C1. For a certain threshold set at the kth gray level, the between-class

variance (see Appendix A) is defined as:

σ2
B (k) =

[ μT ωk − μ(k) ]2

ωk (1 − ωk)
, (4.1)
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where ωk =

k∑
i=1

pi, (4.2)

and μ (k) =

k∑
i=1

gi pi. (4.3)

A measure of class separability can be defined as [39]:

α = σ2
B/σ2

T . (4.4)

Otsu’s algorithm involves determining the gray level of the optimum threshold,

k∗, that maximizes the measure of class separability:

α (k∗) = max1≤k<L σ2
B(k)/σ2

T . (4.5)

4.3 Enhancement of Spectrum Measurement Data

The measurement data is refined by performing the following operations:

1. Suppress the high spatial frequency components by low pass filtering and

reduce the noise variance by time averaging, and

2. Improve the contrast between signals and noise i.e. enhance the weak signals

and suppress the noise, which leads to an improvement in the SNR of the

data.

Eventually, these operations can result in increasing the separation between

the noise and signal histograms and thus improve the class separability.



53

4.3.1 Clipping and Contrast Manipulation

Clipping is done to reduce the dynamic range of the measurements and thus

reduce the biasing effect. Assuming that the left most and the right most por-

tions of the histogram 3 contain only noise and signal samples respectively, the

histogram can be clipped at power levels ηl and ηr. The clipping operation can be

combined with contrast manipulation where the contrast between the signals and

noise can be manipulated by appropriate amplitude scaling, as represented by:

Ip(fi, tj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

( ηr )p , I(fi, tj) ≥ ηr

[ k · ( I(fi, tj) − ηl ) ]p , ηl < I(fi, tj) < ηr

( ηl )p , I(fi, tj) ≤ ηl

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (4.6)

where k =
1.0 − 0.0

ηr − ηl

, 0.0 < ηl, ηr < 1.0,

M(fi, tj) ∈ M, and

p ≥ 1.

I(fi, tj) is the gray scale equivalent of M(fi, tj), and Ip(fi, tj) is the processed

gray scale measurement sample. The measurements can be raised to the power

p. For p < 1, the right most portion of the histogram, consisting mainly of the

signal samples, gets suppressed while the left portion, consisting mainly of the

noise samples, gets scaled up.

3Note that this is an histogram of power measurements.
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4.3.2 Low Pass Filtering for Noise Suppression

The low pass filtering operation is performed using a spatial-domain averaging

filter, of dimensions r × c, with the impulse response given by:

H =
1

r × c
1r×c, (4.7)

where 1r×c is a r × c matrix of ones.

The Gaussian low pass filter can also be used and its normalized impulse

response is [40]:

GN = [ GN(r, c) ] , (4.8)

where GN (r, c) =
G(r, c)∑

r

∑
c G(r, c)

, G(r, c) = exp

(
− r2 + c2

2 σ2

)
,

where r, c are the dimensions of the filter with the impulse response matrix GN

and σ is the standard deviation of the Gaussian impulse response4.

The filtering involves convolution between input matrix I and the impulse

response H, to give the filtered output as [38]: Ip = I ⊗ H. Multiple stages of

filters can also be used. The enhancement operations described so far are generally

applied on gray scale values.

4.3.3 Time Averaging of Spectrum Measurement Data

In certain bands with fixed channelization, such as the FM and TV broadcast

bands, most active licensees transmit continuously for 24 hours. In such cases,

all the measurement sweeps of data collected across a band represent redundant

4The Matlab built-in functions for Otsu’s algorithm, Gaussian low pass filter, and the median
filter have been used for the processing.
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Figure 4.2. Power spectrum of the 54-62 MHz band in the upper
TV spectrum before time averaging (top) and after time averaging
(bottom).

data. By averaging over such redundant sweeps of data, which is affected by

independent random noise, the noise variance is reduced, as shown in Figs. 4.2 and

4.3. However, this method may not be effective when applied to bands occupied

by bursty signals. The average power at frequency fi, Ma(fi), can be computed

from the measurements as:

Ma(fi) =
1

Nt

Nt∑
j=1

M(fi, tj), Fstart ≤ fi < Fstop. (4.9)

4.3.4 Post-classification Processing: Median Filtering

The classified output may contain ghost signal samples that appear as grains

in the spectrum image of the classified data. Median filtering can be done to

remove these grains and reduce the false alarms. The median filter consists of

a sliding window that extracts subsets of the data and replaces the center data

sample in the subset by the median of the subset.
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Figure 4.3. Power spectrum of the 88-93 MHz band in the FM
broadcast spectrum before time averaging (top) and after time aver-
aging (bottom).

4.4 Classification by Recursive Thresholding

Recursive thresholding classification is useful for detecting signals with a wide

range of power levels.

4.4.1 Recursive One-Sided Hypothesis Testing algorithm

We5 have proposed the Recursive One-Sided Hypothesis Testing (ROHT) al-

gorithm that performs classification of the spectrum measurements based on the

concept of one-sided hypothesis testing. The algorithm works for various levels of

statistical significance. This algorithm makes the assumptions that the measure-

ment data follows a Gaussian distribution and that there are sufficient number

of measurement samples so that the estimates of mean and standard deviation

obtained from the data are accurate.

The algorithm begins by assuming that the set of measurements contains

5The ROHT algorithm has been conceptualized and developed by Dinesh Datla, Ted Wei-
dling, and Rory Petty at the University of Kansas, and has been published in [33]. The algorithm
and some of the results have been reproduced here with the written permission of all the authors.
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mostly noise samples. A percentage of the measurement data (specified by the

z-value) on the far right of the Gaussian distribution is identified as signal samples

and the rest as noise. The signal portion is discarded and this process is repeated

iteratively on the remaining unclassified measurements. As a result, at every it-

eration, the standard deviation is reduced as shown by Fig. 4.4. The algorithm

stops iterating when the change in the standard deviation between two consecu-

tive iterations becomes less than or equal to ε, where ε is an arbitrary positive

value that can be specified. In every iteration, the stronger signals are discarded,

thereby reducing their biasing effect on the weaker signals. As the number of

iterations increases, there can be an improvement in the miss rate but at the cost

of an increase in false alarm rate.

The arguments that are passed to the algorithm are the z-value corresponding

to the confidence level and the ε value. The algorithm is mathematically repre-

sented as:

Let

• M be the set of measurement samples,

• S be the set of signals within M,

• Sk be a subset of S for the kth iteration of the algorithm,

• Q be the set of noise samples within M,

• Qk be a superset of Q for the kth iteration of the algorithm, Qk may contain

signals,

• μk , σk = mean and standard deviation of the elements of Qk, and

• θk= decision threshold to identify the signal portion for the kth iteration.
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Figure 4.4. Normal distribution of measurement samples to illus-
trate the first four iterations of ROHT algorithm for a 99 % confidence
interval.

Initialize S = �, So = �, Qo = M , k = 0

do

• θk+1 = zvalue ∗ σk + μk

• Sk+1 = {qk | qk ∈ Qk , qk ≥ θk}

• Qk+1 = Qk − Sk+1 (set subtraction)

• S = S ∪ Sk+1

• k = k + 1

Until ( σk−1 − σk ) ≤ ε

Fig. 4.4 shows multiple iterations of the algorithm6, demonstrating how it

progressively extracts signals from the noise in a band. Adjusting the confidence

interval changes the amount of the distribution’s tail that is considered signal.

6The Gaussian curves have been generated from the statistics of the FM band (88-108 MHz)
measurements after every iteration of the ROHT algorithm and not generated directly from the
data itself. These curves illustrate the working of the ROHT algorithm.
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One drawback with this algorithm is that not all distributions are Gaussian.

Central limit theorem is applicable only when there are a large number of samples

available such that the actual distribution converges to the Gaussian distribution.

Similarly, the sample mean and standard deviation may not be equal to the actual

statistics if sufficiently large number of samples are not available (Eqn. 3.31). The

resulting uncertainties impose limitations on the detection of signals in low SNR

conditions [25].

4.4.2 Modified Recursive Otsu’s Algorithm

We have modified the recursive Otsu’s algorithm [41] such that its working

principle is similar to that of the ROHT algorithm. This algorithm differs from

the ROHT algorithm in that at every iteration the threshold is now estimated

using Otsu’s algorithm instead of the one-sided hypothesis testing used in the

ROHT algorithm.

4.5 Adaptive Thresholding

A global threshold may not be optimum for the entire set of measurements,

especially when the noise and signal statistics vary across the data. In this case,

classification can be done using local threshold values [40] that vary over the

measurement set as a function of the sample values M(fi, tj) and local statistics of

the data. While a global threshold is represented as T = C {M}, a local threshold

is T (fi, tj) = C {MF,T , S(MF,T)} where C represents an algorithm that estimates

the local threshold T (fi, tj) as a function of the measurement samples in MF,T

and some local statistic S(MF,T). In the case of a partitioned window approach,

the measurement matrix M is divided into disjoint submatrices, each denoted by
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MF,T, and the threshold is estimated independently for each subset.

4.5.1 Sliding Window Approach

In the sliding window approach, M is divided into overlapping submatrices.

This approach offers the benefit of a partitioned window approach, as well as

improves over it by:(i) Helping in reducing the biasing effect, and (ii) Reducing

the appearance of ghost signals and ghost noise. Every iteration, the sliding

window is moved by a certain step7 along the data and it extracts a submatrix

MF,T from the data M. A local threshold is computed and used to classify the

measurement samples in MF,T. Since the classification is performed in overlapping

submatrices, every element of M is classified more than once. However, each time

it is classified in the presence of a different set of neighboring matrix elements.

Suppose, there is a strong signal in the vicinity of a weak signal, there will be at

least one submatrix that will contain the weak signal and not the strong signal

and in that particular submatrix, the weak signal may be identified correctly. In

this manner, both biasing effect and the appearance of ghost samples among the

classified data can be reduced.

If the sliding window is of dimensions l × m, then every measurement sample

in M will be classified Y times, where Y = l ·m. The independent votes v(k) (or

classifications) of a measurement sample M(fi, tj) can be combined to obtain the

final vote as:

vnet =
1

Y

Y∑
k=1

v(k) (4.10)

Then a final decision on the classification of the sample can be made based on

7In our processing, we have taken this step to be 1 unit.
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Figure 4.5. Various types of sliding windows moved along: (from
left)(a) time, (b) frequency, and (c) both time and frequency.

a criterion specified on the combined vote. The different criteria are defined as:

• Simple combining criterion - According to this criterion, M(fi, tj) is classified

as signal only if vnet > 0.

• n% majority criterion - M(fi, tj) is signal only if vnet ≥ n/100. For instance,

in the case of 50% majority, vnet ≥ 0.5 must be satisfied.

• Super majority criterion - M(fi, tj) is signal only if vnet = 1.

The different types of sliding windows that can be used are (see Fig. 4.5):

1. Strip of width wt slided along time: The submatrix MF,T at each iteration

is defined as MF,T = [M(fi, tj)]; fi ∈ F , tj ∈ T , where F is the range of

frequency channels in the sweep bandwidth [Fstart . . . Fstop). T is a subrange

of the range [Tstart . . . Tstop) and it spans wt sweep time instants every iter-

ation. The total number of iterations will be Nt − wt + 1 where Nt is the

number of time instants within the measurement test duration.

2. Strip of width wf slided along frequency range: The submatrix MF,T at

each iteration is defined as MF,T = [M(fi, tj)]; fi ∈ F , tj ∈ T , where F
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Table 4.1. Spectrum measurement data sets.

Spectrum Band BW Binwidth Time
Resolution Resolution

FM Band 88-108 MHz 10 kHz 10 kHz 19.1 sec

Upper TV Band 54-87 MHz 10 kHz 10 kHz 34.4 sec

Paging band 929-931 MHz 10 kHz 10 kHz -

DTV band 638-668 MHz 10 kHz 10 kHz 36 sec

Analog TV band 198-128 MHz 10 kHz 10 kHz 36 sec

Cellular band 824-849 MHz 10 kHz 10 kHz 27.47 sec

is a sub range of [Fstart . . . Fstop) and it spans wf frequency channels every

iteration. T is the entire measurement time range [Tstart . . . Tstop). The total

number of iterations will be Nf −wf +1 where Nf is the number of frequency

channels within the sweep bandwidth.

3. A sliding window of dimensions wf ×wt: Here F and T are subranges of the

full frequency range and time range. The total number of iterations will be

(Nf − wf + 1) × (Nt − wt + 1).

4.6 Performance Evaluation of Processing Techniques

The processing techniques have been applied on real world spectrum mea-

surements. The spectrum measurement data (see Table 4.1) was collected at

the Information and Telecommunications Technology Center at the University of

Kansas, Lawrence (rural environment), Kansas (USA), over a period of 24 hours.

The data has been calibrated. While all the measurements have been collected

with a preset attenuation of 10 dB, the cellular band measurements were made

with 0 dB attenuation.
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Three types of spectrum bands have been targeted: Bands with fixed channel-

ization such as the FM and TV broadcast bands, and bands occupied by digital

‘on/off’ signals such as the 929-931 MHz paging band.

4.6.1 FM Radio Spectrum: 88-108 MHz

Data enhancement and Otsu’s classification - All the data enhancement

operations were performed on the FM spectrum measurements in a cascade man-

ner, followed by classification using the Otsu’s algorithm. Table 4.2 presents the

results for various values of the data enhancement parameters. In this table, the

following key has been used: sc and nc refer to signal and noise clipping, L = x

refers to a cascade of the spatial averaging filter and the Gaussian filter where the

length of each of the filters is x, CS refers to contrast stretching, and p refers to

the power law of the amplitude scaling. In this table, the parameters are listed in

the order of their occurrence in the cascade of operations.

From Table 4.2, it is evident that the data enhancement operations have im-

proved the performance of Otsu’s classification algorithm. Case 2 shows improve-

ment in the results as compared to Case 1, where the classification has been done

without any data enhancement. It has been observed that, contrast stretching

and the use of multiple stages of the filters did not improve the results. Case 3 is

worth noting for the improvement in the miss rate although the false alarm rate

is degraded by a small percentage as compared to Case 2. Fig. 4.6 shows a single

time sweep of the FM band measurement data after data enhancement (Case 3).

The measurements were time averaged before applying Otsu’s algorithm and the

results are shown as Cases 6-8. It is observed that time averaging improves the

false alarm rate since the noise power is reduced. Overall, the best results have



64

Table 4.2. Results of data enhancement operations on FM broad-
cast spectrum (88-108 MHz) measurement data.

Case Parameters Miss FA Error Weighted
No. (%) (%) (%) error (%)

1 Otsu’s algorithm, no enhancement 24.9279 16.5625 18.8212 7.5345

2 L = 4 21.7692 14.4307 16.4121 6.5762

3 sc = -55 dBm, nc = -98 dBm, 17.4581 18.0527 17.8921 5.9834
L = 4

4 sc = -55 dBm, nc = -98 dBm, CS, 17.4959 17.9333 17.8152 5.9790
p = 1, L = 4

5 sc = -64 dBm, nc = -98 dBm, 13.8231 21.9614 19.7641 5.5772
p = 1, L = 4

6 Time averaging and classification 22.7778 11.7123 14.7000 6.5100

7 sc = -55 dBm, nc = -98 dBm, 17.4074 15.4795 16.0000 5.6900
L = 4, time averaging

8 Time averaging, sc = -55 dBm, 18.1481 14.6575 15.6000 5.7700
nc = -98 dBm, L = 4

9 sc = -55 dBm, nc = -98 dBm, 17.2852 17.9336 17.7585 5.9307
L = 4, median filter L = 5

been obtained by applying the data enhancement techniques along with the time

averaging technique before Otsu’s classification. From Case 9 in Table 4.2, it

is observed that there is little improvement in the results after applying median

filtering to the classified FM band data.

Recursive thresholding - The ROHT algorithm was applied on the FM band

data. The results of the ROHT algorithm with ε = 0.5 for various values of

the confidence intervals are illustrated in Figs. 4.7 and 4.8, and also tabulated in

Table 4.3(a). From these figures, the tradeoff between miss rate and false alarm

rate is clearly pronounced. From the plots we can also infer that good results
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Figure 4.6. Power spectrum of FM band (88-94 MHz) before (top)
and after data enhancement (bottom).
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Figure 4.7. Results of ROHT classification with ε = 0.5 applied on
FM band data (without data enhancement):Tradeoff in miss rate and
false alarm rate for various confidence levels.

can be obtained for the FM band by operating the algorithm at around 96 %

confidence level beyond which the miss rate drastically increases. A similar trend

has been observed for the case when ε = 0.05 as shown in Table 4.3(b) and also

when the ROHT algorithm was applied on enhanced data (with parameters as

in Case 3 of Table 4.2). Table 4.3(c) shows the results of applying the modified

recursive Otsu’s algorithm on FM measurement data.
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Figure 4.8. Results of ROHT algorithm with ε = 0.5 applied on FM
band data (without data enhancement) for various confidence levels:
error rate (left), and weighted error rate (right).
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Figure 4.9. Results of ROHT algorithm with ε = 0.5 applied on
FM band data (without data enhancement): Duty cycle plots for the
confidence intervals of 98 % (top) and 99.5 % (bottom).

Adaptive thresholding- The sliding window approach was used along with

the Otsu’s algorithm, as well as the ROHT algorithm. Table 4.4 presents the clas-

sification results for various dimensions of the sliding window while using Otsu’s

algorithm. The simple combining operator criterion has been.

Interesting trends are observed from the results in Table 4.4. There was little

improvement in the results by using the sliding window moved across time, as

compared to the case where sliding window has not been used. The reason behind
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Table 4.3. Performance evaluation of recursive thresholding applied
on FM band (88-108 MHz) data: (a) ROHT algorithm with ε = 0.5,
(b) ROHT algorithm with ε = 0.05, and (c) Recursive Otsu’s algorithm
. Data enhancement with sc = -55 dBm, nc = -98 dBm, and L =4 has
been performed to the data before thresholding.

Confidence Miss FA Error Weighted
Level (%)/ε (%) (%) (%) error %)

(a) ε = 0.5
90 1.6985 50.5119 37.3323 5.9209
94 5.9117 34.5668 26.8299 5.1418
95 8.3757 29.6694 23.9201 5.1710
99.9 99.9702 0.0909 27.0583 22.9531

(b) ε = 0.05
90 0.0993 74.6542 54.5244 8.1974
92 0.1535 71.8168 52.4677 7.8992
95 0.5766 61.4434 45.0094 6.8604
99.9 99.9702 0.0909 27.0583 22.9531

(c) Recursive Otsu
ε = 0.5 0.0348 80.9202 59.0812 8.8688
ε = 1.5 0.4211 64.1711 46.9586 7.1234

this trend can be explained as follows: All the sweeps of measurement data possess

similar statistical properties since the occupancy in the FM band (transmit power,

and noise) does not vary significantly over time. Thus, by increasing the window

size, the number of sweeps of data available for the local threshold estimation

increases, however it results in increased redundancy in the data which does not

improve the classification results much. As before, there was no change in results

with increasing window size, when using the window moved along time along with

the ROHT algorithm.

In the second case, where a window is moved along the frequency range, as the

window width is increased to 25 there is an improvement in the false alarm rate

and miss rate. As seen in Fig. 4.10, a similar trend has been observed when the
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Table 4.4. Results of applying Otsu’s algorithm on enhanced (sc =
−55dBm, nc = −98dBm, L = 4) FM data (88-108 MHz) along with
sliding window approach

Type of Window Miss rate FA rate Error Weighted
Sliding Window size w (%) (%) rate (%) error

rate (%)

No sliding window - 17.4581 18.0527 17.8921 5.9834

Strip of width 5 17.3731 17.6063 17.5433 5.9150

wt slided 10 17.3659 17.6113 17.5450 5.9139

across time 15 17.3593 17.6193 17.5491 5.9133

25 17.3431 17.6393 17.5593 5.9117

Strip of width 5 11.9233 41.9454 33.8394 7.3294

wf slided 10 5.8415 42.3225 32.4726 5.9749

across frequency 15 6.0272 41.6021 31.9969 5.9387

25 5.7628 38.2955 29.5117 5.5159

wt × wf 5 0.2350 90.2441 65.9416 9.9357

window 10 1.1385 74.3384 54.5744 8.4013

15 3.0132 66.3498 49.2489 7.9568

25 3.4771 50.7768 38.0058 6.3580

sliding window approach was used along with the ROHT algorithm on enhanced

data (sc = −55dBm, nc = −98dBm, L = 4). There are two reasons for this

trend to occur. First, an increase in the window size would lead to an increase in

the number of samples available for estimating the local threshold and thus the

classification results improve. It should be noted that the measurement samples

along frequency do not represent redundant data since the signal and noise powers

can vary drastically from station to station. Second, by increasing the window size

beyond 20, the incidence of ghost signals and ghost noise is decreased. Every FM

station band occupies 150 kHz. Thus, in the FM band data, the measurements
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Figure 4.10. Results of ROHT algorithm used with sliding window
approach on enhanced FM band data: Miss rates (left), and false alarm
rates (right). Red curve represents the case of a strip slided along
frequency and blue curve represents the case when square window has
been used.

collected at 15 consecutive frequency steps which coincide with a station band,

represent samples of signal power. The measurements from the adjacent guard

bands and buffer spaces represent samples of noise power. If a window of width

less than 15 is used, then as the window is slided along frequency, there will be

instances when the window overlaps over data consisting of only signal measure-

ments (measurements from occupied station band) and no noise measurements.

In this case, the classification of the windowed measurements results in the occur-

rence of ghost noise. In a similar manner, the classification of measurements from

the vacant portion of the FM spectrum results in the appearance of ghost signals.

In the third case, where a square window has been used, the miss rate increases

and the false alarm rate decreases with increase in window size.

Figs. 4.11 and 4.12 shows the image of the measurement data before and after

classification. The measurements have been enhanced before classification with

sc = −55dBm, nc = −98dBm, and L = 4.

It is evident from Fig. 4.12 that almost all the signals have been correctly
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Figure 4.11. Spectrum image of FM band (88-108 MHz) measure-
ment data.
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Figure 4.12. Spectrum image of FM band (88-108 MHz) measure-
ment data after classification using sliding window along time of width
25 and Otsu classification.

classified excluding some weak signals. In addition, in the case of the strong

signals the sidelobes have been wrongly identified as signal. As a result the strong

signals appear wider in Fig. 4.12 as compared to Fig. 4.11.
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Figure 4.13. Instantaneous power spectrum of digital TV band
(638-668 MHz).
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Figure 4.14. Digital TV band (638-668 MHz): Otsu’s classification
(red) of averaged measurements (black).

4.6.2 Digital Television Band: 638-668 MHz

A single time snapshot (instantaneous power spectrum) of the digital TV band

(638-668 MHz) is shown in Fig. 4.13. In this figure, the channel 44 signal can be

observed at 650-656 MHz. It is also observed that there is a lot of noise power

variation in the instantaneous power spectrum, which can degrade the accuracy

of classification algorithms. A comparison of Fig. 4.13 and Fig. 4.14 clearly shows

that there is significant reduction in the noise variations by time averaging the

data over 25 time snapshots. The time averaged data was then classified using

Otsu’s algorithm.

Fig. 4.15 shows the result of applying ROHT (95% confidence level and ε = 1.5)
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Figure 4.15. Digital television band (638-668 MHz): mean power
spectrum (black) and its ROHT (95% confidence level and ε = 1.5)
classification (magenta).

algorithm on time averaged data. Similar classification result has been obtained

by using the recursive Otsu’s algorithm on the mean power spectrum. It has

also been observed that the sliding window approach (width = 1000, moved along

frequency) improved the results of Otsu’s algorithm.

4.6.3 Analog Television Band: 198-228 MHz

Measurements were collected from the analog television spectrum (198-228

MHz) at a distance of 200 ft from the channel 13 (210-216 MHz) television tower8.

The presence of spurious signals, intermodulation products, and the raised noise

level is clearly seen from Fig. 4.16. As a result, the noise level varies with frequency

and a sliding window approach to classify the data can produce good results.

The recursive Otsu’s algorithm gave very poor false alarm rate even after time

averaging. As compared to Otsu’s algorithm, better results were obtained by time

averaging the data followed by Otsu’s classification (see fig. 4.17). Time averaging

followed by ROHT algorithm with 96% confidence level and ε = 0.5 (see fig. 4.18)

gave good results.

8More details on the measurement campaign are provided in Section 5.1.1
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Figure 4.16. Instantaneous power spectrum of analog television
band (198-228 MHz).
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Figure 4.17. Analog television band (198-228 MHz): mean power
spectrum (black) and Otsu classification of time averaged data (ma-
genta)

Otsu’s algorithm was used with a sliding window moved along frequency (win-

dow size = 2000) on time averaged analog TV band data. By using a 20% com-

bining criterion decent results were obtained (see fig. 4.19). By using a sliding

window moved along time and the square sliding window with window sizes of 5

- 25 on refined data there were several false alarms.

Compared to Fig. 4.18 and Fig. 4.19, the best results have been obtained by

using the ROHT algorithm (96% confidence, ε = 0.5) along with a sliding window

of size 2000 that is moved along frequency on time averaged data (see fig. 4.20).

In this case, 20% combining criterion has been used. However, the same sliding
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Figure 4.18. Analog television band (198-228 MHz): mean power
spectrum (black) and its classification (magenta) using ROHT with
96% confidence and ε = 0.5.
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Figure 4.19. Analog television band (198-228 MHz): mean power
spectrum (black) and its Otsu’s classification (magenta) using sliding
window width 2000 moved along frequency (20% criterion used).

window when used with the recursive Otsu’s algorithm yielded several false alarms.

4.6.4 Paging Band: 929-931 MHz

Otsu’s algorithm was applied to the measurements collected through a single

sweep across the 929.4-930 MHz band. Otsu’s algorithm using a non-overlapping

window size of 30 was also applied on the data and this produced slightly improved

results. As seen from Fig. 4.21, the signal detection at the edges of the signal has

been improved. This is due to the localization of the noise level estimation and

moreover, by using a partitioned window approach the influence of the stronger
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Figure 4.20. Analog television band (198-228 MHz): mean power
spectrum (black) and its ROHT (96% confidence, ε = 0.5) classifi-
cation (magenta) using sliding window width 2000 moved along fre-
quency (20% criterion used).
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Figure 4.21. Otsu’s algorithm applied to paging band (929.4-930
MHz) data using global threshold (top) and using local threshold (bot-
tom).

signal on the weaker signal is eliminated thereby enabling improved threshold

estimation.

Measurements have been collected from the 929-931 MHz paging band. Fig. 4.22
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Figure 4.22. Spectrum image of paging band (929-931 MHz) data.

shows the intensity plot of the paging band data. In the figure, the dots represent

the signals that go ‘on’ and ‘off’ over time. When applied on this data, the ROHT

algorithm with 99.5% confidence level and ε = 1.5 gave the same performance as

the Otsu’s algorithm. In this data, the dynamic range of the signals is small thus,

a higher confidence level and higher epsilon has been used in order to avoid false

alarms. This shows that the confidence level and epsilon are dependent on the

dynamic range of the signals present in the data. The recursive Otsu’s algorithm

generated a lot of false alarms.

In order to demonstrate the feature extraction tools, the measurements along

channel 930.04 MHz were first classified using Otsu’s algorithm (see fig. 4.23).

By analyzing the classified data, the mean ‘on’ time of the signals occupying the

channel was computed as 3.8Ts where Ts is the time resolution of the measure-

ments.

4.6.5 Cellular Band: 824-849 MHz

The measurements collected from the cellular band (824-849 MHz) were clas-

sified using the ROHT algorithm with 96% confidence and ε = 0.5. By applying
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Figure 4.23. Measurements from channel 930.04 MHz classified by
Otsu algorithm.
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Figure 4.24. Spectrum image of cellular band (835.71-838.96 MHz)
after ROHT (96% confidence and ε = 0.5) classification.

median filtering to the classifications, most of the ghost signals that appear as

grains in Fig. 4.24 were removed (see Fig. 4.25).

Figs. 4.26 and 4.27 show a sweep of the data before and after the classifica-

tion. Otsu’ algorithm gave nearly 100% miss detection even when used with noise

filtering. However, when applied to the averaged spectrum measurements it gave

good results (see Fig. 4.28). The recursive Otsu’s algorithm gave very high false

alarms even after averaging the measurements.

While using a sliding window along with Otsu’s algorithm on time averaged
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Figure 4.25. Spectrum image of cellular band (835.71-838.96 MHz)
after ROHT (96% confidence and ε = 0.5) classification and median
filtering.
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Figure 4.26. Instantaneous power spectrum of cellular band
(834.49-838.99 MHz).

data, a window size of 500 gave very high false alarm rate while a window size

of 1000 gave decent results. This indicates that the window size depends on the

occupancy of the band under consideration. A band with low occupancy is prone

false alarms when classification is done. However, this can be reduced by using

a sliding window approach with a suitable window size such that every subset of

the data that is extracted by the sliding window contains signals.
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Figure 4.27. Cellular band (834.49-838.99 MHz): Classification of
data after ROHT (96% confidence and ε = 0.5) classification and me-
dian filtering.
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Figure 4.28. Cellular band (824-849 MHz): (black) mean power
spectrum and its classification (magenta) using Otsu algorithm.

4.6.6 Summary of Results

The results achieved on the FM band measurements were not as good as the

results obtained with the other data sets. In fact, the FM band data represents

the worst case scenario due to several reasons: The FM band data was collected

at a close proximity from the transmission tower for the radio station KJHK 90.7

MHz. Hence the presence of intermodulations and LO sideband noise is expected.

In fig. 4.29, sidelobes for FM signals at 91.5 MHz and 96.5 MHz are clearly seen.

The sidelobes get classified as signals thereby resulting in false alarms. In addition,

there are weak signals at frequencies 101.75 MHz and 106.5 MHz which occur close
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Figure 4.29. The time averaged FM band (88-108 MHz) measure-
ments (blue plot) shown along with the ground truth (yellow plot).

to the noise level and these may not be identified by the classification algorithms.

Furthermore, the dynamic range of the measurements is high.

Table 4.5 presents the comparison among the various processing techniques

used on the measurements. Time averaging improved the performance of the clas-

sification algorithms when applied on the bands with fixed channelization such as

the FM band and the television bands. However, time averaging did not perform

well when applied to the paging band due to the random nature of the channel

occupancy in this band. The ROHT and Otsu’s algorithms performed well on all

the bands with the help of time averaging. The recursive Otsu’s algorithm gave
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Table 4.5. Summary of results.

Bands Time Otsu’s ROHT Rec. Otsu Sliding
averaging algorithm algorithm algorithm window

FM band
√ √ √× × √

Analog TV
√ √ √ × √

Digital TV
√ √ √ √ √

Paging band × √ √ × NA

Cellular band
√ √ √ × √×

a high false alarm rate with most of the bands. The sliding window approach

improved the results of the classification algorithms. However, in the case of the

cellular band which is sparsely occupied, smaller window sizes of less than 1000

gave high false alarms. This exposed a drawback that the window size has to be

set according to the occupancy of the target band. The sliding window was not

required for the paging band since the noise level in the band is uniform.

4.7 Chapter Summary

In this chapter, we have identified the challenges to the energy detection of

signals from spectrum measurement. The proposed techniques have been applied

on spectrum bands with different types of spectrum activity. Using suitable tech-

niques such as data enhancement, optimum thresholding, recursive thresholding,

and adaptive thresholding, we have shown through results that the performance

of the classification algorithms can be improved.
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Chapter 5

Applications of Spectrum Survey

Framework

In this chapter, we demonstrate two proposed applications of the SSF that

are pertaining to DSA networks. In Section 5.1, we present a feasibility study of

unlicensed DSA in the presence of television signals in the underutilized television

bands. The study has been divided into two phases with the overall objective of

determining the conditions by which both television and unlicensed transmission

can co-exist with each other in the same spectral bandwidth.

The spectrum might contain different types of signals, individually requiring

scans with different resolutions. Conventional non-adaptive wideband spectrum

sensing approaches could potentially be inefficient since they employ the same

scanning resolution. In Section 5.2, we present a novel spectrum sensing frame-

work that can adapt its parameters across the spectrum of interest according

to the characteristics of its occupancy. The SSF can be incorporated into this

framework in order to support the radio in learning its wireless environment in an

efficient manner. We also propose a dynamic scheduling algorithm for spectrum

2007/02/02
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sensing. This algorithm allocates different time resolutions to different portions

of the spectrum.

5.1 Feasibility Study of Unlicensed Cognitive Radio

Operation in TV bands

Although several methods have been proposed for avoiding harmful interfer-

ence to the TV receivers [24, 42–44] there is still a debate on the non-interfering

operation of unlicensed devices. There are many who claim that the unlicensed

devices will cause harmful interference to the primary users [45], while others de-

bate that DSA can be performed in a transparent manner [46]. Proponents of

the DSA approach favor the TV bands for DSA due to several reasons: There

is substantial amount of unused spectrum available for DSA and, in addition,

the propagation properties in these frequency ranges, such as low propagation

attenuation, are beneficial for long range mobile and line-of-sight (LOS) commu-

nications [44]. Moreover, the fixed channel allocations resulting in deterministic

usage patterns in these bands are favorable for accurate spectrum sensing [23].

However, there are several challenges for the unlicensed usage of these bands.

The presence of strong TV signals near the secondary user can lead to the genera-

tion of intermodulation products, and saturation effects in the vacant bands [47].

The unoccupied portions of the spectrum might also be licensed for other pur-

poses, such as public safety [48].

In order to provide input to these debates and assess the challenges to DSA,

the feasibility of unlicensed device operation in the TV spectrum needs to be

studied. In addition, there is a need for a standardized procedure to measure the

effects of interference from unlicensed users on the TV signals [49]. Our feasibility
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study has been split into two phases:

• Phase 1 - Test viability of cognitive radio operation near TV transmitters by

determining the interference from TV transmissions to the unlicensed user

(cognitive radio), and

• Phase 2 - Viability of TV co-existing with cognitive radios by studying the

impact of cognitive radio transmissions on TV reception.

In the first phase, we measure spurious signals in the vacant TV bands and evalu-

ate the error robustness of OFDM-based transmissions (secondary signals) in the

unoccupied portions of the spectrum at varying distances from the TV station.

In the second phase, we determine the impact of increased interference from unli-

censed devices directly to the TV received video quality. While the two scenarios

have been examined in reference [50], only the first scenario is being discussed in

this thesis1.

An investigation studying the operation of public safety transmissions in televi-

sion bands, when both digital and analog television were present, was conducted as

described in reference [51]. Although several insights were obtained regarding the

interaction between licensed and unlicensed transmissions, the investigation did

not quantify the impact on the video quality of the television signal nor the effects

of operating unlicensed devices at close distances to television transmitters. Ref-

erence [52] describes an experiment conducted on a discontiguous OFDM testbed

to show that unlicensed device operation in discontiguous bands is possible. Un-

like this study, our feasibility study is achieved by conducting a combination of

field measurements and computer analysis.

1Dr. Alexander Wyglinski, Ted Weidling, and Rory Petty of the University of Kansas were
also involved in planning this study.
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Figure 5.1. Measurements collected at distances 200 feet, 600 feet,
and 5000 feet from the WIBW television station (210-216 MHz, 650-
656 MHz) tower.

5.1.1 Measurement Campaign

The station broadcast tower for the WIBW television channel located west of

Topeka, Kansas, USA, was selected because it was in a spectrally quiet location,

and its analog and digital stations were separated by over 400 MHz. This allowed

for the measurements taken to include unused surrounding channels such that any

intermodulation or saturation effects can be clearly identified.

Fig. 5.2 displays the measurement equipment. An omni-directional discone

antenna is connected to the input port of a IFR-2398 spectrum analyzer. The

Spectrum Miner software was installed on a laptop computer and it controls the

spectrum analyzer over either an RS-232 or a general purpose interface bus (GPIB)

connection.

The measurements were collected in the TV channels 13 (analog television,

210-216 MHz, ERP 2: 316 kW) and 44 (digital television, 650-656 MHz, ERP:

193 kW). As shown in Fig. 5.1, the measurements were collected3 at increasing

line-of-sight distances of 200, 600, and 5000 feet from the WIBW TV tower. The

2ERP is an abbreviation for effective radiated power.
3Dr. Alexander Wyglinski, Ted Weidling, and Rory Petty of the University of Kansas helped

me by collecting these measurements.
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Table 5.1. Measurement site GPS coordinates.
Site Coordinates Elevation
A 39◦ 00.408 N, 96◦ 02.956 W 1298 ft.
B 39◦ 01.565 N, 96◦ 02.914 W 1090 ft.
C 39◦ 05.261 N, 96◦ 03.169 W 1000 ft.

GPS coordinates of the measurement locations in Topeka are listed in Table 5.1.

In order to study the impact of intermodulation and saturation effects on

secondary transmissions, 12 MHz of bandwidth on either side of the TV channels

were also recorded. Thus, the total bandwidth spanned by each measurement set is

30 MHz with a spectral resolution of 10 kHz. At each measurement site, 25 sweeps

were recorded over the 30 MHz bandwidth for both the analog and digital TV

channels. These measurements can be used in an evaluation of the cognitive radio

performance as well as help set guidelines on the effective operation of cognitive

radios in the vicinity of TV stations.

5.1.2 Viability of Unlicensed Device Operation Near TV Transmitters

In order to analyze the impact of primary user transmissions over the secondary

transmissions, we considered the vacant bands in the vicinity of the TV band and

used it to transmit OFDM symbols. The measured power spectrum was averaged

over 25 sweeps in order to obtain the average noise power in the frequency channels

adjacent to the occupied TV bands. The plots of the average power spectrum

measured at increasing distances from both the analog TV and the DTV towers

are shown by Figs. 5.3 and 5.4. This computed average noise power was used for

the OFDM simulation.

The analog television measurements collected at 200 ft from the tower were

averaged and classified using Otsu’s algorithm with sliding window moved along
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Figure 5.2. Picture of the field measurement setup showing the dis-
cone antenna mounted on a tripod stand, laptop and spectrum ana-
lyzer (placed inside vehicle).
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Figure 5.3. Mean power in the analog TV Spectrum with channel
13 (210-216 MHz), at various distances from TV tower.

frequency (window size = 1300). The feature extraction tools were applied to

the classified data and the mean noise level was found to be -75.06 dBm with

a standard deviation of 4.6311. The maximum and minimum noise power levels
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Figure 5.4. Mean power in the digital TV Spectrum with channel
44 (650-656 MHz), at various distances from TV tower.
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Figure 5.5. SNR of analog TV Signal at 211.13 MHz, at various
distances from TV tower.

were -60.65 dBm and -85.29 dBm. Analysis was also done in order to plot the

SNR of the television signal at 211.13 MHz at various distances from tower (see

Fig. 5.5). The bandwidth of this signal was found to be 0.31 MHz.

5.1.3 Simulation Setup

For the simulation4, we considered a QPSK modulated OFDM system having

512 subcarriers each with a bandwidth of 10 kHz. The OFDM transmission utilizes

an overall bandwidth of 5.12 MHz adjacent to the occupied TV band. Since

4The simulation has been performed using the OFDM model developed by Rakesh Rajbanshi
at the University of Kansas.
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the measurement sites were located in an open area with less obstructions in the

outdoor channel, we assumed a negligible effect of multipath signals on the system

performance. A quasi-analytical error rate estimation approach was used in the

monte carlo simulation in order to determine the bit error rate (BER) performance

of the OFDM system. In our simulation, the probability of bit error was computed

as [53]:

Pbe(ni) = Q
(√

4 S

N(ni)

)
, (5.1)

Pavgbe =
1

512

512∑
i=1

Pbe(ni), (5.2)

where S is the transmit power at each of the subcarriers, N(ni) is the average noise

power at frequency ni, Pbe(ni) is the probability of bit error for the ith subcarrier at

frequency ni, and Pavgbe is the probability of bit error for the OFDM transmission

computed by averaging the error probabilities over all the subcarriers. For a

certain signal-to-noise ratio SNR, S is computed as:

S = Minimum {N(ni)} × SNR, 1 ≤ i ≤ 512. (5.3)

5.1.4 BER Performance Results

In Figs. 5.3 and 5.4, the presence of spurious signals and the average noise level

in the bands adjacent to the occupied TV bands 210-216 MHz and 650-656 MHz

is of particular interest to us. The spikes of narrow bandwidth in the plots might

represent the channel activity of other licensed users such as public safety. The

spurious signals, which might be other licensed users such as public safety radios

or intermodulation products of the TV transmissions, can potentially interfere
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with the secondary OFDM transmissions and degrade the BER performance.

The measurements collected at a close proximity of 200 feet from the analog

TV tower contain strong spurious signals. Moreover, the noise floor is quite high

due to the saturation effects of strong TV signals at the receiver. At distances of

600 and 5000 feet, the spurious signals are weaker, and the average noise level is

lower than -90 dBm. In Fig. 5.5, it is observed that the SNR of the analog TV

signal is the least at 200 ft. from the TV tower. In spite of a strong received signal

power at this distance, due to the presence of strong intermodulation products and

noise, the SNR is low when measured close to the tower. However, at distances

further away from the tower the SNR is improved. In the vicinity of the digital TV

transmissions, the average noise level does not vary much with the distance from

the TV tower and it is below -90 dBm at all the three distances. However, there

are several spurious signal spikes in the average power spectrum when measured

at 200 feet from the DTV station.

The BER results for an OFDM transceiver operating in an AWGN channel as

well in the TV bands, are shown in Figs. 5.6 and 5.75. The BER performance of

the OFDM transceiver can be explained in terms of the varying levels of spurious

signals and noise levels at the three distances from the TV tower.

Due to the presence of spurious signals, the performance in both the DTV and

the analog TV bands is poor when compared with the AWGN channel case. In

the vicinity of the analog TV band, the performance is worse at 200 feet from

the tower. At distances of 600 feet and 5000 feet, the performance is comparable

to the AWGN channel case at low SNR conditions of up to 3 dB. However, as

the SNR increases there is no remarkable improvement in the performance as the

5These results have been published in [50] and have been reproduced here with the written
permission of all the authors.
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Figure 5.6. OFDM transceiver error performance in AWGN channel
and vacant Analog TV bands.
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Figure 5.7. OFDM transceiver error performance in AWGN channel
and vacant Digital TV bands.

BER never drops below 10−2.

Better performance has been obtained in the case of the DTV band. The

performance is poor at 200 feet distance with not much improvement at high SNRs.

However, the performance at distances farther away from the tower improves with

increasing SNR and it drops to 10−4 at an SNR of 14 dB. Moreover, at low SNR

conditions, the performance at 600 feet and beyond is comparable to that in the
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AWGN channel. It should also be noted that there is no change in the performance

for distances beyond 600 feet from the tower, due to the presence of the spurious

spikes which could be other licensed users.

The classifications of the DTV measurements performed using the Otsu’s al-

gorithm on time averaged DTV measurements were used along with an OFDM

simulation that uses 2048 subcarriers. Among the classifications, the frequencies

that have been identified as occupied by the DTV signal as well as the spuri-

ous signals were avoided while the frequencies that were found to be vacant were

used for the transmission of the OFDM subcarriers. It was found that there is

a small improvement in the BER performance as compared to the case where no

knowledge of the presence of spurious signals was used.

5.2 PASS Framework for Wideband Spectrum Sensing in

DSA networks

Various challenges are faced by DSA networks and real-time spectrum sens-

ing such as varying spectrum behavior, co-existence with different primary users,

and wireless channel fading. The radio should also be able to sense the spectrum

over a wide bandwidth and detect the presence of signals with a low probabil-

ity of interception [23]. Conventional approaches to wideband spectrum sensing

possess several limitations. First, sensing the entire target spectrum continuously

for white spaces may be inefficient in terms of time and power consumed by the

sensing mechanism. Frequency channels with a high occupancy rate need not be

sensed frequently, while channels with a high channel availability need to be mon-

itored more frequently. Second, the channel occupancy state6 can change rapidly

6The channel may be ‘occupied’ or ‘available’.
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such that the sensing mechanism may fail to keep track of the instantaneous states

due to limitations on the sampling time resolution. Such a situation can result

in an inaccurate characterization of the spectrum occupancy that can eventually

lead to inefficient secondary usage of the spectrum, as well as allowing for trans-

missions that can interfere with the primary signals. Third, the characterization

and learning period of the radio needs to be short in order to allow for rapid

radio deployment. Finally, low cost cognitive radio might have a single RF front

end. The RF circuit resources need to be shared efficiently between the sensing

mechanism and the radio communication subsystem of the radio7.

In this section, we address these issues with the proposed Parametric Adap-

tive Spectrum Sensing (PASS) architecture for dynamic spectrum sensing. In our

approach, the radio learns the statistics of the channel availability by building

an updated model of the channel occupancy, while the spectrum sensing mech-

anism adapts its parameters based on this model. Furthermore, we propose an

algorithm for efficient scheduling of the sensing mechanism’s time-frequency as-

signments, which enables efficient utilization of the radio’s resources (time, power,

and RF front end). While there has been preliminary work done on channel-aware

spectrum sensing techniques [17], there has not been a clear solution to these

wideband sensing issues. Nevertheless, the sensing in [17] is performed at fixed

intervals, while our algorithm varies the sensing schedule dynamically according

to the channel occupancy statistics.

7The radio communication subsystem handles the primary tasks of the radio namely the
transmission and reception of signals
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Figure 5.8. Block diagram of the proposed Parametric Adaptive
Spectrum Sensing architecture.

5.2.1 Parametric Adaptive Spectrum Sensing Architecture

The proposed PASS architecture enables the radio to adapt its spectrum sens-

ing mechanism to variations in the spectrum occupancy. The block diagram for

the proposed PASS architecture is shown in Fig. 5.8.

The RF front end consists of the RF components of the radio, such as the

antenna, local oscillator, mixer, and bandpass filters. During the sensing opera-

tion, the RF front end functions as a passive receiver that captures the spectrum

measurements. The spectrum sensing control mechanism controls the parameters

of the sensing operation. It translates the requirements of the sensing mechanism

into the parameters of the RF components, such as the local oscillator’s center

frequency and the intermediate frequency filter bandwidth. The RF front end

and the spectrum sensing control block constitute the cognitive radio’s spectrum
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sensing mechanism.

The data management and processing (DMP) block maintains a database of

the spectrum measurements that are either collected by the radio itself or obtained

from other radios. This database of measurements can be shared with other radios

in the DSA network, thereby enabling collaborative spectrum sensing [18]. The

data from the database is retrieved for processing to detect the presence of signals.

The characterization and learning block performs the analysis on the processed

measurement data and characterizes the radio’s operating spectrum by building a

spectrum occupancy model, as well as update the parameters of the model. The

radio’s learning process occurs in two stages: initial learning and simultaneous

learning. Initial learning refers to the stage of learning when the radio is deployed

and it learns its wireless environment before becoming fully-functional for radio

operations. In this stage of learning, the model parameters are estimated from the

measurement data. When the estimates of the model parameters reach a certain

confidence level, initial learning stops and the radio becomes fully-functional. At

this point, the stage of simultaneous learning begins. In this stage of learning,

the RF front end is shared by the sensing mechanism and the radio communi-

cation subsystem, and the learning process occurs simultaneously along with the

primary operations of the radio8. As more data is collected and analyzed, the

parameters of the model are updated, thereby improving the confidence levels of

the parameter estimates. The statistics on channel availability are made available

to the opportunistic spectrum usage (OSU) control block.

The OSU control block may be implemented in the radio resource management

8Sensing operations involve scanning for spectral white spaces and collecting data for char-
acterizing spectrum occupancy, and radio communication operations include transmission and
reception of information-bearing signals.
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layer of a DSA network that regulates the access to the available spectrum. The

OSU control block chooses a set of frequency channels among a pool of unoccupied

channels based on the wireless channel characteristics such as signal-to-noise ratio,

multipath fading, channel attenuation, and regulations imposed by a cooperative

spectrum access system or a spectrum broker. Accordingly, it decides on which

channels to sense and at what time intervals to sense them. Thus, the OSU

block decides the time-frequency assignments for the sensing operations, and radio

communication operations, as well as how the RF front end resources are shared

among them. The time-frequency code kernel block stores these assignments.

After every transmission, the learning block is notified by the kernel so that the

model parameters are updated.

The spectrum sensing mechanism adapts its sweep parameters and scanning

assignments according to the estimated model of the spectrum occupancy, hence

the name parametric adaptive spectrum sensing. The spectrum sensing control

mechanism, the DMP block, and the learning mechanism have all been derived

from the spectrum survey framework.

5.2.2 Fine Tuning of Spectrum Sensing Parameters

In the initial learning stage, the spectrum sensing mechanism must be able to

capture a signal in a frequency channel, track its instantaneous channel occupancy

and characterize its occupancy. The characterization of the channel occupancy

involves the estimation of various channel occupancy properties, such as the mean

occupancy in the channel, and the ‘on’ time of the signal. This will aid in iden-

tifying potential opportunities for reuse. For instance, in the case of a channel

occupied by a digital signal, the sensing mechanism can be switched off during
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the ‘on’ times of the signal when the channel is occupied and a secondary signal

can be time multiplexed during the ‘off’ time.

If the channel occupancy can be monitored continuously, then the channel state

and channel properties can be specified with 100% reliability. However, sensing

the wideband channel continuously is highly inefficient. In practical systems,

the sampling of the continuous-time channel occupancy process can either be

done in a periodic manner or with random sampling times [36]. While periodic

sampling with short sample times is suitable for reliable estimation of ‘on’ time, the

random sampling approach proposed in [36] overcomes the drawbacks of periodic

sampling, such as biasing and correlation between samples. In this work, we

choose periodic sampling for estimating the temporal properties of the channel

occupancy such as the signal ‘on’ time. We present an iterative version of the

periodic sampling method wherein the sample time recursively decreases until

an accurate estimate of the signal ‘on’ time can be made. In our approach, for

improved reliability, the parameters of the sensing mechanism are set adaptively

in order to capture the particular type of signal that is being targeted. In the case

of signals that occupy the spectrum continuously over time, such as FM radio

and TV broadcast signals, the channel occupancy is nearly fixed and this makes

it easier for the sensing mechanism to capture and track the channel occupancy

with less stringent requirements on the time resolution [23]. However, in the case

of digital and bursty signals, the temporal characteristics of the channel occupancy

vary dynamically, making it difficult for spectrum monitoring and also making it

complex for secondary spectrum access due to the need to avoid interference to

the primary signals [16]. For instance, the time resolution may not be fine tuned

to track a digital signal that has a short ‘on’ time. However, such signals can be
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Figure 5.9. (a) Digital signal, (b) Pulse train representing the time
sampling of digital signal by sensing mechanism

captured by suitable fine tuning of the sensing parameters in an iterative manner.

Consider a digital signal with ‘on’ time Ton occupying a certain frequency

channel as shown in Fig. 5.9(a). Fig. 5.9(b) shows a pulse train with period Ts

illustrating the time instances when that signal’s channel occupancy is sampled.

It is desired that the dwell time Td is long enough to average out the random am-

plitude variations in the instantaneous power due to the effects of modulation [14],

noise (such as the impulsive noise), multipath fading, and channel attenuation.

The reduction in the amplitude variations will result in a uniform background

noise which in turn helps in accurate estimation of the decision threshold for data

classification. However, it is important that the dwell time does not extend over

an entire cycle of ‘on’ and ‘off’ times, i.e., Td ≤ Ton.

The ‘on’ time of a digital signal can be estimated from the samples of the

channel occupancy as follows:

T̂on = ( Non + 2 ) · Ts, (5.4)

where Non is the number of samples collected during the ‘on’ time of the signal.

This number can be determined by analyzing the spectrum measurement data

collected over a channel. A factor of 2Ts has been added to the estimate to

account for uncertainties in the channel occupancy due to the finite sampling

time. It accounts for the channel occupancy during the time elapsed between the
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last sample in the signal’s ‘off’ time and the first sample in the succeeding ‘on’

time, and between the last sample in the signal’s ‘on’ time and the first sample

in the succeeding ‘off’ time. Due to this uncertainty, we safely assume that the

channel is occupied during these time instances and hence 2Ts has been added to

the ‘on’ time estimate. This factor introduces an error in the estimate which is

expressed as follows:

error ≤ ( 2 Ts/Ton) × 100 %, (5.5)

T̂on = Ton + ( error × Ton / 100 ). (5.6)

Eq. (5.6) shows the relationship between the estimated ‘on’ time and the error.

From Eq. (5.6), it is clear that by reducing Ts, the error is reduced and, in turn,

the estimate of ‘on’ time is more accurate. Ts can be iteratively decreased such

that the error reaches a tolerable limit and the signal is reliably captured.

5.2.3 Proposed Scheduling of Spectrum Sensing Assignments

An efficient scheduling of the time-frequency assignments of the spectrum sens-

ing mechanism would improve the time resolution of the sweeps besides increasing

the efficiency of the spectrum sensing. We present a novel algorithm that sched-

ules the sweeps both along time and frequency, based on the channel occupancy

statistics. The algorithm performs a backoff in the time resolution every time the

channel is detected to be occupied. The backoff can be linear, or exponential.

Fig. 5.10 illustrates the linear backoff in time resolution for the case when the

channel is always occupied and for the case when it is vacant throughout the ob-

servation time. The objective is to minimize the number of scanning assignments

and avoid wasteful sensing over presumably occupied segments of the spectrum. In



100

Channel
occupied

Channel
vacant

time

time

2 3

Figure 5.10. Backoff in sweep time resolution.

addition, by minimizing the scanning assignments the sweep time can be reduced.

In this way, better time resolution can be provided to channels that are available

with high probability. The details of the proposed algorithm are presented next.

Let Nc be the number of channels required by the radio for transmission. De-

pending on the time-bandwidth requirements of the radio and the availability of

the same in the spectrum, Nc can be varied over time. For our discussion, we as-

sume Nc is fixed, with no specific requirement on the time duration of the channel

availability. Nc number of channels with the highest probability of availability P i
0

are selected and we can represent them as a set of channels {fi} , i = 1, 2...Nc.

These channels may not be contiguous in frequency. For the ith channel, the sweep

time resolution is expressed as niτ which is a multiple of the fundamental sample

time τ and ni is a variable scaling factor. The time-frequency assignments for the

spectrum sensing mechanism are stored in matrix A = [A(fi, tj)] where A(fi, tj)

specifies if the radio has to scan channel fi at time instance tj . Fig. 5.11 shows

the flowchart for the proposed algorithm for a linear backoff case.

We assume a total time of T for our simulation. Initially, the sensing mech-

anism is assigned to scan all the frequency channels {fi} at all time instants

tj = 1, 2, . . . , T and all the values in A are set to ‘scan’. During each time in-

stance tj , before scanning the frequency channels, the sensing mechanism first
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Figure 5.11. Flowchart of proposed scheduling algorithm.
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reads from the corresponding row in A and scans only those channels that have

been scheduled for sensing. After sensing, based on the perceived channel oc-

cupancy state Mc(fi, tj), ni is either incremented or set to the default value of

one. Incrementing ni results in backoff in the time resolution for sensing channel

fi. Accordingly the sensing schedule for the frequency channels at future time

instances is updated in A. The maximum backoff N can be specified.

5.2.4 Simulation Setup

In our computer simulation, we randomly generated the spectrum occupancy

in frequency channels with a bandwidth of 33 MHz and a 10 kHz spacing between

adjacent spectral samples. In the simulated spectrum, some of the channels are

assumed licensed and the primary users remain ‘on’ throughout the observation

time. Each primary user occupies 6 MHz of the spectrum which also includes the

guard bands. The guard bands between adjacent licensed bands are occupied by

secondary users that transmit in bursts. The bursty signals have exponentially

distributed ‘on’ times, where the mean ‘on’ time is randomly selected from a

uniform distribution with the interval (0.0, 1.0). We generated 1000 instances of

the spectrum occupancy. Each channel has different mean ‘on’ times and different

channel occupancy statistics and this allows us to exploit the adaptive nature of

the proposed algorithm. It is further assumed that the channel occupancy state

does not vary over the sampling intervals. Fig. 5.12 shows the intensity plot for

the simulated spectrum occupancy. In the figure, the darker areas represent the

occupied spectrum while the unoccupied spectrum is represented by the bright

regions.

The proposed scheduling algorithm using a linear backoff was run over this
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Figure 5.12. Intensity plot of simulated spectrum occupancy. The
darker areas represent the occupied spectrum.

randomly generated spectrum. To test the algorithm in the worst case scenario, it

was assumed that Nc = 33 MHz, which means that all the channels are considered

for scanning initially including the licensed channels with 100 % occupancy.

5.2.5 Simulation Results

Fig. 5.13 shows the proportion of the total number of channels that were sensed

during each time instance and Fig. 5.14 shows the proportion of the total time

for which each channel was sensed. If the conventional fixed scheduling approach

was followed, ideally all the channels should have been sensed 100% of the time.

However, by applying the proposed algorithm, it is seen from the results that there

is a drastic decrease in the sweep time at each time instance (see Fig. 5.13) and over

the occupied bands the sensing mechanism scans for only a very small percentage

of the total observation time, as seen from Fig. 5.14. The portions of the spectrum

occupied by the primary signals are scanned with a low time resolution with large

spacing between consecutive time samples. The sweep time resolution is high

for the frequency channels that are sparsely occupied and the resolution varies

according to the spectrum occupancy in each of those channels. The simulation

was repeated 100 times and it was determined that, on an average, there is a
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Figure 5.13. Simulation results for linear backoff when applied to
simulated spectrum shared with secondary signals: Number of chan-
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Figure 5.14. Simulation results for linear backoff: Total sensing
time for each channel

84.23% improvement in the efficiency over the conventional approach. However,

on an average, 1.84 % of the potential channel vacancies were not scanned due to

the backoff, which is insignificant when compared to the drastic improvement in

the sensing efficiency. This improvement in efficiency reflects as savings in time

and power consumption, assuming that the sensing mechanism is switched-off

when it is not assigned to scan.
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5.3 Chapter Summary

In this chapter, we have presented a feasibility study of secondary usage of

the TV spectrum. The spectrum measurements collected were used in an OFDM

simulation to determine the error performance of OFDM symbols transmitted

through the vacant TV spectrum. The PASS framework for efficient spectrum

sensing has also been presented. A novel algorithm for scheduling the assignments

for spectrum sensing both over frequency and time has been presented along with

simulation results.
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Chapter 6

Conclusion

This chapter provides the concluding remarks for the thesis along with a sum-

mary of the novel contributions of this thesis. Section 6.1 provides the future

works.

Spectrum Survey Framework - The proposed framework introduces stan-

dardization to spectrum surveying which can enable collaborations on studying

the spectrum behavior. The proposed spectrum survey framework has been im-

plemented as shown in Fig 3.6. Currently, it is being used to collect measurements

along time and frequency, and process the data offline (non-real time). Till date,

several sets of measurements have been collected from different bands ranging

from 9 kHz - 1 GHz including measurements from the FM broadcast spectrum

(88-108 MHz), television spectrum (54-87 MHz, 638-668 MHz, 198-228 MHz), and

paging band (929-931 MHz).

Processing and analysis of spectrum measurements - Techniques have

been presented to counter various challenges to the processing of spectrum mea-

2007/02/02



107

surements. The processing techniques have been tested on the collected spectrum

data. The FM band measurement data which is affected by spurious sidelobes

and high dynamic range of signals represented the worst case data. Although the

results obtained in the case of FM band data were not excellent, these results

provided us an insight into how various parameters of the processing techniques

such as sliding window size affect the results and also allowed the comparison

between the proposed classification algorithms. Good results were obtained when

the techniques were applied on the TV spectrum data, cellular band, and the

paging band data.

Otsu’s algorithm and the ROHT algorithm performed well with most of the

data sets except the FM band data. Time averaging the measurements improved

their performance in all the bands except the paging band. However, when applied

on the cellular band data, the ROHT algorithm could perform well on the data

without the need for time averaging while the Otsu’s algorithm performed well

only on the time averaged data.

The ROHT algorithm and the modified recursive Otsu’s algorithm have been

proposed for classification of data which has signals with a high dynamic range.

The recursive Otsu’s algorithm gave a lot of false alarms. The ROHT algorithm

was found to possess the following drawbacks: (i) The parameters of the ROHT

algorithm had to be set depending on the dynamic range of the signals (or the

standard deviation of the signal portion of the data histogram). While ROHT

algorithm with 96% confidence level and ε = 0.5 performed well with the television

bands, cellular band, and FM band data, the parameters had to be increased to

99.5% confidence level and ε = 1.5 when the ROHT algorithm was being applied

to the paging band. (ii) It requires a large number of samples for estimating
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the threshold. This was observed when the performance on the FM band data

improved by increasing the window size while using a sliding window approach.

Adaptive thresholding using the sliding window approach improved the classi-

fication results in bands such as the analog television band (198-228 MHz) where

the noise level varies across the band. However, the drawback of this approach is

that the window size depends on the occupancy of the band. For instance, when

used with the cellular band which is sparsely occupied, a window size of 1000 gave

much lesser false alarms as compared to a window size of 500.

The energy detection techniques that we have presented rely entirely on the

ability to distinguish between the power levels of signals and noise. The main

drawback of the proposed techniques is that they cannot distinguish between

signal, noise, and interference. Strong signals that appear against a relatively

uniform background noise are easily detected while signals that are close to the

noise level may not be easily distinguished from the noise.

A set of parameters of spectrum utilization were identified and tools have been

developed in Matlab in order to extract these features from the processed data.

Modeling of spectrum measurements and spectrum occupancy - A

comprehensive model for the spectrum measurements has been presented. This

model can, in turn, incorporate the models for channel occupancy, noise, and

signals in the target channel. A modified markov model that accounts for the

time varying nature of the channel occupancy was also presented. The issue of

efficient characterization of the channel occupancy was addressed by presenting

an expression to determine the minimum time required to estimate the channel

model parameters.



109

Study of feasibility of secondary usage in television spectrum - We have

presented a feasibility study of secondary transmissions into the TV spectrum. It

has been observed that usage in the vicinity of a TV transmitter can result in

poor secondary user performance results, but more distant operation is relatively

free of intermodulation or spurious signal effects, yielding better conditions for

DSA. Our hope is that this study, and future results from the continuing work

at the University of Kansas in this subject area, will be of value in regulatory

discussions concerning spectrum policy decisions that will ultimately define access

to a valuable national asset, the TV band spectrum.

Application of SSF to spectrum sensing - In this thesis, we have intro-

duced the PASS framework for efficient and fast DSA by spectrum sensing, chan-

nel occupancy modeling and adapting the spectrum sensing parameters based on

the estimated channel occupancy model. By following a channel-aware adaptive

approach, the PASS framework is able to overcome the limitations of the conven-

tional non-adaptive sensing mechanisms. We analyzed fine tuning of the channel

sampling times and we have shown that there is a decrease in the error in estimat-

ing a signal’s temporal characteristics with improvement in the time resolution of

the sampling process. We have also presented a novel algorithm for scheduling the

assignments for spectrum sensing both over frequency and time. The simulation

results showed a drastic improvement in the sensing efficiency as compared to a

conventional non-adaptive approach.
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6.1 Future Research Directions

Spectrum surveying along spatial dimension of spectrum - SSF has been

implemented to conduct studies along frequency and time dimensions of the spec-

trum. However, by using a network of measurement nodes which can capture

spatial spectrum data, the full potential of the SSF’s collaborative spectrum sur-

veying can be tested. The processing techniques that have been presented in this

thesis can be extended for processing multi-dimensional data. For instance, using

the data collected simultaneously at different azimuth angles, analysis algorithms

can be developed in order to resolve the spectrum utilization spatially.

Implementation of SSF in KUAR - A novel spectrum sensing architecture

that uses the SSF has been proposed and tested in simulation. The SSF as well

as the sensing architecture can be implemented in the KUAR1 radio in order to

improve its spectrum sensing capabilities. The processing and analysis techniques

can be modified in order to enable real-time spectrum surveying.

Incorporate spectrum measurements into NRNRT - The spectrum mea-

surements that have been collected using the SSF can be incorporated into the

National Radio Networks Research Testbed. The data collected can be utilized in

an emulation of the radio spectrum which in turn can be used to test innovative

radio technologies for spectrum sensing, primary signal detection, and interference

avoidance.

Advanced processing and signal detection algorithms - A major limi-

tation of energy detection techniques is that they fail to perform in low SNR

1The KUAR refers to the software radio platform that is being developed for agile radio
operation at the University of Kansas.
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conditions or in the presence of interference. Advanced techniques such as cy-

clostationary signal detection [23], which require a priori knowledge about the

primary signal characteristics can be developed in order to distinguish between

noise, interference, and intermodulation products.
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Appendix A

Derivation of Optimum

Threshold in Otsu’s Algorithm

This derivation has been adapted from [39]. Otsu’s algorithm [39] selects an

optimum threshold based on the properties of the histogram of the data and it

does not assume any model for the histogram. The optimum threshold results

in maximum separation between the two classes in the data, namely the signal

and the noise classes. The algorithm also returns a metric that indicates the

separability of the 2 classes, which is useful to quantify the ’goodness of the

threshold’. Before applying Otsu’s algorithm, the measurement data in M is

converted to the gray scale image I.

The data is quantized into L levels with values s×[1, 2, ..L], where s is a scaling

factor. Let the ith gray level value be denoted by gi and its histogram is denoted

by hi. The probability of occurence of the ith level in the data can be estimated

as:

pi =
hi

N
, where N =

L∑
i=1

hi

2007/02/02
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The mean of the distribution is defined as:

μT =
L∑

i=1

gi · pi

A threshold, T = gk, can be used to bifurcate the probability distribution into

the noise class C0 and the signal class C1, with the levels [1, 2, .. k] ∈ C0 and levels

[k + 1, .. L] ∈ C1. The probability of occurence of the classes can be defined as a

function of the threshold:

ω0 =
k∑

i=1

pi = ωk

ω1 =

L∑
i=k+1

pi = 1 − ωk

The probability distribution of the gray levels within each of the classes are:

P (gi | gi ∈ C0) =
hi∑k
i=1 hi

=
pi

ω0

, i = 1 . . . k

P (gi | gi ∈ C1) =
hi∑L

i=k+1 hi

=
pi

ω1
, i = k + 1 . . . L

The corresponding means of the probability distributions are defined as:

μ0 =
k∑

i=1

gi P (gi | gi ∈ C0) =
k∑

i=1

gi
pi

ω0

=
μ (k)

ωk

μ1 =

L∑
i=k+1

gi P (gi | gi ∈ C1) =

L∑
i=k+1

gi
pi

ω1
=

μT − μ (k)

1 − ωk

In the above expressions, we have denoted
∑k

i=1 gi pi = μ (k). The between-class
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variance is defined as [39]:

σ2
B = ω0 (μ0 − μT )2 + ω1 (μ1 − μT )2 (A.1)

= ω0 ω1 (μ1 − μ0)
2 (A.2)

In terms of the threshold at the kth gray level and using equations , the above

expression for between - class variance can be rewritten as:

σ2
B (k) =

[ μT ωk − μ(k) ]2

ωk [1 − ωk]
(A.3)

A measure of class separability has been defined in [39] as shown by equation A.4.

η = σ2
B/σ2

T (A.4)

Otsu’s algorithm is an optimization problem that involves determining the

optimum threshold’s gray level k∗, that maximizes the above defined measure of

class separability i.e. mathematically,

η(k∗) = max1≤k<L σ2
B(k)/σ2

T (A.5)

A simple way of determining the optimum threshold would be by varying the

threshold in steps computing the measure of separability and then choosing the

threshold that gives the maximum value for this measure.
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