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Relevance of this research

1 Resources — power, bandwidth, and complexity
1 Previous research on theoretical communication

) Intersection of theoretical research with reality: hardware implementation

 Objective
= High gain (low power)
= Low complexity
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Introduction: Background

1 Continuous Phase Modulation (CPM)

= (Constant envelope of phase
= Memory

] Advantages
= Simple and inexpensive transmitter
= Power efficiency
= High detection efficiency (BER)
= Spectral efficiency
= Suitable for non-linear power amplifiers

d Apphcatlons
Aeronautical telemetry
= Deep space applications
= Satellite communication
= Bluetooth
= Wireless modems
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Introduction: Background

 Signal representation for a CPM
» Phase of a CPM — linear filtering

s(t; @) = 90

o(t; ) = 2w Z hiciq(t — 1)

i=—o0

 Parameters defining a CPM

" h; :modulation index
* M : cardinality of source alphabet o
" ¢(1): phase pulse

= L :length (memory) of q(t)
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Complexity of a CPM

-

n—L n
olt:ax) = hio + 27 Z hioq(t — iT5)
i=0 _ i=n—L+1
Un—L HE}

Og = (‘gn—L LR TY £ PRI an—l)

o J/

~
P'M ! states

(] Phase change depends on most
recent L symbols (phase trajectory)

1 Symbols older than L symbol times
only indicate the phase of CPM at
beginning of symbol interval
(cumulative phase)
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Maximum-Likelihood (ML) Decoding

1 Recovery of information from

noisy received signal oo O
3 P;
= Matching received signal with all P’ cumulative phase states

possible transmitted signals
M*  modulating symbols

= Bank of matched filters (correlators) Ny =M L matched filters

= Evaluated recursively by a Soft Input
Soft Output (SISO) algorithm / P'ME possible received signals

= Metrics given by matched filtered / Op = (lgn_L P SRR L Y PIRPTY L an)
output combined with cumulative
phase states
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ML decoding: Branch metric computation

KU

NMF =M"

Ny=P'M""
N,=P'M"*

=58 (8 ~
{e vil':l'i‘—l( rl}:n(a”)}

-

(1) Bank of Introducing
—— M atched Phase
Filters Rotation SISO
PN
P st (CPM)
. . — S —
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Serial Concatenation of CPM with Convolutional Codes (CC)

 Idea derived from the working principle of Turbo codes (parallel

concatenated codes)

1 Best gain if demodulation and decoding are done together (ML decoding)

1 SCC system vs. ML decoding

1 Benefits
= Very high coding gains
= Less complex than ML decoding
of the system
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Serial Concatenation of CPM with CC

Input 1 1.',.-'ﬁ‘~4' ~J
Bits CPM
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Detection Problems

1 High decoding complexity (latency and computational power)
= [nterleaver size
= Number of iterations

= Complexity vs. bandwidth efficiency
( Carrier phase synchronization

»  Assumption of perfect synchronization to carrier phase is not often true

= PLL problems at low SNR: false locks, phase slips, loss of lock (Doppler shift),
frequency jitters

» Synchronization vs. with bandwidth efficiency

(1 Phase noise in addition to white noise

* Channel affecting phase of CPM, which contains information
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Previous Works (on detection problems)

SCC system, complexity reduction

O Pulse Truncation: Svensson, Sundberg, Aulin

L Decomposition approach to CPM: Rimoldi

L State space partitioning: Larsson, Aulin

0 SCC CPM — Mogqvist, Aulin (using SISO algorithm by Benedetto & others)
0 SCC SOQPSK: Perrins (with max-log SISO and pulse truncation)

Non-coherent detection

 Non-coherent sequence estimation: Colavolpe, Raheli
 Reduced state BCJR type algorithm: Colavolpe, Ferrari, Raheli
O Non-coherent SCC MSK: Howlader

L Metric for non-coherent sequence estimation: Schober, Gerstacker
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IRIG-106-04 CPMs

Motivation for the Thesis
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Motivation for the Thesis

Modulation h M L Pulse State Detection Spectral Decoding
Type | Complexity Efficiency Efficiency Complexity
PCM/FM 7/10 2 2 RC 40 | 3 |
SOQPSK-TG 1/2 2 8 TG 512 2 2 2
ARTM CPM | 4/16, 5/16 4 3 RC 512 3 | 3
Q Complexity reduction techniques for IRIG-106-04 Aeronautical telemetry:
near optimal detection efficienc .
p M - PCM/FM (Tier-0)

. SOQPSK-TG (Tier-1)

L Non-coherent detection to recover
«  ARTMCPM (Tier-2)

information 1n presence of phase noise
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Decision Feedback

] Phase states chosen at run time

 Fewer phase states: P, <P ,P=p"/2

complexity reduction by P/P,

 Initial condition assumptions for
cumulative phase states

GEarlier — gun—L b an—L+1 b an—L+2 9% an—l)

~
P'ME states

Oprg = gen—L 2R £ S S PYPRP an—l)

~
PM L states
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Phase state reduction
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On_r+1(E) = 0,_1.(SI) 4 why_ n—L1ln_L 41 Phase state table
K
h! = . L (O | (O (e i
= P
- - =k 0 1 2 P-1 P
g, _ — I _ — 2K u;
1— L JZ n—L — P i
i=0 pre-computed
\_‘\f—’
integer
iZlo1.2..p-1.P]
’ S P (SO 1 K ~ e ”
I?E.—L—I-l (Era) - IPJ—L (bra) + Iira—L—I—lu'n.—L—l—l qp
i

1 Complex phase state computations need floating point arithmetic

1 Exploit the modulo-2n property of complex phase, so finite number of
phase states can be represented by finite number of integer indices

d Access phase states by look-up index
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Pulse Truncation

d Truncated phase pulse: L <L

— — — Freguency pulse (Tx)
— — — Phase pulse (Tx)
Frequency pulse (Rx)

037 Phase pulse (Rx) g = e P =

1 Correlative state reduction

04r A

0.3+ =

(J Number of matched filters is ;
reduced by a factor < M*-L7 il ! 1

01k / ! i

Amplitude

 Time and Phase correction e |

-1 -0.5 0 0.5 1 1.5 2 2'5 3
Normalized time (t/T)

ignored

.

Opr = (0 o’ (04 04 ) (n+1)7.
PT —L>» —L+1° —L+29 b —1 g . ikt .
n n Vl’l n-1) z”(ﬂ';} / r(t DT,:,} 2 J2rh, L qprit ??Tsﬁd.ti.
it

PM 7! states L
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Non-coherent detection

1 Received signal: r(t) = s (t: ) + n(t)

O Previous works - branch metric computations:

. 2
siter) =Io

S |T"j1-.'l'::. = fjra_:-f(k — 1\]|2)
No

B # 2
rkTp + Te—12;_1 + Q’ref(_-'fi' = 2}| )

i (ex)

2
I (&

2 (ep1rex) =

# " 2
Iy (%ﬂ |T‘i;—|—1;t.‘k_|_1 + rex;, + qu(k — 1]| )

7o (ex)

Pry1(er, epy1) =
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1. Inexpensive
Compact

Robust

> » D

Low Complexity
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Reduced Complexity PCM/FM

J Approximation at low E_/N, is the key for the technique to be used in coded
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Union Bound
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| —wP=08,L=1 (Ns

:+P
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28

Reduced complexity techniques applied to uncoded PCM/FM
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Results : Reduced Complexity PCM/FM

KU

INFORMATION
& TELECOMMUNICATION
TECHNOLOGY CENTER

The University of Kansas

 Loss in 10 state detector: 0.02 dB (reduction in complexity by a factor of 2)

Reduced complexity techniques applied to rate 1/2 coded PCM/FM
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Results : Reduced Complexity ARTM CPM

1 Loss in 32 state detector: 0.1 dB (reduction in complexity by a factor of 8)

Reduced complexity techniques applied to uncoded ARTM CPM
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Results : Non-coherent PCM/FM

1 Loss in 10 state non-coherent detector for SCC PCM/FM: 0.39 dB

Non-coherent detection of SCC PCM/FM using 10 state detector
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A digression: SOQPSK

Pulse truncation in SOQPSK-TG
Precoder CPM —— — Frequency pulse (Tx)
(with DE) Modulator . 06 — — Phasepuise (Tx) ]
a o S(f; (3:') e Frequency pulse (Rx)
0.5| o= Phase pulse (Rx) ﬁ — |
04/ / f
g
= 03} i
A %
01 11 <
State | P, Y N 0.2} / \ ]
00 |3 o1l / \ ]
01 |2 2 0 | / / \
1 1 o— Trellis State
N A 0.1t ‘ ‘ ‘ :
00 \“—3/ 1| ¢ —Phase State 0 5 4 5 8
Normalized time (t/T)
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Results : Non-coherent SOQPSK-TG

 Loss in 4 state non-coherent detector for SCC SOQPSK: 0.71 dB

Non-coherent detection of SCC SOQPSK-TG using 4 state detector
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Results : Non-coherent ARTM

1 Loss in 16 state non-coherent detector for uncoded ARTM CPM: 2.4 dB

0 Non-coherent detection of uncoded ARTM CPM using 16 state detector
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Conclusions: Key Contributions

1 Reduced complexity detectors for coded PCM/FM
[ Non-coherent detectors for uncoded PCM/FM, SOQPSK-TG, ARTM CPM

1 Non-coherent detectors for reduced complexity SCC PCM/FM and SCC
SOQPSK-TG

 Non-coherent detector for reduced complexity uncoded ARTM CPM
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ﬁ Future work

d SCC ARTM CPM on the lines of SCC PCM/FM and SCC SOQPSK-TG

(1 The 32 and 16 state detectors could be used in the SCC ARTM CPM

(J Non-coherent detector for 32/16 state SCC ARTM CPM
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Paper publication

J

KU

Dileep Kumaraswamy and Erik Perrins, ”On Reduced Complexity
Techniques For Bandwidth Efficient Continuous Phase Modulations in
Serially Concatenated Coded Systems”, to appear in Proceedings of the
International Telemetering Conference (ITC), Las Vegas, NV, October 22-
25,2007
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Questions

4
QUESTIONS
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SISO algorithm - forward and reverse recursions

F (S, E,) =Re {E—jﬁ-n_z,[@n}'zn(&n)}

*4?1(‘@?1) - [*431—1{5:?1—1) + -Pn [an I] + Fn(gnw E?'!)i|

Br? (5'?;') = [Bﬂ.+l{ yﬂ—l—l} =+ Pﬂ+1 [&n+1:- I] E F?a+1 {'§?1—I—1- Eﬂ+'].):|

Pn [dn 'OI] - [a’i-lln—l{gn—l) + Pﬂ, [E—EI‘I; I] + Fn(gnw En) + Bn+1 (En)}

P,(&:0) = Py(&:0) — P,(&; 1)
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Rimoldi’s Approach

1 Odd and Even phase states

] Constant data independent
(deterministic) phase change to
switch from the phase states

1 Complexity reduction by half
 Optimal decoding

1 Not applicable to SOQPSK-TG
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Decomposition of complex phase states

Even and Odd times

P=P)2

vy

—J
Odd times




Rimoldi’s Approach

n—L

b
@(t’ Di) T hlﬂi L hiﬂﬁ(t ?’Tq) Phase Cylinder for PCM/FM
e=0 i=n—L+1
\—v—-’ M ~ L
Un—L B(t)
ll}??.—L = H?‘?.—L = Vn—L 7
.<>E‘L<’
g |
JEalrlielr = (Un—L > an—L+l > an—L+2 09 an—l ) ‘_§
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P'ME ! states
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