
KeyConcept: Exploiting Hierarchical Relationships for

Conceptually Indexed Data

by

Devanand Rajoo Ravindran

B.E. (Computer Science and Engineering)

 Bharatidasan University, Trichy, India, 2000

Submitted to the Department of Electrical Engineering and Computer Science and the

Faculty of the Graduate School of the University of Kansas in partial fulfillment of the

requirements for the degree of Master of Science in Computer Science

Dr. Susan Gauch, Chairperson

Dr. Costas Tsatsoulis, Committee Member

Dr. Jerry James, Committee Member

Date Accepted

 2

Acknowledgements

I’m greatly honored to have worked for Dr. Susan Gauch towards my thesis and for

KeyConcept. Many thanks are due to her for having helped me hone my skills in

programming and inculcate an interest in research. I would also like to thank the

committee members of my thesis, Dr. Jerry James and Dr. Costas Tsatsoulis.

I also express my gratitude to Sriram Chadalavada, Juan Madrid and Joana Trajkova for

having worked with me in my projects. Without their code, I would not be in a position to

have completed my thesis. I’m grateful to all ITTC staff for their timely help in solving

any technical problems that I’ve had.

I also thank my roommates and the Adams who make my stay in Lawrence more

agreeable. I express my heartfelt gratitude to my parents and brother for having believed

in me and helping me in all possible ways to pursue my dreams.

 3

Abstract

As the number of available Web pages grows, users experience increasing difficulty

finding documents relevant to their interests. One of the underlying reasons for this is that

most search engines find matches based on keywords, regardless of their meanings. To

provide the user with more useful information, we need a system that includes

information about the conceptual frame of the queries as well as its keywords. This is the

goal of KeyConcept, a search engine that retrieves documents based on a combination of

keyword and conceptual matching. This paper describes the system architecture of an

enhanced KeyConcept, the training of the classifier for the system, and the results of our

experiments evaluating system performance. Experiments that check whether result

pruning and retrieval based on the hierarchical structure of the ontology help in

improving precision are also described. KeyConcept is shown to significantly improve

search result precision through its use of conceptual retrieval. Pruning and Hierarchical

Retrieval are also shown to yield better results in most cases.

 4

Contents

1. Introduction

1.1 Motivation ……………………………………………………………

9

 1.2 Current Problems ………………………………………………….. 10

 1.3 Related Work ………………………………………………………. 11

 1.3.1 Text Classification ………………………………………… 11

 1.3.1 Ontologies …………………………………………………. 13

 1.4 Proposed Solution …………………………………………………. 16

 1.5 Overview ……………………………………………………………. 17

2. Basic KeyConcept Architecture

 2.1 Indexing …………………………………………………………….. 20

 2.1.1 Keyword Indexing ……………………………………….. 21

 2.1.2 Conceptual Indexing …………………………………….. 24

 2.1.2.1 Training Phase ………………………………… 24

 2.1.2.2 Classification Phase …………………………... 26

 2.2 Retrieval …………………………………………………………….. 28

 2.2.1 Keyword Retrieval ……………………………………….. 28

 2.2.2 Conceptual Retrieval ……………………………………. 30

 2.2.3 Combined Retrieval ……………………………………. 31

3. Exploiting Hierarchical Relationships

 3.1 Pruning Results based on Hierarchical Relationships……………….. 32

 3.2 Retrieval based on Hierarchical Relationships………………………. 33

4. Experimental Procedure

 5

4.1 Data Sets ……………………………………………………………… 35

4.1.1 Training Data…………………….………………………... 35

4.1.2 TREC Data…………………….……………………….….. 36

4.1.1 Pruning Query Set……………….………………………… 36

4.2 Setting the Baseline …………………………………………………… 37

4.3 Retrieval based on Hierarchy …………………………………………. 38

5. Experimental Results and Observations

5.1 Baseline Determination ………………………………………………. 40

5.2 KeyConcept Example ………………………………………………… 44

5.2.1 Results of keyword-only search ………………………….. 44

5.2.2 Results with keyword and conceptual search …………….. 46

5.3 Exploiting Hierarchical Relationships for Conceptual Pruning……….. 50

5.3.1 Pure Keyword vs. Keyword with Pruning………………… 52

5.3.2 Pure Keyword vs. Keyword + Conceptual Retrieval……… 53

5.3.3 Pure Keyword vs. Keyword + Conceptual Retrieval with

Pruning…………………………………………………………..

54

5.3.4 Comparison of Retrieval Methods ……………………….. 55

5.4 Exploiting Hierarchical Relationships for Conceptual Retrieval……

56

5.4.1 Siblings ……………………………………………………

57

5.4.2 Parent …..………………………………………………… 58

 5.4.3 Children …………………………………………………… 59

 5.4.4 Grandchildren ……………………………………………..

60

 5.4.5 Hierarchical Combinations ………………………………..

61

 6

6. Conclusions and Future Work

6.1 Conclusions …………………………………………………………... 62

6.2 Future Work …………………………………………………………... 63

 6.2.1 Better Data ………………………..………………………. 64

 6.2.2 Hierarchical Classification………………………………… 64

 6.2.3 Contextualization …………………………………………. 64

 6.2.4 Personalization ………………………………………….… 65

References …….……………………………………………………………….… 66

Appendix ………………………………………………………………………… 71

 7

List of Figures

Figure 1. Operation of the conceptual search engine ………………………… 17

Figure 2. KeyConcept Components ………………………………………….. 20

Figure 3. Indexing ……………………………………………………………… 23

Figure 4. Training Phase ………………………………………………………. 25

Figure 5. Classification Phase ………………………………………………… 27

Figure 6. Keyword Retrieval …………………………………………………... 28

Figure 7. Conceptual Retrieval ……………………………………………….. 30

Figure 8. Combined Retrieval …………………………………………………. 31

Figure 9. Example ODP Hierarchy …………………………………………… 33

Figure 10. Hierarchical Retrieval ………………………………………………. 34

Figure 11. Neighborhood Hierarchy of a Node ………………………………… 38

Figure 12. Keyword entry and Concept Selection in KeyConcept …………… 41

Figure 13. Search Results after Conceptual Search ……………………………. 42

Figure 14. Top Concepts for a Document ……………………………………… 43

Figure 15. Results for a simple keyword search ……………………………….. 45

Figure 16. Results of Keyword ‘ rock’ + Concept ‘music styles’ ………………. 47

Figure 17. Results of Keyword ‘ rock’ + Concept ‘Earth Science/Geology’ …… 49

 8

List of Charts

Chart 1. Comparison of precision of pure keyword vs. keyword with

 pruning …………………………………………………………….

52

Chart 2. Comparison of precision of pure keyword vs. keyword with

 conceptual retrieval ………………………………………….………

53

Chart 3. Comparison of precision of pure keyword vs. keyword with

 conceptual retrieval and pruning ….…………..…………………….

54

Chart 4. Comparison of retrieval methods …………………………………... 55

Chart 5. Effect of adding siblings ………………………………………….. 57

Chart 6. Effect of adding parent ……………………………………………. 58

Chart 7. Effect of adding children ..………………………………………… 59

Chart 8. Effect of adding grandchildren…….………………………………. 60

Chart 9. Hierarchical combinations ………………………………………… 61

 9

1. Introduction

1.1 Motivation

Content on the web has been increasing rapidly over the last few years. A popular search

engine reports to index 3.3 billion pages as of September 2002 [SES 03]. As the number

of pages available increases, finding relevant information becomes more difficult. Much

of this difficulty arises from the ambiguity present in natural language. For instance, two

people searching for “wildcats” may be looking for two completely different things (wild

animals and sports teams), yet they will get exactly the same results. We can see that

searches are made based on pure string matching; the specific meaning wanted by the

user is ignored.

There exists a need for a system that can take into account not only the keyword entered

for a search, but also the meaning or the concept for which the user is searching. Such a

system would be able to filter out pages that are not directly related to the user’s desired

concept and present only results that match the user’s interests. Current search engines

fall short in providing this vital distinction to the user. It is our belief that KeyConcept, a

search engine that incorporates search by keyword and concept, can effectively increase

search result accuracy.

 10

1.2 Current Problems

The major reason the Internet is hard to search is because there is a lot of data but not

enough information. In other words, the data available on the Net is not organized in any

particular sense. Current search engines usually search by simply matching the query

terms as strings. This results in the user obtaining documents that might have contained

the term he might have been looking for, but not the meaning he was looking for. This is

due to the fact that a search term may have multiple meanings [Krovetz 92]. There are

very few search engines that even categorize their results in different conceptual

categories [NorthernLight], thus guiding users through the result set.

There is already some conceptual information already available on the Internet in the

form of directory services such as Yahoo! [YAHOO] or the Open Directory Project

[ODP]. Websites do arrange web pages into categories for browsing purposes. However,

each site has its own hierarchy and only a small fraction of web pages appear in these

browsing hierarchies. The hierarchical information may be used to restrict search to

subsets within that site, but this information is not used by web-wide search engines. The

semantic web efforts attempt to address this issue by encoding conceptual information

inside web pages themselves. These ontological approaches have two main drawbacks.

First, where will an agreed-upon conceptual hierarchy of sufficient detail come from

[Tirri 03]. Second, only a small percentage of web contributors will ever go through the

process of manually annotating their web pages with ontological information. In our

approach, we work with regular web pages and try to identify and exploit the latent

conceptual information.

 11

1.3 Related Work

1.3.2 Text Classification

Text classification organizes information by associating a document with the best

possible concept(s) from a predefined set of concepts. Several methods for text

classification have been developed, each with different approaches for comparing the

new documents to the reference set. These including comparison between vector

representations of the documents (Support Vector Machines, k-Nearest Neighbor, Linear

Least-Squares Fit, TF-IDF), use of the joint probabilities of words being in the same

document (Naïve Bayesian), decision trees and neural networks. A thorough survey and

comparison of such methods is presented in [Yang 03], [Sebastiani 02], [Pazzani 96],

[Ruiz 99]. Several systems have been built that incorporate classification to allow users to

explore document sets. [Yang 03] particularly examines the complexities involved in

different methods of text categorization and especially in hierarchical categorization.

[Kato 99] defines an idea-deriving informational system that uses a combination of a

concept-base and normal character-string matching for information retrieval. The concept

base in this case is created either based on word co-occurrences (corpus-based) or

dictionary based. Document terms are then indexed according to the concept base. A

combination of both conceptual and keyword matching rather than either method

individually obtains the best results in this system.

As presented by [Chekuri 97] and [Matsuda 99], one of the main uses of text

classification is to restrict the search domain. In [Chekuri 97], users have the option of

 12

specifying some concepts of interest when submitting a query. Then, the system only

searches for results in the specified concepts. The approach in [Matsuda 99] extends this

idea by classifying documents based on other attributes, e.g., size, number of images,

presence or absence of certain tags, as well as content. In this system, the user has the

option of specifying the type of document he/she is looking for, e.g., a catalog, a call for

papers, a FAQ, a glossary, etc., in addition to the search terms. More recently, [Cui 02]

uses the internal structure of documents to assign XML classes such as Nomenclature,

Description, Images, References to domain-specific document collections and the uses

these classes for retrieval.

[Glover 01] also discusses the usage of document-specific structure for identifying

documents as belonging to a particular category, such as research papers or personal

homepages and lets the user choose the type of page he wants. This allows the user to

choose the type of page the user wants but not the topic of interest. [Klink 02] approaches

conceptual retrieval differently by defining a concept based on the query term(s) used.

Previous queries and a known set of relevant documents are used to learn the concept

definition for a query term. The key terms in the definition are then used to expand the

query that is then sent to a normal search engine.

In the OBIWAN project [Zhu 99], ontologies are used to represent user profiles. Queries

are submitted to a traditional search engine, and the results are classified into the

ontology concepts based on their summaries. The documents in the result set are re-

ranked based on matches between the summary concepts and the highly weighted

 13

concepts in the user profile. While this approach was able to improve rank ordering of the

results, it was not able to find more information for users because it could only work on

the result set retrieved by a generic search engine. KeyConcept takes this approach one

step further by integrating the conceptual matching into the retrieval process itself.

Other methods for Text Classification have been examined in great detail. Some of these

approaches include implementing unsupervised learning algorithms like Latent Semantic

Analysis [Cai 03], and using AI rule-base trees to compute the conceptual relevancy of

search results [Lu 99].

1.3.2 Ontologies

An ontology is an arrangement of concepts that represents a view of the world [Chaffee

2000] that can be used to structure information. Ontologies can be built by specifying the

semantic relationships between the terms in a lexicon. One example of such ontology is

Sensus [Knight 94], a taxonomy featuring over 70,000 nodes. The OntoSeek system

[Guarino 99] uses this ontology for information retrieval from product catalogs.

Ontologies can also be derived from hierarchical collections of documents, such as

Yahoo! [YAHOO] and the Open Directory Project [ODP]. [Labrou 99] reports the use of

the TellTale [Pearce 97] classifier to map new documents into the Yahoo! ontology. This

is done by training the classifier with documents for each one of the concepts in the

ontology, and then finding the concept that has a greater similarity with the new

document. Furthermore, an ontology can be used to allow users to navigate and search

 14

the Web using their own hierarchy of concepts. The OBIWAN project [Zhu 99]

accomplishes this by letting users define their own hierarchy of concepts, then mapping

this personal ontology to a reference ontology (Lycos in this case).

Liu [Liu 02] and Pitkow [Pitkow 02] have devised systems that use personalization to

identify relevant concepts as related to the individual user. Liu [Liu 02] approaches the

problem of personalizing information retrieval according to user preferences by analyzing

previous queries made by the user and developing a user profile. The user profile is then

used to select the most appropriate categories for a user when a user makes a new query.

A general profile for categories is also prepared using the ODP [ODP] structure. In this

system, users have to select the relevant documents for a query and the relevant

categories for each document too. This lays too much emphasis on the user’s decision on

whether the document/category is relevant or not. [Pitkow 02] uses contextualization to

obtain relevant search results from an Internet search engine. The ODP structure is used

here to identify the user’s search context. The user’s past browsing history is also stored.

This information is used to augment a query by adding relevant terms from the user’s

profile and current context.

Authors can also embed ontological information in their documents. SHOE (Simple

HTML Ontology Extensions) [Heflin 2000] is a language that serves this purpose,

allowing the creation of new custom-made ontologies and the extension of existing ones.

 15

Our work derives from OBIWAN [Zhu 99] by Xiaolan Zhu and Susan Gauch. OBIWAN

is a comprehensive system designed for characterizing contents of a website. In this

system, a website is classified as belonging to a particular category by taking its

component pages and classifying them into concepts in an ontology. This work was

extended to provide personalized search and browsing [Gauch 04]. We extend this work

by incorporating classification in the indexing process, not merely as a post-process on

the result set.

 16

1.4 Proposed Solution

We intend to develop a solution that will, given a query, retrieve information not only

based on the query terms, but also on the desired concepts the user is interested in. For

example, if the user desires to search for “ rock” he enters “ rock” as his/her query term

and also gives as input to the system, “Music” as the category in which he/she is

interested in. This will help avoid the multiple meaning problem of words.

To perform the above-mentioned function, the index created needs to be not only based

on words in the document, but also indexed based on what concept the document most

corresponds to. For this purpose, we intend to simultaneously create an inverted index

that indexes both by words and concepts. For training the classifier, we use the manually

created ODP collection. Using these documents already classified in an ontology, we

create a training set that can be used later to classify documents from a different

collection. For the ontology, we use the Hierarchical structure obtained from ODP.

We also aim to improve retrieval results by not only searching the exact concepts the user

wants to see, but also nearby concepts in the hierarchy. We believe that any document

misclassified into a neighboring concept could thus still be selected by the retrieval

system.

 17

1.5 Overview

KeyConcept creates an inverted index in a method similar to any other major search

engine during the indexing process. The main aspect by which it differs from normal

search engines is that KeyConcept also includes information about the concepts to which

each document is related. To accomplish this, the traditional structure of an inverted file

was extended to include mappings between concepts and documents. The retrieval

process takes advantage of this enhanced index, supporting queries that use only words,

only concepts, or a combination of the two. The user can select the relative importance of

the criteria (word match or concept match).

Figure 1 Operation of the conceptual search engine

 18

Indexing

The indexing process is comprised of two phases: Classifier training and collection

indexing. During classifier training, a fixed number of sample documents for each

concept in the ODP collection are collected and merged, and the resulting super-

documents are preprocessed and indexed using the tf * idf method. This essentially

represents each concept by the centroid of the training set for that concept. During

collection indexing, new documents are indexed using a vector-space method to create a

traditional word-based index. Then, the document is classified by comparing the

document vector to the centroid for each concept. The similarity values thus calculated

are stored in the concept-based index.

Retrieval

During retrieval, the user provides a query containing words and concept identifiers.

Concept matched and keyword matches between the query and documents are combined

with a factor (α factor) between 0 and 1, specifying the relative importance of concept

matches to word matches. If is 1 , only concept matches are considered. If it is 0, only !

word matches matter. W hen is 0. 5 , concept and word matches contri! bute equally.

We used an optimum value of 0.3 for α, the details of the process of deciding optimum α

are shown in [ITTC 03]. After receiving user data, the search engine performs the search

and stores the results for word and concept matches in separate accumulators. The final

document scores are computed using the formula:

))1(()(scorewordscoreconceptscoreDocument ×−+×= αα

 19

Hierarchical Retrieval

To obtain results not only in the concept identifiers mentioned by the user, but also those

in the vicinity, we intend to reference the ontology used for training. We search for the

user-specified concept and then locate the structurally nearby concepts. We investigate

the effect of including children, parents, and siblings in the hierarchy. We have

performed different experiments with several combinations of relationships and our

results are presented in section 5.4.5

 20

2. KeyConcept Architecture

2.1 Indexing

Indexing is the method of storing information about Web pages so they can be retrieved

efficiently. KeyConcept uses an inverted index, a common way of organizing data

extracted from Web pages. The process of indexing takes a Web page, processes it to

extract the words, and calculates statistical information about the word, and stores this

information on an index.

In KeyConcept, two indexes need to be created – one for the keywords belonging to a

document and one for the conceptual categories to which a document belongs. The

process of indexing is shown in Figure 2.

Figure 2. KeyConcept Components

KeyConcept Indexer

Keyword
Indexer

Conceptual

Indexer

Keyword
Inverted

File

Category
Inverted

File

Web
pages

 21

2.1.1 Keyword Indexing

There are three major components of our Inverted Index – the dictionary file, the postings

file and the documents file. The dictionary file (DICT) stores each word, its idf (inverse

document frequency) and a pointer to the first occurrence of the word in the postings file

(POST). The postings file (POST) keeps track of how many times the word has appeared

in each document. The documents file (DOCS) maps between the document id and each

word contained in the document in DICT and POST. The documents structure keeps

track of the normalization value for each document so that search results can be

normalized by length. The normalization method followed is one of the most popular

normalization methods - the pivoted document normalization method [Singhal 96]. A

brief explanation of the elements in each of the three structures of the inverted index –

DICT, POST and DOCS are given below:

a) DICT:

i) key – Term that is being indexed

ii) docs – Number of docs in collection that contain word

iii) idf – Inverse Document Frequency of the word over the whole collection

(computed at the end of indexing phase)

iv) post – Link to the first posting record that contains the word

 22

b) POST

i) doc_id – ID of the document that contains the word

ii) count – Number of times the word has occurred in the individual

document

iii) word_link – Link to the next occurrence of the word in the collection

iv) doc_link – Link to the DOCS record that contains the IDF of the term

c) DOCS

i) key – Unique Document ID of the document

ii) norm – Normalization value for the document(computed using pivoted

normalization technique)

iii) wordpost – Link to the posting record of the first word in the document

iv) catpost – Link to the posting record of the first concept to which the

document belongs (updated during classification phase)

v) num – The number of words in the document

In KeyConcept, we use a disk-based mapping system for storing the dictionary and

posting files. The disk-based mapping system helps to avoid the common memory-

shortage pitfalls experienced in memory-based indexing. The sequence of indexing a

collection of files is shown in Figure 3. Each file is processed to obtain its individual

tokens. Each token is then processed to its canonical form (i.e. stemming, down casing

and removal of stopwords) and entries in DICT, POST and DOCS are updated.

 23

Figure 3. Indexing Process

Tokenize

Consume
Tokens

Normalize

DICT

POST

DOCS

File Files to
be
indexed

Indexer

 24

2.1.2 Conceptual Indexing

KeyConcept provides a unique feature for conceptual searching. The method used to

index documents based on concepts is very similar to the method used to index

documents based on keywords. The first step is to identify the best concept(s) for

document and then index that information. The process of assigning concepts to a

document is called classification. Our method uses training to create a mapping between

concepts and vocabulary based on an initial training set. Then, new documents have their

vocabulary compared to each concept’s vocabulary to identify the best match(es).

2.1.2.1 Training Phase

In our approach, we use a training corpus in which each concept has a set of documents

already assigned to it. We use this to form a training inverted file structure that will later

be used to classify the new dataset. The training process is simply an indexing process

with training files in the same concept assigned the same ID. Essentially, a super-

document is formed by merging all documents in the training set of a concept. This

super-document is considered a representative document for that particular category.

Figure 4 describes the procedure followed to obtain a training inverted file i.e. the

TDICT, TPOST and TDOCS files.

 25

Figure 4. Training Phase

Training
Inverted File

Tokenize

Consume
Document

Normalize

TDICT

TPOST

TDOCS

Super
Docu-
ment

Docu-
ments in
concept

Indexer

 26

2.1.2.2 Classification Phase

In the classification phase of conceptual indexing, the training inverted file obtained is

used to identify the most relevant classes for the set of documents to be indexed. The

trained documents serve as an example against which new documents are compared.

When a document is classified, the training index is looked up to obtain the top k

categories for the top N words in the documents and the weights are accumulated for each

concept. The most relevant concepts from the training index are obtained by sorting the

concepts by weight. This process is accomplished via the retrieval function of the vector

space search engine code we use. Essentially, the document is treated as a query against

the concept super-document stored in the inverted index. The catpost field in DOCS file

(created during keyword indexing) is updated to point to the first concept to which the

document belongs. Figure 5 shows the process of conceptual indexing. The results of this

classification are stored in CATDICT, CATPOST files. A brief description of the

elements of a CATDICT record and CATPOST record is given below:

a) CATDICT

i) key – Unique ID of the category

ii) docs – Number of docs indexed in this category

iii) catpost – Link to the first CATPOST record corresponding to the category

 27

b) CATPOST

i) doc_id – ID of the category that points to this record

ii) weight – Weight of the category in this document

iii) category_link – Link to the next category for this document

iv) doc_link – Link to the next document in the same category

Figure 5. Classification Phase

Tokenize

Retrieve
Relevant

 Categories

CATDICT

CATPOST

DOCS

File Files to
be
indexed

Conceptual
Indexer

Training
Inverted

File

 28

2.2 Retrieval

There are two main components of retrieval in KeyConcept – keyword-based retrieval

and concept-based retrieval. Results from these two different retrieval methods are then

combined to give the final result. An α-factor is applied while computing the final scores

for documents. Thus, the final scoring formula for documents is:

document_ score = (α * normalized_concept_score) + ((1-α) * keyword_score)

where

normalized_concept_score = concept_score for document / maximum_concept_score

and

keyword_score = word_score for word in document * normalization_value of document

Sections 2.2.1 and 2.2.2 describe each type of retrieval.

2.2.1 Keyword Retrieval

Once the documents have been indexed, search queries can be applied to them to retrieve

documents. Once the user enters the query terms, the indexes (DICT, POST, DOCS) are

searched to obtain the top N documents for each of them. The terms entered are searched

for in DICT. We also get the number of documents (numdocs) with that term and the

pointer to the first corresponding document is obtained. Next, the posting file POST is

accessed at the obtained pointer location and the set of postings records for the word are

accessed in order. For each postings record, the frequency of the word in the document

(tf) is obtained along with a pointer to the DOCS file. The corresponding document

information such as normalization factor (norm) is found by accessing the DOCS file.

 29

The normalization factor has already been computed during the indexing phase as

described in section 2.1.1

A temporary accumulator array to keep track of the score for each document is created

and the array elements corresponding to each posting record are updated with the weight

of the word in the document calculated from numdocs, tf and norm.

Figure 6. Keyword Retrieval

Doc3 weight

Posting
Records

Query
query
tokens DICT

POST

DOCS

Inverted File

Posting
Record
Pointer

Doc1 Doc2 Doc3 …………Accumulator ………………DocM

 30

2.2.2 Conceptual Retrieval

Conceptual retrieval is similar to keyword retrieval, except that instead of accessing the

inverted file created for keywords, we access the inverted file created for concepts, i.e.

CATDICT and CATPOST. The user enters query terms and selects from a list of

concepts the ones that are most related to the topic of interest. For example, if a user were

searching for information about the Kansas City Royals, he would choose Sports >>

Teams as one of his preferred categories. The KeyConcept system uses the unique ID of

the category to search CATDICT and find the documents associated with the category

present in the category postings file (CATPOST) exactly as it uses words to search DICT

to find postings in POST. It updates a concept accumulator with the corresponding

weight similar to building the keyword accumulator. Figure 7 shows the operation of the

conceptual retrieval process.

Figure 7. Conceptual Retrieval

Query

Doc3 weight

Individual
Concept

CATDICT

CATPOST

Cat Inverted File

CatPosting
Record
Pointer

Doc1 Doc2 Doc3 ……...Cat Accumulator ………………DocM

List
Of
Concepts

 31

2.3.3 Combined Retrieval

The two accumulators, Keyword accumulator and Concept accumulator are now

combined using the formula mentioned above. That is,

combined_score[each document]

 = (α * concept_ score[document]) + (1-α) * keyword_score[document]

Both scores are normalized as described in the beginning of section 2.2. The final scores

are sorted in descending order of the combined score. Figure 8 illustrates this operation.

Figure 8. Combined Retrieval

Doc1 Doc2 ……Accumulator……….…DocM

Sorting

Doc1 Doc2 ……Combined ………...…DocM

Doc1 Doc2 ……Cat Acc…………..DocM

 α

Top
N

Results

 32

3. Exploiting Hierarchical Relationships

This work is focused on enhancing KeyConcept by making use of the hierarchical nature

of concepts in an ontology. This conceptual hierarchy can be exploited in two ways:

3.1 Pruning Results based on Hierarchical Relationships

Obtained results from a search can be “pruned” to remove documents that are completely

unrelated to the concepts searched but have managed to find their way into the top N

results. To do this, the top three concepts of each document in the result set are compared

with the concepts the user searched for. We chose the top three concepts that a document

belongs to as the cut-off for comparison based on the results obtained in [ITTC 03].

These experiments showed that the increase in precision was not significant with more

than three concepts were used for retrieval. The document can generally thus be pruned if

none of the top three categories match the user’s choice of categories.

For example, the user might be interested in the category “ Arts/Styles/Blues” for his

search. The obtained top 3 categories for a result document might be

1) Arts/Instruments/Guitar

2) Shopping/Music/CDs

3) Arts/Style/Classic_Rock

We can decide to prune at Level1 or Level2, i.e., either at the ” Arts/” level or the

“Arts/Styles/” level. Depending on this choice, the document might be allowed to remain

in the result set or be pruned.

 33

3.2. Retrieval based on Hierarchical Relationships

Many documents that are been misclassified during training are classified into a concept

that is close in distance to the correct concept. For example, if a document belonged to

Sports >> Teams >> Baseball category, it might have been misclassified either in the

Sports >> Teams category or in the Sports >> Teams >> Baseball >> Apparel category.

A segment of the ODP tree hierarchy is shown in Figure 9.

 0 Arts
 Music
 Styles
 Collecting

 Instruments
 .
 .
 .
 Trading

 Television
 Networks

 Video_Production
 Cable_TV
 .
 .
 .
 Interactive
 .
 .
 .
 Directories

 1 Business
 .
 .
 .
 2 Sports

Figure 9. Example ODP hierarchy

 34

Enhanced KeyConcept goes to the ODP Tree stored in a plaintext file and searches for

concepts that are hierarchically close in distance to the given concept. It includes these

concepts as part of the search parameters and performs a combined Keyword/Concept

search as in basic KeyConcept. Different experiments have been performed to choose the

right kind of neighbors for the given concepts and to estimate the weight each of these

hierarchical neighbors should be given. The results of these experiments are detailed in

Section 5.2. Figure 10 describes the hierarchical retrieval process.

Figure 10. Hierarchical Retrieval

‘Close’
concepts

Doc3 weight

Individual
Concept

CATDICT

CATPOST

Cat Inverted File

CatPosting
Record
Pointer

Doc1 Doc2 Doc3 ……...Cat Accumulator ………………DocM

List
Of
Concepts

Standard Tree

 35

4. Experimental Procedure

This section describes the different experiments we performed to evaluate our

enhancements to KeyConcept. Section 5 gives the results of these experiments.

4.1. Data Sets

4.1.1. Training Data

Because it is readily available for download from their Web site in a compact format, we

chose to use the Open Directory Project hierarchy [ODP] as our source for training data,.

In addition, it is also becoming a widely used, informal standard. As of April 2002, the

Open Directory had more than 378,000 concepts. Because of the large volume of data

involved, training the classifier would be a long and difficult task, if the full set of

concepts were used. In addition, subtle differences between certain concepts may be

apparent to a human but indistinguishable to a classification algorithm. Thus, we decided

to use the concepts in the top three levels of the Open Directory. This initial training set

was composed of 2,991 concepts and approximately 125,000 documents. The first three

levels of ODP were used to obtain a list of categories and generate the training set.

Documents below level 3 in ODP were propagated upwards to their corresponding level

3 categories.

 36

4.1.2. TREC Data

We built a test set consisting of 100,000 documents chosen from the WT2g collection

[Hawking 99]. The test set includes the 2,279 documents having positive relevance

judgments and 97,721 randomly selected documents. Because the title section of each of

the 50 WT2g’s topics resembles a typical search engine query (2 to 3 words in length)

[Zien 01], we used the title section as the keyword query for our search engine, Then, we

ran the description and narrative paragraphs included with each topic through our

classifier and used the obtained concepts as the concept input for the search engine.

These descriptions and titles average 50 words in length. It is worth noting that we also

manually determined the best matching concepts for each query and input the manually

chosen concepts along with the query. However, since the difference between the results

obtained using the automatically obtained concepts and the manually obtained ones is not

significant (p-value of chi-square test ˜ 1), it is not discussed further. [ITTC 03]

4.1.3. Pruning Query Set

For testing the effectiveness of pruning, queries were chosen manually instead of from

the TREC collection. The TREC query collection is a standardized set of query terms,

with the relevant documents for each query explicitly indicated. Although these well-

defined queries lend themselves to easy verification of search accuracy, the nature of

their definition of relevancy eliminates several documents in the TREC collection that

might have been considered “ relevant” to a casual user of a search engine. Since the

concepts for a search have been chosen manually, the well-defined relevancy of the

“correct” results is undermined in any case.

 37

Since the purpose is to test the efficiency of conceptual search for a lay user, it was

decided to select a set of queries that are typical of a user searching for information on

the Internet. A set of 24 queries, with 8 queries each of 1-word, 2-word and 3-word

length, was selected for the experiment. This also helped to evaluate the performance of

queries of different length with conceptual retrieval.

4.2 Setting the Baseline

We chose our baseline on experiments previously conducted with basic KeyConcept to

tune several parameters. For example, the maximum and the minimum bounds of the

number of training documents required for training were re-evaluated. Several other

experiments were performed with respect to confirming the appropriate scoring formula

and the correct α value. A list of the experiments performed is presented below. These

results are described in full detail in [ITTC 03].

List of preliminary experiments performed:

1. To determine an upper bound for the number of documents

2. To determine a lower bound for the number of documents

3. To determine if the number of categories chosen affected precision

4. To determine the best weight of term in document and weight of term in concept

5. To determine effect of α on search precision

6. To evaluate per-query precision score comparison

 38

4.3 Retrieval Based on Hierarchy

Once the basic parameters for retrieval, such as α and the number of training documents,

were set, we proceeded to investigate which of the concepts in the hierarchy we should

include in our conceptual search. It is our assumption that most misclassified data for a

concept would be present in a very close neighbor of the concept in the hierarchy. There

are several such “close” neighbors of a concept. In Figure 11, if the user-chosen concept

is C, then the possible concepts that can be included are:

a) Its siblings, D and E

b) Its parent B

c) The children F, G, H, and I

d) The grandparent A

Figure 11. Neighborhood Hierarchy of a node

D

B

E

A

C

G F H I

 39

We decided to set the level of cut-off for enhanced KeyConcept at Level 4, one more

level than previously used. This provided a wider range of concepts from which the user

could choose and allowed us to expand level 3 concepts to their children in our

experiments.

It was decided to test for all these cases by varying the weight for each of the possible

expansion while computing the categories’ relevance to the search. Combinations of the

most promising cases were also tried in order to obtain the best possible results.

 40

5. Experimental Results and Observation

5.1 Baseline Determination

The baseline system set various tuning parameters such as the minimum and maximum

number of training documents required, based on results from previous research, which

has been detailed in [ITTC 03]. It was found that the best formula for scoring a word in

the query was TF * IDF * CDF, where TF refers to the pivoted normalized term

frequency of the word in the collection, IDF is the inverse document frequency of the

word in the entire collection and CDF is the frequency of the word in the particular

concept found during training. We also conducted an experiment to determine the

optimum value of α at four levels of the hierarchy (previous work only used three) and

we found that α = 0.3 was confirmed as the best value.

Figures 12-14 describe the process of retrieval on the online version of KeyConcept,

which can be found at [KeyConcept 03]. Figure 12 shows the selection process where

three categories the user is interested in are selected. The keywords are also typed for the

retrieve. Figure 13 shows the results obtained for the search along with the weight of the

document in the final result and a short summary of it. Figure 14 shows the top 10

categories as retrieved by KeyConcept for one of the result documents.

 41

Figure 12. Keyword entry and concept selection in KeyConcept

 42

Figure 13. Search results after conceptual search

 43

Figure 14. Top concepts for a document

 44

5.2 KeyConcept Example

In this section, we show a sample illustration of the effectiveness of KeyConcept. For this

purpose, we choose a query “ rock” that is very ambiguous. Longer queries, involving

multiple words, may disambiguate themselves (e.g., ‘ rock music’), but even they may be

ambiguous in some cases (e.g., ’ lions football’). In the following example, KeyConcept

was used with no enhancements (such as pruning or hierarchical retrieval).

5.2.1. Results of keyword-only search

In this case, no categories were provided for enhancing the query. The query term “rock”

was used and the search was performed. Figure 15 shows the results obtained. As seen in

Figure 15, most results tend to pertain to rocks of a geological nature rather than any

other meaning such as rock music, etc. If the user had been looking for rock music, only

2 of the top 10 results would have been relevant.

 45

Figure 15. Results for a simple keyword search

 46

5.2.2 Results with keyword and conceptual search

In this case, the same query term was used with in combination with a selected concept

that had disambiguated the kind of results the user desired. The concept chosen was

“Music Styles” for the query term “ rock” . The results are shown in Figure 16. As

expected, KeyConcept performs extremely well, retrieving results that are more related to

music rather than geology or agriculture. 6 of the top 10 documents were relevant. The

average precision increases from 20% for keyword-only search to 60% for keyword and

conceptual search, an increase of 200%.

 47

Figure 16. Results of Keyword ‘ rock’ + Concept ‘music styles’

 48

In another case, the disambiguating power of KeyConcept was reaffirmed by checking

the relevancy of the results for the same query term and choosing a concept that is most

closely related to the term. That is, for the query term, “ rock” , the most related concept of

“Geology” was chosen. Here, 9 of the top10 results, or 90%, were relevant. Only one of

the results was the same as the case where “Music/Styles” was chosen as the concept.

Figure 17 shows the results of such a search.

 49

Figure 17. Results of Keyword ‘ rock’ + Concept ‘Earth Science/Geology’

 50

5.3 Exploiting Hierarchical Relationships for Conceptual Pruning

Because we believe that KeyConcept will have the largest impact on shorter, more

ambiguous, queries, we constructed three sets of queries of different lengths. These

queries were taken at random from a set of actual user searches, extracted from the log of

an online search engine. The first set consisted of query terms of length one, the second

set with two query terms, and the third with three. Each set consisted of eight queries for

which relevance judgments were provided manually. One relevant concept was chosen

manually for each query in each set. The only exception was for the query “ north south

korea” where two categories “ Region/Asia/North_Korea” and “ Regional/

Asia/South_Korea” were chosen so that the query might be represented better.

Four sets of results were obtained for each query:

1) Pure Keyword Search

2) Keyword Search with Pruning

2.1) Pruning at Level 1

2.2) Pruning at Level 2

3) Keyword + Conceptual Search

4) Keyword + Conceptual Search with Pruning

4.1) Pruning at Level 1

4.2) Pruning at Level 2

For all the experiments, the baseline keyword search, with tuning parameter α = 0.3 (as

described in section 5.1) was used.

 51

Table 1 shows the precision (% of relevant documents) in the top 10 results.

K+P K+C+P K*

Level1 Level2

K+C

Level1 Level2

1-word queries 44% 48% 58% 54% 63% 71%

2-word queries 31% 38.4% 55% 49% 58% 65%

3-word queries 35% 49.4% 45% 51% 62% 65.2%

Total 36.7% 45.2% 52.7% 51.3% 61% 67.1%

Table 1. Average Precisions of 1-word, 2-word and 3-word queries

* K = Pure Keyword Based

 K+P = Keyword + Pruning

 K+C = Keyword + Conceptual Retrieval

 K+C+P = Keyword + Conceptual Retrieval with Pruning

We can see that, compared to keyword search alone, we get an improvement of 82.83%

(from 36.7% to 67.1%) in total overall precision when conceptual search plus pruning is

used. These results will be discussed in more detail in the following sections.

 52

5.3.1 Pure Keyword vs. Keyword with Pruning

Chart 1 shows the performance of KeyConcept when only keyword matching is done

compared to the results when the result set is pruned to remove documents that do not

contain the user-selected concept within their top three best-matching concepts (as

determined at index time).

Pure Keyword vs Keyword+Pruning

0%

10%

20%

30%

40%

50%

60%

70%

1-word queries 2-word queries 3-word queries total

P
re

ci
si

o
n

(%
)

Keyword Based Retrieval

Keyword Based Retrieval with Pruning at Level 1

Keyword Based Retrieval with Pruning at Level 2

Chart 1. Comparison of precision of pure keyword vs. keyword with pruning

The total average precision increases from 36.7% to 45.24% for level-1 pruning

(p=0.00767) and from 36.7% to 52.67% (p=0.0031) for level-2 pruning. Both the

improvements are significant.

 53

5.3.2 Pure Keyword vs. Keyword + Conceptual Retrieval

Chart 2 compares the performance of keyword-only matching to results where a

combination of keyword and conceptual matching is used. No pruning is done on any

search. The results of the two sets of experiments of pruning at Level1 and Level 2 have

been averaged to yield a single precision value.

Pure Keyword vs Keyword+Conceptual Retrieval

0%

10%

20%

30%

40%

50%

60%

1-word queries 2-word queries 3-word queries total

P
re

ci
si

o
n

(%
)

Keyword Based Retrieval Keyword+Conceptual Retrieval

Chart 2. Comparison of precision of pure keyword vs. keyword with conceptual

retrieval

Precision within the top 10 results increases significantly (p=6.81x10-5) from 36.7% to

51.3% when conceptual search is used.

 54

5.3.3 Pure Keyword vs. Keyword + Conceptual Retrieval with Pruning

A combination of the both the techniques, i.e., conceptual retrieval and pruning yields

very high precision values for all sets of queries. Chart 3 shows the effects of combining

the two techniques.

Pure Keyword vs Keyword+Conceptual Retrieval with Pruning

0%

10%

20%

30%

40%

50%

60%

70%

80%

1-word queries 2-word queries 3-word queries total

P
re

ci
si

o
n

(%
)

Keyword Based Retrieval
Keyword+Conceptual Retrieval with Pruning at Level 1
Keyword+Conceptual Retrieval with Pruning at Level2

Chart 3. Comparison of precision of pure keyword vs. keyword + conceptual retrieval

with pruning

There is an overall significant increase in precision in all three cases. The total average

precision increases from 36.7% to 61% for level-1 pruning (p=4.8x10-6) and from 36.7%

to 67.1% (p=2.62x10-6) for level-2 pruning. Both improvements are significant.

 55

5.3.4 Comparison of Retrieval Methods

The overall performance of the above-mentioned systems can be compared now. Results

from the previous experiments are combined and shown in Chart 4. Considering simple

keyword-based retrieval as the baseline, we see that each subsequent method outperforms

it by a significant amount. The most marked increase in precision is obtained in the final

case, where keyword retrieval is used along with conceptual retrieval and pruning.

Furthermore, from Table 1, we see that the maximum precision among all experiments

performed is obtained for single word queries, when pruned at Level 2 (71%). The

precision results previously described in section 5.3.3, i.e., keyword + conceptual

retrieval with pruning, remain consistently high (above 60%).

Overall Precision Scores for different Retrieval Methods

0%

10%

20%

30%

40%

50%

60%

70%

80%

1-word queries 2-word queries 3-word queries total

P
re

ci
si

o
n

(%
)

Keyword Based Retrieval Keyword based Retrieval with Pruning

Keyword+Conceptual Retrieval Keyword+Conceptual Retrieval with Pruning

Chart 4. Comparison of retrieval methods

 56

5.4. Exploiting Hierarchical Relationships for Conceptual Retrieval

In this experiment, we tried to estimate the appropriate weight for each kind of

hierarchical relation to the chosen concept. It is believed that a suitable combination of

suitably weighted hierarchical neighbors, along with the chosen concept, would obtain

the best results in conceptual search.

Two factors were varied: a) The weights assigned to the adjacent concept were varied

from 0.1 to 1.0 and b) the number of top concepts used for each query was varied from 1

to 4. The following nodes close to the user’s concept in the hierarchy were tested:

1) Sibling

2) Parent

3) Children

4) Grandchildren

For all the following experiments, the TREC dataset was used as the test data.

 57

5.4.1 Siblings

Effect of Sibling Weight on Top 10 Precision

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sibling Weight

P
re

ci
si

on

Top category

Top 2 categories

Top 3 categories

Top 4 categories

Chart 5. Effect of adding siblings

Chart 5 shows the results of the effect of adding siblings of the concept to the conceptual

search. The search precision experiences a slight, non-significant increase at a weight of

0.1 and then begins to decrease. This indicates that the addition of siblings increases the

noise in the set of retrieved documents and does not help much in obtaining better results

in our collection.

 58

5.4.2 Parent

The effect of adding the parent of a user chosen concept is shown in Chart 6. As before,

the α value is set at 0.3 and the number of concepts is set at different values from 1 to 4.

Effect of Parent Weight on Top 10 Precision

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parent Weight

P
re

ci
si

on

Top category

Top 2 categories

Top 3 categories

Top 4 categories

Chart 6. Effect of adding parent

We found from preliminary experiments that there was not enough content for indexing

in the first and second levels of the ODP hierarchy. We see our expectations confirmed in

the results. The addition of the parent of a concept does not really change the search

precision in any way.

 59

5.4.3 Children

Chart 7 shows the effect of adding all the children of a concept to the search. All children

are given equal weights and the weights are, as before, varied from 0.1 to 1.0.

Effect of Children Weight on Top 10 Precision

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Children Weight

P
re

ci
si

on

Top category

Top 2 categories

Top 3 categories

Top 4 categories

Chart 7. Effect of adding children

A maximum precision of 28.5% is obtained at a weight of 0.3 for one concept. It also

shows the maximum increase of precision of 16.32% from 24.5% to 28.5%(p=0.15). This

observation hints that adding children may help when the user chooses only one concept.

The increase in precision, when 3 and 4 concepts are being used, is not significant. The

noise in the set of selected documents increases as more and more related concepts are

added to an already large set of chosen concepts

 60

5.4.4 Grandchildren

Grandchildren of a chosen concept were added too, and Chart 8 details the effects of such

including them in the search.

Effect of Grandchildren Weight on Top 10 Precision

0.23

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Grandchildren Weight

P
re

ci
si

on

Top category

Top 2 categories

Top 3 categories

Top 4 categories

Chart 8. Effect of adding grandchildren

Search precision increases slightly up till a weight of 0.1 and then begins to even out. The

maximum precision is obtained for 3 concepts at 27%. Although this increase is not

significant, a suitable combination of different concepts could bring about a better

precision.

 61

5.4.5 Hierarchical Combinations

Effect of alpha on Top 10 Precision for Combination

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha

P
re

ci
si

on

0.3 Child 0.1 Grandchild

0.3 Child 0.2 Sibling 0.1
Grandchild

Chart 9. Combinations of related concepts

Two possible combinations are shown in Chart 9. One combination selects the most

promising concept-relations i.e. children and grandchildren, at their best weights of 0.3

and 0.1 respectively and varies α from 0.0 to 1.0. Combination 2 includes 3 possible

concept relations – child, sibling and grandchildren at weights 0.3, 0.2 and 0.1

respectively and α is varied similarly. The former combination attains a maximum

precision of 27.6% at an α = 0.3. We also see that the addition of siblings merely

increases the noise in the set of documents retrieved for a query.

This maximum precision is higher than that attained while just using grandchildren in the

search (27%) but lower than the maximum precision attained in the previous experiment

with just children (28.5%). Thus the system that just uses children of a user’s concept in

the search is found to fare better than combinations of children and grandchildren.

 62

6. Conclusions and Future Work

6.1 Conclusions

This thesis presented the idea that hierarchical information in the ontology might help in

obtaining better search precision in conceptual retrieval. It aimed to evaluate different

possibilities of using the neighboring nodes in a hierarchy to increase the conceptual

search domain. Several combinations of the best hierarchical relatives of the concept

were also tried to estimate whether such combinations helped in further increasing

precision results. Pruning the obtained results based on the user’s selections was also

investigated.

Various combinations of pruning, keyword retrieval and conceptual retrieval were tested.

The best precision results occurred when conceptual retrieval was performed at α = 0.3

with the obtained results being pruned. In fact, the overall precision in the top 10 results

jumps from 36.7% to 63.77%, a significant improvement (p=0.0038). The increase in

precision with the use of the method just mentioned remained consistently above 50% for

queries of different word-lengths. This seems to indicate the applicability of the pruning

method uniformly to all queries.

Training of the conceptual search engine was done with a 4-level ontology. It was found

that the best results were obtained when a single concept’s children was selected for

search along with key-word search. There was a significant increase of precision for the

top-10 documents from 24.6% to 28.6% when the children of the chosen concept were

 63

included for conceptual retrieval at a weight of 0.3. Even for the previously determined

value of three chosen concepts, the enhanced system with children increased search

precision from 26.6% to 27.6%

Other “ relatives” of the chosen concepts, such as siblings, parents and grandchildren were

also evaluated. The grandchildren were seen to give a slight increase in precision of 0.4

(from 26.6% to 27%) at a weight of 0.1. Siblings and parents did not increase accuracy

but decreased and maintained it, respectively.

Suitable combinations of grandchildren and children were evaluated since they gave the

best results in the above experiments. The combination did not seem to improve precision

noticeably than just using children. This was probably due to the fact that with the

addition of more concepts for search, more noise was also introduced in the retrieved

document collection.

6.2 Future Work

The enhanced version of KeyConcept has succeeded in improving the overall efficiency

of the conceptual search engine. The availability of such a stable conceptual retrieval

system can act as a baseline for further research into alternate or better methods to

improve current precision results. A few of the possible enhancements that can be done in

the future are listed in the following sections.

 64

6.2.1 Better Data

As seen in the results for hierarchical retrieval using parents, there is at present not

enough data in the top two levels of the ODP hierarchy for suitable training. With either

the use of a hierarchy with more data in the upper levels, or by somehow training

concepts for the upper levels, we believe that the parent nodes in a hierarchy can be used

more effectively.

6.2.2 Hierarchical Classification

Instead of performing a hierarchical retrieval, it is possible to start indexing documents

hierarchically. In this method, adjustments have to be made while indexing to keep track

of hierarchically related concepts. In theory, this method would involve a lengthier

indexing process and extra data structures for keeping track of hierarchical relationships

between nodes.

6.2.3 Contextualization

An ongoing area of research in the area of information retrieval is contextualization. In

contextualization, we take into account the related activity that is occurring while the user

is searching for information. This may include the text in the windows that are open on

the searcher’s desktop, previous websites accessed in a browser before the search was

made, etc. For example, if the user has the website for “ESPN SportsCenter” open and is

searching using the query term “packers” , we may infer that the user is interested in

searching about a sports team called “packers” . Relevant concepts according to this

inference may be chosen and included for the search. In KeyConcept, a relatively

 65

accurate method to accurately capture text/content from adjacent windows and inferring

relevant concepts from it needs could be developed and integrated.

6.2.4 Personalization

Currently, the concepts for each query must be provided manually or by running a text

related to the query through a classifier. Most users see this as a burdensome task.

KeyConcept’s main thrust is to provide a comprehensive conceptual search framework in

the future. This means that each user does not have to choose concepts manually

anymore. The engine would compare the query to a user’s profile and choose the best

concepts to add to the search. A user’s profile can be gathered by keeping track of his/her

previous queries and maintaining a record of the concepts he’s interested in. The relevant

concepts for a user can be arranged in a hierarchical fashion too. Thus an ontology

mapping could be made between the user’s personal hierarchy and the general conceptual

hierarchy. Thus, a completely automated conceptual search engine would, in the future,

integrate both personalization and contextualization to obtain results better suited to the

user.

 66

References

[Cai 03] Lijuan Cai, Thomas Hofmann. Text Categorization by Boosting automatically

Extracted Concepts. In Proceedings of the 26th annual international ACM SIGIR

conference on Research and development in information retrieval, Toronto, Canada,

July/August 2003 pp. 182-189

[Chaffee 00] Jason Chaffee, Susan Gauch. Personal Ontologies For Web Navigation. In

Proceedings of the 9th International Conference On Information Knowledge

Management (CIKM), 2000, pp. 227-234.

[Chekuri 97] Chandra Chekuri, Michael H. Goldwasser, Prabhakar Raghavan, Eli Upfal.

Web Search Using Automatic Classification. In Proceedings of the 6th International

WWW Conference. Santa Clara (CA), USA, 1997.

[Cui 02] Hong Cui, P. Bryan Heidorn, Hong Zhang. An approach to automatic

classification of text for information retrieval. In Proceedings of the second

ACM/IEEE-CS, Joint Conference on Digital libraries Portland, Oregon, USA, July

2002, pp. 96 – 97

[Gauch 04] Susan Gauch, Jason Chaffee, and Alexander Pretschner, Ontology-Based

User Profiles for Search and Browsing” , Web Intelligence and Agent Systems, (in

press).

 [Glover 01] E. Glover, G. Flake, S. Lawrence, W. Birmingham, A. Kruger, C. Giles, and

D. Pennock. Improving Category Specific Web Search by Learning Query

Modifications. In Proceedings of the Symposium on Applications and the Internet,

SAINT 2001, San Diego, CA, January 2001,pp. 23-31

 67

[Guarino 99] N. Guarino, C. Masolo, and G. Vetere, OntoSeek: Content-Based Access

to the Web. IEEE Intelligent Systems, 14(3), May 1999, pp. 70-80.

[Hawking 99] David Hawking, Ellen Voorhees, Nick Craswell, and Peter Bailey.

Overview of the TREC8 Web Track. In Eighth Text REtrieval Conference (TREC-7),

November 1999.

[Heflin 2000] Jeff Heflin, James Hendler. Dynamic Ontologies on the Web. In

Proceedings of 17th National Conference on Artificial Intelligence (AAAI), 2000.

[ITTC 03] Susan Gauch, Devanand Ravindran, Subhash Induri, Juan Madrid, and Sriram

Chadalavada, Internal Technical Report ITTC-FY2004-TR-8646-37, Information and

Telecommunication Technology Center, University of Kansas

[Kato 99] Tsuneaki Kato, Shigeo Shimada, Mutsumi Kumamoto, Kazumitsu Matsuzawa.

Idea-Deriving Information Retrieval System. In Proceedings of the First NTCIR

Workshop on Research in Japanese Text Retrieval and Term Recognition, Tokyo,

Japan, August 30 - September 1, 1999.

[KeyConcept 03] KeyConcept. http://ittc.ku.edu/keyconcept/

[Klink 02] Stefan Klink, Armin Hust, Markus Junker, Andreas Dengel. Collaborative

Learning of Term-Based Concepts for Automatic Query Expansion. In Proceedings of

ECML 2002, 13th European Conference on Machine Learning, Helsinki, Finland,

August 19-23, 2002, pp 195-206

[Knight 94] K. Knight and S.K. Luk. Building a Large-Scale Knowledge Base for

Machine Translation. In Proceedings of the 12th National Conference on Artificial

Intelligence (AAAI), 1994, volume 1, pp. 773-778.

 68

[Krovetz 92] Robert Krovetz and Bruce W. Croft. Lexical Ambiguity and Information

Retrieval. ACM Transactions on Information Systems, 10(2), April 1992, pp. 115-141.

[Labrou 99] Yannis Labrou, Tim Finin. Yahoo! As An Ontology – Using Yahoo!

Categories To Describe Documents. In Proceedings of the 8th International Conference

On Information Knowledge Management (CIKM), 1999, pp. 180-187.

[Liu 02] Fang Liu, Clement Yu and Weiyi Meng. Personalized web search by mapping

user queries to categories. In Proceedings of the 11th International Conference on

Information and Knowledge management, McLean, Virginia, USA, 2002, pp. 558 - 565

[Lu 99] Fenghua Lu, Thomas Johnsten, Vijay Raghavan, Dennis Traylor. Enhancing

Internet Search Engines to Achieve Concept-based Retrieval. In Proceedings of

InForum '99 - Improving the Visibility of R & D information, Oak Ridge, Tennessee,

May 1999.

[Matsuda 99] Katsushi Matsuda, Toshikazu Fukushima. Task-Oriented World Wide

Web Retrieval By Document Type Classification. In Proceedings of the 8th

International Conference On Information Knowledge Management (CIKM), 1999, pp.

109-113.

[NorthernLight] Northern Light. http://northernlight.com

[ODP] Open Directory Project. http://dmoz.org

[Pazzani 96] Michael Pazzani, Jack Muramatsu, Daniel Billsus. Syskill & Webert:

Identifying Interesting Web Sites. In Proceedings of the 13th National Conference On

Artificial Intelligence, 1996, pp. 54-61.

 69

[Pearce 97] Claudia Pearce, Ethan Miller. The TellTale dynamic hypertext environment:

Approaches to scalability. In Advances in Intelligent Hypertext, Lecture Notes in

Computer Science. Springer-Verlag, 1997.

[Pitkow 02] James Pitkow, Hinrich Schütze, Todd Cass, Rob Cooley, Don Turnbull,

Andy Edmonds, Eytan Adar, Thomas Breuel. The consumer side of search:

Personalized search. In the Communications of the ACM, September 2002. pp. 50-55

[Ruiz 99] Miguel Ruiz, Padmini Srinivasan. Hierarchical Neural Networks For Text

Categorization. In Proceedings of the 22nd Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, August 1999, pp.

281-282.

[Sebastiani 02] Fabrizio Sebastiani. Machine Learning in Automated Text

Categorization – In ACM Computing Surveys 34(1), 2002, pp. 1-47

[SES 03] Search Engine Showdown: Size statistics.

http://www.searchengineshowdown.com/stats/sizeest.shtml

[Singhal 96] Amit Singhal, Chris Buckley, Mandar Mitra, Pivoted Document Length

Normalization. 19th ACM Conference on Research and Developemnet in Information

Retrieval(SIGIR), 1996.

[Tirri 03] H.Tirri, Search in vain: challenges for Internet search. In Computer, Volume

36, Issue 1, Jan 2003, pp. 115-116

[Yang 03] Y. Yang, J. Zhang and B. Kisiel - A scalability analysis of classifiers in text

categorization . In Proceedings of 26th Annual International ACM SIGIR

Conference,July-Auguest 2003, pp 96-103.

[YAHOO] Yahoo! http://www.yahoo.com

 70

[Zhu 99] Xiaolan Zhu, Susan Gauch, Lutz Gerhard, Nicholas Kral, Alexander

Pretschner. Ontology-Based Web Site Mapping For Information Exploration. In

Proceedings of the 8th International Conference On Information Knowledge

Management (CIKM), 1999, pp. 188-194.

[Zien 01] Jason Zien, Jörg Meyer, John Tomlin, Joy Liu. Web Query Characteristics And

Their Implications On Search Engines. In Proceedings of the 10th International WWW

Conference. Hong Kong, China, 2001.

 71

Appendix

List of queries in pruning query set and associated concepts

Query terms

Concepts

1-word queries

diamond /Shopping/Jewelry/Diamonds

yacht /Recreation/Boating/Sailing

sitcoms /Arts/Television/Programs

depreciation /Business/Investing/Real_Estate

smithsonian /Reference/Museums/Museum_Resources

chat /Computers/Internet/Cyberspace

Siamese /Recreation/Pets/Cats

conservative /Society/Politics/Conservative

2-word queries

alien life /Science/Astronomy/Extraterrestrial_Life

joint pain
/Health/Conditions_and_Diseases/Musculoskeletal_Dis
-orders

remove weed /Home/Gardens/Plants

ancient incas /Regional/South_America/Peru

aircraft carrier /Society/Military/Ships

propeller plane /Recreation/Aviation/Aircraft

amino acids /Science/Biology/Genetics

fairy tales /Arts/Literature/Children's_Literature

3-word queries

national parks animals /Recreation/Outdoors/Wildlife
north south korea

/Regional/Asia/North_Korea ,
/Regional/Asia/South_Korea

skills development programs /Business/Human_Resources/Training_and_Safety

cheap pets drugs /Recreation/Pets/Health

new york yankees /Sports/Baseball/Major_League

child day care /Home/Family/Childcare

cheap airfare deals /Recreation/Travel/Budget

software life cycle /Computers/Software/Software_Engineering

 72

