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Abstract 

 
As the number of available Web pages grows, users experience increasing difficulty 

finding documents relevant to their interests. One of the underlying reasons for this is that 

most search engines find matches based on keywords, regardless of their meanings. To 

provide the user with more useful information, we need a system that includes 

information about the conceptual frame of the queries as well as its keywords. This is the 

goal of KeyConcept, a search engine that retrieves documents based on a combination of 

keyword and conceptual matching. This paper describes the system architecture of an 

enhanced KeyConcept, the training of the classifier for the system, and the results of our 

experiments evaluating system performance. Experiments that check whether result 

pruning and retrieval based on the hierarchical structure of the ontology help in 

improving precision are also described. KeyConcept is shown to significantly improve 

search result precision through its use of conceptual retrieval. Pruning and Hierarchical 

Retrieval are also shown to yield better results in most cases. 
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1. Introduction 
 
 

1.1 Motivation 
 
Content on the web has been increasing rapidly over the last few years. A popular search 

engine reports to index 3.3 billion pages as of September 2002 [SES 03]. As the number 

of pages available increases, finding relevant information becomes more difficult. Much 

of this difficulty arises from the ambiguity present in natural language. For instance, two 

people searching for “wildcats”  may be looking for two completely different things (wild 

animals and sports teams), yet they will get exactly the same results. We can see that 

searches are made based on pure string matching; the specific meaning wanted by the 

user is ignored.  

 

There exists a need for a system that can take into account not only the keyword entered 

for a search, but also the meaning or the concept for which the user is searching. Such a 

system would be able to filter out pages that are not directly related to the user’s desired 

concept and present only results that match the user’s interests. Current search engines 

fall short in providing this vital distinction to the user. It is our belief that KeyConcept, a 

search engine that incorporates search by keyword and concept, can effectively increase 

search result accuracy. 
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1.2 Current Problems 
 
The major reason the Internet is hard to search is because there is a lot of data but not 

enough information. In other words, the data available on the Net is not organized in any 

particular sense. Current search engines usually search by simply matching the query 

terms as strings. This results in the user obtaining documents that might have contained 

the term he might have been looking for, but not the meaning he was looking for. This is 

due to the fact that a search term may have multiple meanings [Krovetz 92]. There are 

very few search engines that even categorize their results in different conceptual 

categories [NorthernLight], thus guiding users through the result set. 

 

There is already some conceptual information already available on the Internet in the 

form of directory services such as Yahoo! [YAHOO] or the Open Directory Project 

[ODP]. Websites do arrange web pages into categories for browsing purposes. However, 

each site has its own hierarchy and only a small fraction of web pages appear in these 

browsing hierarchies. The hierarchical information may be used to restrict search to 

subsets within that site, but this information is not used by web-wide search engines. The 

semantic web efforts attempt to address this issue by encoding conceptual information 

inside web pages themselves. These ontological approaches have two main drawbacks. 

First, where will an agreed-upon conceptual hierarchy of sufficient detail come from 

[Tirri 03].  Second, only a small percentage of web contributors will ever go through the 

process of manually annotating their web pages with ontological information. In our 

approach, we work with regular web pages and try to identify and exploit the latent 

conceptual information. 
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1.3 Related Work 

1.3.2 Text Classification 

Text classification organizes information by associating a document with the best 

possible concept(s) from a predefined set of concepts. Several methods for text 

classification have been developed, each with different approaches for comparing the 

new documents to the reference set. These including comparison between vector 

representations of the documents (Support Vector Machines, k-Nearest Neighbor, Linear 

Least-Squares Fit, TF-IDF), use of the joint probabilities of words being in the same 

document (Naïve Bayesian), decision trees and neural networks. A thorough survey and 

comparison of such methods is presented in [Yang 03], [Sebastiani 02], [Pazzani 96], 

[Ruiz 99]. Several systems have been built that incorporate classification to allow users to 

explore document sets. [Yang 03] particularly examines the complexities involved in 

different methods of text categorization and especially in hierarchical categorization. 

 

[Kato 99] defines an idea-deriving informational system that uses a combination of a 

concept-base and normal character-string matching for information retrieval. The concept 

base in this case is created either based on word co-occurrences (corpus-based) or 

dictionary based. Document terms are then indexed according to the concept base. A 

combination of both conceptual and keyword matching rather than either method 

individually obtains the best results in this system. 

  

As presented by [Chekuri 97] and [Matsuda 99], one of the main uses of text 

classification is to restrict the search domain. In [Chekuri 97], users have the option of 
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specifying some concepts of interest when submitting a query. Then, the system only 

searches for results in the specified concepts. The approach in [Matsuda 99] extends this 

idea by classifying documents based on other attributes, e.g., size, number of images, 

presence or absence of certain tags, as well as content. In this system, the user has the 

option of specifying the type of document he/she is looking for, e.g., a catalog, a call for 

papers, a FAQ, a glossary, etc., in addition to the search terms. More recently, [Cui 02] 

uses the internal structure of documents to assign XML classes such as Nomenclature, 

Description, Images, References to domain-specific document collections and the uses 

these classes for retrieval. 

 

[Glover 01] also discusses the usage of document-specific structure for identifying 

documents as belonging to a particular category, such as research papers or personal 

homepages and lets the user choose the type of page he wants. This allows the user to 

choose the type of page the user wants but not the topic of interest. [Klink 02] approaches 

conceptual retrieval differently by defining a concept based on the query term(s) used. 

Previous queries and a known set of relevant documents are used to learn the concept 

definition for a query term. The key terms in the definition are then used to expand the 

query that is then sent to a normal search engine. 

 

In the OBIWAN project [Zhu 99], ontologies are used to represent user profiles. Queries 

are submitted to a traditional search engine, and the results are classified into the 

ontology concepts based on their summaries. The documents in the result set are re-

ranked based on matches between the summary concepts and the highly weighted 
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concepts in the user profile. While this approach was able to improve rank ordering of the 

results, it was not able to find more information for users because it could only work on 

the result set retrieved by a generic search engine. KeyConcept takes this approach one 

step further by integrating the conceptual matching into the retrieval process itself.  

 

Other methods for Text Classification have been examined in great detail. Some of these 

approaches include implementing unsupervised learning algorithms like Latent Semantic 

Analysis [Cai 03], and using AI rule-base trees to compute the conceptual relevancy of 

search results [Lu 99]. 

 

1.3.2 Ontologies 

An ontology is an arrangement of concepts that represents a view of the world [Chaffee 

2000] that can be used to structure information. Ontologies can be built by specifying the 

semantic relationships between the terms in a lexicon. One example of such ontology is 

Sensus [Knight 94], a taxonomy featuring over 70,000 nodes. The OntoSeek system 

[Guarino 99] uses this ontology for information retrieval from product catalogs.  

 

Ontologies can also be derived from hierarchical collections of documents, such as 

Yahoo! [YAHOO] and the Open Directory Project [ODP]. [Labrou 99] reports the use of 

the TellTale [Pearce 97] classifier to map new documents into the Yahoo! ontology. This 

is done by training the classifier with documents for each one of the concepts in the 

ontology, and then finding the concept that has a greater similarity with the new 

document. Furthermore, an ontology can be used to allow users to navigate and search 
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the Web using their own hierarchy of concepts. The OBIWAN project [Zhu 99] 

accomplishes this by letting users define their own hierarchy of concepts, then mapping 

this personal ontology to a reference ontology (Lycos in this case).  

 

Liu [Liu 02] and Pitkow [Pitkow 02] have devised systems that use personalization to 

identify relevant concepts as related to the individual user. Liu [Liu 02] approaches the 

problem of personalizing information retrieval according to user preferences by analyzing 

previous queries made by the user and developing a user profile. The user profile is then 

used to select the most appropriate categories for a user when a user makes a new query. 

A general profile for categories is also prepared using the ODP [ODP] structure. In this 

system, users have to select the relevant documents for a query and the relevant 

categories for each document too. This lays too much emphasis on the user’s decision on 

whether the document/category is relevant or not. [Pitkow 02] uses contextualization to 

obtain relevant search results from an Internet search engine. The ODP structure is used 

here to identify the user’s search context. The user’s past browsing history is also stored. 

This information is used to augment a query by adding relevant terms from the user’s 

profile and current context.  

 

Authors can also embed ontological information in their documents. SHOE (Simple 

HTML Ontology Extensions) [Heflin 2000] is a language that serves this purpose, 

allowing the creation of new custom-made ontologies and the extension of existing ones.  
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Our work derives from OBIWAN [Zhu 99] by Xiaolan Zhu and Susan Gauch. OBIWAN 

is a comprehensive system designed for characterizing contents of a website. In this 

system, a website is classified as belonging to a particular category by taking its 

component pages and classifying them into concepts in an ontology. This work was 

extended to provide personalized search and browsing [Gauch 04]. We extend this work 

by incorporating classification in the indexing process, not merely as a post-process on 

the result set. 
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1.4 Proposed Solution 

We intend to develop a solution that will, given a query, retrieve information not only 

based on the query terms, but also on the desired concepts the user is interested in. For 

example, if the user desires to search for “ rock”  he enters “ rock”  as his/her query term 

and also gives as input to the system, “Music”  as the category in which he/she is 

interested in. This will help avoid the multiple meaning problem of words.  

 

To perform the above-mentioned function, the index created needs to be not only based 

on words in the document, but also indexed based on what concept the document most 

corresponds to. For this purpose, we intend to simultaneously create an inverted index 

that indexes both by words and concepts. For training the classifier, we use the manually 

created ODP collection. Using these documents already classified in an ontology, we 

create a training set that can be used later to classify documents from a different 

collection. For the ontology, we use the Hierarchical structure obtained from ODP.  

 

We also aim to improve retrieval results by not only searching the exact concepts the user 

wants to see, but also nearby concepts in the hierarchy. We believe that any document 

misclassified into a neighboring concept could thus still be selected by the retrieval 

system. 
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1.5 Overview  

KeyConcept creates an inverted index in a method similar to any other major search 

engine during the indexing process. The main aspect by which it differs from normal 

search engines is that KeyConcept also includes information about the concepts to which 

each document is related. To accomplish this, the traditional structure of an inverted file 

was extended to include mappings between concepts and documents. The retrieval 

process takes advantage of this enhanced index, supporting queries that use only words, 

only concepts, or a combination of the two. The user can select the relative importance of 

the criteria (word match or concept match).  

 

 

 

Figure 1 Operation of the conceptual search engine 
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Indexing 

The indexing process is comprised of two phases: Classifier training and collection 

indexing. During classifier training, a fixed number of sample documents for each 

concept in the ODP collection are collected and merged, and the resulting super-

documents are preprocessed and indexed using the tf *  idf method. This essentially 

represents each concept by the centroid of the training set for that concept. During 

collection indexing, new documents are indexed using a vector-space method to create a 

traditional word-based index. Then, the document is classified by comparing the 

document vector to the centroid for each concept. The similarity values thus calculated 

are stored in the concept-based index.  

 

Retrieval 

During retrieval, the user provides a query containing words and concept identifiers. 

Concept matched and keyword matches between the query and documents are combined 

with a factor (α factor) between 0 and 1, specifying the relative importance of concept 

matches to word matches.  If  is 1 ,  only concept matches are considered.  If it is 0,  only !

word matches matter.  W hen  is 0. 5 ,  concept and word matches contri! bute equally.  

We used an optimum value of 0.3 for α, the details of the process of deciding optimum α 

are shown in [ITTC 03]. After receiving user data, the search engine performs the search 

and stores the results for word and concept matches in separate accumulators. The final 

document scores are computed using the formula:  

))1(()( scorewordscoreconceptscoreDocument ×−+×= αα  
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Hierarchical Retrieval 

To obtain results not only in the concept identifiers mentioned by the user, but also those 

in the vicinity, we intend to reference the ontology used for training. We search for the 

user-specified concept and then locate the structurally nearby concepts. We investigate 

the effect of including children, parents, and siblings in the hierarchy. We have 

performed different experiments with several combinations of relationships and our 

results are presented in section 5.4.5 
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2. KeyConcept Architecture 

2.1 Indexing 

Indexing is the method of storing information about Web pages so they can be retrieved 

efficiently. KeyConcept uses an inverted index, a common way of organizing data 

extracted from Web pages. The process of indexing takes a Web page, processes it to 

extract the words, and calculates statistical information about the word, and stores this 

information on an index. 

  

In KeyConcept, two indexes need to be created – one for the keywords belonging to a 

document and one for the conceptual categories to which a document belongs. The 

process of indexing is shown in Figure 2. 

 

  

 

 

 

 

 

 

Figure 2.  KeyConcept Components 
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2.1.1 Keyword Indexing 

There are three major components of our Inverted Index – the dictionary file, the postings 

file and the documents file. The dictionary file (DICT) stores each word, its idf (inverse 

document frequency) and a pointer to the first occurrence of the word in the postings file 

(POST). The postings file (POST) keeps track of how many times the word has appeared 

in each document. The documents file (DOCS) maps between the document id and each 

word contained in the document in DICT and POST. The documents structure keeps 

track of the normalization value for each document so that search results can be 

normalized by length. The normalization method followed is one of the most popular 

normalization methods  - the pivoted document normalization method [Singhal 96]. A 

brief explanation of the elements in each of the three structures of the inverted index – 

DICT, POST and DOCS are given below: 

 

a) DICT: 

i) key – Term that is being indexed 

ii) docs – Number of docs in collection that contain word 

iii) idf – Inverse Document Frequency of the word over the whole collection 

(computed at the end of indexing phase) 

iv) post – Link to the first posting record that contains the word 
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b) POST 

i) doc_id –  ID of the document that contains the word  

ii) count – Number of times the word has occurred in the individual 

document 

iii) word_link – Link to the next occurrence of the word in the collection 

iv) doc_link – Link to the DOCS record that contains the IDF of the term 

 

c) DOCS 

i) key – Unique Document ID of the document 

ii) norm – Normalization value for the document(computed using pivoted 

normalization technique) 

iii) wordpost – Link to the posting record of the first word in the document 

iv) catpost – Link to the posting record of the first concept to which the 

document belongs (updated during classification phase) 

v) num – The number of words in the document  

 

In KeyConcept, we use a disk-based mapping system for storing the dictionary and 

posting files. The disk-based mapping system helps to avoid the common memory-

shortage pitfalls experienced in memory-based indexing. The sequence of indexing a 

collection of files is shown in Figure 3. Each file is processed to obtain its individual 

tokens. Each token is then processed to its canonical form (i.e. stemming, down casing 

and removal of stopwords) and entries in DICT, POST and DOCS are updated. 
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Figure 3.  Indexing Process 
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2.1.2 Conceptual Indexing 
 
KeyConcept provides a unique feature for conceptual searching. The method used to 

index documents based on concepts is very similar to the method used to index 

documents based on keywords. The first step is to identify the best concept(s) for 

document and then index that information. The process of assigning concepts to a 

document is called classification. Our method uses training to create a mapping between 

concepts and vocabulary based on an initial training set. Then, new documents have their 

vocabulary compared to each concept’s vocabulary to identify the best match(es).  

 

2.1.2.1 Training Phase 

In our approach, we use a training corpus in which each concept has a set of documents 

already assigned to it. We use this to form a training inverted file structure that will later 

be used to classify the new dataset. The training process is simply an indexing process 

with training files in the same concept assigned the same ID. Essentially, a super-

document is formed by merging all documents in the training set of a concept. This 

super-document is considered a representative document for that particular category. 

Figure 4 describes the procedure followed to obtain a training inverted file i.e. the 

TDICT, TPOST and TDOCS files. 
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Figure 4.  Training Phase 
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2.1.2.2 Classification Phase 
 
In the classification phase of conceptual indexing, the training inverted file obtained is 

used to identify the most relevant classes for the set of documents to be indexed. The 

trained documents serve as an example against which new documents are compared. 

When a document is classified, the training index is looked up to obtain the top k 

categories for the top N words in the documents and the weights are accumulated for each 

concept. The most relevant concepts from the training index are obtained by sorting the 

concepts by weight. This process is accomplished via the retrieval function of the vector 

space search engine code we use. Essentially, the document is treated as a query against 

the concept super-document stored in the inverted index. The catpost field in DOCS file 

(created during keyword indexing) is updated to point to the first concept to which the 

document belongs. Figure 5 shows the process of conceptual indexing. The results of this 

classification are stored in CATDICT, CATPOST files. A brief description of the 

elements of a CATDICT record and CATPOST record is given below: 

 

a)    CATDICT 

i) key – Unique ID of the category 

ii) docs – Number of docs indexed in this category 

iii) catpost – Link to the first CATPOST record corresponding to the category 
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b)   CATPOST 

i) doc_id – ID of the category that points to this record 

ii) weight – Weight of the category in this document 

iii) category_link – Link to the next category for this document 

iv) doc_link – Link to the next document in the same category 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Classification Phase 
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2.2 Retrieval 
 
There are two main components of retrieval in KeyConcept – keyword-based retrieval 

and concept-based retrieval. Results from these two different retrieval methods are then 

combined to give the final result. An α-factor is applied while computing the final scores 

for documents. Thus, the final scoring formula for documents is: 

document_ score = (α *  normalized_concept_score) + ((1-α) *  keyword_score) 

where  

normalized_concept_score = concept_score for document / maximum_concept_score  

and  

keyword_score = word_score for word in document *  normalization_value of document 

Sections 2.2.1 and 2.2.2 describe each type of retrieval. 

    
2.2.1 Keyword Retrieval 
 
Once the documents have been indexed, search queries can be applied to them to retrieve 

documents. Once the user enters the query terms, the indexes (DICT, POST, DOCS) are 

searched to obtain the top N documents for each of them. The terms entered are searched 

for in DICT. We also get the number of documents (numdocs) with that term and the 

pointer to the first corresponding document is obtained. Next, the posting file POST is 

accessed at the obtained pointer location and the set of postings records for the word are 

accessed in order. For each postings record, the frequency of the word in the document 

(tf) is obtained along with a pointer to the DOCS file. The corresponding document 

information such as normalization factor (norm) is found by accessing the DOCS file. 
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The normalization factor has already been computed during the indexing phase as 

described in section 2.1.1 

 

A temporary accumulator array to keep track of the score for each document is created 

and the array elements corresponding to each posting record are updated with the weight 

of the word in the document calculated from numdocs, tf and norm.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Keyword Retrieval 
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2.2.2 Conceptual Retrieval 
 
Conceptual retrieval is similar to keyword retrieval, except that instead of accessing the 

inverted file created for keywords, we access the inverted file created for concepts, i.e. 

CATDICT and CATPOST.  The user enters query terms and selects from a list of 

concepts the ones that are most related to the topic of interest. For example, if a user were 

searching for information about the Kansas City Royals, he would choose Sports >> 

Teams as one of his preferred categories. The KeyConcept system uses the unique ID of 

the category to search CATDICT and find the documents associated with the category 

present in the category postings file (CATPOST) exactly as it uses words to search DICT 

to find postings in POST. It updates a concept accumulator with the corresponding 

weight similar to building the keyword accumulator.  Figure 7 shows the operation of the 

conceptual retrieval process. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Conceptual Retrieval 
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2.3.3 Combined Retrieval 
 
The two accumulators, Keyword accumulator and Concept accumulator are now 

combined using the formula mentioned above. That is,  

combined_score[each document]   

             = (α *  concept_ score[document] ) + (1-α) *  keyword_score[document]  

Both scores are normalized as described in the beginning of section 2.2. The final scores 

are sorted in descending order of the combined score. Figure 8 illustrates this operation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Combined Retrieval 
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3. Exploiting Hierarchical Relationships 
 
This work is focused on enhancing KeyConcept by making use of the hierarchical nature 

of concepts in an ontology. This conceptual hierarchy can be exploited in two ways: 

 
3.1 Pruning Results based on Hierarchical Relationships 

Obtained results from a search can be “pruned” to remove documents that are completely 

unrelated to the concepts searched but have managed to find their way into the top N 

results. To do this, the top three concepts of each document in the result set are compared 

with the concepts the user searched for. We chose the top three concepts that a document 

belongs to as the cut-off for comparison based on the results obtained in [ITTC 03]. 

These experiments showed that the increase in precision was not significant with more 

than three concepts were used for retrieval. The document can generally thus be pruned if 

none of the top three categories match the user’s choice of categories.  

 

For example, the user might be interested in the category “ Arts/Styles/Blues”  for his 

search. The obtained top 3 categories for a result document might be  

1) Arts/Instruments/Guitar 

2) Shopping/Music/CDs 

3) Arts/Style/Classic_Rock 

We can decide to prune at Level1 or Level2, i.e., either at the ” Arts/”  level or the 

“Arts/Styles/”  level. Depending on this choice, the document might be allowed to remain 

in the result set or be pruned. 
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3.2. Retrieval based on Hierarchical Relationships 

Many documents that are been misclassified during training are classified into a concept 

that is close in distance to the correct concept. For example, if a document belonged to 

Sports >> Teams >> Baseball category, it might have been misclassified either in the 

Sports >> Teams category or in the Sports >> Teams >> Baseball >> Apparel category.  

A segment of the ODP tree hierarchy is shown in Figure 9.  

 
 0 Arts 
         Music 
         Styles 
               Collecting 

              Instruments 
             . 
             . 
             .          
             Trading 

         Television 
             Networks 

         Video_Production 
          Cable_TV 
         . 
               .  
         . 
                   Interactive 
            . 
            .  
            . 
         Directories 
 
  1 Business 
 . 
 . 
 . 
 2 Sports 
 

 

Figure 9.  Example ODP hierarchy 
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Enhanced KeyConcept goes to the ODP Tree stored in a plaintext file and searches for 

concepts that are hierarchically close in distance to the given concept. It includes these 

concepts as part of the search parameters and performs a combined Keyword/Concept 

search as in basic KeyConcept. Different experiments have been performed to choose the 

right kind of neighbors for the given concepts and to estimate the weight each of these 

hierarchical neighbors should be given. The results of these experiments are detailed in 

Section 5.2.  Figure 10 describes the hierarchical retrieval process. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Hierarchical Retrieval 
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4. Experimental Procedure 

This section describes the different experiments we performed to evaluate our 

enhancements to KeyConcept. Section 5 gives the results of these experiments. 

 

4.1. Data Sets 

4.1.1. Training Data 

Because it is readily available for download from their Web site in a compact format, we 

chose to use the Open Directory Project hierarchy [ODP] as our source for training data,. 

In addition, it is also becoming a widely used, informal standard. As of April 2002, the 

Open Directory had more than 378,000 concepts. Because of the large volume of data 

involved, training the classifier would be a long and difficult task, if the full set of 

concepts were used. In addition, subtle differences between certain concepts may be 

apparent to a human but indistinguishable to a classification algorithm. Thus, we decided 

to use the concepts in the top three levels of the Open Directory. This initial training set 

was composed of 2,991 concepts and approximately 125,000 documents. The first three 

levels of ODP were used to obtain a list of categories and generate the training set. 

Documents below level 3 in ODP were propagated upwards to their corresponding level 

3 categories.  
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4.1.2. TREC Data 

We built a test set consisting of 100,000 documents chosen from the WT2g collection 

[Hawking 99]. The test set includes the 2,279 documents having positive relevance 

judgments and 97,721 randomly selected documents. Because the title section of each of 

the 50 WT2g’s topics resembles a typical search engine query (2 to 3 words in length) 

[Zien 01], we used the title section as the keyword query for our search engine, Then, we 

ran the description and narrative paragraphs included with each topic through our 

classifier and used the obtained concepts as the concept input for the search engine. 

These descriptions and titles average 50 words in length. It is worth noting that we also 

manually determined the best matching concepts for each query and input the manually 

chosen concepts along with the query. However, since the difference between the results 

obtained using the automatically obtained concepts and the manually obtained ones is not 

significant (p-value of chi-square test ˜ 1), it is not discussed further. [ITTC 03] 

 

4.1.3. Pruning Query Set 

For testing the effectiveness of pruning, queries were chosen manually instead of from 

the TREC collection. The TREC query collection is a standardized set of query terms, 

with the relevant documents for each query explicitly indicated. Although these well-

defined queries lend themselves to easy verification of search accuracy, the nature of 

their definition of relevancy eliminates several documents in the TREC collection that 

might have been considered “ relevant”  to a casual user of a search engine. Since the 

concepts for a search have been chosen manually, the well-defined relevancy of the  

“correct”  results is undermined in any case. 



 37

  

Since the purpose is to test the efficiency of conceptual search for a lay user, it was 

decided to select a set of queries that are typical of a user searching for information on 

the Internet. A set of 24 queries, with 8 queries each of 1-word, 2-word and 3-word 

length, was selected for the experiment. This also helped to evaluate the performance of 

queries of different length with conceptual retrieval. 

 

4.2 Setting the Baseline 

We chose our baseline on experiments previously conducted with basic KeyConcept to 

tune several parameters. For example, the maximum and the minimum bounds of the 

number of training documents required for training were re-evaluated. Several other 

experiments were performed with respect to confirming the appropriate scoring formula 

and the correct α value. A list of the experiments performed is presented below. These 

results are described in full detail in [ITTC 03]. 

 

List of preliminary experiments performed: 

1. To determine an upper bound for the number of documents 

2. To determine a lower bound for the number of documents 

3. To determine if the number of categories chosen affected precision 

4. To determine the best weight of term in document and weight of term in concept 

5.  To determine effect of α on search precision 

6. To evaluate per-query precision score comparison 
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4.3 Retrieval Based on Hierarchy 

Once the basic parameters for retrieval, such as α and the number of training documents, 

were set, we proceeded to investigate which of the concepts in the hierarchy we should 

include in our conceptual search. It is our assumption that most misclassified data for a 

concept would be present in a very close neighbor of the concept in the hierarchy. There 

are several such “close”  neighbors of a concept. In Figure 11, if the user-chosen concept 

is C, then the possible concepts that can be included are: 

a) Its siblings, D and E 

b) Its parent B 

c) The children F, G, H, and I 

d) The grandparent A 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Neighborhood Hierarchy of a node 

D 

B 

E 

A 

C 

G F H I 
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We decided to set the level of cut-off for enhanced KeyConcept at Level 4, one more 

level than previously used. This provided a wider range of concepts from which the user 

could choose and allowed us to expand level 3 concepts to their children in our 

experiments.  

 

It was decided to test for all these cases by varying the weight for each of the possible 

expansion while computing the categories’  relevance to the search. Combinations of the 

most promising cases were also tried in order to obtain the best possible results. 
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5. Experimental Results and Observation 

5.1 Baseline Determination 

The baseline system set various tuning parameters such as the minimum and maximum 

number of training documents required, based on results from previous research, which 

has been detailed in [ITTC 03]. It was found that the best formula for scoring a word in 

the query was TF *  IDF *  CDF, where TF refers to the pivoted normalized term 

frequency of the word in the collection, IDF is the inverse document frequency of the 

word in the entire collection and CDF is the frequency of the word in the particular 

concept found during training. We also conducted an experiment to determine the 

optimum value of α at four levels of the hierarchy (previous work only used three) and 

we found that α = 0.3 was confirmed as the best value. 

 

Figures 12-14 describe the process of retrieval on the online version of KeyConcept, 

which can be found at [KeyConcept 03]. Figure 12 shows the selection process where 

three categories the user is interested in are selected. The keywords are also typed for the 

retrieve. Figure 13 shows the results obtained for the search along with the weight of the 

document in the final result and a short summary of it. Figure 14 shows the top 10 

categories as retrieved by KeyConcept for one of the result documents. 
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Figure 12.  Keyword entry and concept selection in KeyConcept  
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Figure 13.  Search results after conceptual search 
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Figure 14.  Top concepts for a document 
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5.2 KeyConcept Example 

In this section, we show a sample illustration of the effectiveness of KeyConcept. For this 

purpose, we choose a query  “ rock”  that is very ambiguous. Longer queries, involving 

multiple words, may disambiguate themselves (e.g., ‘ rock music’ ), but even they may be 

ambiguous in some cases (e.g., ’ lions football’ ). In the following example, KeyConcept 

was used with no enhancements (such as pruning or hierarchical retrieval). 

 

5.2.1. Results of keyword-only search 

In this case, no categories were provided for enhancing the query. The query term “rock”  

was used and the search was performed. Figure 15 shows the results obtained. As seen in 

Figure 15, most results tend to pertain to rocks of a geological nature rather than any 

other meaning such as rock music, etc. If the user had been looking for rock music, only 

2 of the top 10 results would have been relevant. 
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Figure 15.  Results for a simple keyword search 
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5.2.2 Results with keyword and conceptual search 

In this case, the same query term was used with in combination with a selected concept 

that had disambiguated the kind of results the user desired. The concept chosen was 

“Music Styles”  for the query term “ rock” . The results are shown in Figure 16. As 

expected, KeyConcept performs extremely well, retrieving results that are more related to 

music rather than geology or agriculture. 6 of the top 10 documents were relevant. The 

average precision increases from 20% for keyword-only search to 60% for keyword and 

conceptual search, an increase of 200%. 
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Figure 16.  Results of Keyword ‘ rock’  + Concept ‘music styles’  
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In another case, the disambiguating power of KeyConcept was reaffirmed by checking 

the relevancy of the results for the same query term and choosing a concept that is most 

closely related to the term. That is, for the query term, “ rock” , the most related concept of 

“Geology”  was chosen. Here, 9 of the top10 results, or 90%, were relevant. Only one of 

the results was the same as the case where “Music/Styles”  was chosen as the concept. 

Figure 17 shows the results of such a search. 
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Figure 17.  Results of Keyword ‘ rock’  + Concept ‘Earth Science/Geology’  
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5.3 Exploiting Hierarchical Relationships for Conceptual Pruning  

Because we believe that KeyConcept will have the largest impact on shorter, more 

ambiguous, queries, we constructed three sets of queries of different lengths. These 

queries were taken at random from a set of actual user searches, extracted from the log of 

an online search engine. The first set consisted of query terms of length one, the second 

set with two query terms, and the third with three. Each set consisted of eight queries for 

which relevance judgments were provided manually. One relevant concept was chosen 

manually for each query in each set. The only exception was for the query “ north south 

korea”  where two categories “ Region/Asia/North_Korea”  and “  Regional/ 

Asia/South_Korea”  were chosen so that the query might be represented better.   

Four sets of results were obtained for each query: 

1) Pure Keyword Search 

2) Keyword Search with Pruning  

2.1) Pruning at Level 1 

2.2) Pruning at Level 2 

3) Keyword + Conceptual Search 

4) Keyword + Conceptual Search with Pruning 

4.1) Pruning at Level 1 

4.2) Pruning at Level 2 

For all the experiments, the baseline keyword search, with tuning parameter α = 0.3 (as 

described in section 5.1) was used. 
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Table 1 shows the precision (% of relevant documents) in the top 10 results. 

K+P K+C+P  K*  

Level1 Level2 

K+C 

Level1 Level2 

1-word queries 44% 48% 58% 54% 63% 71% 

2-word queries 31% 38.4% 55% 49% 58% 65% 

3-word queries 35% 49.4% 45% 51% 62% 65.2% 

       

Total 36.7% 45.2% 52.7% 51.3% 61% 67.1% 

 

Table 1.  Average Precisions of 1-word, 2-word and 3-word queries 

 

*  K = Pure Keyword Based 

  K+P = Keyword + Pruning 

  K+C = Keyword + Conceptual Retrieval 

  K+C+P = Keyword + Conceptual Retrieval with Pruning 

 

We can see that, compared to keyword search alone, we get an improvement of 82.83% 

(from 36.7% to 67.1%) in total overall precision when conceptual search plus pruning is 

used. These results will be discussed in more detail in the following sections. 
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5.3.1 Pure Keyword vs. Keyword with Pruning 

Chart 1 shows the performance of KeyConcept when only keyword matching is done 

compared to the results when the result set is pruned to remove documents that do not 

contain the user-selected concept within their top three best-matching concepts (as 

determined at index time). 
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Chart 1.  Comparison of precision of pure keyword vs. keyword with pruning 

 

The total average precision increases from 36.7% to 45.24% for level-1 pruning 

(p=0.00767) and from 36.7% to 52.67% (p=0.0031) for level-2 pruning. Both the 

improvements are significant. 
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5.3.2 Pure Keyword vs. Keyword + Conceptual Retrieval 

Chart 2 compares the performance of keyword-only matching to results where a 

combination of keyword and conceptual matching is used. No pruning is done on any 

search. The results of the two sets of experiments of pruning at Level1 and Level 2 have 

been averaged to yield a single precision value. 
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Chart 2.  Comparison of precision of pure keyword vs. keyword with conceptual 

retrieval 

 

Precision within the top 10 results increases significantly (p=6.81x10-5) from 36.7% to 

51.3% when conceptual search is used. 
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5.3.3 Pure Keyword vs. Keyword + Conceptual Retrieval with Pruning 

A combination of the both the techniques, i.e., conceptual retrieval and pruning yields 

very high precision values for all sets of queries. Chart 3 shows the effects of combining 

the two techniques. 
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Chart 3.  Comparison of precision of pure keyword vs. keyword + conceptual retrieval 

with pruning 

 

There is an overall significant increase in precision in all three cases. The total average 

precision increases from 36.7% to 61% for level-1 pruning (p=4.8x10-6) and from 36.7% 

to 67.1% (p=2.62x10-6) for level-2 pruning. Both improvements are significant. 
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5.3.4 Comparison of Retrieval Methods 

The overall performance of the above-mentioned systems can be compared now. Results 

from the previous experiments are combined and shown in Chart 4. Considering simple 

keyword-based retrieval as the baseline, we see that each subsequent method outperforms 

it by a significant amount. The most marked increase in precision is obtained in the final 

case, where keyword retrieval is used along with conceptual retrieval and pruning. 

Furthermore, from Table 1, we see that the maximum precision among all experiments 

performed is obtained for single word queries, when pruned at Level 2 (71%). The 

precision results previously described in section 5.3.3, i.e., keyword + conceptual 

retrieval with pruning, remain consistently high (above 60%). 
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Chart 4.  Comparison of retrieval methods 
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5.4. Exploiting Hierarchical Relationships for Conceptual Retrieval 

In this experiment, we tried to estimate the appropriate weight for each kind of 

hierarchical relation to the chosen concept. It is believed that a suitable combination of 

suitably weighted hierarchical neighbors, along with the chosen concept, would obtain 

the best results in conceptual search. 

 

Two factors were varied: a) The weights assigned to the adjacent concept were varied 

from 0.1 to 1.0 and b) the number of top concepts used for each query was varied from 1 

to 4. The following nodes close to the user’s concept in the hierarchy were tested:  

1) Sibling 

2) Parent 

3) Children 

4) Grandchildren 

For all the following experiments, the TREC dataset was used as the test data. 
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5.4.1 Siblings 

Effect of Sibling Weight on Top 10 Precision
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Chart 5.  Effect of adding siblings  

 

Chart 5 shows the results of the effect of adding siblings of the concept to the conceptual 

search. The search precision experiences a slight, non-significant increase at a weight of 

0.1 and then begins to decrease. This indicates that the addition of siblings increases the 

noise in the set of retrieved documents and does not help much in obtaining better results 

in our collection. 
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5.4.2 Parent 

The effect of adding the parent of a user chosen concept is shown in Chart 6. As before, 

the α value is set at 0.3 and the number of concepts is set at different values from 1 to 4. 
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Chart 6.  Effect of adding parent 

 

We found from preliminary experiments that there was not enough content for indexing 

in the first and second levels of the ODP hierarchy. We see our expectations confirmed in 

the results. The addition of the parent of a concept does not really change the search 

precision in any way.  
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5.4.3 Children 

Chart 7 shows the effect of adding all the children of a concept to the search. All children 

are given equal weights and the weights are, as before, varied from 0.1 to 1.0. 
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Chart 7.  Effect of adding children 

 

A maximum precision of 28.5% is obtained at a weight of 0.3 for one concept. It also 

shows the maximum increase of precision of 16.32% from 24.5% to 28.5%(p=0.15). This 

observation hints that adding children may help when the user chooses only one concept. 

The increase in precision, when 3 and 4 concepts are being used, is not significant. The 

noise in the set of selected documents increases as more and more related concepts are 

added to an already large set of chosen concepts 
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5.4.4 Grandchildren 

Grandchildren of a chosen concept were added too, and Chart 8 details the effects of such 

including them in the search.  

 

Effect of Grandchildren Weight on Top 10 Precision
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Chart 8.  Effect of adding grandchildren  

 

Search precision increases slightly up till a weight of 0.1 and then begins to even out. The 

maximum precision is obtained for 3 concepts at 27%. Although this increase is not 

significant, a suitable combination of different concepts could bring about a better 

precision. 
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5.4.5 Hierarchical Combinations 

Effect of alpha on Top 10 Precision for Combination
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Chart 9.  Combinations of related concepts 

 

Two possible combinations are shown in Chart 9. One combination selects the most 

promising concept-relations i.e. children and grandchildren, at their best weights of 0.3 

and 0.1 respectively and varies α from 0.0 to 1.0. Combination 2 includes 3 possible 

concept relations – child, sibling and grandchildren at weights 0.3, 0.2 and 0.1 

respectively and α is varied similarly. The former combination attains a maximum 

precision of 27.6% at an α = 0.3. We also see that the addition of siblings merely 

increases the noise in the set of documents retrieved for a query.  

This maximum precision is higher than that attained while just using grandchildren in the 

search (27%) but lower than the maximum precision attained in the previous experiment 

with just children (28.5%). Thus the system that just uses children of a user’s concept in 

the search is found to fare better than combinations of children and grandchildren. 
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6. Conclusions and Future Work 

6.1 Conclusions 

This thesis presented the idea that hierarchical information in the ontology might help in 

obtaining better search precision in conceptual retrieval. It aimed to evaluate different 

possibilities of using the neighboring nodes in a hierarchy to increase the conceptual 

search domain. Several combinations of the best hierarchical relatives of the concept 

were also tried to estimate whether such combinations helped in further increasing 

precision results. Pruning the obtained results based on the user’s selections was also 

investigated. 

 

Various combinations of pruning, keyword retrieval and conceptual retrieval were tested. 

The best precision results occurred when conceptual retrieval was performed at α = 0.3 

with the obtained results being pruned. In fact, the overall precision in the top 10 results 

jumps from 36.7% to 63.77%, a significant improvement (p=0.0038). The increase in 

precision with the use of the method just mentioned remained consistently above 50% for 

queries of different word-lengths. This seems to indicate the applicability of the pruning 

method uniformly to all queries. 

 

Training of the conceptual search engine was done with a 4-level ontology. It was found 

that the best results were obtained when a single concept’s children was selected for 

search along with key-word search.  There was a significant increase of precision for the 

top-10 documents from 24.6% to 28.6% when the children of the chosen concept were 
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included for conceptual retrieval at a weight of 0.3. Even for the previously determined 

value of three chosen concepts, the enhanced system with children increased search 

precision from 26.6% to 27.6% 

 

Other “ relatives”  of the chosen concepts, such as siblings, parents and grandchildren were 

also evaluated. The grandchildren were seen to give a slight increase in precision of 0.4 

(from 26.6% to 27%) at a weight of 0.1. Siblings and parents did not increase accuracy 

but decreased and maintained it, respectively.  

 

Suitable combinations of grandchildren and children were evaluated since they gave the 

best results in the above experiments. The combination did not seem to improve precision 

noticeably than just using children. This was probably due to the fact that with the 

addition of more concepts for search, more noise was also introduced in the retrieved 

document collection.  

 

6.2 Future Work 

The enhanced version of KeyConcept has succeeded in improving the overall efficiency 

of the conceptual search engine. The availability of such a stable conceptual retrieval 

system can act as a baseline for further research into alternate or better methods to 

improve current precision results. A few of the possible enhancements that can be done in 

the future are listed in the following sections. 
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6.2.1 Better Data 

As seen in the results for hierarchical retrieval using parents, there is at present not 

enough data in the top two levels of the ODP hierarchy for suitable training. With either 

the use of a hierarchy with more data in the upper levels, or by somehow training 

concepts for the upper levels, we believe that the parent nodes in a hierarchy can be used 

more effectively. 

 

6.2.2 Hierarchical Classification 

Instead of performing a hierarchical retrieval, it is possible to start indexing documents 

hierarchically. In this method, adjustments have to be made while indexing to keep track 

of hierarchically related concepts. In theory, this method would involve a lengthier 

indexing process and extra data structures for keeping track of hierarchical relationships 

between nodes.   

 

6.2.3 Contextualization 

An ongoing area of research in the area of information retrieval is contextualization. In 

contextualization, we take into account the related activity that is occurring while the user 

is searching for information. This may include the text in the windows that are open on 

the searcher’s desktop, previous websites accessed in a browser before the search was 

made, etc. For example, if the user has the website for “ESPN SportsCenter”  open and is 

searching using the query term “packers” , we may infer that the user is interested in 

searching about a sports team called “packers” . Relevant concepts according to this 

inference may be chosen and included for the search. In KeyConcept, a relatively 
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accurate method to accurately capture text/content from adjacent windows and inferring 

relevant concepts from it needs could be developed and integrated. 

 

6.2.4 Personalization 

Currently, the concepts for each query must be provided manually or by running a text 

related to the query through a classifier. Most users see this as a burdensome task. 

KeyConcept’s main thrust is to provide a comprehensive conceptual search framework in 

the future. This means that each user does not have to choose concepts manually 

anymore. The engine would compare the query to a user’s profile and choose the best 

concepts to add to the search. A user’s profile can be gathered by keeping track of his/her 

previous queries and maintaining a record of the concepts he’s interested in. The relevant 

concepts for a user can be arranged in a hierarchical fashion too. Thus an ontology 

mapping could be made between the user’s personal hierarchy and the general conceptual 

hierarchy. Thus, a completely automated conceptual search engine would, in the future, 

integrate both personalization and contextualization to obtain results better suited to the 

user.  
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Appendix 

List of queries in pruning query set and associated concepts 

Query terms 
 

Concepts 
 

1-word queries  

diamond /Shopping/Jewelry/Diamonds 

yacht /Recreation/Boating/Sailing 

sitcoms /Arts/Television/Programs 

depreciation /Business/Investing/Real_Estate 

smithsonian /Reference/Museums/Museum_Resources 

chat /Computers/Internet/Cyberspace 

Siamese /Recreation/Pets/Cats 

conservative /Society/Politics/Conservative 

  

2-word queries  

alien life /Science/Astronomy/Extraterrestrial_Life 

joint pain 
/Health/Conditions_and_Diseases/Musculoskeletal_Dis
-orders 

remove weed /Home/Gardens/Plants 

ancient incas /Regional/South_America/Peru 

aircraft carrier /Society/Military/Ships 

propeller plane /Recreation/Aviation/Aircraft 

amino acids /Science/Biology/Genetics 

fairy tales /Arts/Literature/Children's_Literature 

  

3-word queries  

national parks animals /Recreation/Outdoors/Wildlife 
north south korea 
 

/Regional/Asia/North_Korea , 
/Regional/Asia/South_Korea 

skills development programs /Business/Human_Resources/Training_and_Safety 

cheap pets drugs /Recreation/Pets/Health 

new york yankees /Sports/Baseball/Major_League 

child day care /Home/Family/Childcare 

cheap airfare deals /Recreation/Travel/Budget 

software life cycle /Computers/Software/Software_Engineering 
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