

# Modular Semantics for Model-Oriented Design

### Cindy Kong ckong@ittc.ku.edu

### The Information Technology and Telecommunication Center The University of Kansas







### WELCOME

δ2

### ACKNOWLEDGEMENTS

### **Problem Statement**

"Different paradigms can give quite different views of the nature of computation and communication. In a large system, different subsystems can often be more naturally designed and understood using different models of computation." [Burch et al.]

- Integration of different paradigms within one specification framework dictates:
  - Common syntax (domain of discourse)
  - Formal semantics that provides notion of consistency
  - Translation of specifications
  - Composition of specifications

### **Proposed Solution**

- Formal semantics
  - Institution
    - Relates syntax to semantics
    - Defines notion of models satisfying a specification
    - Defines a logical system, e.g. equational reasoning, firstorder logic, ...
    - Provides basis for sound and complete deduction calculus
  - Modularity in using several institutions
- Multi-model of computation framework
  - Identify unifying semantic domains (units of semantics)
    - Static
    - State-based
    - Trace-based
  - Define models of computation
    - State-based: continuous, discrete, finite-state
    - Trace-based: csp-trace

### **Key Contributions**

- Definition of a formal semantics, giving an entailment system that allows reasoning over correctness of a heterogeneous design
- Definition of multiple unifying semantic domains and models of computations within one framework
- Definition of relations between specifications
- Demonstration of composition of specifications
- Demonstration of new heterogeneous design methodology
- Demonstration of re-use of domain-specific views

### **Overview**

- Preliminaries
- Modular semantics
  - Static semantics
  - State-based semantics
    - Hidden algebras
    - Coalgebras
  - Trace-based semantics
- Specification in the Rosetta Language
  - Units of semantics
  - Models of computation
- Examples and Application
  - Hybrid system
- Related work and future work



## PRELIMINARIES

### **Category Theory**

- Category C
  - Collection of objects |C|
  - Collection of arrows ||C|| (with dom and cod)
  - Composition of arrows
  - Identity arrow for each object
- Examples
  - Category of algebras
    - The objects are algebras
    - The arrows are homomorphisms between algebras
  - Category of sets
    - The objects are sets
    - The arrows are functions

### **Concrete Example**











### **Institution Theory**

- Formalizes:
  - Truth is invariant under changes of notation
- Institution (Sign, Mod, Sen, =)
  - **Sign:** category of signatures
  - Sen: Sign → Set functor giving set of sentences for each signature
  - Mod: Sign → Cat<sup>op</sup> functor giving category of models for each signature
  - $|=_{\Sigma} \subseteq |Mod(\Sigma)| \times Sen(\Sigma)$  signature-indexed family of satisfaction relations such that for  $(\phi: \Sigma \to \Sigma') \in ||Sign||, e \in Sen(\Sigma), M' \in |Mod(\Sigma')|$  $M'|=_{\Sigma'} Sen(\phi)(e)$  if and only if  $Mod(\phi)(M')|=_{\Sigma} e$



# **MODULAR SEMANTICS**

### Static Semantics – Programming in the small

- Notion of fixed data
- Notion of invariance
- Signature  $(S_{stc}, \Sigma_{stc})$ 
  - S<sub>stc</sub> set of sorts
  - $\Sigma_{Stc}$  set of operators  $S_{Stc}^* \times S_{Stc}$
- Algebra
  - $S_{\scriptscriptstyle Stc}$  -indexed family of non-empty sets, carriers  $A_{\scriptscriptstyle Stc}$
  - $S_{Stc}^* \times S_{Stc}$  -indexed family of maps

 $\alpha_{u,s}: \Sigma_{Stc_{u,s}} \to [A_{Stc_u} \to A_{Stc_s}]$ 

- Algebra morphism from  $\langle A_{stc}, \alpha \rangle \rightarrow \langle A'_{stc}, \alpha' \rangle$  is map  $f: A_{stc} \rightarrow A'_{stc}$  such that  $f_s(\alpha(\sigma)(a_1, \dots, a_n)) = \alpha'(\sigma)(f_{s_1}(a_1), \dots, f_{s_n}(a_n))$
- Equation  $(\forall X)t1 = t2$

### **Static Semantics – Programming in the large**

- Specification is  $(S_{stc}, \Sigma_{stc}, E_{stc})$
- Algebra  $A_{Stc}$  satisfying equation e iff  $a^*(t1) = a^*(t2)$  for every assignment  $a: X \rightarrow |A_{Stc}|$ ,  $A_{Stc} \models_{\Sigma_{Stc}} e$
- Institution for static algebras (equational-[Goguen])  $(Sig_{Stc}, Alg_{Stc}, Eqn_{Stc}, \models_{Stc})$ 
  - $Sig_{Stc}$  category of static signatures and morphisms
  - Alg<sub>Stc</sub> functor giving category of static algebras for each signature
  - $Eqn_{Stc}$  functor giving a set of equations for each signature
  - $|=_{Stc}$  satisfaction such that  $A_{Stc}^{'}|=_{\Sigma_{Stc}^{'}} \varphi(e)$  iff  $A_{Stc}^{'}|_{\varphi}|=_{\Sigma_{Stc}} e$  with  $\varphi:\Sigma_{Stc} \to \Sigma_{Stc}^{'}$

### **Static Semantics – Specification construction**

- Specification extension
  - Extension satisfies no confusion and no junk constraint
  - $(S_{Stc}, \Sigma_{Stc}, E')$  extends  $(S_{Stc}, \Sigma_{Stc}, E) \Rightarrow S_{Stc} \subseteq S_{Stc}, \Sigma_{Stc} \subseteq \Sigma_{Stc}, E \subseteq E'$
  - Extension is an inclusion morphism, more specifically it is an enrichment signature morphism that is conservative
- Specification parameterization and instantiation
  - Parameterization defines properties over a class of specifications
  - Instantiation reduces class to a particular specification, and involves binding signature morphism
- Specification inclusion
  - Allows information hiding that involves a signature inclusion along with an information hiding operator ()
- Specification use
  - Use packages
- Specification composition
- Pushout of two specifications syntactic composition
   9/15/2004

# State-based Semantics – Programming in the small

- Notion of observing a current state and change of observations over a next transformation function
  - A state is only identified by its attributes
  - Two states that have same attributes are undistinguishable and are said to be behaviorally equivalent
- State-based signature  $(S_{SB}, \Sigma_{SB})$

• 
$$S_{SB} = (State, S_V)$$

- $\Sigma_{SB} = (isInit, Y, next, \Phi, \Omega, \Delta)$ 
  - Y set of generalized hidden constants  $cst:S_{\scriptscriptstyle V_{0,\ldots,n}}\to State$
  - $\Phi$  optional set of operations  $\phi: State \times S_{V_0} \longrightarrow State$
  - $\Omega$  set of attributes  $\omega: State \times S_{V_0} \xrightarrow{\pi} \to S_V$
  - $\Delta$  set of data operations  $\delta: S_{V_0} \to S_V$
  - Distinction between operators of Y and next

# State-based Semantics – Programming in the small

- A state-based signature: hidden signature[Goguen]
  - Hidden sort = State
  - Visible data universe =  $(S_V, \Delta, D_{SB})$
  - At most one hidden sort occurs in  $Y \text{ or } \Omega$
- Behavioral Satisfaction
  - A context of sort h is a visible sorted Σ-term that has a single occurrence of a new variable symbol z of sort h, e.g. x(z), x(next(z)).
  - A hidden algebra behaviorally satisfies equation e  $A \models_{\Sigma} (\forall X)t = t' \quad if \quad t_1 = t_1, \dots, t_m = t_m'$

*iff* for each appropriate context c and assignment  $\theta: X \to A$  $\theta^*(c[t]) = \theta^*(c[t'])$ 

whenever  $\theta^*(c_j[t_j]) = \theta^*(c_j[t_j'])$  for j = 1,...,m and all appropriate c

# State-based Semantics – Programming in the small

- State-based specification  $(S_{SB}, \Sigma_{SB}, E)$ 
  - $(S_{SB}, \Sigma_{SB})$  is a state-based signature
  - $E = E_{\Delta} \oplus E_{\Omega}$  disjoint union of 2 sets of equations
  - Induces a hidden specification (*State*,  $\Sigma_{SB}$ ,  $E_{\Omega}$ )
- Consistency of state-based specification
  - Consistent iff induced hidden specification has a model with non-empty carriers and all equations  $E_{\rm A}$  are consistent
  - Necessary condition: E is D-safe
  - Sufficient condition: locality of equations
    - Local equation: local terms and conditions are visibly sorted and use only  $\Psi\mbox{-}operations$
    - Local term: every proper subterm is a  $\Psi\text{-subterm}$
  - Non-local: use rewriting and provide a model

# State-based Semantics – Programming in the large

- State-based signature morphism
  - Hidden signature morphism
  - Identity over the visible data  $(V,\Psi)$
  - Maps hidden sorts to hidden sorts  $morphism \quad (S_{SB}, \Sigma_{SB}) \rightarrow (S_{SB}, \Sigma_{SB})$

signature morphism  $\varphi: \Sigma_{SB} \to \Sigma_{SB}'$ 

if  $\sigma' \in \Phi'$  or  $\sigma' \in \Omega'$  then  $\exists \sigma \in \Phi$  or  $\sigma \in \Omega | \sigma' = \varphi(\sigma)$ 

- Sub-system morphism instead of enrichment morphism
- Only one State sort, use of qualified name through a renaming morphism to distinguish between State sort of different specifications

# State-based Semantics – Programming in the large

- Institution for state-based algebras
  - Category of state-based signature and morphisms  $Sign_{\rm SB}$
  - Functor giving a set of equations for each signature

### Sen<sub>sb</sub>

 Functor giving a category of hidden algebras for each signature

### $Mod_{SB}$

Satisfaction relation

### $\mid \equiv_{\Sigma_{SB}}$

Satisfaction condition

$$A'|_{\varphi}|\equiv_{\Sigma_{SB}} e \quad iff \quad A'\mid\equiv_{\Sigma_{SB}} \varphi(e)$$

### **State-based Semantics – Coalgebras**

- Cirstea's work: Hidden algebras  $\rightarrow$  Coalgebras
- State-based signature  $\to$  destructor hidden signature (by leaving out  $^{\rm Y}$  and  $\Phi$  )  $\to$  abstract cosignature

$$(Set_{D_{SB}}^{S_{SB}}, F_{\Sigma_{SB}}) \quad with \quad F_{\Sigma_{SB}} : Set_{D_{SB}}^{S_{SB}} \to Set_{D_{SB}}^{S_{SB}}$$
$$(X_{S_1}, \dots, X_{S_n}, X_{State}) \to (X_{S_1}, \dots, X_{S_n}, \prod_{k \in 1, \dots, l} X_{S_k}^{X_{S_0, \dots, n}} \times X_{State}^{X_{S_0, \dots, n}})$$

- Example:
  - State-based signature State, Natural  $s_0 :\rightarrow State, x : State \rightarrow Natural, next : State \rightarrow State, \Delta_{Natural}$
  - Destructor hidden subsignature  $({Natural, State}, {x: State \rightarrow Natural, next: State \rightarrow State} \cup \Delta_{Natural})$
  - Associated abstract cosignature

 $(Set_N^{\{Natural,State\}},F)$  with  $FX_{State} = N \times X_{State}$ 

A coalgebraic structure

$$\alpha: X_{\textit{State}} \to N \times X_{\textit{State}}$$

## **State-based Semantics – Specification** construction

- Extension: similar in essence to static specification extension
  - The signature morphism is reverse  $(S_{SB}, \Sigma_{SB}, E) \xrightarrow{c} (S_{SB}, \Sigma_{SB}, E')$  iff  $\exists \varphi : (S_{SB}, \Sigma_{SB}) \rightarrow (S_{SB}, \Sigma_{SB})$
- Parameterization:
  - 3 parameter modes: input, output and design
- Instantiation: may involve state dependent bindings of parameters
- Translation: mapping of properties of the State sort from one specification to another
- Inclusion: similar to static inclusion, but may be supplemented by a translation relating states of specifications involved in inclusion
- Use: as for static. In this work, all packages are static

## **State-based Semantics – Specification** composition

- Category of state-based specifications as objects and extensions as arrows
- Composition uses categorical notion of colimit
- Composition of two specifications sharing a common parent through a pushout
- Composition of two specifications on different subtrees, translation may first be needed



### **Trace-based semantics**

- Notion of traces and operations over traces to model computation runs
- Equational signature
- Same semantics as for static
  - Institution of equational reasoning
- Enforcement of a Trace(T) sort
- Available Operations: head, tail, add, sequence, interleave, restriction, order, ...

# **Specification Construction across Semantic Domains**

- Conservative extension from static to state-based and from static to trace-based
- Institution morphism from static to state-based is strong, persistent and additive similar to CafeOBJ's institution morphism
- Specification translation from static to state-based
  - Static represents data and invariant properties in a state-based specification
  - Minimal representation:

 $Spec_{SB} = (S_{Spec_{Stc}} \cup \{State\}, \Sigma_{Stc} \cup next, E_{Stc} \cup E_{SB})$ 

- Specification translation from state-based to static described by Goguen et al.
  - Translation of behavioral specification into ordinary algebraic specification

## **Specification Translation from State-based to Trace-based**

- One-way translation  $Spec_{SB} \rightarrow Spec_{TB}$
- For each input I in  $Spec_{SB}$ , an input set of traces of type of I in  $Spec_{TB}$
- Same for output parameters
- All declarations of  $Spec_{SB}$  become declarations of  $Spec_{TB}$
- Add declarations of
  - A variable  $T_{st}$  :: Trace(State) representing set of traces of all reachable states
  - A variable *someTrace* representing a trace
  - A variable n of sort natural used as position of state in trace
  - All equations of  $Spec_{SB}$  are included in  $Spec_{TB}$
  - Add 2 new equations:  $state\_def$  equating State to actual, and newT stating  $someTrace \in T_{st}, s \in State$  such that someTrace [n] = s and  $next(s, I_0[n], \dots, I_k[n]) = someTrace [n+1]$



# **SPECIFICATION IN ROSETTA**

### **The Domain organization**



### **Static Modeling**

- Semantics given by the previously defined static (equational) semantics
- Specification
  - Defines a number of types: Universal, Element, Number, Complex, Real, ..., Function, Set, Sequence, ...
  - Defines a number of operators over each sort
  - Static domain
- Static domain semantics (Boolean)  $S_{stc} = \{..., Boolean, ...\}$   $\Sigma_{stc} = \{..., false : \rightarrow Boolean, true : \rightarrow Boolean, not : Boolean \rightarrow Boolean, ...$ ..., or : Boolean × Boolean → Boolean, ...}

### **Static Domain Specification**

```
domain static::null is
// _____
// Boolean types
// _____
 Boolean :: type is enumeration (false, true);
// _____
// Functions for boolean type
// ------
 •••
 not__(R :: Boolean ) :: Boolean;
 or (L, R :: Boolean) :: Boolean;
 •••
begin
 •••
 not false: (not false) = true;
 not true: (not true) = false;
 true_or_true: (true or true) = true;
 true or false: (true or false) = true;
 false or true: (false or true) = true;
 false_or_false: (false or false) = false;
 ...
end domain static;
```

### **Initial Algebra for Static**



### **State-based Modeling**

- State-based semantics
  - Institutions of Hidden Algebras, Coalgebras
- Specification
  - State type
  - Next function that takes a state and a number of inputs and returns a new state
  - Extends static domain
- State-based domain semantics

 $S_{SB} = (State, S_{Stc})$  $\Sigma_{SB} = (isInit, Y_{SB}, next, \{\}, \{\}, \{\_, \{\_, \_] \cup \Sigma_{Stc})$ 

Coalgebras

$$|A|_{State} \xrightarrow{\gamma_{next}} \{*\} \cup |A|_{State}$$
$$|A|_{State}^{R} \xrightarrow{\zeta} |A|_{State}^{R}$$

### **State-based Domain Specification**

**domain** *state\_based*(State::design Type) :: static is

s :: State;

next:: Function;

\_\_@\_\_[T::Type](lhs::<\*(st::State) -> T \*>; rhs::State)::T is lhs(rhs); isInit(s::State)::Boolean;

#### begin

// next: State x Si ... x Sn -> State with Si,...,Sn: one or more types
return\_type\_next: ret(next) = State;
domain\_next: dom(next) = State;
end domain state\_based;

### **The Discrete Domain Specification**

domain discrete(DiscState::design Type) :: state\_based(DiscState) is

isDiscrete(DiscreteSet::Type)::Boolean =

exists (fnc::<\*(st::DiscreteSet)::Integer\*>

forall(s1,s2::DiscreteSet|

(s1 /= s2) => (fnc(s1) /= fnc(s2)));

#### begin

discrete\_attributes: forall (fnc::getAttributes() | isDiscrete(ran(fnc)));

end domain discrete;

### **The Finite-state Domain**

Finite-state  $\Rightarrow$  observations are finite and discrete



```
domain finite_state(FState::design Type) :: discrete(FState) is
    isFinite(FiniteSet::Type)::Boolean is
        #FiniteSet in Natural;
begin
        fs1:forall (fnc::getAttributes() | isFinite(ran(fnc)));
end domain finite_state;
```

### **The Continuous Domain**

Continuous observation of states  $\Rightarrow$  all observations have continuous variations with respect to a continuous observation of states

 $\frac{\Delta f}{\Delta s} = \frac{f(next(s)) - f(s)}{contAttr(next(s)) - contAttr(s)}$ 

```
domain continuous :: state_based is
contAttr(st::State)::Real;
variation[T::Type](fnc::<*stt::State)::T*>;st::State;next_st::State)::T is
  (f(next_st) - f(st)) / (contAttr(next_st)-contAttr(st));
```

begin

end domain continuous;

### **Trace-based Modeling**

- Semantics
  - Static semantics (institution of equational logic)
  - As traces represent computation runs, can use coalgebras as models as well
- Specification
  - Notion of traces
  - Operations as defined in trace semantics
  - Extends static domain

### **Trace-based Domain Specification**

```
domain trace_based()::static is
Trace(T::Type)::Type;
emptyTrace::Trace(Universal) is constant;
add[Event::Type](tr::Trace(Event);ev::Event)::Trace(Event);
head[Event::Type](tr::Trace(Event))::Event;
tail[Event::Type](tr::Trace(Event))::Trace(Event);
isEmpty[Event::Type](tr::Trace(Event))::Boolean is
tr = emptyTrace;
```

```
getEventAt[Event::Type](tr::Trace(Event);pos::Natural)::Event is
if (not isEmpty(tr))
else if (pos = 0) then head(tr)
else getEventAt(tail(tr),pos-1)
end if;
end if;
```



Examples and Applications

### **Example of a Stack Datatype**

#### facet stackDT::static is

Stack::type;

emptyStack::Stack is constant;

push(stcParam::Stack; n::Natural)::Stack;

pop(stcParam::Stack)::Stack;

top(stcParam::Stack)::Natural;

val::Natural;

stcVar::Stack;

#### begin

pop\_empty: pop(emptyStack) = emptyStack;

top\_empty: top(emptyStack) = 0;

pop\_push: pop(push(val,stcVar))=stcVar;

top\_push: top(push(val,stcVar))=val;

$$S_{stackDT} = S_{Stc} \cup \{Stack\}$$

end facet stackDT;

 $\Sigma_{stackDT} = \Sigma_{Stc} \cup \{emptyStack, push, pop, top\}$  $E_{stackDT} = E_{Stc} \cup \{pop\_empty, top\_empty, pop\_push, top\_push\}$ 

### Initial algebra for stackDT



# Isomorphism between N<sub>stackDT</sub> and N<sub>Stc</sub>



# **Composition of State-based Parameterized Specifications**

StateSet::Type;

```
memNext(st::State;val::Natural)::State;
```

```
facet memoryA(val::input Natural)
                ::discrete(StateSet) is
    memA(st::State)::Natural;
begin
    initA: isInit(s) => memA@s = 0;
    next_def: next = memNext;
    lA: memA@next(s,val) = val;
end facet memoryA;
```

```
facet memoryB(val::input Natural)
                ::discrete(StateSet) is
    memB(st::State)::Natural
begin
    initB: isInit(s) => memB@s = 0;
    next_def: next = memNext;
    lB: memB@next(s,val) = val+memB;
end facet memoryB;
```

facet twoMemory(val::input Natural)::discrete(StateSet) is

```
memoryA(val) + memoryB(val);
```

# **Composition of Parameterized Specifications**



Pullback of Signature Morphisms

# **Composition of Parameterized Specifications**



Pushout of Coalgebras

### **Trace-based MemoryA Specification**

```
StateSet::Type;
```

```
memNext(st::State;val::Natural)::State;
```

```
facet traceMemA(val::input Trace(Natural))::trace_based() is
  memA(st::State)::Natural;
  StateTrace::Trace(State);
  someTrace::StateTrace;
  s::State; next::Function; ... // All declarations from domains
  pos::Natural;
  begin
```

#### begin

### **Specification of a Hybrid Automaton**

- Hybrid automaton [Henzinger]
  - Variables: x, dotted x  $(\dot{x})$ , x'
  - Control graph (V,E) of control modes and edges
  - Predicates:
    - Initial
    - Invariant
    - Flow conditions: predicate for continuous change
    - Jump conditions: predicate for each control switch
  - Events over control switches (events)

### **Hybrid Automaton of a Thermostat**



Two states for the heater: on or off Continuous variation of the temperature: x heater on => temperature x increases at rate of 5 - 0.1x per minute heater off => temperature x decreases at rate of -0.1x per minute

### **The Heater Specification**

```
facet heater(x::input Real; ctrl::output ControlMode):: finite_state is
mode(s::State)::ControlMode;
```

#### begin

end facet heater;

### **The Temperature Specification**

```
facet temperatureVariation(ctrl::input ControlMode; x::output Real):: continuous is
  temp(s::State)::Real;
```

#### begin

```
initial: isInit(s) => ((temp@s = 20) and (contAttr@s = 0);
next_def: next = <*(st::State;ctrl::ControlMode)::State*>;
mono_increase: contAttr@next(s,ctrl) > contAttr@s;
output: x = temp@s;
off_cool: (ctrl = off) =>
        (variation(temp,s,next(s,ctrl)) = -0.1 * temp@s);
on_heat: (ctrl = on) =>
        (variation(temp,s,next(s,ctrl)) = 5 - 0.1 * temp@s);
next_heat: temp@next(s,ctrl) = temp@s +
        variation(temp,s,next(s,ctrl)) *
        (contAttr(next(s,ctrl)) - contAttr(s));
```

```
end facet temperatureVariation;
```

### **The Thermostat Specification**

```
facet thermostat():: state_based is
  ctrl(st::State)::ControlMode;
```

```
x(st::State)::Real;
```

#### begin

next\_def: next = <\*(st::State)::State\*>; heater\_comp: heater(x@s, ctrl@s); temperature\_comp: temperatureVariation(ctrl@s, x@s); inv\_off: (ctrl@s = off) => (x@s >= 18); inv\_on: (ctrl@s = on) => (x@s =< 22); end facet thermostat;

### **Analysis of the Thermostat Specification**

- Two observations of the state
- The values of each observation provided by *Heater* or by *TemperatureVariation* specifications
- Models that satisfy Thermostat will have (minimal) states as pairs (controlmode, temp) with controlmode=ctrl(s) and temp=x(s)
- Controlmode: on or off
- Temp: a real number between 18 and 22
- If considering discrete Thermostat models, temp will have discretized values through "sampling"



# RELATED WORK AND FUTURE WORK

- CafeOBJ http://www.ldl.jaist.ac.jp/cafeobj
- Ptolemy II Heterogeneous Concurrent Modeling and Design in Java - J. Davis, C. Hylands, B. Kienhuis, E. Lee, et al.; University of California at Berkeley
- Metropolis Overcoming Heterophobia: Modeling Concurrency in Heterogeneous Systems - J.
   Burch, R. Passerone, A. Sangiovanni-Vincentelli

- SAL An Overview of SAL J. Rushby, S. Owre, N. Shankar,
   A. Tiwari et al.
- Viewpoints Modeling Viewpoints: A Framework for Integrating Multiple Perspectives in System Development - A. Finkelstein et al.
- Feature Engineering Feature-Oriented Description, Formal Methods, and DFC - P. Zave
- Aspect-oriented -
  - Aspect-Oriented Programming G. Kiczales et al.
  - Aspect-Oriented Requirements Engineering for Component-Based Software Systems - J. Grundy

- The MultiGraph Architecture Metamodeling Rapid Design and Evolution of Domain-Specific Modeling Environments - G. Nordstrom et al.; Vanderbilt University
- GME The Generic Modeling Environment A. Ledeczi et al.; Vanderbilt University
- UML-Metamodeling Architecture An UML-metamodeling Architecture for Interoperability of Information Systems - M. Terrasse et al.

- A Framework for Multi-Notation Requirements
   Specification and Analysis N. Day and J. Joyce
- Constructing Multi-Formalism State-Space Analysis
   Tools: Using rules to specify dynamic semantics of models
   M. Pezze and M. Young
- A Multi-Formalism Specification Environment E.
   Ipser, Jr and D. Wile
- Acme: An Architecture Description Interchange Language - D. Garlan, R. Monroe and D. Wile

### Conclusion

- Modular formal semantics
- Framework supporting different models of computation
- Future Work
  - Extension of semantics to order sorted institution
  - Definition of engineering domains: definition of units of measurement, definition of engineering formulas.
  - Automatic verification tool