
Modular Semantics for Model-Oriented Design

by

Mary Cindy Kong Shing Cheong

a.k.a. Cindy Kong

Submitted to the Department of Electrical Engineering and Computer

Science and the Faculty of the Graduate School of the University of Kansas in

partial fulfillment of the requirements for the degree of Doctor of Philosophy

Dr Perry Alexander, Professor in Charge

Dr David Andrews

Dr Jeremiah James

Dr Gary Minden

Dr Allan Pasco

Date Submitted:

Abstract

Modern systems engineering mandates the integration of heterogeneous models in design

and analysis. This has given rise to the notion of model-oriented design where specifica-

tions can be defined, translated, and composed. A common aspect that model-centered

tools and languages share is the capability of using different models of computation

together. As a result, the heterogeneous components of a particular system can be

expressed in their most natural representation.

We propose a framework that supports the representation of a variety of computational

models. An important part to any representation is the provision of a formal semantics

that defines its correctness. We accordingly define a precise and modular semantics

that uses the notion of institutions to provide meaning to well-formed syntactic ele-

ments. Institutions relate specifications to mathematical models such as algebras and

coalgebras. The formal semantics thus defined allows us to derive consistency of de-

signs and to reason about system specifications. These specifications are written in the

Rosetta language. Rosetta supports describing the ontology of a formalism or model of

computation in specifications known as domains.

A particular representation of a computational model depends on the chosen unifying

semantic domain. We identify some unifying semantic domains to be static, state-based

and trace-based. Each model of computation uses the vocabulary and semantics associ-

ated with these three semantic domains. We express the latter in Rosetta and then define

several computational models by using the notion of extension of specifications. Speci-

fication relations such as translation and composition are also defined. A translation is

a mechanism that relates specifications that use different paradigms. Composition in-

volves constructing a specification from available, already defined specifications. When

combined, translation and composition allow the reuse of specifications, the analysis of

interaction between different heterogeneous views or components, and the specification

of complex systems. We demonstrate this new heterogeneous design methodology with

the specification of a system that includes both discrete and continuous dynamics. We

also look at integrating different views, some functional and others non-functional, into

a complete system.

i

To My Parents

ii

Acknowledgments

As much as this dissertation is my work, it is also the fruit of all the patience, encour-

agement, guidance and support that a large number of people has invested in me.

First and foremost, I would like to thank Dr Perry Alexander for being an excellent

mentor in every aspect of my graduate student life. I appreciate the fact that he took a

gamble in hiring me without even having talked to me beforehand. He also showed an

incredible amount of patience and never stopped encouraging me.

I am very grateful to the members of my dissertation committee: Dr David Andrews,

Dr Jeremiah James, Dr Gary Minden and Dr Allan Pasco. I can better appreciate the

successful completion of my dissertation thanks to their grilling at my defense.

I would also like to thank all my friends and colleagues with whom I have worked over

the past five years: Garrin, Ed, Jesse, Justin, Jenny, Murali, Makarand, Krishna, Srini,

Kalpesh, Brandon, Catherine, Murthy, and Dr Peter Ashenden. They have provided

valuable feedback over the years. My thanks to Dr John Penix also for being temporarily

on my committee as well as for sponsoring me for an internship at the NASA Ames

Research Center. It was a dream come true to be at NASA.

I have often been asked: “What is there in Kansas?”. The answer to this question is the

warm, friendly, welcoming people of Kansas: the Vanahill family, the Kihm family, the

Willems family, Danico, Allison, Michelle, Shannon, Laura, Chris, Ganesh, the faculty,

staff and students of ITTC, and the list goes on. Thanks to them, Lawrence, KS, has

become home.

My gratitude to Dad, Mom, Wendy and Brian, who, although miles away, have always

been pillars of encouragement and love. My father was the first person to encourage

me to do a PhD degree. I am glad that I could make this dream come true for him.

When I was still debating whether to do a PhD, my mother said that I should choose

what I felt was best and that whatever I decided, she would support me. Thank you

for always wanting what is best for me, Mom. I wish you could have been here to see

this dissertation completed.

Last, but not least, my thanks to my Lord and Savior. Without His Grace I would not

be here today.

iii

Contents

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Proposed Solution . 4

1.3.1 Formal Semantics . 4

1.3.2 Computational Model Specifications 5

1.4 Key Contributions . 6

1.5 Outline . 6

2 Preliminaries 7

2.1 Category Theory . 7

2.2 Institution Theory . 10

2.2.1 Definitions of Institutions . 12

2.2.2 Institution of Equational Logic 13

2.3 Inclusion System . 15

iv

2.4 Coalgebras and Coalgebra Morphism . 15

2.4.1 Theory of systems . 16

2.4.2 Coalgebras of functors . 19

3 Defining a Modular Semantic Framework 21

3.1 Introduction . 21

3.2 The Different Signatures . 23

3.3 The Static Semantic Domain . 24

3.3.1 Static Signatures, Equations, Specifications and Models 24

3.3.2 An Institution for Static Algebras 25

3.3.3 Static Specification Construction 26

3.4 The State-based Unifying Semantic Domain 29

3.4.1 A State-based Signature . 30

3.4.2 Satisfaction of State-based Equations 31

3.4.3 State-based Specifications . 32

3.4.4 Consistency of State-based Specifications 33

3.4.5 State-based Signature Morphisms 35

3.4.6 An Institution for State-based Algebras 36

3.4.7 Coalgebras as State-based Models 37

3.4.8 A State-based Specification of a Stack Component 46

3.4.9 Specification Construction . 51

3.4.10 State-based Hierarchy . 56

3.4.11 Example of State-based Composition 58

v

3.5 Trace-based Unifying Semantic Domain 60

3.6 Specification Construction between Different Semantic Domains 60

3.6.1 Specification Translation between Static and State-based 61

3.6.2 Specification Translation between Static and Trace-based 61

3.6.3 Specification Translation between State-based and Trace-based . 62

3.6.4 Composing Static and State-based Specifications 63

3.7 Conclusion . 63

4 Specifying Models of Computation 66

4.1 Introduction . 66

4.2 Basic Rosetta Domain Specifications and Semantics 68

4.2.1 The null Domain and Semantics 69

4.2.2 The static Domain Specification 69

4.2.3 The static Domain Semantics 71

4.2.4 Specification of a Stack Datatype 72

4.2.5 Static Specification Parameterization 74

4.3 State-based Domain Specifications and Semantics 75

4.3.1 The state based Domain Specification 76

4.3.2 The state based Domain Semantics 76

4.3.3 The discrete Domain: An Extension of state based 78

4.3.4 The continuous Domain: An Extension of state based 80

4.3.5 The finite state Domain: An Extension of discrete 82

4.3.6 Parameterization of State-based Specifications 83

vi

4.3.7 Extension and Composition of Parameterized State-based Speci-

fications . 83

4.4 Trace-based Domain Specifications and Semantics 88

4.4.1 The trace based Domain Specification 88

4.4.2 The trace based Domain Semantics 89

4.4.3 The trace csp Domain: An Extension of trace based 93

4.4.4 A Trace-based CSP-like Example 95

4.5 Conclusion . 100

5 Application and Analysis 101

5.1 Specification of a Hybrid Automaton . 101

5.1.1 An Introduction to Hybrid Automata 101

5.1.2 Specification of a Hybrid Automaton for a Thermostat 102

5.1.3 Analysis of The heater Specification 105

5.1.4 Analysis of The temperatureVariation Specification 114

5.1.5 Analysis of The thermostat Specification 120

5.2 Specification of Secure Network Components 121

5.2.1 Network Security . 121

5.2.2 Specification of Secure Network Components 122

5.3 Conclusion . 134

6 Related Work 136

6.1 Composition of Models of Computation 136

6.2 Continuous and Real-time Modeling . 138

vii

6.3 Meta-modeling . 140

6.4 Requirements Engineering . 143

6.5 Logic of Logics . 145

7 Conclusion and Future Work 147

7.1 Future Work . 149

7.1.1 Semantics Extension of Framework 149

7.1.2 Design Methodology . 150

7.1.3 Interaction Modeling . 150

7.1.4 Automating Verification . 150

viii

List of Figures

2.1 Cone, Limit, Cocone and Colimit . 10

2.2 Product, Pullback, CoProduct and Pushout 11

2.3 Coinductive Definition of a Function . 19

3.1 Composition of Two Specifications . 55

3.2 State-based domains and extensions . 57

3.3 Composition of Power Requirement with Functional Requirement 59

4.1 Domain Hierarchy in Rosetta . 68

4.2 Initial Algebra for static . 71

4.3 Initial Algebra for stackDT . 73

4.4 Isomorphism between AstackDT and Astatic over the natural numbers N . 74

4.5 Pullback of The Signatures of Two Parameterized Specifications Extend-

ing a Common Instantiated Domain . 86

4.6 Coalgebras of the Composition . 87

5.1 A Hybrid Automaton of a Thermostat 102

5.2 Communicating Router Components across Two Channel Components . 134

ix

List of Tables

5.1 Proof Obligations of heater . 106

5.2 Conditional Equations of heater . 109

5.3 Table of Conditions per Equations . 112

5.4 Equations of temperatureVariation . 116

5.5 Rewritten Equations of temperatureVariation 119

x

Chapter 1

Introduction

1.1 Motivation

Computer-based systems have evolved from consisting solely of processor units to having

them embedded in heterogeneous environments. A heterogeneous environment may

include mechanical components (MEMS), analog and digital components, processor

units, as well as software, among others. This increases system design complexity and

gives rise to the notion of systems engineering, more specifically system-level design.

In systems engineering, design tasks require integrating information from various design

domains to simultaneously model heterogeneous aspects. They can be aspects of the

same component, or of different interconnected components. As a result, the concept

of model-centered approach to design where models can be defined, composed and pro-

jected to analyze systems has appeared. New tools, and specially, new languages are

being developed to support this approach. Model-centered languages provide designers

with the capabilities that allow them to concentrate on the data, computation, or com-

munication models that describe a system’s requirements. These capabilities are often

based on the ability to represent different models of computation together.

We propose a framework that supports the representation of a variety of computational

models. An important part to any representation is the provision of a formal semantics

1

for it. We accordingly define a precise and modular semantics for the framework. The

semantics needs to be modular to support the different computational model represen-

tations. We use the notion of institutions to provide meaning to well-formed syntactic

elements. Institutions relate specifications to mathematical models, more specifically to

algebras and coalgebras. The formal semantics thus defined allows us to derive consis-

tency of designs and to reason about system specifications.

The computational models are represented as specifications in the Rosetta model-

oriented framework [4]. Rosetta includes an emerging system level design language

that has a grammar that can be used to describe heterogeneous aspects of systems.

The language thus supports model-centered design. Designers can provide their own

computational model or can choose from predefined ones. Each component of a system

can be modeled in the best suited representation. This provides a certain design flexi-

bility and allows exploitation of heterogeneity early in the design. The kernel of Rosetta

defines the syntax and typing rules of the language. Its semantics is associated with

syntactic modules called domains. A domain can serve two purposes. It can describe

new vocabularies of design paradigms. By new, we mean vocabularies that have not

been represented yet. A domain can also refine some previously defined vocabularies

through the notion of extension. Whenever a domain is used to describe a new vocabu-

lary, a semantic definition for that vocabulary can also be given. These properties make

Rosetta a good language support for our semantic framework.

1.2 Problem Statement

“Different paradigms can give quite different views of the nature of com-

putation and communication. In a large system, different subsystems can

often be more naturally designed and understood using different models of

computation.” [12]

The above quote marks the objective behind the development of several new languages

and tools [4, 11, 44, 9, 12, 33, 57, 13]. As systems grow bigger, system design has also

2

given rise to the notion of metamodeling [49, 47, 56], and viewpoint modeling [20, 38, 32],

to allow the concurrent use of different design paradigms. The integration of different

models and design paradigms within one tool or language dictates a need to provide for

the following:

• A domain of discourse, e.g. syntax, that can be used to represent the different

models.

• A semantic framework that allows different semantics for different design para-

digms. It must also provide the notion of correctness of a specification.

• A translation mechanism that allows specifications to talk to each other.

• A composition mechanism that allows specifications of different models to work

together to form a complete system.

The difficulty of expressing different models of computation using the same syntax

depends on the vocabulary being used and on how close this vocabulary is to the natural

representation of the models. For example it requires less effort to represent a Kahn

process with a vocabulary of streams and functions over streams, than with a vocabulary

of state and state changes. The translation and composition mechanisms are subject to

the models and languages involved. Special syntax and semantics need to be defined to

support them. A complete formal semantics should thus support not only the different

paradigms and languages, but the relationships between them also.

A new integrated language or tool moreover needs to be extensible. It needs to allow

for new models of computation to be added, and for relationships between them to be

defined. Modularity is therefore a necessity for such a language. A modular language

allows new modules to be added. Each module can represent a new computational

model and can be given a precise semantics. It is also important to allow users to

add these modules as required, to provide real flexibility in the choice of computational

models for system design.

3

1.3 Proposed Solution

The Rosetta language [4] defines a syntax and a type system that allow vocabularies and

semantics for new models of computation to be defined. It provides a good syntactic

support for the modular semantic framework we propose. There are two sections to

this work. First, a precise semantics for the proposed framework is described. We

formally define semantics that allows us to reason over consistency of specifications.

Second, we express a set of computational models in Rosetta. The specifications of

these computational models are given appropriate modular semantics as defined in the

framework. We show that the proposed framework provides semantics for several types

of modeling activities. We then use the defined Rosetta specifications to demonstrate a

methodology for designing systems while preserving heterogeneity.

1.3.1 Formal Semantics

We use the notion of institutions to relate the vocabulary of models of computation to

their formal semantics. An institution defines a satisfaction condition that indicates the

set of sentences (syntax) that a model satisfies. The models we are interested in are

either algebraic or coalgebraic.1 We are specifically interested in using coalgebras as we

intend to model systems by what can be observed of their states. Coalgebras have been

shown to be particularly suited for this type of modeling [35].

There are several benefits from using institution theory to define a precise semantics for

our framework. First, as an institution defines a logical system, institutions have already

been defined for most of the common logics [22], e.g. equational logic, first-order logic,

and others. Therefore, by defining such an institution (or as many as needed) for our

needs, we can reuse completed proofs. Furthermore, the notion of semantic entailment

as defined by an institution is compatible with the notion of an entailment system.

This gives us the basis to formulate a sound and complete deduction calculus for our

framework.

1To prevent confusion between models of computation and mathematical models, we refer to models
of computations as models and mathematical models as either algebras or coalgebras.

4

1.3.2 Computational Model Specifications

We propose to specify three different unifying semantic domains that can be used to

express a wide variety of models of computation. We use the term model of computation

to indicate a design paradigm (for example, computation or communication). A seman-

tic domain is a set of mathematical objects used to model paradigms [12]. It is unifying

when it can be used to represent a variety of different models of computation. We

define a domain (Rosetta syntactic construct) for each unifying semantic domain. We

call such a domain a unit of semantics. Models of computation represented in terms of

the defined semantic domains are also expressed as Rosetta domains. More specifically,

the model domains are extensions of the unit of semantics domains.

Similar to the relation between a model of computation and the different semantic do-

mains it can be represented with, there often exist relations between different models

of computation. Therefore, we also define relations that exist between some specified

domains. We can then use these relations to do composition, inclusion and translation

of specifications. These relations play an important role in representing any interaction

that may occur between two views of a system. An interaction models the effect that

each of these views has on one another. It describes how information from one represen-

tation is observed in another. This often involves a translation as well as a composition

of specifications.

We use the defined domain specifications to demonstrate a new design methodology that

allows modeling of heterogeneous components. We specify a thermostat system that

controls a discrete state heater by monitoring the continuous flow of the temperature.

This example exploits heterogeneous modeling by combining discrete with continuous.

We also demonstrate model composition in the design of a secure network. Different

views of a network are specified and composed. The resulting system then needs to

satisfy specific security constraints.

5

1.4 Key Contributions

This work makes the following contributions in the development of a framework for

combining different models of computation in a formal setting.

1. definition of a formal semantics, giving an entailment system allowing deduction

and reasoning over correctness of a design,

2. definition of multiple unifying semantic domains and models of computation with

the same syntactic representation,

3. definition of relations between specifications, used in the composition, inclusion

and translation of heterogeneous views of a system,

4. demonstration of composition of specifications where several views of a system are

put together to form the complete system, with the resulting system satisfying

global constraints,

5. demonstration of a new design methodology where different models of computation

are used together.

6. demonstration of re-use of domain-specific views of a system and of re-use of

existing relations between models of computation.

1.5 Outline

The next chapter presents the notion of category theory, institution theory and coal-

gebras used in the definitions of semantics throughout this work. Chapter 3 describes

the modular formal semantics that provides a precise semantics for the representation

of the models of computation in Rosetta. Chapter 4 illustrates these representations as

well as the semantics associated with them. These two chapters provide the foundation

framework for the models developed in Chapter 5. Chapter 6 describes related work

and compares them with our approach. We summarize the results and contributions in

Chapter 7, and outline future research directions.

6

Chapter 2

Preliminaries

This chapter is divided into four sections. The first section provides some concepts of

category theory. The second section describes the notion of institutions. The third

section gives the definition of an inclusion system, and the last section introduces the

notion of coalgebras. Readers familiar with these concepts may skip the corresponding

sections.

2.1 Category Theory

In this section, we recall some of the basic category theoretical concepts that are relevant

to our work. Although category theory has been called “abstract nonsense” [30], it is

nevertheless very useful in the study of universal properties. The following definitions

are selected from various sources [7, 14, 51, 41].

Definition 2.1.0.1 A category C consists of:

1. a collection |C| of objects,

2. a collection ||C|| of arrows,

3. operations assigning to each arrow f (written as f : A→ B or A
f→ B) an object

dom f = A, its domain, and an object cod f = B, its codomain,

7

4. a composition operator ◦ assigning to any two arrows, f and g in ||C||, with cod

f = dom g, a composite g ◦ f in ||C|| with cod(g ◦ f) = cod g and dom(g ◦

f) = dom f (i.e. if f : A→ B and g : B → C, then g ◦ f : A→ C),

5. for every object A, an identity arrow idA : A→ A in ||C||,

with the following properties

• h ◦ (g ◦ f) = (h ◦ g) ◦ f for arrows f : A→ B, g : B → C and h : C → D in ||C||,

and A,B,C,D in |C|,

• if f : A→ B in ||C||, then idB ◦ f = f ◦ idA = f .

We use the notation C(A,B) to represent the collection of arrows A→ B, for any pair

of objects A and B in |C|. A category is small if and only if |C| and ||C|| are sets.

Definition 2.1.0.2 A subcategory D of a category C is a category where:

1. All the objects of D are objects of C and all arrows of D are arrows of C.

2. The domain and codomain of an arrow in D are the same as its domain and

codomain in C.

3. If A in |D| then its identity arrow idA in ||C|| is in ||D||.

4. If f in D(A,B) and g in D(B,C) then g ◦ f in D(A,C).

Some arrows with special properties have special names. An arrow f : A → B is a

monomorphism if for any object C of the category and any arrows g, h : C → A, if

g 6= h, then f ◦ g 6= f ◦ h. An arrow f : D → C is an epimorphism if for any arrows

g, h : C → B, g ◦ f = h ◦ f implies g = h.

Given a category C, its dual category, Cop has as objects |Cop| = |C| and as arrows

Cop(A,B) = C(B,A) for any pairs A, B in |C|.

Definition 2.1.0.3 Let C and D denote categories. A functor F : C→ D is composed

of:

8

1. a mapping F : |C| → |D|,

2. for every pair A, B in |C|, a function F : C(A,B) → D(F (A), F (B)) (i.e. if

f : A→ B in ||C||, then F (f) : F (A)→ F (B) in ||D||),

with the following constraints

• F (g ◦ f) = F (g) ◦ F (f), for any f in C(A,B) and g in C(B,C).

• For any object A in |C|, F (idA) = idF (A).

Definition 2.1.0.4 Let F ,G : C→ D be arbitrary functors. A natural transforma-

tion α : F ⇒ G from F to G is given by a class of D-arrows αA : FA → GA for any

A in |C|, such that, for any f : A→ B in ||C||, αB ◦ F (f) = G(f) ◦ αa, i.e. such that

the following diagram commutes:

FA
αA - GA

FB

Ff

? αB - GB

Gf

?

Definition 2.1.0.5 Let C be an arbitrary category.

A C-object A is initial if and only if for any C-object B, there exists a unique C-arrow

c : A→ B.

A C-object A is final if and only if for any C-object B, there exists a unique C-arrow

c : B → A.

Definition 2.1.0.6 Let D be an arbitrary category.

• A diagram of shape D in a category C is a functor d:D→ C.

• A cone on d:D → C, with D small, is a tuple (L, (lD)D∈|D|), with L ∈ |C| and

(lD : L → dD) ∈ ||C||for D ∈ |D| such that dd ◦ lD = lD′ for each (d : D →

D′)in||D||.

9

• A limit for d:D→ C, with D small, in C is a cone (L, (lD)D∈|D|) on d, having

the property that for any cone (C, (cD)D∈|D|) on d, there exists a unique C-arrow

c : C → L such that lD ◦ c = cD for each D ∈ |D|.

The dual notion of a cone and a limit are called cocone and colimit respectively. They

are defined by reversing the arrows in the definitions of cones and limits above. Fig-

ure 2.1 shows the diagrams for a cone, a limit, a cocone and a colimit as defined. We

use the notation !c to indicate that c is the unique C-arrow C → L.

dd

l D lD’

D D’

L

dD

d

d
Cone

cD’
lD’

l D

dd

D D’

dD’dD

d d

d
Limit

c’D

c’D’
cD

C LC’
!c

!c’

dd

l D lD’

D D’

L

dD

d

d
Cocone

cD’
lD’

l D

c’D

c’D’
cD

dd

Functor D Cd

d

C LC’
!c

!c’

D D’

dD’dD

d d

d
Colimit

dD’

Figure 2.1: Cone, Limit, Cocone and Colimit

Different kinds of limits and colimits are obtained depending on the category D (i.e.

depending on the shape of the diagram in C). A product is the limit obtained from

Dnoarr being a category with no arrows other than identities. For the same category

Dnoarr, the colimit is denoted as coproduct. A pullback is the limit for the shape

· → · ← ·. A pushout is the colimit for the shape · ← · → ·. Figure 2.2 shows the

diagrams for a product, a pullback, a coproduct, and a pushout. P is the object of the

limits and CP is the object for the colimits.

2.2 Institution Theory

The concept of an institution [29] was first introduced to formalize the notion of a “log-

ical system”. Recently, in theoretical Computer Science, several logical systems have

10

cD
cD"

cD’

C P!c

cD
cD"

pD" cD’

pD
pD’ Dcp D’cp

D"cp

c’D c’D’
cpDc’D c’D’

cD’ pD

pD’
cD

cD
cD’

dd" dd dd" dd

Product

Pullback Pushout

dD’dDdD"dD’dDdD"

C CP

C’

dD’dD

C CP

!c’

!c

cpD’

Coproduct

C’

dD’dD

C P

!c’

!c

!c

Figure 2.2: Product, Pullback, CoProduct and Pushout

been developed to help in solving problems of concurrency, overloading, exceptions,

non-termination and others. Logical systems include first-order logic, higher-order logic,

equational logic, temporal logic, modal logic, and so on. Although each logical system

differs from one another, there are results that are completely independent of the logic

that is used. Furthermore, there exist sentences from a specific logic that can be con-

sistently translated into another logic. This translation allows the use of one theorem

prover or compiler, which are costly to implement, from one logic on the translations

of sentences or programs from another logic. Institution theory provides a foundation

for exploiting the relation between logic systems. An institution consists of a collection

of signatures and signature morphisms, along with, for each signature, a collection of

sentences, a collection of models and a satisfaction relation of sentences by models. The

satisfaction relation is similar to the one between a syntax and its semantics. Institution

theory uses category theory to obtain the following results: with the use of colimits,

whenever declaration of notation of institutions can be glued, so can institution the-

ories; institutions can be extended and extensions can add new constraints; suitable

institution morphisms allow a theorem prover from one institution to be used on the-

orems of another; structuring operations on theories are preserved by many institution

11

morphisms; with “duplex” institutions, theories from one institution are combined with

constraints of another; and, “multiplex” institutions allow for any combination as long

as morphisms from each institution exist to the same base institution.

We provide the definition of an institution [22] below. The notion of an entailment

system [46] is also needed to be able to reason over sentences and prove some theorems.

2.2.1 Definitions of Institutions

Definition 2.2.1.1 An institution is a tuple (Sign, Mod, Sen, �), where

• Sign is a category of signatures.

• Sen : Sign → Set is a functor giving a set of sentences, Sen(Σ), for each

signature Σ ∈ |Sign|.

• Mod : Sign → Catop is a functor giving, for each signature Σ ∈ |Sign|, a cat-

egory Mod(Σ) whose objects are called Σ-models and whose arrows are called

Σ-homomorphisms.

• � is a signature-indexed family of satisfaction relations,

�Σ⊆ |Mod(Σ)| × Sen(Σ), for each signature Σ ∈ |Sign|,

such that for any signature morphism (φ : Σ → Σ′) ∈ ||Sign||, any sentence e ∈

Sen(Σ), and any model M ′ ∈ |Mod(Σ′)|,

M ′ �Σ′ Sen(φ)(e) if and only if Mod(φ)(M ′) �Σ e.

The satisfaction relation formalizes the statement that

truth is invariant under changes of notation.

Informally, the satisfaction condition of an institution states that a model satisfies a

sentence irrespective of the syntax used to express that sentence. We can now define

the notion of a specification with respect to an institution.

Definition 2.2.1.2 Given an institution I = (Sign,Mod,Sen,�):

• A specification is a pair (Σ, E) with Σ ∈ |Sign| and E ⊆ Sen(Σ).

12

• A model M satisfies a specification (Σ, E) if and only if M �Σ e for each e ∈ E.

• A Σ-sentence e is semantically entailed by a set E of Σ-sentences, E �Σ e, if and

only if M �Σ E implies M �Σ e for any M ∈ |Mod(Σ)|.

• A signature morphism φ : Σ → Σ′ defines a specification morphism φ : (Σ, E) →

(Σ′, E′) if and only if E′ �Σ′ Sen(φ)(e) for each e ∈ E.

An entailment system provides the concept on which properties can be derived and

proved directly from a specification.

Definition 2.2.1.3 An entailment system is a triple (Sign,Sen, `) where

• Sign is a category of signatures

• Sen : Sign → Set is a functor giving, for each signature, a set of sentences over

that signature.

• ` is a signature-based family of relations with `Σ⊆ P(Sen(Σ)) × Sen(Σ) being

called Σ-entailment such that

– {e} `Σ e for e ∈ Sen(Σ) (reflexivity)

– E `Σ e and E ⊆ E′ imply E′ `Σ e (monotonicity)

– E `Σ ei for i ∈ I and {ei|i ∈ I} `Σ e imply E `Σ e (transitivity)

– E `Σ e implies Sen(φ)(E) `Σ′ Sen(φ)(e), for φ : Σ→ Σ′ (`-translation).

There exists a property that relates an institution to an entailment system.

Definition 2.2.1.4 Let (Sign,Mod, Sen,�) be a logical system and (Sign, Sen,`) an

entailment system. Then ` is sound (respectively complete) for � if and only if E `Σ e

implies E �Σ e (E �Σ e implies E `Σ e) for any Σ ∈ |Sign|, E ⊆ Sen(Σ) and

e ∈ Sen(Σ).

2.2.2 Institution of Equational Logic

Equational logic defines the reasoning used over equations expressing equality of terms.

13

Definition 2.2.2.1 An equational signature is a pair 〈S,Σ〉, where S is a set of

sort names, and Σ is a family of sets of operator names, indexed by S∗ × S.

Definition 2.2.2.2 A morphism of equational signatures, φ, from 〈S,Σ〉 to 〈S′,Σ′〉, is

a pair 〈f, g〉 consisting of

• f : S → S′ mapping sorts S to sorts S′

• an S × S∗-indexed family of maps gu,s : Σu,s → Σ′
f∗(u),f(s) where f∗ : S∗ → S′∗ is

the extension of f to strings.

Definition 2.2.2.3 For a given signature 〈S,Σ〉, a Σ-algebra A consists of

• An S-indexed family |A| of non-empty sets 〈As|s ∈ S〉 called the carriers of A

• An S∗ × S-indexed family of maps αu,s : Σu,s → [Au → As] assigning a function

to each function symbol in Σu,s

Definition 2.2.2.4 A Σ-homomorphism from a Σ-algebra 〈A,α〉 to another 〈A′, α′〉 is

an S-indexed map f : A→ A′ such that for all σ in Σu,s and all a = 〈a1, . . . , an〉 in Au

the homomorphism condition

fs(α(σ)(a1, . . . , an)) = α′(σ)(fs1(a1), . . . , fsn(an))

holds.

Definition 2.2.2.5 A Σ-equation e is a triple 〈X, t1, t2〉 where X is a sort assignment,

i.e. a partial function χ→ S with χ an infinite set of “variable symbols” and S the set

of sorts of Σ. t1 and t2 are members of |TΣ(X)|s, terms over X with same sort s ∈ S.

Such an equation can be written in the form (∀X)t1 = t2.

Definition 2.2.2.6 A Σ-algebra A satisfies a Σ-equation (∀X)t1 = t2 iff a∗(t1) =

a∗(t2) for every assignment a : X → |A| and a∗ representing the extension of a to a

term. We write A �Σ e.

Using the definitions defined above, the institution for equational logic, INS, is given

by (Sig, Alg, Eqn, �) with:

14

Sig The category with equational signatures as objects and equational signature mor-

phisms as arrows. The identity morphism correspond to a pair of corresponding

identity maps and composition of morphisms is the composition of their corre-

sponding components as maps.

Alg : Sig → Catop The functor sending each signature Σ to the category AlgΣ of all

Σ-algebras, and each signature morphism φ = 〈f : S → S′, g : Σ → Σ′〉 to the

functor Alg(φ) : AlgΣ′ → AlgΣ.

Eqn : Sig → Set The functor taking each signature Σ to the set Eqn(Σ) of all Σ-

equations, and each φ = 〈f, g〉 : Σ → Σ′ to the function Eqn(φ) : Eqn(Σ) →

Eqn(Σ′).

� If φ : Σ→ Σ′, e is an Σ-equation, and A′ is a Σ′-algebra, then

A′ �Σ′ φ(e) iff φ(A′) �Σ e.

2.3 Inclusion System

An inclusion system[17] for a category C consists of a class ||I|| of arrows and a class

||ε|| of epimorphisms in C such that:

• both ε and I are subcategories of C such that |ε| = |I| = |C|

• every morphism f in C can be factored uniquely as i ◦ e with e ∈ ||ε|| and i ∈ ||I||

• I is a partial order, i.e. for any objects A,B, there is at most one morphism

A→ B in ||I|| and if there is also a morphism B → A in ||I||, then A = B

• I has finite least upper bounds (i.e. finite coproducts), denoted +.

The morphisms in ||I|| are called inclusions and are represented as A ↪→ B.

2.4 Coalgebras and Coalgebra Morphism

This section provides an overview of coalgebras and the use of coalgebras in the se-

mantics of systems. The definitions are summarized from Kurz’s lecture notes [40] and

15

Jacobs and Rutten’s tutorial [35]. Kurz defines a theory of systems and describes the se-

mantics of some systems as coalgebras. Jacobs and Rutten define coalgebras for functors

and uses special relationships between coalgebras to coinductively define functions.

2.4.1 Theory of systems

A theory of systems describes the relation of systems and their behaviors in terms of

a given interface. Systems are reactive and communicate with other systems and the

environment through interfaces. A system is considered to be a set of states X and

a transition-function ξ describing for every state x ∈ X the effect ξ(x) of taking an

observable transition in state x. A system is thus a function: X
ξ→ ΣX, where the

notation ΣX indicates the set of possible outcomes of taking a transition. Σ is called

the type or signature, X is called the carrier or set of states of the system, and ξ

is called the structure or transition-function of the system. A process is a system

together with a given state (usually the initial state) and is denoted by ((X, ξ), x0) or

shorter (X, ξ, x0). A process (X, ξ, x0) is called a stream when the associate system

can output elements of a fixed set A forever. Such a system can be represented by a

function:X
ξ→ A×X.

A signature Σ for systems is an operation mapping a set (of states) to a set ΣX con-

taining the possible effects of an observable transition. As an interface is to specify the

“observable effect” of a transition, Σ itself provides an appropriate notion of interface.

The behavior of the process ((X, ξ), x0) is given by:

Beh(x0) = (a0, a1, a2 . . .)

This type of behavior thus describes what can be observed of the system (X
ξ→ A×X)

when it produces an infinite list (x0, (a0, x1), (a1, x2), . . .), starting from x0 and taking

a transition ξ(x0) = (a0, x1) then continuing with ξ(x1) = (a1, x2) and so on.

Given a process is state dependent, a system has as many processes as states and

therefore has a behavior assigned to everyone of its states. The behavior of a system is

the set of all these behaviors. A fundamental observation is that the behavior of a system

is itself a system, i.e. it can be described as a set of states and a transition-function.

16

Let (X, ξ) be a system and Beh(X) = {Beh(x) : x ∈ X} the set of all behaviors of

X. For Beh(X) to be considered as a system, we have to exhibit a transition-function

β : Beh(X) → A × Beh(X). β has to map an infinite list l = (a0, a1, a2, . . .) into

A×Beh(X). An obvious candidate is:

β : Beh(X)→ A×Beh(X)

(a0, a1, a2, . . .) 7→ 〈a0, (a1, a2, . . .)〉

Note that the behavior of some l ∈ Beh(X) is l and that the behavior of system

(Beh(X), β) is (Beh(X), β).

The interest in a general theory of systems lies in the relationships between different

systems or in the structural properties of collections of systems. System relationships are

investigated by using structure preserving mappings between systems. Given head(x)

represents the first value a and tail(x) the remainder x′ of a stream (X, ξ, x) with ξ(x) =

(a, x′), a homomorphism, or morphism for short, between two systems X
ξ→ A×X and

X ′ ξ′→ A×X ′ is a function f : X → X ′ such that

head(f(x)) = head(x) and tail(f(x)) = f(tail(x))

The precise definition of behavior of a system X → A×X at state x0 ∈ X is then defined

as Beh(x0) = (head(tailn(x0)))n∈N where tailn is defined inductively via tail0(x) = x,

tailn+1(x) = tail(tailn(x)). Behaviors are invariant under morphism and Beh : X →

Beh(X) is the unique morphism (X, ξ)→ (Beh(X), β). Therefore, two states have the

same behavior if and only if these states are identified by some morphisms.

Much of the power of a general theory of systems comes from the observation that all

behaviors of all systems constitute themselves a system. For any process (X, ξ, x), the

behavior is an infinite list (ai)i∈N. The set of all behaviors of all processes is thus given

by AN = {f : N→ A} = {(ai)i∈N, ai ∈ A}. As for the behavior of a process, this set of

all behaviors of all processes can be made into a system with transition structure:

ζ : AN → A×AN (2.1)

(a0, a1, a2, . . .) 7→ 〈a0, (a1, a2, . . .)〉

Since the mapping from a system to its behavior is a morphism, we know that, for any

17

system, there must exist a morphism into the system of all behaviors (namely the one

mapping each process to its behavior). And, since morphisms preserve behaviors, for

any system, there can be at most one morphism into the system of all behaviors. Thus,

the system of all behaviors is a final system. A system (Z, ζ) is called final (or terminal)

if and only if for all systems (X, ξ) there is a unique morphism (X, ξ)→ (Z, ζ).

Two processes/systems are behaviorally equivalent if and only if they have the same

behavior. Formally, given two systems, (X, ξ) and (X ′, ξ′), and Beh and Beh′ the two

corresponding unique morphisms into the final system.

1. Two processes (X, ξ, x) and (X ′, ξ′, x′) are behaviorally equivalent iff

Beh(x) = Beh′(x′).

2. Two systems (X, ξ) and (X ′, ξ′) are behaviorally equivalent iff

Beh(X) = Beh′(X ′).

R ⊂ X ×X ′ is a bisimulation over two systems of streams (X, ξ) and (X ′, ξ′) iff

x R x′ ⇒ head(x) = head(x′) and x R x′ ⇒ tail(x) R tail(x′)

In other words, x R x′ implies that a transition x 7→ 〈head(x), tail(x)〉 can be simulated

by a transition x′ 7→ 〈head(x′), tail(x′)〉 and vice versa. Two processes are behaviorally

equivalent if and only if they are bisimilar.

Since one is usually interested in processes only up to behavioral equivalence, it is

therefore sensible to consider behavioral equivalence as equality on processes. In the

final system, two processes are behaviorally equivalent iff they are equal. The principle

of definition by coinduction can then be used. Since for any system X
ξ→ ΣX there

is a unique morphism into the final system (Z, ζ), we can define a function f : X → Z

just by giving an appropriate structure:

for all X
ξ→ ΣX there is a unique morphism (X, ξ)

f→ (Z, ζ).

We say that function f is defined by coinduction if it arises in such a way from a

ξ : X → ΣX.

Systems with inputs are modeled as X × I → X. However, as mentioned previously, a

system is a function X
ξ→ ΣX, i.e. of the kind (X → . . .) and not (. . .→ X). Currying

is therefore used to write functions representing systems with inputs in the correct form.

18

Given f : X × I → X, f(x,) is a function I → X for each x ∈ X. It follows that

f(,) is a function from X to the functions I → X. Therefore, given sets I and X, and

denoting XI to be the set of functions from I → X, systems with inputs (X × I → X)

can now be written as (X → XI).

The theory of systems is almost uniform in all signatures, except for the notion of

morphism that has to be created separately for each new signature. However, the

signatures of some systems can be extended to apply to the functions between sets of

states. Since these signatures give rise to functors, their systems can be represented as

coalgebras.

2.4.2 Coalgebras of functors

V U

T(V) T(U)

observe
plus
next step

"and−so−forth"

final
coalgebra

≅

Figure 2.3: Coinductive Definition of a Function

A functor is an operator on sets that also act on functions between sets while preserving

identity functions and composition functions. A “polynomial” functor T is a functor

built up with constants, identity functors, products and coproducts and also (finite)

powersets. For example, T (X) = X + (C ×X) where C is a constant set and X a set.

For a functor T , a coalgebra (or a T-coalgebra) is a pair (U, c) consisting of a set U

and a function c : U → T (U). The set U is called the carrier and the function c is the

structure or operation of the coalgebra (U, c). The carrier set is also called the state

space.

A homomorphism of coalgebras from a T -coalgebra U1
c1→ T (U1) to another T -coalgebra

U2
c2→ T (U2) consists of a function f : U1 → U2 between the carrier sets which commutes

with the operations: c2 ◦ f = T (f) ◦ c1. A final coalgebra d : W → T (W) is a coalgebra

such that for every coalgebra c : U → T (U) there is a unique map of coalgebras (U, c)→

19

(W,d).1

A map can be defined with the use of a finality diagram (Figure 2.3). The map “and-so-

forth” applies the “next step” operations repeatedly to the “base step”. The technique

for defining a function f : V → U by finality is thus: describe the direct observations

together with the single next steps of f as a coalgebra structure on V . The function f

then arises by repetition.

1Note the similarity with the definitions in Kurz’s theory of systems (Section 2.4.1).

20

Chapter 3

Defining a Modular Semantic

Framework

3.1 Introduction

This chapter presents a semantics for a component-oriented language that supports the

definition of different unifying semantic domains. In design nomenclature, a semantic

domain is unifying if it provides the basis on which to express a number of different

computational paradigms. The language thus also supports the use of a variety of models

of computation. Examples of unifying semantic domains include state-based, trace-

based[12], tagged-signal model[43], and graphs. At the core of state-based is the notion

of a state and a state transformation relation. A Kahn process, a finite automaton, the

calculus of communicating systems, can all be represented as state-based models. The

principle behind trace-based is the use of traces in modeling computation runs. Models

that can be expressed in trace-based include communicating sequential processes, and

finite state machine, among others. Tagged-signal is a generalization of trace-based.

Where a trace is always ordered, a tagged signal need not be. Thus, a tagged signal has

more expressiveness than a trace. For example, it supports non-deterministic modeling

more naturally than trace-based.

When defining semantics for a language, four levels can be distinguished, as described in

21

the semantics of the CafeOBJ[18] language. They consist of programming in the small,

programming in the large, programming in the huge and the environment. Programming

in the small involves the semantics of collections of statements as obtained from flatten-

ing the notion of individual modules. Programming in the large is concerned with the

semantics of module composition and interconnection. Programming in the huge refers

to the software system composition including integration of diverse features of programs.

The environment refers to the set of tools supporting the process of programming and

specification building.

Semantics needs to be defined for the first two levels, programming in the small and

programming in the large, for each unifying semantic domain. Since programming in

the huge involves specifications from different unifying semantic domains, its semantics

is defined only once, globally, for all semantic domains. Nevertheless, pairwise relations

between semantic domains may be needed. We define each semantic domain by first

defining the semantics for programming in the small: the semantics of statements. This

involves describing the notion of signatures, models of a signature, equations over that

signature and satisfaction of these equations by models. We then add the notion of

modularity (programming in the large) by adding semantics for operations over specifi-

cations. Some such operations are specification parameterization and renaming (based

on signature morphism), specification extension, composition and translation. Pro-

gramming in the huge is lastly defined by providing semantics that relates the different

domains.

The semantics of each unifying semantic domain is defined with an institution [22]. The

use of an institution formally captures the relation of satisfaction between syntax and

semantics for a domain. For the analysis of relations between models of different seman-

tic domains, we need to explore the morphisms between their institutions. Specification

construction within a specific unifying semantic domain uses categorical operations. Ex-

tension is a conservative inclusion morphism, translation involves homomorphism over

the core of the semantic domain, for example, in state-based, a translation is a homo-

morphism of states from one specification to another, and composition is a colimit.

22

3.2 The Different Signatures

The first step in defining a semantics is the identification of a signature. A signature

provides the syntax of a language. It usually consists of a set of sorts S and a set

of operator symbols Σ. In the algebraic world [19], Σ is the union of two disjoint

sets: the set of constants of sorts s ∈ S, e.g. σcst :→ s, and the set of operators

σs1...sn,s : s1 . . . sn → s with s, s1, . . . , sn ∈ S. In the coalgebraic world [15], Σ is an

S × S+-sorted set of operation symbols where an operator σ ∈ Σs,s1...sn is written as

σ : s→ s1 . . . sn. There is however a special signature, called a hidden signature [24, 25],

that operates in both worlds. It is defined over a visible data universe (V,Ψ, D), where

V is the visible sorts, Ψ a signature and D a fixed data algebra, such that each Dv

for v ∈ V is non-empty and for each d ∈ Dv there is some ψ ∈ Ψ[],s (i.e. a constant)

such that ψ is interpreted as d in the algebra D. A hidden signature consists of a pair

(H,Σ), where H is a set of hidden sorts disjoint from V and Σ is an S = (H ∪V)-sorted

signature with Ψ ⊆ Σ, such that:

• each σ ∈ Σω,s lies in Ψω,s (with ω ∈ V ∗ and s ∈ V)

• for each σ ∈ Σω,s at most one hidden sort occurs in ω. Operations σ : ω → h

with ω ∈ V ∗ and h ∈ H are called generalized hidden constants. Operations of the

form σ : ω → h with ω containing exactly one hidden sort and h ∈ H are called

methods. Finally, attributes are operations σ : ω → v with ω containing precisely

one hidden sort and v ∈ V .

In this work, we use the following types of signatures:

Static The static signature is an algebraic signature. We show that it is an equational

signature.

State-based The state-based signature is an algebraic signature with a special sort

called State. We show that the state-based signature is an instance of a hidden

signature with State the only hidden sort. As we intend to use coalgebras as

semantic models, we also derive a coalgebraic signature (called a cosignature) as

defined by Ĉırstea [14].

23

Trace-based The trace-based signature is an algebraic signature with a special oper-

ator Trace that takes a sort T as parameter and creates a new sort Trace(T)

that represents all traces with elements of sort T . This operator appears in all

trace-based signature.

3.3 The Static Semantic Domain

3.3.1 Static Signatures, Equations, Specifications and Models

Static specifications are used to define fixed data algebras. They are also used to

specify invariant properties. These are properties independent of state transformations,

thus the name static. The notions of a static signature, algebras of a static signature,

homomorphism of algebras, and satisfaction of static equations by algebras are defined

as follows.

A static signature is a pair (SStc,ΣStc) with SStc the set of sorts and ΣStc the set of

S∗
Stc × SStc-operators. A model of a static signature is an algebra AStc consisting of:

• An SStc-indexed family |AStc| of non-empty sets 〈AStcs|s ∈ S〉 called the carriers

of AStc

• An S∗
Stc × SStc-indexed family of maps αu,s : ΣStcu,s → [AStcu → AStcs] assigning

a function to each function symbol in ΣStcu,s

A ΣStc-homomorphism from a ΣStc-algebra 〈AStc, α〉 to another 〈A′
Stc, α

′〉 is an SStc-

indexed map f : AStc → A′
Stc such that for all σ in ΣStcu,s and all a = 〈a1, . . . , an〉 in

AStcu, the homomorphism condition

fs(α(σ)(a1, . . . , an)) = α′(σ)(fs1(a1), . . . , fsn(an))

holds.

A ΣStc-equation e is a triple 〈X, t1, t2〉 where X is a sort assignment given as a partial

function χ→ SStc with χ an infinite set of “variable symbols”. t1 and t2 are members

of |TΣStc
(X)|s, terms over X and ΣStc with same sort s ∈ SStc. Such an equation can

24

be written in the form (∀X) t1 = t2. A specification is a triple (SStc,ΣStc, EStc) with

(SStc,ΣStc) its signature and EStc a set of equations over (SStc,ΣStc).

A ΣStc-algebra satisfies a ΣStc-equation e iff a∗(t1) = a∗(t2) for every assignment a :

X → |AStc| and a∗ its homomorphic extension. We write AStc �ΣStc
e. A model of a

static specification is a ΣStc-algebra that satisfies all equations in EStc.

This definition of satisfaction of a specification by algebras completes the semantics

of programming in the small for static specifications. Although this level of the lan-

guage is important (well, it does provide a foundation for the rest), a language without

modularity is not very interesting.

3.3.2 An Institution for Static Algebras

The first notion of modularity arises with the notion of signature morphism. A signature

morphism indicates a change in names of sorts or of operators. Two specifications that

use different names for the same sorts and operators are satisfied by exactly the same

algebras. An institution of algebras is thus used to capture the fact that satisfaction of

static specifications is not syntax dependent. Since equational logic is used for static

specifications, the institution defined is based on that of equational reasoning [22].

A static signature morphism from ϕ : (SStc,ΣStc)→ (S′
Stc,Σ

′
Stc) consists of a morphism

ϕ : SStc → S′
Stc and a morphism ϕ : ΣStcw,s → Σ′

Stcϕ∗(w),ϕ(s). ϕ∗ is known as the

extension of ϕ to a term and represents the sequential application of ϕ to each element

of the term. The signature morphism gives rise to a reduct functor �ϕ such that

|A′
Stc�ϕ |s = |A′

Stc|ϕ(s) with A′ a Σ′
Stc-algebra for all s ∈ SStc and fA′

Stc�ϕ
= ϕ(f)A′

Stc
for

all f : s1 × . . .× sn → s in ΣStc.

An institution for static algebras is given by (SigStc,AlgStc,EqnStc,�Stc). SigStc is the

category of static signatures and morphisms. AlgStc is the functor sending each signa-

ture ΣStc to the category AlgStc(ΣStc) of ΣStc-algebras and each signature morphism

ϕ to the functor Alg(ϕ) : AlgΣ′ → AlgΣ. EqnStc is the functor that takes a signature

ΣStc to a set of equations EqnStc(ΣStc) and a morphism ϕ to Eqn(ϕ) : Eqn(ΣStc) →

25

Eqn(Σ′
Stc). Finally, for a ΣStc-equation e, a signature morphism ϕ : ΣStc → Σ′

Stc, and

a Σ′
Stc-algebra A′

Stc, A
′
Stc �Σ′

Stc
ϕ(e) iff A′

Stc� ϕ �ΣStc
e.

3.3.3 Static Specification Construction

A signature morphism describes the mapping between two signatures and plays a basic

role in structuring modular specification. It can be an enrichment morphism, the inclu-

sion of a signature into an extended signature, a binding morphism, instantiation of a

parameterized specification, or a renaming morphism, the renaming of sorts and opera-

tor symbols [22]. We propose four different ways for constructing a static specification

based on these types of signature morphism: extension, parameterization and instanti-

ation, inclusion and composition. Extension is conservative inclusion. Instantiation is

a binding signature morphism. Composition of specifications consists of creating a new

specification from two specifications and is dependent on extension. While composing

two specifications, a renaming morphism is often used to prevent name clashes.

Specification Extension

An extension of Spec by SpecExt must satisfy the hierarchical no confusion con-

straint [58]. Items that are defined as different in Spec and above1 must not become

equal with the addition of SpecExt to the hierarchy of specifications. The hierarchy of

specifications is given by the dependency relationship between specifications and is an

acyclic graph with specifications as nodes and extensions as arcs. An extension also pro-

tects the defined items of Spec and thus satisfies the no junk constraint. An item that

is given a value or set of values in Spec cannot be modified or extended with additional

values.

A specification (S′
Stc,Σ

′
Stc, E

′
Stc) is said to extend (SStc,ΣStc, EStc) when SStc ⊆ S′

Stc,

ΣStc ⊆ Σ′
Stc and EStc ⊆ E′

Stc. Therefore, an extension is an inclusion morphism[17] (see

Section 2.3) and is represented as (SStc,ΣStc, EStc) ↪→ (S′
Stc,Σ

′
Stc, E

′
Stc). More specifi-

cally, an extension is an enrichment signature morphism ϕ : (SStc,ΣStc) ↪→ (S′
Stc,Σ

′
Stc)

1Above refers to the specifications that Spec itself transitively extends in the hierarchy.

26

iff SStc ↪→ S′
Stc and ΣStcω,s ↪→ Σ′

Stcω′,s′ . It is conservative if the specification morphism

ϕ is conservative. This is so iff for each (ΣStc, EStc)-model M , there is a (Σ′
Stc, E

′
Stc)-

model M ′ such that M ′�ϕ= M . By the Satisfaction Condition of the static institution

(Section 3.3.2), there is a (ΣStc, EStc)-model M for each (Σ′
Stc, E

′
Stc)-model M ′ and it

is given by the ϕ-reduct of M ′. Thus, the signature morphism ϕ is a conservative ex-

tension. Note also that the satisfaction of the no junk rule for defined items and the no

confusion rule are necessary conditions for the resulting specification (S′
SB,Σ

′
SB, E

′
Stc)

to be consistent. The set of defined items includes both items defined directly at decla-

ration and items defined with the use of equations. In the latter case, since conservative

extension implies that the equations E′
Stc have to be consistent, items defined thus are

also protected.

Specification Parameterization and Instantiation

Specification parameterization[22] allows defining properties over a class of specifica-

tions. An enrichment signature morphism applied to a parameterized specification de-

scribes an enrichment morphism on a whole class of specifications. Instantiation reduces

the class of specifications to a particular specification and involves a binding signature

morphism. When a parameter sort is instantiated, it is given the same constant values

as the actual sort.2 3 Note that the binding need not be to a specific value or a defined

item (e.g. a variable given a specific value). If a parameter p is bound to a variable v,

then p acts as a variable and can take all the values that v takes. Thus, a specification

whose parameter is bound to a variable still represents a class of specifications. A spe-

cific instance of the specification is obtained only when the variable v takes a specific

value.

2Types are not theories, and so the non-constant operators defined over the actual sort are not
bound to the instantiated parameter. However, they can still be used on the instantiated parameter if
the instantiated specification can access them, given they are not hidden information.

3A binding morphism is also an inclusion in the sense that additional operators can be defined over
the result of the binding while they are not defined over the actual sort.

27

Specification Inclusion

A specification Speci = (SSpeci ,ΣSpeci , ESpeci) can be included into another specifica-

tion Speco along with information hiding. Note that any information that is not hidden

is renamed by annotating it with a label. If the included specification Speci has param-

eters, then Speci must be instantiated at inclusion. Thus a specification inclusion also

involves a binding morphism in some cases.

When information is hidden in Speci, a new specification Specir = (SSpecir ,ΣSpecir ,

ESpecir) is derived [17]. The notion of hiding information involves a signature in-

clusion ΣSpecir ↪→ ΣSpeci and a ΣSpecir -specification ΣSpecir�Speci that consists of

the visible part of the specification Speci, obtained by restricting Speci that includes

both the visible and hidden features. � is called the information hiding operator,

also sometimes called the export operator. It is defined such that ΣSpecir�Speci =

(ΣSpecir ∩ ΣSpeci , ESpeci ∩ Sen(ΣSpecir)). When there is hidden information in Speci,

it is Specir that is indeed included in Speco. Note that parameters are always visi-

ble, therefore, Speci and Specir both have the same parameters. The same binding

morphism can thus be used whether it is Speci or Specir that is being instantiated.

A specification that is included can either be declared in the declaration section of the

including specification itself, or it can be declared in a package specification that is used

by that including specification. The notion of using a specification is next defined.

Specification Use

The use operation works with only a specific type of specification called a package. A

package does not have any equations. Use is the regular using importing mechanism [58]

and satisfies none of the two hierarchical constraints. A specification that uses a package

automatically annotate all the items in that package with the package name. Therefore,

there is no name clash if the same name is declared in the specification and in the

package.

28

Specification Composition

Static specifications can be “glued” together with the use of colimits, similar to com-

position of equational specifications [22]. More specifically, since the hierarchy of static

specifications obtained with extension relation has a least upper bound (all specifications

can be traced to a specific one) the composition operation is a pushout.

SpecStc is a category with static specifications as objects. The arrows are specification

extensions. The identity map is the identity extension (a specification is an extension of

itself). Composition of two arrows is also an extension. Let e and e′ be two extensions

such that (SStc,ΣStc, EStc)
e
↪→ (S′

Stc,Σ
′
Stc, E

′
Stc)

e′
↪→ (S′′

Stc,Σ
′′
Stc, E

′′
Stc). By definition of

extension, SStc ⊆ S′
Stc, ΣStc ⊆ Σ′

Stc, EStc ⊆ E′
Stc, and, S′

Stc ⊆ S′′
Stc, Σ′

Stc ⊆ Σ′′
Stc

and E′
Stc ⊆ E′′

Stc, thus, SStc ⊆ S′′
Stc, ΣStc ⊆ Σ′′

Stc and EStc ⊆ E′′
Stc, indicating that

(SStc,ΣStc, EStc)
e′◦e
↪→ (S′′

Stc,Σ
′′
Stc, E

′′
Stc). Note that there is a forgetful functor that maps

a category of specifications (theories) to a category of signatures and signature mor-

phisms. Goguen [22] shows that the category of equational signatures is cocomplete

and that the forgetful functor reflects colimits. Thus the existence of a colimit between

two static signatures implies there is a colimit between corresponding specifications.

Goguen [22] also shows that the syntactic composition of presentations corresponds

exactly to colimits of theories for equational institution.

3.4 The State-based Unifying Semantic Domain

State-based specifications are used to define properties of state-based components and

systems. The properties are given as relations and constraints between observations of a

current state and those of its next state. The notion of state is therefore made explicit,

and everything is referenced with respect to a specific state. Items that are independent

of states have values that do not change with transformations of states and are said to

be static (or invariant).

29

3.4.1 A State-based Signature

Definition 3.4.1.1 A state-based signature is a pair (SSB,ΣSB) with SSB the set of

sorts and ΣSB the set of operators defined as follows:

• SSB is a pair (State, SV) where State is a special sort and SV a set of sorts

{S1, . . . , Sn} not containing State.

• ΣSB is a 6-tuple (isInit,Υ, next,Φ,Ω,∆) with

– isInit : State → Boolean is a particular predicate that returns true when-

ever its parameter is an initial state, otherwise, it returns false.4 Since the

only use of isInit is to pick out an initial state of a specification, it is not

treated as an attribute. It is also often left undefined. Note that although any

state for which isInit is true is a generalized hidden constant, however, not

all hidden constants are initial,

– Υ is the set of generalized hidden constants given as the set of all operators

cst : SV0,...,n → State,

– next : State × SV0,...,n → State indicating a state transformation relation

that may depend on zero or more inputs,

– Φ an optional set of operations of the form φ : State × SV0,...,n → State

describing ways a state can be modified,

– Ω a set of operations of the form ω : State × SV0,...,n → SV describing the

observers of a state that may depend on zero or more inputs,

– ∆ a set of operations δ : SV0,...,n → SV , describing operations on data items,

where SV0,...,n = SV0 × . . .× SVn ∈ SV for some n ∈ N ≥ 0.

It is important to emphasize the distinction between next and any other operator φ ∈ Φ.

While next gives an equivalent state to the next state, φ describes some state. Indeed,

the state obtained with φ may not even be reachable from the current state. Only states

reached by subsequent application of next are reachable.

4A state-based signature need not always define a particular initial state. It may also have more than
one initial states.

30

Proposition 3.4.1.2 A state-based signature is an instance of a hidden signature, with

State the unique hidden sort such that the set of hidden sorts is H = {State}.5 The

visible data universe is given by (SV ,∆, DSB), with DSB a data algebra over (SV ,∆). By

the above definition ΣSBv∗,v
= ∆v∗,v with v∗ ∈ S∗

V and v ∈ SV , and for each σ ∈ ΣSBω,s,

with ω ∈ S∗
SB and s ∈ SSB, at most one hidden sort occurs in ω. �

Since a state-based signature is a hidden signature, all properties and proofs over hidden

signatures also hold for state-based signatures. Thus, in the following sections, we

provide a hidden algebra semantics for state-based specifications.

3.4.2 Satisfaction of State-based Equations

Satisfaction of a state-based equation is behavioral satisfaction [24]. For a hidden sig-

nature (H,Σ) with hidden sort h, behavioral satisfaction is defined with the notion of a

Σ-context. A context of a sort h is a visible sorted Σ-term having a single occurrence of

a new variable symbol z of sort h. A context is appropriate for a term t iff the sort of t

matches that of z. c[t] indicates the result of substituting t for z in context c, and CΣ[z]

denotes the V -indexed set of contexts with hidden variable z. A hidden Σ-algebra6 A

behaviorally satisfies a Σ-equation (∀X) t = t′, A|≡Σ(∀X) t = t′, iff for each appropriate

Σ-context c, A satisfies the equation (∀X) c[t] = c[t′].7 For a conditional equation e of

the form (∀X) t = t′ if t1 = t′1, . . . , tm = t′m, behavioral satisfaction by A is iff for every

assignment θ : X → A, θ∗(c[t]) = θ∗(c[t′]), with θ∗ denoting the unique Σ-homomorphic

extension8 of θ, for all appropriate contexts c, whenever θ∗(cj [tj]) = θ∗(cj [t′j]), for

j = 1, . . . ,m and all appropriate contexts cj .

Example 3.4.2.1 Consider the following state-based signature. The sorts are state

and Natural. The operation symbols consist of s0 :→ State, x : State → Natural

5Since H contains only State, we tend to refer to the set of hidden sorts H of a state-based signature
as State.

6A hidden Σ-algebra A is an algebra such that A�Ψ= D, i.e. when A is restricted to Ψ, it is the
same as D.

7X is a set of variables.
8The homomorphic extension is the assignment of a term to a value.

31

and next : State → State along with the algebraic signature ∆Natural that defines the

natural numbers.9 Since a state-based signature is a hidden signature, the following are

some contexts from the signature:

c1[z] = x z;

c2[z] = x next z;

c3[z] = x next next next z;

There are an infinite number of contexts, but they all begin with x because that is the

only attribute.

Assume we have a slightly different signature where next also takes an input of sort

Natural. A model C for that signature is provided by taking State as the natural

numbers N, next as Cnext(N,M) = N and x as Cx(N) = N . The following hidden

equation is both ordinarily and behaviorally satisfied by model C:

∀(N,M :: Natural;S :: State) next(N, next(M,S)) = next(N,S) (3.1)

Another interpretation model H is where State is a list that stores values: NN. Then,

next is interpreted as the “cons” operator over list and x is the “head” operator. Al-

though H does not strictly satisfy Equation 3.1, it does behaviorally satisfy it:

x(next(N, next(M,S))) = x(next(N,S))

The rules of equational reasoning are valid in the proof of satisfaction for both hidden

and visible equations. Visible equations can be used in proving hidden equations. A

behavioral equation can also be substituted into another. However, the hidden carrier

should not be empty [24].

3.4.3 State-based Specifications

Definition 3.4.3.1 A state-based specification is a triple (SSB,ΣSB, ESB) where (SSB,

ΣSB) is a state-based signature, and ESB a set of ΣSB-equations. ESB is the dis-

joint union of a set of ∆-equations over fixed ground ∆-terms or ∆-terms with no free

9∆Natural is the set of operators containing at least 0, succ, <.

32

variables, E∆, and a set of equations involving at least an attribute or a method or a

generalized hidden constant, EΩ.

A hidden specification [24] is defined as a triple (H,Σ, E) with (H,Σ) a hidden signature

and E a set of Σ-equations that does not include any Ψ-equations. A hidden specification

does not contain any equations about data. Such equations when needed are proved and

asserted separately. Constraints are considered equations by equating them to true.

For example the constraint s < 3 with s a hidden sorted variable is equivalent to the

equation s < 3 = true.

Proposition 3.4.3.2 A state-based specification induces a hidden specification (State,

ΣSB, EΩ) defined over the visible fixed data universe (SV ,∆, DSB), whether E∆ = ∅ or

not.

Proof. This proposition follows from the definitions of a state-based signature and a

state-based specification. Furthermore, since E∆ consists only of fixed ground ∆-terms

or ∆-terms with no free variables, any consistent E∆-equation must also be satisfied

by the data algebra DSB. Thus, whether an E∆-equation is present or not, the hidden

specification induced is the same. However, the existence of an E∆-equation that is

inconsistent does create inconsistency in the state-based specification and in this case,

no hidden specification is induced. �

3.4.4 Consistency of State-based Specifications

As Goguen et al. [25] state, it is very easy to write behavioral theories that have no

models. Hence, there are some necessary and some sufficient conditions for a theory

to have at least one model. A hidden specification (theory) is consistent iff it has a

model with all carriers non-empty. We define consistency for a state-based specification

similarly.

Definition 3.4.4.1 A state-based specification is consistent iff its induced hidden speci-

fication has a model with non-empty carriers and all the equations in E∆ are consistent.

33

Goguen et al. [25] define D-safety to be a necessary condition, and locality of equations

a sufficient condition for consistency of equations that are non-conditional or whose

conditions are only Ψ-terms (conditions containing only visible operations). Thus, a

hidden specification P = (H,Σ, E) is consistent if E is D-safe and local. A set of

equations E is D-safe iff for any d, d′ ∈ D, if E ∪D∗ |=Σ (∀∅) d = d′ then d = d′, with

D∗ denoting the set of all ground Ψ-equations of the form (∀∅) t = d that are satisfied

by D with d ∈ D. A set of equations is local iff each equation is local. Its left and

right sides are local terms, and its conditions, if any, are visible sorted and use only

Ψ-operations. A term is local iff every proper visible subterm is a Ψ-term. For example,

1 + top z for z a variable of some hidden sort is not a local term, as the visible subterm

top z is not a Ψ-term. Goguen et al. also define the following sufficient condition for

D-safety: if E can be oriented as a D-confluent Σ-term rewriting system with no rule

having some d ∈ D as its left side,10 then E is D-safe. A Σ-term rewriting system R

is D-confluent iff R ∪ RD∗ is confluent, where RD∗ = {t → d | D |=Ψ (∀∅) t = d} is

the Ψ-rewriting system associated with D∗. A rewriting system is said to be confluent

if, for all x, u, and w such that x→∗ u and x→∗ w, there exists a z such that u→∗ z

and w →∗ z.

The same conditions for consistency apply for the hidden specification induced by a

state-based specification. Moreover, it can be noted that the same rewriting system

associated with D∗ can be used to verify consistency of the set of ∆-equations E∆ rep-

resenting the data equations of a state-based specification. Thus, verifying D-safety

and locality is also a sufficient condition for consistency of a state-based specification.

However, in most state-based specifications, the locality condition does not hold. The

transition to the next state often depends on the current state. Verification of consis-

tency for such state-based specifications thus requires finding at least a model for each

specification. Nevertheless, since D-safety is a necessary condition for consistency, for

any state-based specification to be consistent, its equations must be D-safe.

10Nothing new can be derived from d.

34

3.4.5 State-based Signature Morphisms

A hidden signature map [24, 25] ϕ : (H,Σ)→ (H ′,Σ′) is defined as a signature morphism

ϕ : Σ→ Σ′ that preserves hidden sorts and is the identity on (V,Ψ). However, the map

can not introduce new methods or attributes. (This is due to the fact that in the object

paradigm, where the notion of hidden algebras was first introduced, no new methods

or attributes can be defined on an imported class [25].) It is the identity on the visible

signature Ψ, takes hidden sorts to hidden sorts, and if an operation σ′ in Σ′ has an

argument in ϕ(H), then there is some operation σ in Σ such that σ′ = ϕ(σ).

Definition 3.4.5.1 We define a state-based signature morphism to be a hidden signa-

ture morphism. The morphism from (SSB,ΣSB) to (S′
SB, Σ

′
SB) is a signature morphism

ϕ : ΣSB → Σ′
SB, that maps hidden sorts to hidden sorts and is the identity on (SV ,∆).

If an operation σ′ is in either Φ′ or Ω′, i.e. is an operation in Σ′
SB that has State as

parameter, then there is some operation σ in Φ or Ω such that σ′ = ϕ(σ). As for

hidden signature morphisms, Φ′ ⊆ ϕ∗(Φ) and Ω′ ⊆ ϕ∗(Ω), with ϕ∗(O) representing the

extension of ϕ to each operator in the set of operations O.

It can be noted from the definition of state-based signature morphism that instead of

an enrichment morphism, we have a sub-system morphism. The morphism goes from

a larger signature to a smaller one. The renaming morphism for state-based signatures

also differs as State and next do not vary from one signature to another. However,

we propose a mechanism that allows differentiating the State sort from one signature

from the State sort from another by forming qualified names. A qualified name is

obtained by annotating the hidden sort State, and the name of operators and symbols

with the name of the module where the signature is defined. For example, f.State is

a qualified name for the State sort of a state-based module named f . The renaming

morphism is thus a special state-based signature morphism such that for some module

named m, ϕ(SV ,∆) = (SV ,∆) is the identity of data, ϕ(State) = m.State is the

annotating of State, and ϕ(σ) = m.σ with σ in Φ or Ω is the annotating of operators.

For example, if σ : S1 × . . . × Sn × State → State with S1, . . . , Sn ∈ SV , then

35

m.σ : S1 × . . .× Sn ×m.State→ m.State. The binding morphism is not different for

state-based signature morphism and is used in parameter actualization as well. In the

example of a stack (cf. Section 3.4.8), Stack is the actual parameter for the state ba-

sed domain. The signature morphism in this case binds Stack to State.

3.4.6 An Institution for State-based Algebras

We propose an institution for state-based specifications using algebras as models. It

relates the equations of state-based specifications with algebras that satisfy them. It

also encapsulates the notion that the values of terms are invariant under signature

modification, parameterization, and renaming. The institution for state-based algebras

is derived from the institution of basic hidden algebras [21]. Given a fixed data algebra

DSB, an institution for state-based algebras, INSSBAlg
is given by:

Signatures: The category SignSB has state-based signatures as objects and signature

morphism (cf. Definition 3.4.5.1) as arrows. SignSB is indeed a category. Compo-

sition of two state-based signature morphisms is also a signature morphism. Let

ϕ : (SSB,ΣSB) → (S′
SB,Σ

′
SB) and φ : (S′

SB,Σ
′
SB) → (S′′

SB,Σ
′′
SB). Let σ′′ be an

operation in Σ′′
SB that has an argument sort (φ ◦ ϕ(H)) with H a hidden sort

in SSB. Then σ′′ has an argument in φ(H ′), with H ′ in S′
SB, and there is an

operation in Σ′
SB with σ′′ = φ(σ′). Since σ′ has an argument sort in ϕ(H), so

there is some σ in ΣSB such that σ′ = ϕ(σ). Therefore, σ′′ = (φ ◦ϕ)(σ), and φ ◦ϕ

is a morphism of state-based signatures.

Sentences: Sen(SSB,ΣSB) is the set of all ΣSB-equations for a state-based signature

(SSB, ΣSB). If ϕ : (SSB,ΣSB) → (S′
SB,Σ

′
SB) is a signature morphism, then

Sen(ϕ) is the function taking a ΣSB-equation e, (∀X) t = t′ if t1 = t′1, . . . , tn = t′n,

to the Σ′
SB-equation ϕ(e), (∀X ′) ϕ(t) = ϕ(t′) if ϕ(t1) = ϕ(t′1), . . . , ϕ(tn) = ϕ(t′n),

where X ′ = {x′ : ϕ(s)|x : s ∈ X}. Sen : Sign→ Set is a functor.

Models: Given a state-based signature (SSB,ΣSB), let Mod(SSB,ΣSB) be the category

of (hidden) algebras and their morphisms. If ϕ : (SSB,ΣSB) → (S′
SB,Σ

′
SB) is a

signature morphism, then Mod(ϕ) is the usual reduct functor �ϕ.

36

Satisfaction Relation: behavioral satisfaction, i.e. |≡ΣSB

Theorem 3.4.6.1 Satisfaction condition : Given ϕ : (SSB,ΣSB) → (S′
SB,Σ

′
SB) a

state-based signature morphism, (∀X) t = t′ if t1 = t′1, . . . , tn = t′n a ΣSB-equation e,

and A′ a state-based Σ′-algebra, then A′�ϕ|≡ΣSB
e iff A′ |≡Σ′

SB
ϕ(e).

Proof. For visible equations, equations not involving the hidden sort State, |≡ΣSB

= �ΣSB
of equational reasoning. The proof for equations involving State is similar to

Goguen’s proof for institution of hidden algebras [30]. Let A′ be a Σ′
SB-algebra, and e

a ΣSB-equation (∀X) t = t′ if t1 = t′1, . . . , tn = t′n. For behavioral satisfaction, we need

to show (∀X) c[t] = c[t′] if t1 = t′1, . . . , tn = t′n, for c an appropriate context. Thus, we

need to show that

A′|ϕ �ΣSB
(∀X) c(z ← t) = c(z ← t′) if t1 = t′1, . . . , tn = t′n

iff

A′ �Σ′
SB

(∀X ′) c′(z′ ← ϕ(t)) = c′(z′ ← ϕ(t′)) if ϕ(t1) = ϕ(t′1), . . . , ϕ(tn) = ϕ(t′n),

where X ′ has the same number of variables as X with each of its element of a sort

obtained by translation under ϕ ({x : ϕ(s)|x : s ∈ X}). Note that the new equation to

prove uses the equational satisfaction relation �. Thus, the “if” condition follows from

the Satisfaction Condition of ordinary equational institution (Section 2.2.2). For the

“only if” part, we use the definition of state-based signature morphism (if an operator σ′

in Σ′
SB has an argument of hidden sort, then there exists some σ ∈ ΣSB such that σ′ =

ϕ(σ)) that implies that each context c′ is of the form ϕ(c). Thus, we only need to show

that A′ �Σ′
SB

(∀X ′) ϕ(c)(z′ ← ϕ(t)) = ϕ(c)(z′ ← ϕ(t′)) if ϕ(t1) = ϕ(t′1), . . . , ϕ(tn) =

ϕ(t′n), which also follows from the Satisfaction Condition of equational reasoning and

the assumption. �

3.4.7 Coalgebras as State-based Models

A state-based specification is used with the specific purpose of describing the transition

to the next state, given a current state. This is done by specifying what is to be

observed in the next state given current observations and inputs. Thus, coalgebras are

37

particularly suitable models for state-based specifications. The relation between hidden

algebras and coalgebras is extensively defined in Ĉırstea’s doctoral thesis [14]. We use

her definitions and proofs to derive coalgebraic signatures (cosignatures) and models for

our state-based signatures.

An abstract cosignature is a pair (C, F), with C a complete, cocomplete and regular

category, and F : C → C an endofunctor that preserves pullbacks and limits of ωop-

chains.11 A destructor hidden signature is a hidden signature that contains no general-

ized hidden constants (Σω,h = ∅ for ω ∈ V ∗ and h ∈ H). As a result, destructor hidden

signatures (H,Σ) induce abstract cosignatures (SetSD, FΣ) with FΣ : SetSD → SetSD given

by (for X ∈ |SetSD| and s ∈ S):12.

(FΣX)s =

∏

σ∈Σsω,s′

XDω
s′ if s ∈ H

Dv if s ∈ V

Proposition 3.4.7.1 Leaving out the generalized hidden constants and the set of oper-

ators Φ in the state-based signature, if they are present, results in a destructor hidden

subsignature that induces the following abstract cosignature (SetSSB
DSB

, FΣSB
).

FΣSB
: SetSSB

DSB
→ SetSSB

DSB

taking

(XS1 , . . . , XSj , XState) to (XS1 , . . . , XSj ,
∏

k∈1,...,l

X
XS0,...,n

Sk
×X

XS0,...,n

State)

with

• XS1 , . . . , XSj , non-empty sets to which the visible sorts are mapped,

• XState, the set to which sort State is mapped,

• l, size of set Ω,

11An ωop chain is 1
!←− F1

F !←− F 21
F2!←− . . . with ! : F1 → 1 denoting the unique arrow from F1 to

the final C-object 1.
12SetS is the category of S-indexed sets and S-indexed functions, with S a set. The category SetS

D

has as objects, S-indexed sets A such that Av = Dv for v ∈ V , given V ⊆ S with a V -indexed set D,
and as arrows, S-indexed functions f , such that fv = 1Dv for v ∈ V

38

• X
XS0,...,n

Sk
≡ XS0,...,n → XSk

, for k = 1 . . . l the functions that ωk(XState) :

SV0,...,n → SV are interpreted to, for ωk ∈ Ω and with SV0,...,n mapping to XS0,...,n.

�

We omit the operators in Φ in deriving an abstract cosignature as next is the only

method that is used to define reachable states. Any operator in Φ can be considered

to be non-behavioral because its use is similar to that of a visible operator. Goguen

and Roşu [26] have termed this omission as hiding operators. They demonstrate that

two specifications defined over the same hidden signature and with the same equations,

but one considering only a subset of operations over hidden sorts as being behavioral,

are equivalent if the operations considered as non-behavioral are behaviorally congruent

in the algebras of that specification. Given a hidden signature (Ψ, D,Σ) and a hidden

subsignature (Ψ, D,Γ) such that Γ is a hidden subsignature of Σ, an operation σ ∈ Σ

is Γ-behaviorally congruent for a hidden algebra A iff σ is congruent for ≡Γ
Σ on A. ≡Γ

Σ

is Γ-behavioral equivalence and σ being congruent for ≡Γ
Σ means Aσ(a1, . . . , an) ≡Γ

Σ

Aσ(a′1, . . . , a
′
n) whenever ai ≡Γ

Σ a′i for i = 1, . . . , n.

Given an abstract cosignature (SetS , G∆), Ĉırstea defines coalgebras with coalgebraic

structures α : X → G∆X with X ∈ SetS . We use the same approach to derive

coalgebras for a state-based abstract cosignature.

Proposition 3.4.7.2 Given a state-based abstract cosignature (SetSSB
DSB

, FΣSB
), a state-

based coalgebraic structure is thus β : X → FΣSB
X with X ∈ SetSSB

DSB
. Since FΣSB

Xs =

Xs for s ∈ SV , we will always write the state-based coalgebraic structure as β : XState →

FΣSB
XState. �

Example 3.4.7.3 Consider the state-based signature in Example 3.4.2.1. The destruc-

tor hidden subsignature is given by:

({Natural, State}, {x : State→ Natural, next : State → State} ∪∆Natural).

The associated abstract cosignature is (Set{Natural,State}N , F) with:

FXState = XNatural ×XState

= N×XState

39

A coalgebraic structure for this abstract cosignature is:

α : XState → N×XState

Note that the use of coalgebras as models for a cosignature is dual to the use of algebraic

models for a signature. We define homomorphisms between coalgebras of a state-based

cosignature.

Proposition 3.4.7.4 Let (SetSSB
DSB

, FΣSB
) be a state-based abstract cosignature, and A

and B two FΣSB
-coalgebras. An FΣSB

-homomorphism is given by an S-sorted function

f : A→ B such that fv = 1Dv for each v ∈ SV and fState is given as follows:

βB ◦ fState = FΣSB
(fState) ◦ βA

where βB : BState → FΣSB
BState and βA : AState → FΣSB

AState.

Proof. The above proposition follows straightforwardly from the definition of coalgebra

homomorphism as in Section 2.4.2. �

The state-based coalgebras and their homomorphisms form a category. This implies

that the properties of a category (Definition 2.1.0.1) have to hold for them. There

must exist an identity morphism and composition of two morphisms must result in a

morphism.

Proposition 3.4.7.5 FΣSB
-coalgebras and FΣSB

-homomorphisms give rise to a cate-

gory denoted Coalg(FΣSB
).

Proof. The objects of this category are coalgebras defined with the same endofuntor

FΣSB
. The morphisms are the coalgebra homomorphisms, with identity mapping a

coalgebra to itself. The composition morphism is also a morphism as shown in the

following commuting diagram such that the following holds:

40

βC ◦ gState ◦ fState = βC ◦ hState

= FΣSB
(hState) ◦ βA

= FΣSB
(gState) ◦ βB ◦ fState

= FΣSB
(gState) ◦ FΣSB

(fState) ◦ βA

= FΣSB
(gState ◦ fState) ◦ βA

with hState : AState → CState.

.
hState - .

AState

fState - BState

gState - CState

FΣSB
(AState)

βA

? FΣSB
(fState)- FΣSB

(BState)

βB

? FΣSB
(gState)- FΣSB

(CState)

βC

?

.
FΣSB

(hState) - .

�

Example 3.4.7.6 The state-based signature of Example 3.4.2.1 induces a category of

F -coalgebras, (XState, α : XState → N×XState). Two such possible coalgebras are:

Coalgebra N: XState = N with αN : N→ N× N given by a pair of functions 〈id, inc〉

with id = λn.n and inc = λn.n+ 1.

Coalgebra L: XState = NN, representing a list of natural numbers, with αL : N →

N× NN given by a pair of functions 〈head, tail〉, with head returning the head of

a list and tail returning the rest of the list.

A morphism between coalgebras N and L is given below:

N
f

- NN

N× N

〈λn.n, λn.n+ 1〉

? id× f
- N× NN

〈head, tail〉

?

41

An example of function f is the function from : N→ NN taking a natural number n ∈ N

to the sequence (n, n+ 1, n+ 2, ...) ∈ NN.

In algebraic semantics, an initial algebra is of particular importance. In coalgebraic

semantics, the dual role is carried by a terminal coalgebra.

Proposition 3.4.7.7 The category of coalgebras for a state-based signature has a final

object given by the coalgebra representing the system of behaviors for any system with

that signature.

Proof. The existence of a final object in the category of coalgebras of an abstract

cosignature (SetSD, F) is proved by Ĉırstea [14]. It is a result of SetSD being complete,

thus having a final object, and F being a polynomial functor preserving limits. The def-

inition of the final coalgebra is derived from Kurz’s theory of systems (cf. Section 2.4.1).

Given a state-based coalgebraic structure β : XState → FΣSB
XState, assume XState is

the set of states of a system, and β describes the effect of taking an observable transi-

tion. Then, the system of all behaviors is a final system and is given by the coalgebra

(Z, ζ), with Z being a set of finite and infinite lists, and ζ mapping Z to FΣSB
Z. �

Example 3.4.7.8 Consider the state-based signature of Example 3.4.2.1. Assume the

following interpretation of the signature:

• XState is given as the discrete set {s0, s1, s2},

• next is given as the function next(s0) = s1, next(s1) = s2 and next(s2) = s0,

• x is given as the function x(s0) = x0, x(s1) = x1, x(s2) = x2.

A behavior of this system (assuming isInit(s0)) is: (x0, x1, x2, . . .), indicating starting

in s0, the observations of x are x0, followed by x1 in the next state and so on.

The final coalgebra can thus be represented as (Z, ζ), with Z a set of infinite lists, shown

42

as NN, and ζ : Z → FZ.

XState

f
- NN

N×XState

α

? id× f
- N× NN

ζ

?

Given a destructor hidden signature inducing an abstract cosignature (SetSD, FΣ), any

conditional Σ-equation e in one hidden-sorted variable induces a (SetSD, FΣ)-coequation

c such that A |≡Σ e iff 〈C, γ〉 |=(SetSD,FΣ) c, with A a hidden Σ-algebra and 〈C, γ〉

its associated (SetSD, FΣ)-coalgebra [14]. A (C,F)-coequation is a tuple (K, l, r) with

(K, l) and (K, r) denoting (C,F)-observers. K : C → C is an endofunctor preserving

monomorphisms, and η : UC ⇒ KUC is a natural transformation. UC : Coalg(C, F)→

C denotes the functor taking (C, F)-coalgebras to their carrier. K is referenced as the

type of the observer. A (C,F)-coalgebra 〈C, γ〉 satisfies a (C,F)-coequation (K, l, r) iff

lγ = rγ . lγ : C → KC and rγ : C → KC are C-arrows that extract information of type

K from C using the coalgebraic structure γ.

Example 3.4.7.9 Consider the example of a hidden signature specifying cells holding

natural numbers (from Goguen’s work [24]). The hidden signature consists of a visible

sort Nat, a hidden sort State, a hidden constant init :→ State, an attribute getx :

State→ Nat and a method putx : Nat× State→ State. The equations constrain the

behavior of cells:

(∀N)(∀S) getx(putx(N,S)) = N (3.2)

(∀S)(∀N)(∀M) putx(N, putx(M,S)) = putx(N,S) (3.3)

These equations induce (Set{Nat,State}N , F)-coequations (K, l, r) and (K ′, l′, r′) (as defined

43

in Cı̂rstea’s doctoral dissertation [14]) given by, for Equation 3.2:

(KX)State =
∏
n∈N

N

(l〈C,γ〉)State = 〈getxA ◦ putxA(n,)〉n∈N

(r〈C,γ〉)State = 〈n〉n∈N

with n denoting the constant function taking a ∈ AState to n ∈ N, and for Equation 3.3:

(K ′X)State =
∏
m∈N

∏
n∈N

XState

(l′〈C,γ〉)State = 〈putxA(n,) ◦ putxA(m,)〉m∈N,n∈N

(r′〈C,γ〉)State = 〈putxA(n,)〉m∈N,n∈N

As mentioned above, a Σ-equation e satisfied by a hidden algebra A induces a co-

equation c that is satisfied by the corresponding coalgebra 〈C, γ〉. Thus, by deriving a

coalgebra from a hidden algebra that satisfies a set of Σ-equations, it is ensured that the

coalgebra satisfies the induced co-equations. We use this property to derive coalgebras

that satisfy a state-based equation, which is also a hidden equation since a state-based

signature is a hidden signature.

Definition 3.4.7.10 A model of a state-based specification is a coalgebra with structure

β : XState → FΣSB
XState satisfying all coequations induced by EΩ \EGHC where EGHC

is the set of equations containing generalized hidden constants.

Proposition 3.4.7.11 A coalgebraic model of a state-based specification is the coalgebra

induced by a hidden algebra ASB satisfying all equations of EΩ \ EGHC .

Proof. A state-based specification is a hidden specification (State,ΣSB, EΩ). Goguen

et al. define a model of a hidden specification P = (H,Σ, E) to be a hidden Σ-algebra A

that behaviorally satisfies each equation in E. Therefore, a model for a state-based spec-

ification is a hidden ΣSB-algebra of the induced hidden specification (State,ΣSB, EΩ).

44

Furthermore, Ĉırstea [14] demonstrates that A |≡ e where e ∈ E iff 〈C, γ〉 |= c with

〈C, γ〉 A’s associated coalgebra, and c an induced coequation from e.13 14 Thus, to show

that (XState, γ) is a coalgebraic model for a state-based specification (SSB,ΣSB, E),

we only need to demonstrate that ASB |≡ EΩ \ EGHC by showing that ASB satisfies

each equation in EΩ \ EGHC , with ASB a hidden algebra of the specification, and that

(XState, γ) is induced from ASB. �

Ĉırstea [14] defines the corresponding abstract cosignature morphism between (C, F)

and (D, G) as (U, η) : (C, F) → (D, G), with U a functor mapping D → C and

η a natural transformation UG → FU . This morphism induces a reduct functor

Uη : Coalg(D, G) → Coal(C, F), with Uη taking a (D, G)-coalgebra 〈D, γ〉 to the

(C, F)-coalgebra 〈UD, ηD ◦ Uγ〉. Informally, Uη can be considered to extract a (C, F)-

(sub)system from a given (D, G)-system. The following commuting diagram shows the

reduct functor applied to coalgebra 〈D, γ〉.

D
U

- UD

GD

γ

? ηD ◦ U- FUD

ηD ◦ Uγ

?

Example 3.4.7.12 Consider the following two state-based signatures:

sig1 : with sorts State, Nat and Integer, and operators next : State → State, x :

State → Nat, and y : State → Integer. The abstract cosignature is given by

(Set{State,Nat,Integer}, F), with F defined as FXState = N×Z×XState. A coalgebra

for this cosignature is ν : XState → N× Z×XState.

sig2 : with sorts State, Nat and Integer, and operators next : State → State and

v : State → Nat. The abstract cosignature is given by (Set{State,Nat}, G), with

G defined as GXState = N × XState. A coalgebra for this abstract cosignature is

α : XState → N×XState.

13Ĉırstea uses the symbol |= for behavioral satisfaction (because for coalgebras, there is only one
notion of satisfaction, which is behavioral satisfaction,) while Goguen et al. use the symbol |≡.

14Coalgebras are induced only for destructor hidden signatures that are hidden signatures without
generalized hidden constants.

45

The cosignature morphism (U, η), with U : Set{State,Nat} → Set{State,Nat,Integer} and

η : UG → FU , maps sig1 to sig2, and induces a coalgebra morphism. For exam-

ple, a morphism between a coalgebra (Set{State,Nat,Integer}, ν) of sig1 and a coalgebra

(Set{State,Nat}, α) of sig2 is given by:

D
U

- UD XState

U
- XState

GD

γ

? ηD ◦ U- FUD

ηD ◦ Uγ

?
N×XState

α

? ηD ◦ U- N× Z×XState

ν

?

XState and N are objects of both Set{State,Nat} and Set{State,Nat,Integer}, with the lat-

ter also including Z. The sort Integer appears in the state-based signature sig2 as a

state-based morphism is identity on the fixed data algebra. However, the cosignature

induced from sig2 does not contain Integer because this sort does not appear in the

next operation or in any of the attributes of sig2.

With the approach of hiding behavioral operations, we can define a new state-based

institution with coalgebras as models. For each signature in SignSB, there is a category

of coalgebras, and a signature morphism gives rise to a reduct functor for coalgebras.

The satisfaction relation is still behavioral satisfaction, with the additional property of

congruency of operators. Later, we often derive coalgebras directly from a state-based

specification, without first defining the hidden algebras.

3.4.8 A State-based Specification of a Stack Component

We write a state-based specification (Specification 1) for the stack example, which is

considered a good benchmark for comparing specification formalisms [25]. Although

the specifications in this work are written in the Rosetta language, we do not use most

of the syntactic shortcuts that the language offers. We find it easier to understand

the specification when these shortcuts are not used. Rosetta is a component-oriented

specification language, thus a stack is a component with inputs and outputs. Fur-

46

thermore, a Rosetta state-based specification describes the properties of the transition

relation between a state and the next one.15 Thus, there can be only one method

next : State×SV0,...,n → State, describing the transition to the next state. The notion

of a current state, represented as the variable s, is always available in a state-based

specification (its declaration is given in state based, cf. Figure 3.2).

State-based Stack Component Specification 1

Stack::type;

facet stack_component(pushOrPop::input Boolean; val::input Natural;
topObs::output Natural)

:: discrete(Stack) is

push(n::Natural;st::State)::State;

pop(stk::State)::State;

top(stk::State)::Natural;

empty::State is constant;

begin

init: isInit@s => (s=empty) and (top@s=0) and (pop@s=empty);

next_def: next = <*(stc::State;pOp::Boolean;val::Natural)::State*>;

push_def: forall (n::Natural;st::State | (pop(push(n,st))=st))
and
forall (n::Natural;st::State | top(push(n,st))=n);

l1: if pushOrPop
then (top@next(s,pushOrPop,val)=val) and (pop@next(s,pushOrPop,val)=s)
else (next(s,pushOrPop,val)=pop@s)
end if;

l2: topObs=top@s;

end facet stack_component;

A new type Stack is first declared so that it can be used in the specification. Note that

a type in Rosetta is represented by a set of values.16 Facet is a keyword indicating the

15This restriction may be relaxed in future to allow for nondeterminism.
16Since a type corresponds to a set of values, it can be considered that a type is a sort along with a

set of constant operators.

47

beginning of a module that is named stack component. This module is defined over

two input variables and an output one. The inputs are pushOrPop for indicating the

operation desired on the stack, and val the data to be added to the stack if a push

action is chosen. The output is topObs, corresponding to the observation of top on

a stack. The value of topObs is always visible as output. Discrete indicates that a

discrete state-based specification is being defined. The parameter to discrete indicates

that State is to be the Stack type. Thus the hidden sort State is bound to Stack and

has the same constant operators.

The declarations of functions and variables follow the keyword is. Push is a function:

push : Natural× State→ State

Although push seems superfluous in this specification, it appears so that it can be used

in the verification of stack component’s behavior as a stack. Pop is a function:

pop : State → State

Top is given as:

top : State → Natural

Empty is a constant that represents the constant empty stack.

The begin keyword delimits the start of the equations. The equations include a special

initialization equation init, a special equation next def that constrains next, an equa-

tion push def that specifies the property of push, as well as two other equations l1 and

l2 that describe the properties of the component being specified. Equation init defines

the properties of an initial state as well as the effect of observing an empty state. Since

the initial state is empty, the latter is therefore a generalized hidden constant. Note that

isInit is only used in this special equation that describes the properties of a general-

ized hidden constant. Equation next def constrains the next operation to an unnamed

function that expects three arguments: State, pOp and val. The arguments pOp and

val appear in the function because the input variables to the specification influence the

state transition described by next. This way of constraining next by using an equation

(next def) is necessary to provide the flexibility for next to be dependent on inputs to

specification. Equation push def defines push, but does not affect the current state. It

can be rewritten as two equations:

48

pd1 forall (n::Natural;st::State| (pop(push(n,st)) = st))

pd2 forall (n::Natural;st::State| (top(push(n,st)) = n));

Equation l1 expresses the properties of the transformation of state, and is a conditional

equation that can be rewritten as (the @ operator is the application function):

l1a’: top(next(s, pushOrPop, val)) = val if (pushOrPop = true),

l1b’: pop(next(s, pushOrPop, val)) = s if (pushOrPop = true),

l1c’: next(s, pushOrPop , val) = pop(s) if (pushOrPop = false),

The visible sorts involved in stack component are Boolean and Natural. The cor-

responding data algebra DN,Boolean is the natural numbers N, and the Boolean values

Boolean with constant operations true and false, along with the usual operators of N

and Boolean. Stack is the hidden State sort. There is a hidden generalized constant

empty. The set of operators Φ consists of push and pop, while Ω contains top. Equa-

tions pd1, pd2, l1a’, l1b’, l1c’ and l2 form the set of equations Estack for the

specification.

To determine whether stack component is consistent, we verify the locality as well

as the D-safety of its equations. We also need to ensure that the proof obligations

derived from the domain that stack component extends are satisfied. Since the domain

extended is discrete, we need to ensure that the set of equivalence classes of states

as obtained from observing the states is discrete, and that there is a next function

that has State as first parameter and as return type. There is only one attribute, top,

and its return type is Natural. Thus, the first proof obligation is discharged. The

existence of the next function over State is given in equation next def. As a result,

we can assume the discharge of all domain proof obligations. Equations l1a’, l1b’

and l1c’ are conditional equations, with the conditions for each equation visibly-sorted

and using only the ∆-operator equality. All the equations also have local terms for left

and right sides. Therefore, the equations are all local. Furthermore, Estack is D-safe

because there are no distinct natural numbers or Boolean values n,m ∈ DN,Boolean such

that E ∪D∗
N,Boolean |= (∀∅) n = m. Although equations l1a’ and l1b’ have the same

49

conditions and next(s, pushOrPop, val) appears in both, the constraint is on top for

l1a’ and on pop for l1b’. Hence, stack component is consistent.

A model MStack for the specification is:

ANat = N

Aboolean = Boolean

AStack = NN, where NN represents the set of sequences of natural numbers

Aempty = [], where [] represents the empty sequence

Anext(s, c, v) = if c then cons(v, s) else tail(s)

Apop = tail

Apush = cons

Atop = head

We now verify that stack component really behaves as a stack, with the input push-

OrPop deciding whether the component is doing a push or a pop. We identify two

equations that need to be satisfied.

pushOrPop ⇒ next(s, pushOrPop, val) = push(val, s)

not pushOrPop ⇒ next(s, pushOrPop, val) = pop(s)

We use the inference rules of equational deduction and the equations of stack compo-

nent Estack. To prove that next behaves as push (the 1st equation), we need to demon-

strate that

top next= top push

Estack ` pushOrPop⇒ top next(s, pushOrPop, val) = top push(val, s)

Estack, pushOrPop

` top next(s, pushOrPop, val) = top push(val, s) (modus ponens)

` val = top push(val, s) (eqn l1a’)

` val = val (eqn pd2, instantiate)

` true (symmetry)

The proof of the 2nd equation is directly obtained from equation l1c’. However, the

property of pop itself is defined by equation l1b’ and the statement that pop empty =

empty. Thus stack component behaves like a stack.

50

The destructor hidden signature is given by:

({Natural, Boolean, State},

{top : State→ Natural, next : State× Boolean× Natural→ State}

∪∆Natural,Boolean)

The abstract cosignature induced by stack component is given as

(Set{Natural,Boolean,State}N,Boolean , F)

with

FXState = N×XN,Boolean
State

A coalgebra is 〈top, next〉 : XState → FXState. More specifically, the coalgebra corre-

sponding to MStack is given as:

〈head, (λ s.(λc v.if c then cons(v, s) else tail(s)))〉 : NN → N× (NN)N,Boolean

3.4.9 Specification Construction

Each state-based specification gives rise to a category of coalgebras, with a terminal

object given by the coalgebra of the system of behaviors (cf. Section 3.4.1). A signature

morphism gives rise to a reduct functor mapping the category of coalgebras induced

from one signature (of one specification) to the category of coalgebras induced from the

other signature (specification) (cf. Section 3.4.7). In this section, we investigate some

operations that can be used to construct state-based specifications. Although the same

construction operations are defined for static specifications (cf. Section 3.3.3), they are

inherently different because state-based signature morphisms differ from static signature

morphisms. There is also an additional operation called translation that is tied to the

State sort.

Specification Extension

State-based specification extension is similar to static specification extension in essence.

In addition to protecting defined items, a state-based specification extension also pro-

tects the fixed data algebra DSB. A specification (S′
SB,Σ

′
SB, E

′
SB) is said to extend

(SSB,ΣSB, ESB) when SSB ⊆ S′
SB, ΣSB ⊆ Σ′

SB and ESB ⊆ E′
SB. An extension is

51

still an inclusion morphism, however the arrow is reverse compared to static inclu-

sion morphism. By definition, a state-based signature morphism is a sub-system mor-

phism and goes from a larger signature to a smaller one. Thus, (SSB,ΣSB, ESB) ↪→

(S′
SB,Σ

′
SB, E

′
SB) iff there is a state-based signature morphism ϕ : (S′

SB,Σ
′
SB)→ (SSB,

ΣSB).

Specification Parameterization and Instantiation

A parameter to a specification is given a mode out of three possible ones: input, output

and design. Since input parameters usually affect the transition to the next state, they

are also considered to be parameters to the next operation. Output parameters do not

necessarily depend on states. They may just reflect some inputs. If an output parameter

is state dependent, then it is given in terms of one or more attributes defined in the

specification. A design parameter is an input parameter that is static. It is independent

of states.

Parameterization is still based on a signature morphism on a class of specifications with

instantiation defined by a binding morphism. Instantiation is thus obtained through

a signature morphism with the formal parameters of a specification being bound to

actual parameters. However, due to the characteristic of having everything referenced

with respect to states, an actual parameter is often the value of an attribute in a specific

state of the specification that is including the instantiated one. Thus, it is likely that an

instantiation of a state-based specification, in fact, involves a state dependent sequence

of bindings to actual parameters.

Specification Translation

A translation of state-based specifications is a bridging mechanism for reference seman-

tics since states are used as references. Translation is thus a mapping of properties of the

State sort from one specification to another. The translation µ : (SSB,ΣSB, ESB) →

(S′
SB,Σ

′
SB, E

′
SB) is defined if for any (SSB,ΣSB, ESB)-algebra ASB, any (S′

SB,Σ
′
SB,

E′
SB)-algebra A′

SB, there exists a homomorphism over the set of values for State,

52

ϕState : |ASB|State → |A′
SB|State, such that given the assignment ϑ : s → |A|s with

s ∈ SSB and ϑ′ : s′ → |A′|s′ with s′ ∈ S′
SB

ϕState(ϑ(StateSSB
)) = ϑ′(StateS′

SB
).

Definition 3.4.9.1 A translation µ : (SSB,ΣSB, ESB) → (S′
SB,Σ

′
SB, E

′
SB) is con-

structed as follows:

ω(s, v0, . . . , vn) = ω′(µState(s), v0, . . . , vn) with v0, . . . , vn ∈ SV , ω ∈ Ω, ω′ ∈ Ω′,

s ∈ reachable(State) and µState corresponding to syntactic translation of ϕState. Note

that SV = S′
V for SV ∈ SSB and S′

V ∈ S′
SB since the visible sorts are invariant over

state change. We use the notion reachable to indicate a state that can be reached with

the next operation.

The root specification for the hierarchy of state-based specifications, the state ba-

sed domain, has as signature the State sort, the next operator, and the visible data

signature. Nothing else is known of the properties of State or of next. Specifications

that extend state based use equations to define properties of State and next, and to

constrain the values of observations over State.

Consider the case when in a specification Spec, the following equation is defined,

val(s) ∈ {1, 2, 3, 4, 5, 6}, with val :: State→ Natural and s :: State. Thus a possible

model is |A|State = {1, 2, 3, 4, 5, 6}. Assume another observer even :: State→ Boolean

that is true whenever s ∈ State is even (can be defined over the observer val), otherwise

it is false. Let there be another specification Spec′ where State is instead restricted

to {1, 2}, with the same operator even, |A′|State = {1, 2}. There exists a transla-

tion µState : Spec → Spec′ such that µState(1) = 1, µState(2) = 2, µState(3) = 1,

µState(4) = 2, µState(5) = 1 and µState(6) = 2. As this example demonstrates, the

existence of a translation depends on whether a homomorphism exists between the in-

terpretations (as directed by constraining equations over observations) of the State sort

from the different specifications.

53

Specification Inclusion

The principles of including a state-based specification into another one is the same

as for static specification inclusion. Information from the included specification can

be hidden. However, with state-based specifications, there may be a need to make

explicit the relation between the states of the included specification and the states of

the including facet. Thus, a specification translation is often useful in supplementing

an inclusion.

Specification Use

Any package that is used is a static one (even if it contains declarations of state-based

specifications). The same definition for using a package in static applies for a state-based

specification.

There are cases where it may be desired for a package to have the notion of states. In

such cases, a translation may be needed when using that package. Furthermore, the

properties of the states as defined by the package cannot be negated by the modules

defined in it. In this work, we consider only static packages.

Specification Composition

State-based specification composition uses the categorical notion of colimit as with static

specification composition. We first show that state-based specifications and extensions

do indeed form a category.

Definition 3.4.9.2 SpecSB is a category with state-based specifications as objects. The

arrows are specification extensions. The identity map is the identity extension (a speci-

fication is an extension of itself). Composition of two arrows is also an extension. Let e

and e′ be two extensions such that (SSB,ΣSB, E)
e
↪→ (S′

SB,Σ
′
SB, E

′)
e′
↪→ (S′′

SB,Σ
′′
SB, E

′′).

By definition of extension, SSB ⊆ S′
SB, ΣSB ⊆ Σ′

SB, E ⊆ E′, S′
SB ⊆ S′′

SB, Σ′
SB ⊆

Σ′′
SB and E′ ⊆ E′′, thus, SSB ⊆ S′′

SB, ΣSB ⊆ Σ′′
SB and E ⊆ E′′, indicating that

(SSB,ΣSB, E)
e′◦e
↪→ (S′′

SB,Σ
′′
SB, E

′′).

54

The composition of two specifications can now be defined as a colimit, if it exists.

However, it is more interesting when the composition is actually a pushout. This is the

case when the specifications being composed are extensions of the same specification.

Nevertheless, being extensions of the same specification is not sufficient to calculate the

pushout. For example, if the two specifications are on different subtrees of the state-

based hierarchy (Figure 3.2), a translation is first needed. Without this translation, a

pushout can not be formed. Figure 3.1 describes the composition of two specifications

Spec1 and Spec2. Spec2 can be the result of translating OtherSpec2 so that both

Spec1 and Spec2 extend SpecShared that acts as the shared part of the pushout. The

resulting specification is Spec3 = Spec1+Spec2, which also extends SpecShared. Note

that if both Spec1 and Spec2 contain an item with the same name varT , unless that

item appears in SpecShared, they are considered two different items in Spec3 and are

renamed Spec1.varT and Spec2.varT . The counterpart of this is if varT appears in

SpecShared, then Spec1.varT = Spec2.varT = varT . If that equality does not hold,

then the pushout does not exist. It is interesting to note that if in one specification,

say Spec1, varT is undefined, but it is defined in Spec2, then varT in Spec3 is enforced

to be equal to the value defined in Spec2. Of course, if this enforced value causes a

contradiction of the properties of Spec1.varT , then the composition does not exist.

Spec1 Spec2

Spec1 + Spec2
Spec3

SpecShared

OtherSpec2

extension

morphism

Figure 3.1: Composition of Two Specifications

Although an operation named next appears in all state-based specifications, it does

not necessarily have the same rank in all of them as the arguments of next include

the inputs to the component being specified. However, when composing two state-

based specifications with a pushout, the states do need to coincide. Therefore, in the

55

composed specification, the current state, represented by s needs to be the same for

all specifications involved, Spec3.s = Spec1.s = Spec2.s. This also implies that the

next operation needs to be the same so that application of next to s generates the

same next state. Remember, next is declared, but undefined in state based. Any

specification that extends state based defines next by equating it to some function.

As a result, Spec1 and Spec2 must define the same function for next. Therefore, Spec1

and Spec2 must have the same input parameters as these parameters are also arguments

of next. The next operator in Spec3 is given as next :: State×SV0,...,n → State where

SV0,...,n are the input sorts for both Spec1 and Spec2. Thus, nextSpec3(s, i0, . . . , in) =

nextSpec1(s, i0, . . . , in) = nextSpec2(s, i0, . . . , in), with i0 :: SV0 , . . . , in :: SVn . Note that

Spec1 and Spec2 need not have the same output parameters. However, all outputs of

Spec1 and Spec2 become outputs of Spec3.

3.4.10 State-based Hierarchy

In the hierarchy of state-based specifications and extensions, we identify some special

specifications called domains. A domain does not define a system, but the ontology of

a model of computation: the objects, operations and properties of its paradigm. As a

result, a domain defines the proof obligations that a specification using a specific design

paradigm needs to satisfy. The state-based hierarchy of domain extension is given in

Figure 3.2.

The root of the state-based hierarchy is the state based specification.17 This domain

takes as parameter the State sort which enforces that sort to be invariant.18 No other

constraints are defined for that type. However, state based also declares a next func-

tion that expects at least one parameter of type State. The return type of next is

State also. Continuous and discrete are two domains that extend state based.

Continuous constrains the observations of states to continuously vary with the change

in state. Furthermore, the State sort is defined with an attribute that returns a subset

17Static acts as a prelude as all data is defined in it.
18This is a restriction put on parameters to domains.

56

of the Real numbers. This indicates that State demonstrates at least the properties

of a set of real values.19 On the other hand, discrete constrains the observations of

states such that states are classified in discrete equivalence classes according to these

observations. Although this creates a divergence in the domain hierarchy, there exist

morphisms between the two domains. For example, an analog system (in continuous

domain) can have a digital counterpart (in discrete domain) obtained by sampling all of

its observations. Examples of domains that extend continuous are continuous-time

and frequency, while examples of domains that extend discrete are discrete-time

and finite-state.

continuous

finite−state

discrete

discrete−timefrequencycontinuous−time

Extensions

Morphism

static

state_based

Institution morphism

Figure 3.2: State-based domains and extensions

Due to the divergence of the properties of the attributes over the State sort between

continuous and discrete, continuous specifications can not be composed with discrete

specifications. It is possible to compose two discrete (or two continuous) specifications.

Since there exists a morphism from continuous to discrete (discrete to continuous), a

continuous (discrete) specification can first be translated into a discrete (continuous)

one, and then the latter can be composed with the other discrete (continuous) specifica-

tion. Note that the existence of the pushout is not ensured, the translation only creates

a common shared part.20

19For the purposes of this work, we consider it sufficient to consider the real numbers as continuous.
20Of course, State and next for the two discrete (continuous) specifications need to be the same.

57

3.4.11 Example of State-based Composition

For an example of specification composition, let’s assume that we intend to use the stack

component (cf. Section 3.4.8) as a component of an embedded system. In embedded

system modeling, power is a leading constraint. Therefore, it is important to ensure that

power requirements are not violated by the systems. The idea is therefore to model these

power requirements in a specification and then to compose that specification with that of

the stack component. Furthermore, we want to model the power requirements high up in

the state-based hierarchy as although power is dependent on state transition, it does not

care what kind of transition it is. Therefore, a power domain SBPower (Specification 2)

is defined as an extension of state based.

The SBPower Domain Specification 2

domain SBPower(PState::design Type)
:: state_based(PState) is

nominal::posreal;
leakage::posreal;
p(st::State)::posreal;
activity(st::State)::posreal;

begin

p1: p’ = activity@s * nominal + leakage;

end domain power;

Although both SBPower and stack component are state-based specifications, stack

component is discrete while all that is known of SBPower is that it is state-based. How-

ever, since the attributes of SBPower, p and activity, return posreal values, com-

posing discrete with SBPower may create an inconsistency as discrete specifies that

the observations of the states create discrete equivalent classes of states. As a result,

discrete is only composed with a modified SBPower domain where p and activity are

discretized.21 The new specification DiscPower contains all equations from discrete as

21The discretization of the attributes of SBPower may be implicitly enforced by the pushout so that
the resulting composed specification can be consistent.

58

well as all equations from SBPower, along with additional equations that enforce the dis-

cretization of the attributes of SBPower.

The ′-notation is a shortcut for stating the application of the operation p to the next

state, p’ = p@next(s, ,...) (and . . . indicate the presence of possible additional

parameters to next.) Next is originally undefined in the domain. Its definition is only

given within a facet specification or obtained by derivation through composition of facet

specifications. Since the exact definition of next is not known at the domain level, we

use the ′-notation to preserve the necessary generality.

state_based SBPower

discrete
(DState = Stack)

(State = Stack)
next = s−c.next

(PState=Stack)

Extensions

DiscPower
(PState = DState = Stack)

StackPower
(State = Stack)
next = s−c.next

stack_component
(State = Stack)

next = s−c.next next = s−c.next

next = s−c.next

next

Figure 3.3: Composition of Power Requirement with Functional Requirement

DiscPower and stack component now share a common specification, which is the dis-

crete domain. They can therefore be composed with a pushout. Note that the only

time a state parameter is replaced by an actual parameter is in the specification of

stack component. This enforces the State sort for StackPower to be Stack also. The

resulting StackPower specification has as input parameters pushOrPop and val, and as

output parameter topObs. It contains the declarations of both stack component and

DiscPower, and its set of equations is the union of the sets of equations of both specifica-

tions as well. Figure 3.3 shows the two pushouts needed to obtain a powered version of

the stack-component. s-c.next indicates the next operator of stack component. Since

next is only constrained in stack component, the next operator is similarly constrained

in all other specifications involved in the composition.

59

3.5 Trace-based Unifying Semantic Domain

The trace-based unifying semantic domain uses the notion of traces and defines oper-

ations over traces to model computation runs. Although a trace-based signature has

the characteristic of always having an operator that creates a Trace(T) sort, it is nev-

ertheless still an equational signature. A specific trace can not change its value. It is

static once it is defined as it represents a computation run. Therefore, the same precise

semantics as defined for static specifications applies for trace-based specifications. The

only difference is the enforcement of the presence of at least one Trace(T) sort and

some basic operations over that sort in all signatures. Note that a signature morphism

does not necessarily map the Trace(T) sort from one signature to the Trace(T) sort of

the other signature. However, a pushout of trace-based specifications enforces Trace(T)

to be the same for all signatures involved. Since Trace is an operation over a sort T ,

there can be traces with elements of different sorts within the same specification, but

all the elements of a specific trace is similarly sorted. A trace has the properties of

a sequence, and thus, the set of basic operations over traces minimally includes head,

tail, add, append, and such. Some additional interesting operations are interleave,

restriction, order, count for counting occurrences of an event, subscription and

projection, among others.

3.6 Specification Construction between Different Seman-

tic Domains

The morphism between the static and state-based institutions is an institution em-

bedding that is strong, persistent and additive similar to CafeOBJ’s institution mor-

phisms [16]. We do not provide a proof for the properties of this morphism here, however

since any state-based specification protectively imports static data, we can assume these

properties. The protective import is realized through the “conservative extension” of a

static specification by the state-based specification.

Diaconescu [16] defines morphisms between theories of different institutions. However,

60

for our work, we find that these morphisms are too general. Instead, we define specific

translation morphisms pairwise between each of the unifying semantic domains, from

static to state-based and vice versa, from static to trace-based and vice versa, and from

state-based to trace-based and vice versa. Note that none of the pairwise morphisms

are inverses of the counterpart. Translation from static to trace-based is not the inverse

of the translation of trace-based to static. Composition of specifications from different

semantic domains first involves translating a specification to another domain, then a

domain specific pushout can be applied.

3.6.1 Specification Translation between Static and State-based

Since static specifications define data and invariant properties, a translation of a static

specification SpecStc gives a state-based specification SpecSB such that SpecStc ↪→

SpecSB. The exact specification for SpecSB depends on the state-based domain of in-

terest. However, a minimal representation (assuming the domain of interest is the root

specification state based) is given as SpecSB = (SSpecStc
∪{State},ΣStc∪next, EStc∪

ESB), where next is some function that is undefined, next :: function.

The translation from state-based to static is described by Goguen and Roşu’s work [26].

They demonstrate that any behavioral specification B over a hidden signature Σ can

be translated to an ordinary algebraic specification B̃ over a signature Σ̃ containing

Σ, such that a hidden Σ-algebra behaviorally satisfies B iff it strictly satisfies Σ�B̃.

Furthermore, the specification B̃ can be generated automatically from B. Since for

this work, we are not interested in analyzing state-based specifications in the static

environment (for example for the purpose of applying equational logic theorem prover

for behavioral equations), we will not demonstrate this approach here. The reader is

referred to Goguen and Roşu’s paper [26].

3.6.2 Specification Translation between Static and Trace-based

Since both static and trace-based use equational logic, the translation is identity from

trace-based to static. From static to trace-based, the only modification is that the

61

Trace(T) sort and trace-based operators are added to the signature.

3.6.3 Specification Translation between State-based and Trace-based

Since a trace-based specification is a static specification, there exist translations between

state-based and trace-based that depend on that property. However, they do not reflect

the intent of using traces in a trace-based specifications to represent computation runs.

For this reason, we define the following one-way translation from a state-based speci-

fication SpecSB to a trace-based specification SpecTB (note there is no corresponding

translation from trace-based to state-based):

• For each input parameter I in SpecSB there is a parameter in SpecTB that is a

set of traces containing elements of type of I.

• The same for output parameters.

• All declarations of SpecSB (including all declarations obtained by extension) be-

come declarations of SpecTB.

• Add the declaration of a variable Tst :: Trace(State) representing the set of traces

of all reachable states, the declaration of a variable someTrace representing a

trace, and the declaration of a variable n of sort natural that will be used as the

position of a state in the trace.

• All the equations from SpecSB are included in SpecTB.

• Add an equation state def that describes the actualization of the State param-

eter.

• Add some equations (using labels starting with newT) stating that

someTrace ∈ Tst, s ∈ State

such that

someTrace[n] = s and next(s, I0[n], . . . , Ik[n]) = someTrace[n+ 1],

with trace[i] meaning the ith element of trace, and I0, . . . , Ik the various input

traces.

62

The set of traces Tst contains the traces of states obtained from the computation runs of

the system described by the state-based specification. The newT terms tie the notion of

current state to a state in one of the traces and the notion of the next state to the state

following that state in the trace. Thus all the terms imported from SpecSB still hold

in SpecTB. Note that if SpecSB specifies a system that eventually stops, then there are

some constraints to be added to ensure that someTrace[n+ 1] is valid.

Having a state-based specification represented as a trace-based one can be very useful.

For example, some kind of temporal constraints can now be used with the trace-based

specification.

3.6.4 Composing Static and State-based Specifications

Before a static specification SpecStc and a state-based one SpecSB are composed, there

must be a choice of the domain of interest. Since we think it is more interesting to

analyze the effect of invariant properties over the notion of states (for example invariant

properties can be used to model security over every state of a system) the domain

of interest is more often state-based. Thus, the first step of the composition is to

translate the static specification into a state-based one, SpecStcSB. Then, a pushout

can be applied to both state-based specifications. Note that the pushout forces the

next operation in SpecStcSB to be the same as the one in SpecSB. Since next in

SpecStcSB is undefined there is no conflict.

3.7 Conclusion

We are very thankful to Goguen et al. for their work on institution theory [29, 22],

hidden algebras [21, 26, 24] and the OBJ family [28]. CafeOBJ [18], also a member

of the OBJ family, allows the use of several specification/programming paradigms. It

also uses institution for each different paradigm and relates everything with institution

morphisms. Our work differs from CafeOBJ because of our background in hardware

specification. The notion of modularity is component-oriented and the notion of stored

63

state is explicit, with the transition to the next state the relevant factor. For this reason,

we consider coalgebras as particularly suitable models for our state-based specifications.

We are thus grateful to Ĉırstea[14] for her work on coalgebras.

The OBJ family also uses colimits in composing modules. Of interest, is the composition

of modules with hidden information [27]. The Specware [54] system uses colimits for

composition with the specific goal of refining specification to code generation. Our use

of composition is to generate the specification of a system by composing specifications

of subsystems. Sabetzadeh and Easterbrook [53] use colimits in Viewpoints modeling

with the goals of managing inconsistencies. Colimits are widely used for composing

specifications and the list of works mentioned here is in no way comprehensive.

In this chapter, we define the semantics for a language that supports specifications that

use different unifying semantic domains. More specifically, we provide semantics for

static, state-based and trace-based specifications. We use two institutions, one for the

semantics of static specifications, as well as trace-based specifications, and the other for

state-based specifications. The first institution is of equational reasoning, while the sec-

ond one is of hidden algebras. We demonstrate how to derive coalgebraic models for our

state-based specifications. We define several operations for constructing specifications,

including the composition operation that uses pushouts. Specifications need not be using

the same semantic domain for them to be composed. We define translation morphisms

between pairs of specifications from different semantic domains. Although we demon-

strate most of the operations for constructing specifications syntactically, since they are

based on signature morphisms, it is understood that reduct functors and other types of

functors exist between the models of all the specifications involved in the constructions.

For state-based specifications, with the notion of hiding [26], operators in Φ, i.e. all

methods other than next, may have more than one hidden argument. In that case, the

satisfaction condition for the institution of hidden algebras needs to be changed to |≡Γ
Σ,

i.e. congruency of the operators in Φ for ≡Γ
Σ also needs to be proved.

The proof of the properties of the institution morphism that relates the semantics of

static specifications to that of state-based specifications is left as future work. We

64

can also increase the languages with unifying semantic domains other than static, state-

based and trace-based. In the future, the need may arise for a unifying semantic domain

like tagged-signal.

65

Chapter 4

Specifying Models of

Computation

4.1 Introduction

In systems engineering, design tasks require integrating information from various de-

sign domains to simultaneously model heterogeneous aspects of the same component and

interconnected, heterogeneous components. This has given rise to the notion of model-

centered approach to design where models can be defined, composed and projected to

analyze systems. Furthermore, various design domains need to coexist simultaneously

so that designers can work in the domain that is most natural for them. Thus a mod-

eling framework geared towards system design needs to support a variety of models of

computation. This chapter describes such a framework written in Rosetta.

The Rosetta System Level Design Language [3, 4] is a new language that supports

model-centered specification. It is being developed at The University of Kansas, with

collaboration from The University of Adelaide. Rosetta uses facets as units of spec-

ification. A facet is a signature, consisting of operators, functions and variables, as

well as a set of terms that define constraints over the signature. It is used to specify a

view of a system or component in terms of some model of computation. The ontology

66

of a computation model is defined in a special specification called domain.1 Such an

ontology consists of the objects, operations and properties of the design paradigm, and

incorporates the set of elements defining the nature of the computational model. A

facet extending a domain uses, adds to, or constrains the domain definitions. Domain

equations define the properties of a design paradigm. Extending a domain results in its

equations becoming constraints of the extension. A facet that extends a domain must

satisfy that domain’s constraints. These constraints are thus proof obligations that a

facet needs to satisfy for a specific design paradigm. Intuitively, a facet describes what

is observed of a system from a domain’s perspective.

This chapter describes the framework implementing a number of models of computation

as Rosetta domains. The proposed domain hierarchy, with domains as nodes and ex-

tensions as arrows, is shown in Figure 4.1. The root is given by null, an empty domain

containing no computation model and no vocabulary. Using the null domain results

in a base system with only the base Rosetta semantics [2]. Static extends null and

provides a basic collection of types and functions in a monotonic computational model.

It can also be considered as a basic domain for defining mathematical constructs as well

as the fixed data used by all computational models. State based and trace based are

two units of semantics, or domains representing unifying semantic domains, proposed in

this work. Although it is also intended for the Rosetta language to have a state-based

domain as one of its basic domains, that state-based domain is not necessarily the one

defined here. State based is associated with the state-based unifying semantic domain,

while trace based is associated with the trace-based one. Continuous, discrete, and

finite state are some domains in the state-based subhierarchy that describe specific

models of computation. They are defined over the notion of states and state transfor-

mation. Trace csp is an example of a model of computation that is trace-based.

The modular semantics defined in Chapter 3 provides a precise semantics for the speci-

fications given here. Thus, static and trace-based specifications are denoted as algebras,

while coalgebras are used to denote state-based specifications. Since a Rosetta trace-

1In this chapter, domain always refers to a Rosetta domain.

67

continuous−time

continuous

finite−statefrequency

discrete−time

discrete

digital sequential−machine synchronousRF

Computation

Engineering

Model of

Unit of
Semantics

Modeling

static

null

state−based trace−based

trace_csp

Extensions

Rosetta
Basic

Figure 4.1: Domain Hierarchy in Rosetta

based specification describes the computation runs of a system, it can also be denoted

as coalgebras. Morphisms between state-based specifications and trace-based ones can

be defined in terms of coalgebraic relations. The algebraic institution for trace-based

specifications is still necessary as a specification is denoted by coalgebras only if the

specification is consistent according to the satisfaction condition defined for the institu-

tion.

4.2 Basic Rosetta Domain Specifications and Semantics

In Rosetta, equational deduction is used to reason over consistency of basic specifica-

tions. The default semantics is therefore given by an equational institution. As shown

in Figure 4.1, the two basic domains are null and static. Any specification that ex-

tends null or static will have an equational semantics as well. A Rosetta term in

such a specification is an equation (excluding terms describing facet inclusion); boolean

constraints (inequalities) are all equated to true to form an equation. Analysis of the

specification can make use of equational deduction calculus. Some domain extension of

static adds new vocabulary and in such cases, different semantics may apply better.

68

4.2.1 The null Domain and Semantics

There is no Rosetta specification for the null domain as null represents the empty

domain where nothing is known a priori. Specifications that extend null must be

self-contained. They have to declare all items that they refer to. This implies that

any system can be specified by extending null. Note that the language support, its

grammar, its equational semantics and its type system, are available and apply to any

specification that extends null.

4.2.2 The static Domain Specification

The Rosetta specification for the static domain is quite simple. Static extends

null and defines the language core. It contains the declarations and definitions of

operators, functions, types, and constants that comprise the basic language and all

mathematics constructs. These items are always observed in the behaviors of all facets

or domains extending static. They are also invariant, in the sense that they do not

change values within a behavior or from one behavior to the next. Thus, they represent

fixed data algebras.

The following specification (Specification 3) describes part of the implementation of the

static domain in Rosetta. For space purposes, only the definitions of the Boolean sort2

and its operations are shown. Some of the other types that also appear in static in-

clude Universal, Element, Number, Complex, Real, Posreal, Integer, Natural, Bit,

Character, Function, Set, Multiset, Sequence, String, Bitvector and such.3 Each

sort also has a number of operations defined over them. One important difference be-

tween the Boolean sort and all these other sorts is that there are exactly two constant

operators for Boolean: true and false. We can explicitly enumerate these constants

in the definition of the sort. For infinite types such as Integer, we assume that the

constants 0, 1, . . . are available, without having to explicitly list them.

2We call a sort a type in the specifications.
3The language is case insensitive, but in our specifications, we will try to use caps for the first letter

of each sort.

69

The static Domain Specification 3

domain static::null is
...
// --
// Boolean types
// --
Boolean :: type is enumeration (false, true);

// --
// Functions for boolean type
// --
not__(R :: Boolean) :: Boolean;
__and__ (L, R :: Boolean) :: Boolean;
__or__ (L, R :: Boolean) :: Boolean;
__nand__ (L, R :: Boolean) :: Boolean;
__nor__ (L, R :: Boolean) :: Boolean;
__xor__ (L, R :: Boolean) :: Boolean;
__xnor__ (L, R :: Boolean) :: Boolean;
__=>__ (L, R :: Boolean) :: Boolean;
__implied_by__ (L, R :: Boolean) :: Boolean;
...

begin
not_false: (not false) = true;
not_true: (not true) = false;
true_and_true: (true and true) = true;
true_and_false: (true and false) = false;
false_and_true: (false and true) = false;
false_and_false: (false and false) = false;
true_or_true: (true or true) = true;
true_or_false: (true or false) = true;
false_or_true: (false or true) = true;
false_or_false: (false or false) = false;
L_nand_R: forall (L, R::Boolean | (L nand R) = not (L and R));
L_nor_R: forall (L, R::Boolean | (L nor R) = not (L or R));
L_xor_R: forall (L, R::Boolean | (L xor R) = (L or R) and not (L and R));
L_xnor_R: forall (L, R::Boolean | (L xnor R) = not (L xor R));
L_implies_R: forall (L, R::Boolean | (L => R) = ((not L) or R));
L_implied_by_R: forall (L, R::Boolean | (L implied_by R) = (R => L));
...

end domain static;

70

4.2.3 The static Domain Semantics

Given the static domain specification (Specification 3), its signature is given as

(Sstatic,Σstatic), such that:

Sstatic = { . . . , Boolean, . . . }

Σstatic = { . . . , false :→ Boolean, true :→ Boolean, not : Boolean→ Boolean,

and : Boolean× Boolean→ Boolean,

or : Boolean× Boolean→ Boolean,

nand : Boolean× Boolean→ Boolean,

nor : Boolean× Boolean→ Boolean,

xor : Boolean× Boolean→ Boolean,

xnor : Boolean× Boolean→ Boolean,

=> : Boolean× Boolean→ Boolean,

implied by : Boolean× Boolean→ Boolean,

. . . }

and

nand
nor

implies

implied_by

R

or

not xor

xnor

Function in abstract world
. . .

. . .
N

’succ(0)’

Congruent class object

’0’

’1’

. . .

’(true or false)’
’(true or true)’’(not false)’

’true’ ’(true and true)’

. . .

’(not true)’ ’(false and true)’

’(false and false)’

. . .’false’

Boolean

Figure 4.2: Initial Algebra for static

The set of equations for static is given by:

Estatic = {. . . , not false, not true, true and true, . . . ,

true or true, . . . , L nand R, L nor R,

71

L xor R, L xnor R, L implies R, L implied by R, . . .}

The static domain is consistent by definition as each equation in the specification

uniquely defines the properties of each operator. There is a category of algebras sat-

isfying the static specification. Since we are using equational logic, the initial al-

gebra (isomorphic to all initial algebras), Astatic, is given as the quotient algebra of

the variable-free term algebra over the equality defined in the equations Estatic of the

specification. Figure 4.2 shows part of the abstract world corresponding to this initial

algebra. A congruent class object contains all terms defined as equal by the equations.

This representation of an algebra was first introduced by Van Horebeek and Lewi [58].

The dashed lines indicate the presence of other carriers, e.g. N indicates the set of nat-

ural numbers and R indicates the set of real numbers. The arrows between the different

carrier sets represent the presence of operators having arguments from some carrier sets

and result in some other set. The carrier set that Boolean is mapped to is Boolean.

There are two congruent classes for Boolean: one corresponding to true and the other

to false.

4.2.4 Specification of a Stack Datatype

Once again we choose the stack as an example. We write a static specification that

defines a stack datatype (Specification 4). A new sort Stack is defined. There are four

operators, emptyStack, push, pop and top. val and stcVar are variables. Since each

equation constrains different properties of the operators, the stackDT specification is

consistent by definition.

The signature of stackDT is given as (SstackDT,ΣstackDT) with:

SstackDT = Sstatic ∪ {Stack}

ΣstackDT = Σstatic ∪ {emptyStack, push, pop, top}

The set of equations of stackDT is:

EstackDT = Estatic ∪ {pop empty, top empty, pop push, top push}

The initial algebra of the category of algebras satisfying stackDT, AstackDT, is shown in

Figure 4.3. This initial algebra is given by the quotient of the variable-free term algebra

72

Static Stack Datatype Specification 4

facet stackDT::static is
Stack::type;
emptyStack::Stack is constant;
push(stcParam::Stack; n::Natural)::Stack;
pop(stcParam::Stack)::Stack;
top(stcParam::Stack)::Natural;
val::Natural;
stcVar::Stack;

begin
pop_empty: pop(emptyStack) = emptyStack;
top_empty: top(emptyStack) = 0;
pop_push: pop(push(val,stcVar))=stcVar;
top_push: top(push(val,stcVar))=val;

end facet stackDT;

of the specification, with the following assignment of variables:

θNatural(val) = 0

θStack(stcVar) = emptyStack

pop

top

push

succ

’push(succ(succ(0)),emptyStack)’

. . .

’top(push(0,emptyStack))’

Congruent class object

Function in abstract world

. . .

N

Stack

’pop(emptyStack)’

. . .

’pop(push(0,emptyStack))’

’emptyStack’

. . .

’pop(push(succ(0),push(succ(succ(0)),emptyStack)))’

’0’ . . .

’succ(0)’

’1’
. . .

Figure 4.3: Initial Algebra for stackDT

Since the extension of static by stackDT is defined by a conservative inclusion mor-

phism ϕ, with Sstatic ↪→ SstackDT, and Σstatic ↪→ ΣstackDT, there exists a reduct functor4

�ϕ that maps an algebra for stackDT to an algebra for static. This implies that the al-

gebra for stackDT reduced to only consisting of carrier sets for sorts from static needs

4A reduct functor maps the category of algebras of one signature Sig2 to the category of algebras of
another signature Sig1 given there exists a signature morphism from Sig1 to Sig2.

73

to also satisfy the static specification.

|AstackDT�ϕ |Natural = |AstackDT|ϕ(Natural) = |AstackDT|Natural

|AstackDT�ϕ |Boolean = |AstackDT|ϕ(Boolean) = |AstackDT|Boolean
...

|AstackDT�ϕ |s = |AstackDT|s for all s ∈ Sstatic

Function in abstract world

Congruent class object

succsucc

. . .

. . .

’succ(0)’

’0’

’1’

. . .

’top(push(0,emptyStack))’

. . .

’0’ . . .

’succ(0)’

’1’
. . .

N

N

static

stackDT

f

f

Figure 4.4: Isomorphism between AstackDT and Astatic over the natural numbers N

In the described initial algebra of stackDT, the set of values corresponding to the

Natural sort is different, but isomorphic to the set of values in the initial algebra

Astatic shown in Figure 4.2. Consider the carrier sets for natural numbers in Fig-

ures 4.2 and 4.3. Although, there are some additional terms of sort Natural in NstackDT,

for example, ’top(push(0, emptyStack))’, the congruent classes are similar since

’top(push(0,emptyStack))’ = ’0’. Figure 4.4 shows the isomorphism f between

AstackDT and Astatic over the natural numbers. Applying ϕ-reduction to AstackDT re-

sults in an isomorphic algebra to Astatic and therefore satisfies static.

4.2.5 Static Specification Parameterization

Specifications can be parameterized, with variables, types and functions as parameters.

A specification that is parameterized represents a class of specifications. At instanti-

ation, a binding signature morphism is used to bind the formal parameters to actual

ones. Some additional semantics are provided with the notion of parameter modes. A

parameter can have the following modes: input, output, and design. A design pa-

rameter is used for parameters that have static values, i.e. parameters whose values

74

are independent of states. An input parameter is one for which values are provided at

instantiation. An output parameter is one whose values are generated by the specifica-

tion. To understand the difference between input and output, we need to analyze the

context where each affects consistency of a specification. An input parameter assumes

the existence of an actual parameter whose actual constraints hold in the current spec-

ification. If the constraints in the specification do not hold for the actual parameter,

then the specification is inconsistent. However, the value of the actual parameter itself

is not affected by the constraints in the specification. Note that the actual parameter

need not have a specific value, it can be defined by properties or constraints also. An

instantiated specification where a formal input parameter formali is given an actual

parameter actuali is consistent (assuming it is consistent without the terms involving

formali) if the terms involving formali hold for the value(s) of actuali. Thus, an in-

stantiated specification is aware of the constraints on an actual input parameter. An

output parameter is opposite to an input parameter in the sense that the specifica-

tion is only aware of its own constraints over that parameter. Constraints given to an

output parameter outside of the parameterized specification does not affect its consis-

tency. However, the constraints over the output parameters from this specification need

to hold wherever the output parameter is being used. Informally, an output parameter

can be considered to be an actual parameter with the formal parameter the one given

at instantiation.

4.3 State-based Domain Specifications and Semantics

State-based specifications involve defining systems with the notion of observing states

and state transformations. More specifically, each state-based specification describes

the view of a system according to some observations. Thus, a system can be defined

with the use of several state-based specifications, with each specification describing a

subset of the observations over the same system state. The specification of the whole

system is then obtained by composing the subsystem specifications.

The state based domain extends static by adding a State sort and a state trans-

75

formation relation called next. This has for effect a change in the semantics from the

institution of equational logic to that of hidden algebras. Furthermore, we can use the

coalgebraic models of consistent specifications to investigate existing relations between

them. Note that the extension from static to state based is not a simple inclusion

morphism, but rather an institution morphism.

4.3.1 The state based Domain Specification

The specification of state based is given below (Specification 5). It takes a type

State as parameter. The mode of this parameter is design,5 indicating that it is invari-

ant over state changes. State based conservatively imports the static specification

(::static). Thus all declarations from static are protectively used in state based.

The variable s provides the notion of a current state. The undefined function next rep-

resents the transition function. As the exact parameters to next are dependent on the

input parameters to facet specifications, next is simply declared of type Function. The

infix operator @ takes in a function of state lhs and a state parameter rhs, and returns

the application of lhs to rhs. [T::Type] indicates that @ is declared over a universally

quantified type T. T is used to ensure that the return type is the same for both lhs and

@. The isInit predicate returns true only if the state passed as parameter to it is an

initial state. We do not consider it to be an attribute because it is true only for a specific

case. The equations return type next and domain next constrain the next function

to have State as return type and as the type of its first parameter. The function ret

provides the return type of a function, while dom returns the type of the first parameter

of a function.

4.3.2 The state based Domain Semantics

Given the state based definition in Specification 5, its signature is given as (SSBD,ΣSBD)

with:

5Parameters to domains are always design parameters.

76

The state based Domain Specification 5

domain state_based(State::design Type) :: static is

s :: State;
next:: Function;
__@__[T::Type](lhs::<*(st::State) -> T *>; rhs::State)::T is lhs(rhs);
isInit(s::State)::Boolean;

begin
// next: State x Si ... x Sn -> State with Si,...,Sn: one or more types
return_type_next: ret(next) = State;
domain_next: dom(next) = State;

end domain state_based;

SSBD = (State, Sstatic)

ΣSBD = (isInit,ΥSBD, next, ∅, ∅, { @ } ∪ Σstatic)

with State a hidden sort, next a method, SV = Sstatic the set of visible sorts, and ∆ =

Σstatic∪{ @ } the set of visible operations. Although, State appears as an argument

to the operation @, the latter is not considered a hidden operation. @ is called the

apply function as it applies its function argument to its second argument.6 The absence

of attributes defined over the states only indicates that there are no constraints over

what can be observed of states. Furthermore, a domain describes the proof obligations

that a particular specification extending that domain needs to satisfy. The absence of

observations indicates that there are no proof obligations enforced by state based in

that regard.

The equations of state based are used to ensure that the next function is indeed a

method, having a State parameter and returning a State. Since only these equations

are defined for state based, all hidden algebras that minimally provide a set of values

for a hidden sort, and a function for a method satisfy this specification. Furthermore,

since State is a parameter, state based represents a class of specifications. Thus a

class of categories of hidden algebras satisfies state based. More specifically, each

instantiation of state based is a hidden specification with the bound State a hidden

sort. Thus each instantiated state based is satisfied by a category of hidden algebras.

6@ need not be restricted to State functions only. We do so to ensure correct typing.

77

Specifications that extend state based will make the states more concrete by defining

observers over the states. Therefore, informally, state based can be considered to

represent the specification of subsystems (with a focus on the state transitions only) for

all systems that can be specified as state-based.

Consequently, there is also a class of categories of coalgebras for the state based do-

main. However, since there are no constraints over observers of states, the coalgebras are

all of the form |A|State
γnext→ {∗}∪|A|State, with A, a hidden algebra satisfying state ba-

sed, and {∗} indicating that the system stops (no next state). Due to the absence of

observers, the final coalgebras cannot be given as the behaviors of systems specified, as

described in Section 2.4.1. However, we consider the sequence of states to represent the

final coalgebras themselves, e.g. |A|RState
ζ→ |A|RState, with |A|RState indicating the set of

finite or infinite lists of countable or uncountable values from |A|State.

4.3.3 The discrete Domain: An Extension of state based

Specification 6 describes the Rosetta domain for a discrete model of computation. Such

a model of computation is one where the observations of a state are discrete. Since

two states that have the same observations are equivalent, whenever the observations

are discrete, the states can be grouped according to discrete equivalence classes, even if

the states are not themselves intrinsically discrete.7 discrete therefore specifies that

any attribute over the states defined by a discrete specification needs to be discrete. In

other words, all attributes specified in a discrete specification have to return discrete

values.

The notion of discreteness is given by the function isDiscrete that defines a set,

DiscreteSet, to be discrete iff there exists an injection function from DiscreteSet

to the set of integers. An injection function is a one-to-one function fnc that maps

an element of DiscreteSet to an integer with the condition that if two DiscreteSet

elements are different, then they map to two different numbers.

7The intrinsic nature of a state does not need to be specified or even known. Only the observations
are of interest.

78

Equation discrete attributes describes the constraint that all attributes of a dis-

crete specification have to be discrete, i.e. the set of values of observing states (the

range, ran, of an attribute operation) in a discrete specification have to satisfy the

isDiscrete predicate. We assume the existence of the function getAttributes that

would be a Rosetta function (i.e. defined in the kernel of the language) that provides all

the declared attributes of the current specification. Remember that when a domain is

extended by a facet specification, its equations become proof obligations to be satisfied

by the facet specification. As a result, getAttributes would return all the attribute

operations introduced in that facet specification. In other words, this function provides

the Ω set of operators of a state-based signature.

discrete, like state based, is parameterized over a type. This parameter is passed to

state based so that DiscState is renamed to State. Thus, an actual parameter for

DiscState is considered to be the type corresponding to the hidden sort.

The discrete Domain Specification 6

domain discrete(DiscState::design Type) :: state_based(DiscState) is

isDiscrete(DiscreteSet::Type)::Boolean =
exists (fnc::<*(st::DiscreteSet)::Integer*> |
forall(s1,s2::DiscreteSet|
(s1 /= s2) => (fnc(s1) /= fnc(s2))));

begin

discrete_attributes: forall (fnc::getAttributes() | isDiscrete(ran(fnc)));

end domain discrete;

Like state based, discrete does not define any observers, although it does assume

their existence. Similarly, the parameterized discrete domain satisfies a class of cate-

gories of hidden algebras. Due to the presence of the equation labeled discrete attri-

butes, the hidden algebras that satisfy discrete are those for which observations of

|A|State are countable sets. Assuming the presence of attributes (|A|T1 : set of values

given by some attribute) , the coalgebras look like |A|State
γnextdiscrete−→ {∗}∪ (|A|T1× . . .×

|A|TN × |A|State). The final coalgebras are then given as (|A|T1 × . . . × |A|TN)N ζdiscrete−→

(|A|T1 × . . .× |A|TN)× (|A|T1 × . . .× |A|TN)N, with (|A|T1 × . . .× |A|TN)N indicating the set

79

of finite or infinite lists of countable values of the crossproduct of the values returned by

the attributes of the discrete specification. However, since no attributes are specified in

discrete, we can also represent a coalgebra simply as |A|State
γnextdiscrete−→ {∗}∪ |A|State.

4.3.4 The continuous Domain: An Extension of state based

Specification 7 shows a representation of the continuous domain. The function varia-

tion describes the variation of the value of a function f from state s to state next s.

It is an approximation of first derivatives during continuous change. In continuous,

State has at least one attribute (contAttr) that has the same properties as a set of

real numbers. Note that the study of continuous mathematics and analog specification

can be very complex. In this work, the restriction of observing State to minimally be

a set of real numbers is sufficient for our purposes. We do not intend this to be the

case for all continuous specifications. Variation(x) is used to represent the derivative

x′ = dx/dt in a system of differential-algebraic equations F (x, x′, t) = 0 [59]. Analog and

continuous properties are often expressed with differential-algebraic equations [6, 33].

The variable t in a differential-algebraic equation represents time. Here, in continuous,

t is given by the attribute contAttr. Note that in the strictest sense, the parameter fnc

is a function of State, while the differential function is given over the difference in a

specific component of State (contAttr). The observer contAttr being always present

in a continuous specification, a state is often abstracted to it. We can thus talk about

observations of the continuous states when it is contAttr that is continuous as it is a

direct observation.

A first derivative expresses the variation of any observation with respect to the contin-

uous contAttr observation of state. The derivative of a function f with respect to a

variable s :: State and the continuous modulation of s, contAttr(s), is given by [59] (

h = contAttr(next(s))− contAttr(s)):

f ′(s) =
df

ds
= lim

h→0

f(next(s))− f(s)
h

80

The continuous Domain Specification 7

domain continuous(ContState::Type):: state_based(ContState) is

contAttr(st::State)::Real;

variation[T::Type](fnc::<*(stt::State)::T*>;
st::State;next_st::State)::T is

(f(next_st) - f(st)) / (contAttr(next_st)-contAttr(st));

begin

end domain continuous;

For our purposes, we use an approximation of the rate of change of f .

∆f
∆s

=
f(s + ∆s)− f(s)

∆contAttrs

Hence, given a point (s, f(s)) and a variation of the state as ∆s = next(s)−s, (note that

in the definition of variation, h is thus ∆contAttrs,) we can approximate the variation

of the value of f from s to next(s). For example, assume the derivative of f is given

by −0.1 ∗ f(s) (note that f(s) is not a function, but a value and can be replaced by a

variable of type ret(f)). Thus,

∆f
∆s

=
f(next(s))− f(s)

contAttr(next(s))− contAttr(s)
= −0.1 ∗ f(s)

The approximate variation in the value of f is given by:

∆f = f(next(s))− f(s) = (−0.1 ∗ f(s)) ∗ (contAttr(next(s))− contAttr(s)),

and the value of f for the next state is:

f(next(s)) = f(s) + (−0.1 ∗ f(s)) ∗ (contAttr(next(s))− contAttr(s)).

Since continuous is parameterized, similar to state based, it represents a class of

specifications and is therefore satisfied by a class of hidden algebras. A particular

instantiation of continuous is satisfied by hidden algebras that has at least a func-

tion defined for contAttr. Corresponding coalgebras satisfying continuous are thus

|A|State
γnextcontinuous−→ {∗} ∪ (R × |A|State), and final coalgebras are minimally given by

|A|RR
ζcontinuous−→ |A|RR.

81

In extensions of continuous, contAttr is given special meaning. For example in

continuous time, contAttr corresponds to the time. In frequency, contAttr cor-

responds to the observation of the frequency associated with a state. Equations used

to constrain the range of contAttr also constrain State as contAttr(s) is a direct

observation of state s.

4.3.5 The finite state Domain: An Extension of discrete

An example of a specification that extends discrete is the finite state domain.

Finite state simulates the notion of observing behaviors similar to those of finite state

machines and therefore, attributes of State are defined as finite sets. This finiteness

is shown in term fs1 of Specification 8. By saying that the size of the range of any

attribute is a natural, it is understood that the set of observed values is finite. Function

isFinite is a predicate that is true if its parameter is a finite set, i.e. if the size of

that set is a natural number.

Since finite state extends discrete, the equations of discrete become proof obliga-

tions of finite state as well. Thus, the equation

forall (fnc::getAttributes() | isDiscrete(ran(fnc)))

has to also hold in any specification that extends finite state.

The finite state Domain Specification 8

domain finite_state(FiniteState::Type):: discrete(FiniteState) is

isFinite(FiniteSet::Type)::Boolean is
#FiniteSet in Natural;

begin

fs1: forall (fnc::getAttributes() | isFinite(ran(fnc)));

end domain finite_state;

The coalgebras satisfying finite state are similar to those satisfying discrete. They

are given by |A|State
γnextfinite state−→ {∗} ∪ (|A|T1 × . . . × |A|TN × |A|State), with the final

coalgebras being (|A|T1× . . .×|A|TN)N ζdiscrete−→ (|A|T1 × . . .×|A|TN)× (|A|T1 × . . .×|A|TN)N,

82

with (|A|T1×. . .×|A|TN)N indicating the set of finite or infinite lists of countable values of

the crossproduct of the values returned by the attributes of the finite-state specification.

Note that even though the observations of states indicate a finite number of equivalence

classes of state, this does not necessarily mean the systems always stop.

4.3.6 Parameterization of State-based Specifications

Since the semantics of state-based specifications differs from that of static, we revisit

the semantics of parameterization. A parameterized specification still represents a class

of specifications, with instantiation being a binding signature morphism. Among the

three modes, design remains unchanged. A design parameter corresponds to one

that is constant across state changes (state independent). Once it is defined, its value

cannot be changed. Inputs are provided to a specification and their definitions cannot

be changed by that specification. Outputs and their definitions are provided by the

specification. By parameter definitions, we also intend the definition of constraints over

parameters (not necessarily the definition of a specific value). The interesting change in

semantics for state-based input parameters is that these parameters become arguments

to the next operation as well. Thus, special care needs to be given to extension of

parameterized specifications.

4.3.7 Extension and Composition of Parameterized State-based Spec-

ifications

We identify two different ways for achieving specification extension. The only direct ex-

tension supported by the language is the extension of domain specifications. Since the

parameters of domains are restricted to being of mode design, other than the State ar-

gument, the arguments of next for a specification Spec are Spec’s input parameters.

The other type of extension that the language supports involves the composition of spec-

ifications with a colimit (Section 3.4.9). A special colimit operation is a pushout that

consists of composing two specifications, memoryA and memoryB, that extend the same

instantiated domain specification discrete(StateSet). Since the actual parameter of

83

discrete is passed to state based, StateSet becomes the actual parameter that is

renamed to State. The next operation is declared in state based as well. As a result,

it has to be the same for both memoryA and memoryB. In each of these specifications,

equation next def constrains next to be an unnamed function that maps a State and

a Natural to a State. As the input parameters of a specification are also arguments to

next, both memoryA and memoryB have the same inputs. Specification 9 describes the

CompositionParameterized package that contains the declaration of a type StateSet,

the specifications of memoryA, memoryB, and twoMemory, i.e. the result of the pushout,

as well as the elaboration of twoMemory represented as twoMemoryElaborated. In the

twoMemory specification, the parameter val is passed as actuals when instantiating

memoryA and memoryB. Since val is itself a parameter of twoMemory it still works as

a variable and can take on different values. Figure 4.5 presents the diagram of the

composition of the specifications with respect to signature morphisms. The signature

morphism is reverse to extension as signature morphism goes from a system signature

to that of a subsystem signature. The diagram for signature composition is a pullback

instead of a pushout. Note that although in memoryA and memoryB, next is equated to

some unnamed function, that function is undefined. As a result, it can be assumed that

next is the same for both memoryA and memoryB. If this assumption were to fail, then

the composition would not exist.

A diagram of the pushout of the coalgebras involved in the composition of memoryA and

memoryB is given in Figure 4.6. Although we order the attributes in the order they

are defined in each specification and starting with memoryA, it is not intended to be

restrictive.

Definition 4.3.7.1 Two state-based specifications can be composed with a pushout only

if they both extend the same instantiated domain.

The specification of the pushout needs to be consistent if the pushout is to exist. Al-

though it is impossible to ensure consistency of any composed specification, the following

proposition always results in a consistent specification.

84

Composition of Parameterized Specifications 9

package CompositionParameterized::static is

StateSet::Type;

facet memoryA(val::input Natural)::discrete(StateSet) is
memA(st::State)::Natural;

begin
initA: isInit(s) => memA@s = 0;
next_def: next = <*((stt::State;val::Natural)::State*>;
lA: memA@next(s,val) = val;

end facet memoryA;

facet memoryB(val::input Natural)::discrete(StateSet) is
memB(st::State)::Natural

begin
initB: isInit(s) => memB@s = 0;
next_def: next = <*((stt::State;val::Natural)::State*>;
lB: memB@next(s,val) = val+memB;

end facet memoryB;

facet twoMemory(val::input Natural)::discrete(StateSet) is
memoryA(val) + memoryB(val);

// The result of elaborating facet 2Memory

facet twoMemoryElaborated(val::input Natural)::discrete(StateSet) is
memA(st::State)::Natural;
memB(st::State)::Natural;

begin
initA: isInit(s) => memA@s = 0;
initB: isInit(s) => memB@s = 0;
next_def: next = <*((stt::State;val::Natural)::State*>;
lA: memA@next(s,val) = val;
lB: memB@next(s,val) = val+memB;

end facet twoMemoryElaborated;

end package CompositionParameterized;

85

Signature Morphism

memA::State −> Natural memB::State −> Natural

memB::State −> Natural

memoryA(val) memoryB(val)

twoMemory(val)

discrete(StateSet)
next::Function

next::State x Natural −> State next::State x Natural −> State

next::State x Natural −> State

memA:State −> Natural

Figure 4.5: Pullback of The Signatures of Two Parameterized Specifications Extending
a Common Instantiated Domain

Proposition 4.3.7.2 A pushout of two consistent specifications, Spec1 and Spec2, that

extend the same instantiated domain exists, i.e. the resulting specification Specr is

consistent, if:

• (E∆Spec1
∪ E∆Spec2

) 0 false, i.e. the union of the equations over data of each

specification does not cause an inconsistency, with E 0 false indicating that false

cannot be derived from the set of equations E,

• the attributes of one specification are independent of those of the other.

Proof. Spec1 and Spec2 extending the same instantiated domain implies that they both

have the same State, next and s. With s being the same, we also assume that the initial

state (if present) is the same. Spec1 and Spec2 being consistent implies ESpec1
0 false

and ESpec2
0 false. By the pushout, Specr is the specification (SSpec1

∪SSpec2
,ΣSpec1

∪

ΣSpec2
, ESpec1

∪ ESpec2
). The set of equations of Specr is given by ESpecr

= ESpec1
∪

ESpec2
= (E∆Spec1

∪ E∆Spec2
) ∪ (EΩSpec1

∪ EΩSpec2
). Assuming (E∆Spec1

∪ E∆Spec2
) 0 false,

Specr is consistent if (EΩSpec1
∪EΩSpec2

) 0 false. Assuming any operator in ΦSpec1
∪ΦSpec2

to be non-behavioral, the only method in Specr is next. The attributes of Spec1 and

Spec2 are independent means ΩSpec1
∩ ΩSpec2

= ∅. Thus, ∀ eSpec1
∈ EΩSpec1

, eSpec2
∈

86

|A| State

|A| State

γdiscrete

|A| State

γmemoryA

x |A| State

|A| State

γmemoryB

x |A| StateN

= (memB, next)

x |A| State

|A| State

γtwoMemory = (memA, memB, next)

= next

N

= (memA, next)

NNx

Coalgebraic structure

Functor

discrete(StateSet)

N

N

N

N

Figure 4.6: Coalgebras of the Composition

EΩSpec2
.eSpec1

∧ eSpec2
0 false since the operators involved in eSpec1

are different from

those involved in eSpec2
, except for next which is the same in both equations. Thus,

(EΩSpec1
∪ EΩSpec2

) 0 false, and ESpec1
∪ ESpec2

0 false. Since false cannot be derived

from the equations of Specr, the latter is consistent. �

Unless, an attribute is defined in the domain shared by both Spec1 and Spec2, ΩSpec1
∩

ΩSpec2
= ∅ is always true. If an attribute ω does appear in both Spec1 and Spec2, it

is relabeled as Spec1.ω when it comes from Spec1, and as Spec2.ω when it comes from

Spec2.

In order to consider any operator in ΦSpec1
∪ ΦSpec2

to be non-behavioral in Specr,

we need to prove congruency of these operators with respect to all the attributes in

Specr, i.e. all attributes in ΩSpec1
∪ΩSpec2

. However, since we are only interested in the

reachable states through the application of next, we assume they are congruent.

87

4.4 Trace-based Domain Specifications and Semantics

Trace-based specifications provide the capability of concurrency modeling that is weak

in state-based representations. Traces are thus particularly suited for representing

concurrent processes. In general, traces represent computation runs of systems. The

trace based unit of semantics defines the domain of discourse for trace-based seman-

tics. It extends static and is defined with the same equational semantics. However,

since traces represent computation runs, in several cases, coalgebras can also be used

to model trace-based specifications.

4.4.1 The trace based Domain Specification

Specifications 10, 11 and 12 describe the Rosetta representation of trace based. Trace

is defined as a type formation function. It takes a type as parameter and returns

the set of traces of that type. A special trace is the emptyTrace. The type of this

trace is Universal, making it a representation of the unique empty trace. Comparison

between traces of a specific type and emptyTrace is type safe. A trace is a first in first

out (FIFO) container and has the properties of a list. Therefore, operations like add,

head, tail, append are defined over traces. Their definitions are given constructively

in the terms: head add, tail add, and tail empty. In these equations, elements of a

trace are given the sort Universal, indicating that these equations apply for elements

of any sort. The special syntax [Event::type], used in declarations of functions,

indicates the declaration of these operations over a universally quantified type Event.

For example, add[Event::type](tr::Trace(Event);ev::Event)::Trace(Event) is

read as: for any type Event, add is an operation that takes an argument ev of type

Event, and a trace tr of type Trace(Event) and returns a trace of type Trace(Event).

Note that the type Event is never directly enforced, but is derived from the usage of

the operations. The trace based domain also defines some basic operations of trace

theory [45].

occurs : (ev : Event) × (tr : Trace) → Boolean Returns true if the Event argument

ev appears in the Trace argument tr, i.e. if there exist two traces t1 and t2 such

88

that tr is equal to the concatenation of the trace obtained from adding ev to t1

with t2.

prefix : (pre : Trace(Event))× (tr : Trace(Event))→ Boolean Returns true if trace

pre is a prefix of trace tr, i.e. if there exists some trace suf such that appending

suf to pre results in tr.

count : (tr : Trace(Event)) × (ev : Event) → Natural Returns the number of occur-

rences of event ev in trace tr.

project : (tr : Trace(Event)) × (alphabet : set(Event)) → (Trace(Event)) Creates

a new trace by removing any event not member of alphabet from the provided

trace tr.

getTraceAlpha : (tr : Trace(Event)) → set(Event) Returns the alphabet of tr, i.e.

the set of events present in the trace.

interleaveTrace : (t1 : Trace(Event)) × (t2 : Trace(Event)) → set(Trace(Event))

Gives the set of traces obtained from interleaving its arguments, t1 and t2. The

notion of interleaving is such that the resulting trace when projected into the

alphabet of t1 exactly gives t1, similarly for t2.

4.4.2 The trace based Domain Semantics

The trace based domain extends static and only defines new types and new func-

tions that are to be used in trace-based specifications, i.e. trace based simply extends

static by adding a trace-based vocabulary. Thus, the same institution of equational

logic as defined for static specifications apply for trace-based specifications. However,

in cases where trace-based specifications are used to describe the computation runs of a

state-based systems, coalgebras can be used as models as well. Indeed, since a trace de-

scribe a computation run that represents a behavior, coalgebras satisfying a trace-based

specification are terminal.

Specification 13 shows the trace-based equivalence of specification memoryA (Specifica-

tion 9). The differences between traceMemA and memoryA are:

89

The trace based Domain Specification 10

domain trace_based()::static is

Trace(T::Type)::Type;

emptyTrace::Trace(Universal) is constant;

add[Event::Type](tr::Trace(Event);ev::Event)::Trace(Event);

head[Event::Type](tr::Trace(Event))::Event;

tail[Event::Type](tr::Trace(Event))::Trace(Event);

isEmpty[Event::Type](tr::Trace(Event))::Boolean is
tr = emptyTrace;

length[Event::Type](tr::Trace(Event))::Natural is
if isEmpty(tr) then 0
else 1 + length(tail(tr))
end if;

getEventAt[Event::Type](tr::Trace(Event);pos::Natural)::Event is
if (not isEmpty(tr))
else if (pos = 0) then head(tr)

else getEventAt(tail(tr),pos-1)
end if;

end if;

append[Event::Type](tr1,tr2::Trace(Event))::Trace(Event) is
if isEmpty(tr1) then tr2

elsif isEmpty(tr2) then tr1
else append(add(tr1, head(tr2)), tail(tr2))

end if;

90

The trace based Domain Specification (continued) 11

subTrace[Event::Type](tr::Trace(Event);start,end::Natural)::Trace(Event) is
if isEmpty(tr)

then emptyTrace
elsif start > end

then emptyTrace
elsif start > length(tr)

then emptyTrace
elsif ((start = 0) and (end = 0))

then add(emptyTrace,head(tr))
elsif (start = 0)

then append(add(emptyTrace,head(tr)),subTrace(tail(tr),start,end-1))
else (start > 0)

then subTrace(tail(tr),start-1, end-1)
end if;

occurs[Event::Type](ev::Event; tr::Trace(Event))::Boolean is
exists(t1,t2::Trace| tr = (append(add(t1,ev), t2)));

prefix[Event::Type](pre,tr::Trace(Event))::Boolean is
exists(suf::Trace| append(pre,suf) = tr);

substitute[Event::Type](tr::Trace(Event);ev,x::Event)::Trace(Event) is
if isEmpty(tr) then emptyTrace
elsif (head(tr)=x)

then append(add(emptyTrace,ev),substitute(tail(tr),ev,x))
else append(add(emptyTrace,head(tr)),substitute(tail(tr),ev,x))
end if;

count[Event::Type](tr::Trace(Event);ev::Event)::Natural is
if (isEmpty(tr))
then 0
elsif (head(t)=ev)
then 1 + count(tail(t),ev)
else count(tail(t),ev)

end if;

project[Event::Type](tr::Trace(Event);alphabet::set(Event))
::Trace(Event) is

if (isEmpty(tr)) then emptyTrace
elsif (head(tr) in alphabet)
then append(head(tr),project(tail(tr),alphabet))

else project(tail(tr),alphabet)
end if;

91

The trace based Domain Specification (continued) 12

getTraceAlpha[Event::Type](tr::Trace(Event))::set(Event) is
if isEmpty(tr)
then
else head(tr) + getTraceAlpha(tail(t))
end if;

interleaveTrace[Event::Type](t1,t2::Trace(Event))::set(Trace(Event)) is
let t1_alpha::set(Event) be getTraceAlpha(t1);

t2_alpha::set(Event) be getTraceAlpha(t2);
in
sel(tr::trace(Event)| (getTraceAlpha(tr) =< (t1_alpha + t2_alpha))

and (project(tr,t1_alpha) = t1)
and (project(tr,t2_alpha) = t2));

begin

head_add: forall(ev::Universal; tr::Trace(Universal)|
head(add(tr,ev)) = head(tr));

tail_add: forall(ev::Universal; tr::Trace(Universal)|
tail(add(tr,ev)) = add(tail(tr),ev));

tail_empty: forall(ev::Universal; tr::Trace(Universal)|
isEmpty(tr) => (tail(tr) = tr));

end domain trace_based;

A Trace-based Specification with Coalgebras as Models 13

StateSet::Type;

facet traceMemA(val::input Trace(Natural))::trace_based() is
State::Type;
next::Function;
... // All declarations from domains extended by memoryA
memA(st::State)::Natural;
StateTrace::Trace(State);
someTrace::StateTrace;
s::State;
pos::Natural;

begin
initA: isInit(s) => ((memA(s) = 0) and (pos = 0));
next_def: next = <*((stt::State;val::Natural)::State*>;
state_def: State = StateSet;
lA: memA(next(s,getEventAt(val,pos))) = getEventAt(val, pos);
newT1: getEventAt(someTrace,pos) = s;
newT2: next(s,getEventAt(val,pos)) = getEventAt(someTrace, pos+1);

end facet traceMemA;

92

• the input is a trace of natural numbers

• instead of a set of states (State), there is a set of traces of states (StateTrace)

• the state s is a state found at position pos in a specific trace someTrace such that

the value of the state in the next position pos + 1 is the next state

In addition to containing a set of values for State, |A|State, an algebra A that satisfies

traceMemA also contains sets that have traces as values, for example |A|Trace(State)
and |A|Trace(Natural). For each of these sets of traces there are corresponding functions

for add, head, tail, getEventAt, Note that these functions are not necessarily

the same for the carrier sets of traces |A|Trace(State) and |A|Trace(Natural), for example

head applied to an element of |A|Trace(State) returns something from |A|State, whereas

head applied to an element of |A|Trace(Natural) returns something from |A|Natural = N.

|A|Trace(State) can only contain those traces that satisfy the equations newT1 and newT2

of traceMemA, while the contents of set |A|State are restricted by equation initA and

lA.

Assuming, there is some algebra A that does satisfy traceMemA, a corresponding coal-

gebra can be defined as:

(|A|Trace(State))
γtraceMemA−→ N× (|A|Trace(State))

with γtraceMemA being the pair (memA(head), tail).

4.4.3 The trace csp Domain: An Extension of trace based

An extension of trace based is trace csp as shown in Specifications 14, 15 and 16.

Trace csp defines the operators used in CSP [34] in terms of traces. Process creates a

type (all sets can be used as types) such that an item of type Process is a set of traces. OK

is a special event indicating termination. Stop is a process that represents unconditional

deadlock and contains the empty trace (emptyTrace). Skip is a process that represents

successful termination, and contains emptyTrace and the trace add(emptyTrace, OK),

indicating proper termination. The rest of the operations defined are:

93

sync on x: Parallel composition of two traces while requiring synchronization on all

events in x

prefix op: Prefixing operator for sequencing events on traces of a process

select op: Selection operator between two behaviors of two processes

internal select op: Arbitrary internal selection operator on processes

wildcard seq op: Arbitrary choice of any event out of set A that is bound to the variable

x in all traces of a process

parallel sync op: Traces shared by two processes

getProcAlpha: The alphabet (set of events) of a process

interleave process: The set of traces obtained from interleaving the traces of two

processes

parallel sync diff alpha op: Similar to interleaving of processes

parallel sync on x op: Parallel composition of the traces of two processes while syn-

chronizing on events from set x

strict interleave op: Parallel composition while synchronizing on an empty set, i.e.

no events to be synchronized upon

hide op: Making events in process invisible to the external world

rename op: Renaming of events in all traces of a process

sequencing op: Either a trace of p, or a terminating trace of p followed by a trace of q

The actions of reading and writing into a channel are also considered as events, although

somewhat special ones.

The special event, OK, is an event that appears regardless of the event type. The

definition of OK as a constant of type Universal indicates that OK is a specific constant

operator of Universal. Since Universal includes all possible values, it also includes new

user defined types, with new constant operators, either defined directly as constant or

defined in an enumeration. The set of all possible values of Universal is not known. For

this reason defining a new constant operator for the sort does not create an inconsistency,

94

or a failure of D-safety. We define a function MakeEventType that given a type of events,

creates a new type that also includes OK. The use of MakeEventType allows OK to appear

as an event in all traces, whether it be a trace of natural numbers or a trace of characters.

The equation make event type cst then states that MakeEventType applied to the

same type always has the same result. Equation make event type univ indicates that

MakeEventType is a fixed point of Universal.

The change from the trace based specification to the trace csp one is the addition of

the Process sort, along with a number of operations defined over it. A process is a set

of traces. Thus, the set of values for process in an algebra A is given by the powerset

of |A|Trace(Event) (the set of trace values), i.e. P|A|Trace(Event). Since a process is a set

of traces and a trace is a behavior, coalgebras can be used to model specifications that

extend trace csp. Then, the ratiocination is that each process can be considered as

part of the carrier set for the coalgebra of the facet.

Johnstone et al. [37] define a coalgebra structure with endofunctor8 H = Pω(L × −)

where Pω gives the set of finite subsets of its parameter. The parallel operator of CSP

is then modeled by the symmetric monoidal structure on the category of H-coalgebras

(H-Coalg) that is preserved strictly by the forgetful functor U : H-Coalg → C.9 Our

approach differs in that we define CSP operators in terms of traces and then define

coalgebras for the systems of traces thus obtained.

4.4.4 A Trace-based CSP-like Example

An example of a csp-like specification is given in Specification 17. Facet csp vending

specifies the process of a vending machine. The CSP model of the vending machine,

VMS, is given as:

VMS = dollar → choc→ VMS [] quarter → cookie→ VMS

Note that VMS is defined recursively. As for all recursive definitions, a base case is

8An endofunctor is a functor that maps a category to the same category.
9H is a symmetric monoidal endofunctor on any symmetric monoidal category C. The powerset

functor P has two symmetric monoidal structures: the map P : PA×PB → P (A×B) sending (A′, B′)
to A′ ×B′ and the other sending (A′, B′) to {(x, y) : x ∈ A′ ∨ y ∈ B′}.

95

The trace csp Domain Specification 14

domain trace_csp()::trace_based() is

OK::Universal is constant;

MakeEventType(Event::Type)::Type is
Event + {OK};

Process(Event::Type)::set(Trace(Event));

Stop::Process(Universal) is {emptyTrace};

Skip::Process(Universal) is {emptyTrace, add(emptyTrace, OK)};

// Two traces are synchronized on a set (x) of events by
// identifying all events in s and t which belong
// to X + {OK} and interleaving all the rest
// s|_x_|t
sync_on_x[Event::MakeEventType(Type)](s,t::Trace(Event); x::set(Event))

::set(Trace(Event)) is
sel(o_t::Trace(Event)|
forall(ev::Event;n::natural|
((ev in (x + {OK}))
and (getEventAt(s,n)=ev)
and (getEventAt(t,n)=ev))
implies
((getEventAt(o_t,n)=ev)
and (project(o_t,getTraceAlpha(t))=t)
and (project(o_t,getTraceAlpha(s))=s))))

// ev -> p
prefix_op[Event::MakeEventType(Type)](ev::Event, p::Process(Event))

::Process(Event) is
{emptyTrace} +
sel(t1::Trace(Event)|

forall(t2::Trace(Event)| (t2 in p) and (t1 = [ev] & t2)));

// p[]q or p|q
select_op[Event::MakeEventType(Type)](p,q::Process(Event))::Process(Event)
is p + q;

// U+2293 (p lceil rceil q)
internal_select_op[Event::MakeEventType(Type)](p,q::Process(Event))
::Process(Event)
is p + q;

96

The trace csp Domain Specification (continued) 15

// ?x:A -> P
wildcard_seq_op[Event::MakeEventType(Type)](A::subtype(Event);

x::Event;p::Process(Event))::Process(Event) is
{empty_sequence} +
sel(t1::Trace(Event)|

forall (t2::Trace(Event); ev::A |
(t2 in p)
and (t1 = append(add(emptyTrace,ev), substitute(t2,ev,x)))));

// p||q
parallel_sync_op[Event::MakeEventType(Type)](p,q::Process(Event))
::Process(Event)
is p * q;

getProcAlpha[Event::MakeEventType(Type)](p::Process(Event))
::set(Event) is
if (p = empty_set)
then empty_set
else let t::Trace(Event) be choose(p) in
getTraceAlpha(t) + getProcAlpha(p - {t})

end if;

interleave_process[Event::MakeEventType(Type)](p1,p2::Process(Event))
::Process(Event) is
let p1_alpha::set(Event) be getProcAlpha(p1);

p2_alpha::set(Event) be getProcAlpha(p2);
in
sel(t::Trace(Event)|

(getTraceAlpha(t) =< (p1_alpha + p2_alpha))
and (project(t,p1_alpha) in p1)
and (project(t,p2_alpha) in p2));

// p||q different alphabet
parallel_sync_diff_alpha_op[Event::MakeEventType(Type)]

(p,q::Process(Event))::Process(Event) is
interleave_process(p,q);

// p|_x_|q (|| over x)
parallel_sync_on_x_op[Event::MakeEventType(Type)]

(p,q::Process(Event);x::set(Event))
::Process(Event) is
sel(t::Trace(Event)|
forall(p_t,q_t::Trace(Event)|

(p_t in p) and (q_t in q) and
(t in sync_on_x(p_t,q_t,x))))

97

The trace csp Domain Specification (continued) 16

// p|||q
strict_interleave_op[Event::MakeEventType(Type)](p,q::Process(Event))

::Process(Event) is
parallel_sync_on_x_op(p,q,empty_set);

// p hide x
hide_op[Event::MakeEventType(Type)](p::Process(Event); x::set(Event))

::Process(Event) is
sel(t1::Trace(Event)|
forall(t2::Trace(Event)| (t2 in p) and

(t1 = project(t2,getAlphabet(p) + {OK} - x)));

// p{R} -- renaming
rename_op[Event::MakeEventType(Type)](p::Process(Event);

f::<*(s,t::Trace(Event))::Boolean*>)
::Process(Event) is
sel(t1::Trace(Event)|

exists(t2::Trace(Event) | (t2 in p) and f(t2,t1)));

// p;q
sequencing_op[Event::MakeEventType(Type)](p,q::Process(Event))

::Process(Event) is
sel(t::Trace(Event)|(t in p) and not(occurs(OK, t))
+
sel(o_t::Trace(Event)|

forall(s,t::Trace(Event)|
(o_t = append(s,t))
and (append(s,add(emptyTrace,OK)) in p) and (t in q)));

begin

non_empty: forall(p::Process(Universal)|Stop =< p);

prefix_closed: forall(t1,t2::Trace(Universal);
p::Process(Universal)|

(t1 =< t2) and (t2 in p) implies (t1 in p));

make_event_type_cst: forall(tp1,tp2::Type |
(tp1 = tp2) iff (MakeEventType(tp1) = MakeEventType(tp2));

make_event_type_univ: MakeEventType(Universal) = Universal;

end domain trace_csp;

98

needed. The base case for a recursively defined process is the Stop process. Since all

processes have the same base case, this property is defined only once in the parent

domain of all csp-like specifications. In trace csp, the equation non empty states that

Stop is a subset of all processes. Any process can be the Stop process at some point

(usually at the initial point). The equation noloss in csp vending defines the no loss

property. For any trace of the process, there is always at least the same number of

dollar or quarter events as there are choc or cookie events. Informally, no loss is the

property that the machine does not give out more products than money received.

A CSP-like Specification of a Vending Machine 17

package csp_package::static is

VendingEvent::Type is
MakeEventType(enumeration(dollar,choc,quarter,cookie));

facet csp_vending::trace_csp() is
ven_machine::Process(VendingEvent) is
select_op(

prefix_op(dollar, prefix_op(choc, ven_machine)),
prefix_op(quarter, prefix_op(cookie, ven_machine))));

begin

noloss: forall (tr::Trace(VendingEvent) | (tr in ven_machine) and
((count(tr,choc) =< count(tr,dollar)) or
(count(tr,cookie) =< count(tr,quarter))));

end facet csp_vending;

There is only one process defined in csp vending. Thus the carrier of a coalgebra satis-

fying csp vending consists of the set of traces present in that process. The observations

of a trace consist of looking at the events in a trace. However, to allow for nondeter-

minism (interleaving), we consider the carrier set to be the powerset of the set of traces.

Thus the structure of the coalgebra provides the same first event observed from a set of

traces. It is given as:

P|A|Trace(Event) → Event×P|A|Trace(Event).

99

4.5 Conclusion

This section describes specifications of several models of computation written in the

Rosetta System Level Design Language. We demonstrate how only the vocabulary

changes from one model to the next for models within the same unifying semantic

domain. We define the semantics of the different computational paradigms with only

two institutions, the institution of equational reasoning and the institution of hidden

algebras. We also show that coalgebras can be models of state-based specifications, as

well as of trace-based ones. The domain specifications shown in this section define the

proof obligations that must be satisfied by specifications for the latter to adhere to the

desired design paradigm. These domains can be reused to write the requirements and

design of a number of heterogeneous systems.

100

Chapter 5

Application and Analysis

5.1 Specification of a Hybrid Automaton

5.1.1 An Introduction to Hybrid Automata

A hybrid automaton [33] is a special type of automata that is used to describe both

discrete and continuous behaviors of a system. It is a generalization of timed automa-

ton [5] that is a finite automaton augmented by a finite number of real-valued variables

that change continuously at a constant rate of 1 and that represent clocks. The hybrid

automaton is a generalization as its real-valued variable changes are expressed by differ-

ential equations in more general ways than clocks. The discrete states of a system are

modeled as vertices of a graph and discrete dynamics is modeled by jumps from a state

to another. Jumps are edges of the graph. The continuous states are modeled as points

in Rn and continuous dynamics is modeled as flow conditions in the form of differential

equations within a state.

A hybrid automation H [33] consists of:

Variables A finite set X = {x1, . . . , xn} of real numbered variables. The syntax used is

Ẋ for the set {ẋ1, . . . , ẋn} representing first derivatives during continuous change,

and X ′ for the set {x′1, . . . , x′2} representing values at the conclusion of a discrete

change.

101

Control graph A finite directed multigraph (V,E) whose vertices V are called control

modes and edges E are called control switches.

Initial, invariant, and flow conditions Three predicates for each control mode v ∈

V : init(v), initial condition with free variables from X, inv(v), invariant condition

with free variables from X, and flow(v), flow condition with free variables from

X ∪ Ẋ. (label over vertex)

Jump conditions Predicate jump(e) for each control switch e ∈ E with free variables

from X ∪X ′. (label over edge)

Events A finite set of events and and edge labeling function event : E → Σ that assigns

to each control switch an event.

5.1.2 Specification of a Hybrid Automaton for a Thermostat

A common example of a hybrid automaton is that of a thermostat [33]. A thermostat

keeps track of the temperature that varies continuously, and turns a heater on or off.

Figure 5.1 shows a hybrid automaton for such a thermostat. There are two control

modes, off for when the heater is off with the temperature x falling according to the

flow condition ẋ = −0.1x, and on for the heater being on with x increasing according

to ẋ = 5− 0.1x. The initial condition is such that the heater is off and the temperature

is 20 degrees. The jump condition x < 19 indicates the heater may go on as soon as the

temperature falls below 19 degrees. The “invariant” condition x ≥ 18 indicates that at

latest, the heater will go on when the temperature falls to 18 degrees.

.
x = −0.1 x
x ≥ 18

.
x = 5 − 0.1 x

≤ 22x

Off On
x = 20

x > 21

x < 19

Figure 5.1: A Hybrid Automaton of a Thermostat

Specifications 18, 19 and 20 show the package ThermostatPackage that contains the

specifications heater (18), temperatureVariation (19), and thermostat (20). A new

102

A Specification of a Thermostat Automaton: Heater Specification 18

package ThermostatPackage::static is

ControlMode::Type is Enumeration(on,off);
HeaterState::Type;
TemperatureVarState::Type;

facet heater(x::input Real; ctrl::output ControlMode)
::finite_state(HeaterState) is

mode(s::State)::ControlMode;

begin

initial: isInit(s) => (mode@s = off);

next_def: next = <*(st::State;x::Real)::State*>;

output: ctrl = mode@s;

off_to_on: ((mode@s = off) and (x =< 18)) => (mode@next(s,x) = on);

on_to_off: ((mode@s = on) and (x >= 22)) => (mode@next(s,x) = off);

off_to_off: ((mode@s = off) and (x >= 19)) => (mode@next(s,x) = off);

on_to_on: ((mode@s = on) and (x =< 21)) => (mode@next(s,x) = on);

grey_area_off: ((x < 19) and (x > 18) and (mode@s = off)) =>
((mode@next(s,x) = off) xor (mode@next(s,x) = on));

grey_area_on: ((x > 21) and (x < 22) and (mode@s = on)) =>
((mode@next(s,x) = off) xor (mode@next(s,x) = on));

end facet heater;

103

A Specification of a Thermostat Automaton: Temperature Variation and
Thermostat Specifications

19

facet temperatureVariation(ctrl::input ControlMode;x::output Real)
::continuous(TemperatureVarState) is

temp(s::State)::Real;

begin

initial: isInit(s) => ((temp@s = 20) and (contAttr@s = 0);

next_def: next = <*(st::State;ctrl::ControlMode)::State*>;

mono_increase: contAttr@next(s,ctrl) > contAttr@s;

output: x = temp@s;

off_cool: (ctrl = off) =>
(variation(temp,s,next(s,ctrl)) = -0.1 * temp@s);

on_heat: (ctrl = on) =>
(variation(temp,s,next(s,ctrl)) = 5 - 0.1 * temp@s);

next_heat: temp@next(s,ctrl) = temp@s +
variation(temp,s,next(s,ctrl)) *
(contAttr(next(s,ctrl)) - contAttr(s));

end facet temperatureVariation;

104

A Specification of a Thermostat Automaton: Thermostat Specifications 20

facet thermostat::state_based(ThermostatState) is

ctrl(st::State)::ControlMode;
x(st::State)::Real;

begin

next_def: next = <*(st::State)::State*>;

heater_comp: heater(x@s, ctrl@s);

temperature_comp: temperatureVariation(ctrl@s, x@s);

inv_off: (ctrl@s = off) => (x@s >= 18);

inv_on: (ctrl@s = on) => (x@s =< 22);

end facet thermostat;

end package ThermostatPackage;

type, ControlMode, is also defined. It is a sort that has two constant operations, on and

off. No other operations are originally defined over it.

5.1.3 Analysis of The heater Specification

Specification heater describes the discrete dynamic properties of the thermostat au-

tomaton. From the requirements, it is understood that the thermostat can only be

observed in one of two distinct states, on or off. Specification heater therefore extends

the finite state domain. The actual parameter for the State sort is an undefined type

HeaterState, whose properties are described through the equations of heater. There is

one input parameter, x, which represents the temperature, and one output parameter

ctrl. The one attribute defined is the operation mode that reflects the mode (on or

off) of a state.

Since heater extends finite state with the undefined type HeaterState as actual

parameter, we start by analyzing the result of this instantiation. Specification 8 shows

that finite state itself extends discrete, which in turn extends state based, with

105

the same parameter passed each time. As a result, proof obligations are generated from

the equations of each of these domains. In the instantiated version of state based:

State = HeaterState (5.1)

By the definition of extension, the equations of the instantiated state based need to

be satisfied by heater. There are two equations defined in state based (Specifica-

tion 5), return type next and domain next. However, since the instantiation does

not define next, we consider these equations to be proof obligations to be discharged

later in the analysis. Moving one step down in the extension hierarchy brings us to the

instantiated discrete domain (Specification 6). Only one equation is specified there:

discrete attributes, and it is added to the set of proof obligations to be proved later.

Finally, the domain that is directly extended by heater is finite state (Specifica-

tion 8). It also has only one equation (fs1) that is added to the proof obligations for

heater. All the proof obligations thus derived from the domains that heater hierar-

chically extends are shown in Table 5.1.

From state based:
return type next: ret(next) = State
domain next: dom(next) = State

From discrete:
discrete attributes: forall (fnc::getAttributes() |

isDiscrete(ran(fnc)))

From finite state:
fs1: forall (fnc::getAttributes() |

isFinite(ran(fnc)))

Table 5.1: Proof Obligations of heater

Proof obligations are equivalent to assumptions that need to be proved to ensure com-

pleteness of a specification. In our case, the proof obligations often need to be satisfied

for consistency itself. These proof obligations are given by the equations of the domains

being extended. By the definition of extension, the equations of a domain become equa-

tions of the extension specification, and must be satisfied for the latter’s consistency.

106

Before attempting to discharge the proof obligations in Table 5.1, we first describe the

heater specification in terms of state-based semantics. The state-based signature of

heater is (Sheater,Σheater). The set of sorts Sheater consists of a pair of a hidden sort

and a set of visible sorts (cf. Section 3.4). The set of operators Σheater is arranged as a

6-tuple, consisting of the isInit operator, the set of generalized hidden constants, Υ,

the next operator, the set of methods, Φ, the set of attributes, Ω, and the set of visible

operators, ∆.

Sheater = (State, {ControlMode} ∪ Sstatic)

with State the only hidden sort,

and {ControlMode} ∪ Sstatic the visible sorts,

(finite state, discrete and state based only have Sstatic as visible sorts)

Σheater = (isInit,Υ, next, ∅, {mode}, S∆), with S∆ = Σstatic

(Υ indicates that there may be some generalized hidden constants,

but none is explicitly defined)

Specification heater defines nine equations. Each equation is described as follows:

initial: If the predicate isInit over s is true, i.e. if s is an initial state, then the mode

of that state is off.

next def: The next function is equated to an unnamed function

<*(st::State; x::Real)::State*>,

ensuring that next is some function that takes in a state and a real number, and

returns a state. Additional properties of this function are specified in the rest of

the equations.

output: The ctrl output parameter is the value of the attribute mode for each state.

off to on: If the mode of the current state is off and temperature x is less than or

equal to 18, then the mode of the next state has to be on.

on to off: If the mode of s is currently on and temperature x is greater than or equal

to 22, then the next state must be in the off mode.

off to off: If state is currently in the off mode and temperature x is greater than or

107

equal to 19, then the next state has off as mode.

on to on: If mode of the current state is on and temperature x is less than or equal to

21, then the mode of the next state must remain on.

grey area off: This is the non-deterministic case for when the heater is off. If the

temperature is between 19 and 18 excluding each boundary, and state mode is off,

then the next state can be either the heater staying off, or the heater turning on.

This is to take into account the jump condition x < 19 of the hybrid automaton

that indicates the heater may go on as soon as the temperature falls below 19

degrees and the invariant x ≥ 18 that indicates that at latest the heater will go

on when the temperature falls to 18 degrees. Note the use of the operator xor to

indicate that the state can not be in both on and off modes at the same time.

grey area on: The counterpart for when the heater is on. If the temperature is be-

tween 21 and 22 excluding each boundary, and mode of state is on, then the next

state can be either the heater staying in the on mode, or the heater turning to the

off mode. This takes into account the jump condition x > 21 and the invariant

x ≤ 22.

All the equations, except for next def and output, are conditional equations. They

can be rewritten as shown in Table 5.2 (with s::State and x::Real as variables).

As mentioned in Section 3.4.4, a state-based specification is consistent iff it has an

algebra with non-empty carriers. If the equations are D-safe and local, then consistency

is guaranteed. Unfortunately as can be seen in Table 5.2, none of these conditional

equations is local since the conditions for each equation involve the hidden variable

s. Since D-safety is a necessary condition for a consistent specification, it must still

be shown that these equations are indeed D-safe. As the locality condition does not

apply, to prove consistency, a model that satisfies the specification needs to be found.

Finding such a model involves finding a solution to the equations and constraints of

the specification. As Goguen and Malcom [24] state, determining whether a set of

constraints has a solution can be arbitrarily difficult, even unsolvable. Thus, although

the analysis shown here does not always ensure success in finding a solution, the same

108

initial: mode(s) = off if isInit(s)

off to on: mode(next(s,x)) = on if (mode(s) = off) and (x ≤ 18)

on to off: mode(next(s,x)) = off if (mode(s) = on) and (x ≥ 22)

off to off: mode(next(s,x)) = off if (mode(s) = off) and (x ≥ 19)

on to on: mode(next(s,x)) = on if (mode(s) = on) and (x ≤ 21)

grey area off: (mode(next(s,x)) = off) if (x < 19) and (x > 18)
xor (mode(next(s,x)) = on) and (mode(s) = off)

grey area on: (mode(next(s,x)) = off) if (x < 22) and (x > 21)
xor (mode(next(s,x)) = on) and (mode(s) = on)

Table 5.2: Conditional Equations of heater

approach can be used for most cases.

We first attempt to discharge the proof obligations derived from the extended domains.

We start with the equations from state based instantiated with HeaterState. Re-

member that the verification is being done at the level of the heater specification. As

such, all declarations and definitions of heater are available for the proofs.

Verifying return type next: ret(next) = State

Eheater ` ret(next) = State

` ret(< ∗(st :: State;x :: Real) :: State∗ >) = State (next def)

` State = State (definition ret)

` true (symmetry)

Verifying domain next: dom(next) = State

Eheater ` dom(next) = State

` dom(< ∗(st :: State;x :: Real) :: State∗ >) = State (next def)

` State = State (definition dom)

` true (symmetry)

Since true is derived for each of these equations when using the definitions in heater, the

109

equations are consistent. Furthermore, the equations of the instantiated state based

are D-safe as no equations involving the visible data from static appear in state ba-

sed. It can therefore be concluded that the state based specification as instantiated

is consistent. The next proof obligation is obtained from the instantiated discrete do-

main. The function getAttributes returns the set of operators Ωheater that is given

as {mode}.

Verifying discrete attributes:

forall (fnc::getAttributes() | isDiscrete(ran(fnc)))

Eheater ` forall (fnc::getAttributes() | isDiscrete(ran(fnc)))

` forall (fnc::{mode} | (defn getAttributes)

isDiscrete(ran(fnc)))

` isDiscrete(ran(mode)) (skolem, {mode})

` isDiscrete(ControlMode) (defn mode(s::State)::ControlMode)

` isDiscrete({on, off}) (defn ControlMode)

` exists (defn isDiscrete)

(fnc ::< ∗(st :: {on, off}) :: Integer∗ > |

forall(s1, s2 :: {on, off}|

(s1/ = s2) => (fnc(s1)/ = fnc(s2))))

In the above derivation, ran is defined as the range of a function. However, we assume

that the range of mode is the same as its return type. The remainder of the proof, which

is proving that the set {on, off} is discrete, is simple as the set consists of two distinct

values. For example, assuming the existence of the following function:

fncOnOffInt(st::{on, off})::Integer is

if (st = on) then 1 else 2;

we can now complete the proof:

110

Eheater ` exists(fnc ::< ∗(st :: {on, off}) :: Integer∗ > |

forall(s1, s2 :: {on, off}|(s1/ = s2) => (fnc(s1)/ = fnc(s2))))

` (s1 /= s2) => (instantiate, skolem)

(fncOnOffInt (s1) /= fncOnOffInt (s2))

Eheater ∪ {s1 /= s2}

` (fncOnOffInt (s1) /= fncOnOffInt (s2)) (modus ponens)

Eheater ∪ {fncOnOffInt (s1) = fncOnOffInt (s2)}

` (s1 = s2) (flatten)

From the definition of the function fncOnOffInt, there are two possible return values

1 or 2. For fncOnOffInt (s1) = fncOnOffInt (s2), we therefore have two cases:

fncOnOffInt (s1) = fncOnOffInt (s2) = 1

fncOnOffInt (s1) = fncOnOffInt (s2) = 2

We also know that the two variables s1 and s2 take values from {on, off}. In the

first case, to have fncOnOffInt (s1) = 1, s1 must be equal to on. Similarly, to have

fncOnOffInt (s2) = 1, s2 must be equal to on. Hence, s1 = s2 = on. The second case

is proved in the same way.

This concludes the proof for the obligation discrete attributes from the instantiated

discrete domain. Note that this equation is D-safe as it does not contradict any of

the data from static. The last proof obligation is given by the finite state domain.

Verifying fs1: forall (fnc::getAttributes() | isFinite(ran(fnc)))

Eheater ` forall (fnc::getAttributes() | isFinite(ran(fnc)))

` forall (fnc::{mode} | (defn getAttributes)

isFinite(ran(fnc)))

` isFinite(ran(mode)) (skolem, {mode})

` isFinite(ControlMode) (defn mode(s::State)::ControlMode)

` isFinite({on, off}) (defn ControlMode)

` #({on, off}) in Natural (defn isFinite)

` 2 in Natural (defn #)

` true

111

Equations mode(s) mode(s) x ≤ 18 x ≥ 22 x ≥ 19 x ≤ 21 19 > x 22 > x
off on x > 18 x > 21

off to on X X
on to off X X
off to X X
off

on to on X X
grey area X X

off
grey area X X

on

Table 5.3: Table of Conditions per Equations

All the proof obligations derived from domains being extended have been discharged.

The next step is to analyze the equations of heater itself. Since these equations (Ta-

ble 5.2) are non-local, a solution to these equations and constraints need to be found

to show heater consistent. It is important to keep in mind that for state-based spec-

ifications, satisfaction is behavioral. Therefore, states are identified by what can be

observed, defined by the values of the attribute operators. As a result, the equations

of heater constrain the value of mode for states s and next(s), instead of constraining

s and next(s) directly.

Equation initial implies that if s is initial then the state mode is off. This is all

that is known about the initial state. Equations off to on, on to off, off to off,

on to on, grey area off, and grey area on define the properties for the normal func-

tion of the heater. Since they are all conditional equations that are not local (for s is

present in their conditions), we next check that they are non-overlapping (sufficient con-

dition for Church-Rosser [24]). For conditional equations to be non-overlapping their

conditions must be disjoint. Table 5.3 shows the conditions for each equation from

heater. The condition mode(s) = off appears in equations off to on, off to off

and grey area off. However, in each case, it is conjuncted with some constraints over

x that are disjoint (x ≤ 18, x ≥ 19, 19 > x > 18). Therefore, the resulting conditions are

all disjoint. The same can be observed for equations with the condition mode(s) = on.

Hence, the equations of heater are non-overlapping, satisfying the sufficient condition

for Church-Rosser.

112

The left hand side of these equations are all of the form mode(next(s, x)) = val for val ∈

{on, off}. Since the conditions are disjoint, although mode(next(s, x)) has different

values in different equations, they never overlap. In the equations grey area off and

grey area on, the use of the operation xor ensures that mode(next(s, x)) is never both

off and on. Thus, the equations are D-safe and heater is consistent. We also note

that since input x only appears in the conditions, no inconsistency can be derived from

its use.

A coalgebra that satisfies heater is given as:

|A|State
γheater−→ |A|ControlMode × |A|RState

with |A|State = {′on′, ′off′}

|A|Real = R

|A|ControlMode = {′on′, ′off′}

γheater = (mode, next)

mode = λ (s : |A|State) . if(s = on) then on else off

next = λ (s : |A|State) . λ(x : R) .

if (s = off) and (x ≤ 18)) then on

else if (s = on) and (x ≥ 22)) then off

else if (s = off) and (x ≥ 19)) then off

else if (s = on) and (x ≤ 21)) then off

else if (s = off) and (19 > x > 18)) then off

else if (s = on) and (22 > x > 21)) then off

It is important to remember that while some items can be undefined in a specification, all

items must have a unique value in a specific model. Although State can be undefined in

a specification, it has a unique value in any coalgebra that satisfies the specification. As

it can be observed in the example of a coalgebra satisfying heater, |A|State is a specific

set of values. Note also the last two cases in the definition of next. Nondeterminism

in a specification is also specified with the notion of undefinedness. However, each

model being deterministic, attributes (and states) can take only one value at a time.

As a result, the nondeterminism of the specification disappears in any specific model.

|A|State being known also allows writing the function to which next is mapped directly

113

in terms of the value of the state.

5.1.4 Analysis of The temperatureVariation Specification

Specification temperatureVariation (Specification 19) describes the continuous dy-

namics of the temperature. The rate of change in temperature depends on the control

mode of the thermostat. If the control mode is off, then the temperature decreases

at the rate of −0.1 ∗ x where x is the current temperature. If, instead, it is on, the

temperature increases at the rate of 5− 0.1 ∗ x.

We follow the same analysis approach as for heater. We start by deriving the proof

obligations from the domains extended. We then analyze temperatureVariation itself

by deriving its state-based signature and by also rewriting its equations. The defined

signature and the rewritten equations can then be used in discharging the proof obliga-

tions. Once all obligations are satisfied, if the equations of temperatureVariation are

non-local, we verify satisfaction of the Church-Rosser condition, D-safety of the equa-

tions, and then propose a model that satisfies the specification.

Since temperature varies continuously, specification temperatureVariation extends the

continuous domain. The actual parameter for instantiating continuous is Tempera-

tureVarState. As shown in Specification 7, the continuous domain extends state ba-

sed and provides its own parameter to it. Thus, we first analyze the instantiation

of state based to derive the proof obligations that temperatureVariation has to

discharge. In the instantiated state based:

State = TemperatureVarState (5.2)

and its two equations are return type next and domain next. Thus, the same proof

obligations as for the heater specification are derived here. Indeed, all specifications

whose extensions can be traced back to state based will have these two equations as

proof obligations. Since there are no equations in continuous, no additional obligations

are derived. Overall, there are thus two proof obligations obtained from the extension

of continuous and state based:

114

From state based:

return type next: ret(next) = State

domain next: dom(next) = State

The satisfaction of these proof obligations depends on the specification temperature-

Variation. State has two attributes, contAttr, as specified in continuous and used to

represent time in this example, and temp representing the temperature. The variation

of the temperature over the state (more specifically the contAttr observation of the

state) thus describes the continuous flow of the temperature over time. There are five

equations and a constraint in temperatureVariation:

initial: If the predicate isInit over s is true, then the temperature observed is 20

degrees and the time (contAttr) is 0.

next def: next is equated to an unnamed function that takes in a State and a Con-

trolMode, and gives a new state as a result. The rank of next is thus defined.

mono increase: This constraint ensures that the continuous attribute of state is mono-

tonically increasing, as it represents time. Since temperature variation is defined

over the difference in the values of this attribute over s and next(s), this equation

represents the safety condition that the difference is never zero (to prevent division

by zero).

output: The x output parameter is the value of the attribute temp for each state.

off cool: If ctrl is off, then the negative variation in temperature is given by −0.1 ∗

temp(s) for the lapse of time contAttr(next(s, ctrl))− contAttr(s).

on heat: When ctrl is on, the temperature increases at the rate of 5− 0.1 ∗ temp(s)

per contAttr(next(s, ctrl))− contAttr(s) unit of time.

next heat: The temperature in the next state is given by summing the temperature

in the current state and the variation over the difference between this state and

the next state.

In the hybrid automaton description [33], the unit of time for the rate of variation in

temperature is per minute. We assume the same unit of time for our specification. How-

115

ever, by leaving next(s, ctrl) undefined, the accuracy in the value of the temperature

in the next state can be modulated depending on the step between s and next(s, ctrl).

For example, if contAttr(next(s, ctrl)) − contAttr(s) is very small, the accuracy of

the value of temp in the next state is high.

The state-based signature of temperatureVariation is given as the following set of

sorts and set of operators (StemperatureVariation,ΣtemperatureVariation) such that:

StemperatureVariation = (State, {ControlMode} ∪ Sstatic)

with State the only hidden sort,

and {ControlMode} ∪ SV the visible sorts

(both continuous and state based do not add any

visible sorts to Sstatic)

ΣtemperatureVariation = (isInit,Υ, next, ∅, {contAttr, temp},

S∆ = Σstatic ∪ {on, off})

The conditional equations of temperatureVariation are rewritten as follows:

initial a: temp@s= 20 if isInit(s)
initial b: contAttr@s= 0 if isInit(s)
off cool: variation(temp, s, next(s,ctrl)) = -0.1 * temp@s

if (ctrl = off)
on heat: variation(temp, s, next(s,ctrl)) = 5 - 0.1 * temp@s

if (ctrl = on)

Table 5.4: Equations of temperatureVariation

Equation next def constrains next to be a function:

<*(st::State;ctrl::ControlMode)::State*>

As a result, the return type next and domain next proof obligations can be dis-

charged.

116

EtemperatureVariation

` ret(next) = State

` ret(< ∗(st :: State; ctrl :: ControlMode) :: State∗ >) = State

(eqn next def)

` State = State (definition ret)

` true � (symmetry)

EtemperatureVariation

` dom(next) = State

` dom(< ∗(st :: State; ctrl :: ControlMode) :: State∗ >) = State

(eqn next def)

` State = State (definition dom)

` true � (symmetry)

The successful discharge of the proof obligations through reasoning implies that the

state based specification as instantiated and extended is consistent. We also assume

the continuous domain to be consistent as it does not define any additional equations.

Equations initial, off cool and on heat of temperatureVariation are not local.

Initial has a condition that involves the hidden sort. Off cool and on heat both have

terms that are not local. As a result, to check for consistency of the specification, we

verify the Church-Rosser condition and D-safety of the equations. Although equations

off cool and on heat both involve the term variation(temp, s, next(s,ctrl)), their

conditions are disjoint. Thus, having variation(temp, s, next(s,ctrl)) specified to

different values does not give rise to a contradiction. The exclusive conditions ensure

that variation does not take both values at the same time. The condition of Church-

Rosser is satisfied. Furthermore, the equations are D-safe since there are no distinct

visible values that are being equalized and no new constants are being added to an

already defined visible sort. This is because s, next, and temp are undefined. Indeed,

the equations of the specification are being used to constrain their values. Thus, all the

equations can be considered to be constraints and finding a solution for the specification

consists of solving them. However, since false is not derived from the equations, we

117

assume consistency of the specification. Note that we still need to provide a model that

satisfies the specification. In the case this cannot be done, then although false is not

derived, the specification is inconsistent.

The definition of the function variation is given in continuous. We use it to do a

rewriting of the equations off cool and on heat from Table 5.4, as well as a rewriting

of the equation next heat. Variation is defined as:

variation[T::Type]

(fnc::<*(stt::State)::T*>; st::State; next st::State)::T =

(f(next st) - f(st)) / (contAttr(next st) - contAttr(st)).

Table 5.5 illustrates the results of rewriting each equation. The derivation of true in

the rewriting of equation next heat increases the confidence in the correctness of the

specification. Note however that the derivation as shown assumes the existence of an

s and a ctrl.

The simplification of the equations of temperatureVariation above results in equa-

tions where the values of temp(next(s,ctrl)) are constrained directly. The reader

may therefore wonder as to the relevance of the variation function. In the design com-

munity, analog and continuous systems are defined with the use of differential-algebraic

equations, e.g. F (x, x′, t) = 0 where x′ = dx/dt. As a result analog designers are famil-

iar with this approach. The next heat equation may seem redundant, but we feel that

it provides more confidence to the specification.

A model of temperatureVariation is obtained by solving its equations. The following

coalgebra is such a model.

|A|State
γtemperatureVariation−→ R× R× |A|RState

118

off cool:
variation(temp, s, next(s, ctrl)) = −0.1 ∗ temp@s if (ctrl = off)

⇒ temp(next(s, ctrl))− temp(s)
contAttr(next(s, ctrl))− contAttr(s)

= if (ctrl = off)

−0.1 ∗ temp(s)

⇒ temp(next(s, ctrl)) = if (ctrl = off)
temp(s) + (contAttr(next(s, ctrl))− contAttr(s)) ∗ −0.1 ∗ temp(s)

on heat:
variation(temp, s, next(s, ctrl)) = 5− 0.1 ∗ temp@s if (ctrl = on)

⇒ temp(next(s, ctrl))− temp(s)
contAttr(next(s, ctrl))− contAttr(s)

if (ctrl = on)

= 5− 0.1 ∗ temp(s)

⇒ temp(next(s, ctrl)) = if (ctrl = on)
temp(s) + (contAttr(next(s, ctrl))− contAttr(s)) ∗ (5− 0.1 ∗ temp(s))

next heat:
temp@next(s, ctrl)
= temp(s)+
variation(temp, s, next(s, ctrl)) ∗ (contAttr(next(s, ctrl))− contAttr(s))

= temp(s)+
temp(next(s, ctrl))− temp(s)

contAttr(next(s, ctrl))− contAttr(s)
∗

(contAttr(next(s, ctrl))− contAttr(s))

= temp(s) + temp(next(s, ctrl))− temp(s)
= temp(next(s, ctrl))
⇒ true

Table 5.5: Rewritten Equations of temperatureVariation

119

with |A|State = {(R,R)}

|A|Real = R

|A|ControlMode = {′on′, ′off′}

γtemperatureVariation = (contAttr, temp, next)

temp = λ (s : |A|State).getSnd(s)

next = λ (s : |A|State) . λ(ctrl : |A|ControlMode) .

if ((ctrl = off)

then (getFst+ 1, getSnd(s) + 0.1 ∗ getSnd(s))

else if ((ctrl = on)

then (getFst+ 1, getSnd(s) + 5− 0.1 ∗ getSnd(s))

Since there are two attributes for the states of temperatureVariation, a state value is

represented as a pair whose first value is observed with contAttr and second value is

given by temp. We assume that getFst and getSnd are defined in the pseudo-lambda

language and that they return the first and second elements of the pair respectively.

5.1.5 Analysis of The thermostat Specification

The thermostat specification (Specification 20) is constructed from both the heat-

er and the temperatureVariation specifications. It does not have any parameter and

it extends state based. There are three possible choices for the domain of thermostat.

The heater specification extends discrete while temperatureVariation extends con-

tinuous, and both discrete and continuous extend state based. Thermostat can

therefore be either state-based, or discrete, or continuous. The choice of state ba-

sed simply implies that less obligations are imposed upon the thermostat specification.

As a result, the observations of the states of thermostat can either be discrete or

continuous, and both models with discrete observations and models with continuous

observations satisfy thermostat.

Since there are no parameters to thermostat, the next operation is a function that

takes a state and returns a state (equation next def). This definition of next satisfies

the obligations derived from state based. Its return type is State and its domain is

120

State. Two attributes are also defined for a state in thermostat: ctrl and x. These

attributes are given as parameters of heater and temperatureVariation. In any state

s of thermostat the value of ctrl@s is given from the specification heater, while

the value of x@s is given by the specification temperatureVariation. The parameter

ctrl from heater is defined as an output parameter. Remember that the constraints

defined over any output parameter within a specification also need to hold for the actual

parameter (to a translation). As a result, any constraints defined over ctrl in heat-

er must hold in thermostat as well. This also indicates that values of ctrl@s are

provided by models that satisfy heater. Similarly, as x is an output parameter for

temperatureVariation, the values of the attribute x@s are given by models satisfying

temperatureVariation.

A model that satisfies thermostat will have a state s that is minimally a pair s =

(controlmode, temp) with controlmode = ctrl(s) and temp = x(s). Controlmode may

take two values, on or off, while temp may take any real value between 18 and 22. The

system invariant between the control mode and the temperature are given by equations

inv off and inv on. inv off states that for all states, if the control mode of the heater

is off, then the temperature must be greater or equal to 18. inv on instead says that

if the heater is on, then the temperature must be less than or equal to 22. These two

constraints help ensure that the specifications written are correct with respect to the

requirements.

5.2 Specification of Secure Network Components

5.2.1 Network Security

With the great role played by computer networks in the world, network security is a

major issue. Extensive research is being done in this field at different levels. Syverson

and Meadows [55] describe a methodology for specifying and verifying requirements

of protocols. They define a requirements specification language for the NRL Protocol

Analyzer. The language is then used to specify a set of requirements for a class of

121

protocols before mapping them to a particular protocol instantiation. PolicyMaker [10]

is a trust management system proposed by Blaze et al. They use assertions to express

trust information. Each assertion binds a predicate that needs to be satisfied by actions

for the assertion to be satisfied, to a sequence of public keys, bypassing the problem

of reliably mapping public keys to names. A particular public key is permitted to

perform an action only if it can be derived from the assertions that the action satisfies

the necessary predicates for the given key. SPL [52] is an access control language that

allows organizations to express and keep their global security policies in one single

description. It defines rules over events for deciding on their acceptability. Rules can be

composed using a tri-value algebra. A policy is a group of rules with a query rule that

is used to relate all the rules of the policy. Policies are activated only if instantiated

and inserted into another policy, except for the master policy that is activated by the

security service. Jajodia et al. [36] define a Flexible Authorization Manager (FAM) that

can enforce multiple access control policies within a single, unified system. FAM is based

on a language that can be used to specify authorization and access control policies to

be applied in controlling execution of specific actions on given objects. It defines seven

predicates that are used in rules. An authorization request processor is then used to

process at run-time a user’s access request. Abadi et al. [1] propose a calculus for access

control in distributed systems. They define a calculus of principals with the use of basic

logic in addition to some new connectives such as the role connective as, the quoting

connective |, and for, the speak-on-behalf-of connective. They also define the notion of

says, for expressing that a principal says a statement. Given a list of access controls, it

can then be logically deduced, using the calculus, whether access should be granted.

5.2.2 Specification of Secure Network Components

We specify components of a computer network and use a similar approach to the Pol-

icyMaker [10] trust management system to make them secure. One of the interesting

aspects of PolicyMaker is the delegation of trust verification to each component of a

network. Trust is given according to cryptographic keys. These can be user keys or

node keys. Before an action is taken by a node on reception of a packet, it verifies

122

whether the key attached to the packet can be trusted. This implies that each node

has the capability of verifying trust according to keys, although they need not know

how the keys are cryptographically used. Indeed, the security provided by the use of

cryptography can be considered to relate to another view of the network and can be

specified separately.

Specification 21 describes the package where a specific type Network is declared. This

is the type we intend to use to represent the state of the system we are designing. In the

specifications presented here, we focus mainly on the functionality of different network

components. The establishment of a secure connection can be specified separately using

the same domain specifications as presented here.

A Specification of a Secure Network: Type Package 21

package TypePackage::static is

Network::type;

end package TypePackage;

Specification 22 describes NetworkComponentPackage, the package that contains the

domain and facet specifications of network components. The same SecureNetwork

domain is used as a common parent domain for specifications that describe secure con-

nections across the system. It contains the declaration of several new types for objects

that appear in networking.

AddressType: The type for node addresses.

Payload: The datatype for packet payload. A payload has three fields: the key of the

source of the packet, the destination of the packet, and the content of the packet.

Packet: The datatype for a packet. A packet is a pair of an address and a payload. The

address in the pair and the address in the payload need not be the same. If they

are the same, then it indicates that the packet is reaching its final destination. If,

instead, they are different, then the address of the packet indicates the address of

the next hop for the packet. The address in the payload always indicates the final

destination.

123

noPacket: A special constant used to represent the absence of packet. The use of the

keyword cst indicates that noPacket has a constant value, but is not defined

as a constant operator for the Packet sort. Indeed, it is a variable that has a

fixed value. The difference between constant and cst is that definitions that are

constant are also terms in the variable free term language. Definitions that are

cst are not terms in the variable free term language.

EncryptKeyType: The type for an encryption key.

EncryptedPacket: The type for encrypted packets. This is a subtype of the Packet

type.

isEncrypted: The function that returns true if its packet parameter is encrypted.

encrypt: The function that, given a key and a packet, returns a packet encrypted

by that key. Note that the function is not defined. Specifications that extend

SecureNetwork can constrain it to have the properties of the desired cryptographic

algorithm.

decrypt: The function that, given a key and an encrypted packet, returns a packet.

Note that since EncryptedPacket is a subtype of Packet, the packet returned by

decrypt can still be an encrypted one. Decrypt returns a non encrypted packet

only if its key parameter matches the one with which its packet parameter was

encrypted (assuming only one level of encryption). If the key does not match,

then decrypt returns the encrypted packet unchanged.

isCertified: The function that checks whether an address is certified. As for the

notion of encryption, certification can use different algorithms. Specifications

that are extensions of SecureNetwork can constrain isCertified as required.

There are four equations defined in the domain. isEncrypted encrypt defines the

function isEncrypted over the function encrypt. IsEncrypted always returns true

when applied to the result of encrypt. No equation is given over decrypt so as not

to overconstrain its definition. Applying decrypt to an encrypted packet does not

124

necessarily return a non-encrypted packet as a packet can be encrypted twice with

different keys. Furthermore, the same key does not necessarily work for both en-

crypting and decrypting. In public/private key cryptography, there are indeed two

keys, and a packet encrypted with a key is decrypted with the other one. Equations

encrypt noPacket, decrypt noPacket and isEncrypted noPacket define the differ-

ent functions over noPacket. Since noPacket represents the absence of any packet,

encrypting or decrypting no packet results in no packet. For completeness purposes,

isEncrypted of no packet is false.

The domain SecureNetwork defines a number of new types and functions, but does not

define any state observer. It does however extend the discrete domain that enforces

the discreteness of state attributes.

The entity domain (Specification 23) defines the vocabulary that all network entities

share. It extends SecureNetwork and provides additional types and functions that are

specific to network entities. It also provides the vocabulary that is used in a distributed

trust management system similar to PolicyMaker [10].

KeySequence: The type for sets of sequences of keys. It is used as type for the sequence

of keys to which an assertion applies.

ActionStringType: The type for action strings. An action string is an application-

specific message that describes a trusted action requested by public keys.

RequestType: The type for requests with one key. It is a pair that contains the key of

the requester and an action string for the action requested.

RequestSequenceType: The type for requests with several keys. It is a pair of a se-

quence of keys and an action string.

AssertionType: The type for assertions. An assertion is a triple consisting of a key,

an authority structure and a filter. It binds the predicate (filter) to a sequence of

public keys (authority structure) with its source being the key.

policy: A special key that represents the trusted root of the entity. In PolicyMaker,

a policy is an unsigned assertion and is local. There is also a set of local policies

125

A Specification of a Secure Network: Secure Network Domain Specification 22

package NetworkComponentPackage::static is

use TypePackage;

domain SecureNetwork(myState::Type)::discrete(myState) is

AddressType::type;
EncryptKeyType::type;
ContentType::type;

Payload::type is data
payld(src::EncryptKeyType;

dest::AddressType;
content::ContentType)::isPayld;

Packet::type is data
pkt(address::AddressType; payload::PayloadType)::isPkt;

noPacket::Packet is cst; // used to represent non-existent packet

EncryptedPacket::subtype(Packet);
isEncrypted(pkt::Packet)::boolean;
encrypt(key::EncryptKeyType;pkt::Packet)::EncryptedPacket;
decrypt(key::EncryptKeyType;pkt::EncryptedPacket)::Packet;
isCertified(addr::AddressType)::boolean;

begin

isEncrypted_encrypt: forall(key::EncryptKeyType;pkt::Packet |
isEncrypted(encrypt(key,pkt)));

encrypt_noPacket: forall(key::EncryptKeyType |
encrypt(key, noPacket) = noPacket);

decrypt_noPacket: forall(key::EncryptKeyType |
decrypt(key, noPacket) = noPacket);

isEncrypted_noPacket: not isEncrypted(noPacket);

end domain SecureNetwork;

126

that forms the “trust root” and defines the context under which all queries are

evaluated. We simplify the notion of policy to be the key that is the root of all

trust.

AssertionBase: The type for sets of assertions. It is used to represent a database of

assertions.

interpret: The interpretation function. It is used as an abstraction of an action being

executed. An action is usually application specific and the trust management

system does not know about its interpretation.

process: The function that indicates success of request. It returns true if request is

successfully completed.

Since any key used as identification in PolicyMaker needs to be known by all entities,

the key is a public key. Secure connection established between nodes that are described

as an entity (their specifications are extensions of Entity) can only use a public/private

key cryptographic algorithm.

Facet channelComponent (Specification 24) describes an unbound FIFO channel. It has

four parameters.

pop: Input command to remove top packet from channel

write: Input command to add a packet to end of channel

pktIn: Input packet to write to channel

pktOut: Output packet read from channel. If channel is empty, it is either noPacket to

indicate absence of any packet, or pktIn, the packet being written. In any other

case, it is the packet at the head of the channel. Note that there is always a packet

(it can be noPacket) available as output.

The parent domain is SecureNetwork with Network passed as parameter. Network be-

comes the State hidden sort. SecureNetwork’s definitions are available in channelCom-

ponent and its equations become proof obligations of the facet. There is one attribute

127

A Specification of a Secure Network: Entity Domain Specification 23

domain Entity::SecureNetwork(Network) is

KeySequence::sequence(EncryptKeyType);

ActionStringType::type;

// Decentralized trust management
RequestType::type is data
req(key::EncryptKeyType; action::ActionStringType)::isReq;

RequestSequenceType::type is data
reqSeq(keys::KeySequence; action::ActionStringType)::isReqSeq;

AssertionType::type is data
asserts(src::EncryptKeyType;

authStruct::KeySequence;
filter::boolean)::isAssert;

policy::EncryptKeyType;

AssertionBase::set(AssertionType);

interpret(action::ActionStringType)::boolean;

process(query::RequestType;database::AssertionBase;
action::ActionStringType)::boolean is //true;

exists (assertion::AssertionType |
(assertion in database) and
(src(assertion) = policy) and
(key(query) in ~authStruct(assertion)) and
(interpret(action)));

begin

end domain entity;

128

called channel that observes a sequence of packets. Equation initialization states

that in the initial state, the observed channel is empty. Equation pktIn not noPacket

defines a pre-condition over pktIn. PktIn cannot be a noPacket. Equations channel-

Prop and pktOutProp describe the functionality and output of a channel observation

respectively. The channelProp equation states that the observation channel in the

next state (channel’) is given as ([] indicates the empty channel):

Condition 1 Condition 2 Condition 3 Next state observation

pop = true write = true channel@s = [] channel

pop = true write = true channel@s 6= [] concatenate(tail(channel),

[pktIn])

pop = true write = false channel@s = [] channel

pop = true write = false channel@s 6= [] tail(channel)

pop = false write = true concatenate(channel,[pktIn])

pop = false write = false channel

The pktOutProp equation describes the packet that is given as output of channelCom-

ponent. It can be either the packet that is being added to an empty channel, or the

head of the channel, or no packet at all.

Condition 1 Condition 2 Condition 3 Output packet

pop = true write = true channel@s = [] pktIn

pop = true write = true channel@s 6= [] head(channel)

pop = true write = false channel@s = [] noPacket

pop = true write = false channel@s 6= [] head(channel)

pop = false write = true channel@s = [] noPacket

pop = false write = true channel@s 6= [] head(channel)

pop = false write = false channel@s 6= [] head(channel)

Since the channelComponent specification does not define encrypt or decrypt, the

proof obligations defined in the SecureNetwork domain cannot be discharged. They

become constraints over the channelComponent specification.

129

A Specification of a Secure Network: Channel Component Specification 24

facet channelComponent(pop::input Boolean;write::input Boolean;
pktIn::input Packet; pktOut::output Packet)

:: SecureNetwork(Network) is

channel(st::State)::Sequence(Packet);

begin

initialization: isInit(s) => channel@s = [];

pktIn_not_noPacket: not (pktIn = noPacket);

channelProp: channel’ =
if (pop and write)

then if (channel@s = [])
then channel@s
else concatenate(tail(channel@s),[pktIn])
end if

elsif (pop and (not write))
then if (channel@s = [])

then channel@s
else tail(channel@s)
end if

elsif ((not pop) and write)
then concatenate(channel@s,[pktIn])

else channel@s
end if;

pktOutProp: pktOut =
if (pop and write)
then if (channel@s = [])

then pktIn
else head(channel@s)
end if

elsif (channel@s = [])
then noPacket

else head(channel@s)
end if;

end facet channelComponent;

130

Specification 25 describes a specification of a router component. We assume a router is

first a consumer of packets, since a router does not generate packets but forwards them.

When it is initialized, it is idle, in the sense that it is neither consuming nor producing.

If it has not consumed a packet yet, and an input packet (pktC) is present, then the

router acts as a consumer. If the router is currently a consumer, then in the next state

it is a producer. The router cannot be consuming and producing at the same time.

Furthermore, it alternates between consuming and producing. The input parameter

pktC is the packet that can be consumed. Pop indicates that the router has read an

input packet. When the router generates a packet, write is true and pktG is the packet

generated. The list of declarations are:

RoutingTable: The type for routing tables.

rtTable: A routing table. We assume a static routing table that is not modified by the

router. We are aware this does not reflect the functionality of the routing table

for a real router.

assertBase: An assertion database. This database is also static. We do not specify

the management of assertions.

route: A particular action string. The basic action for a router is to route packets.

createNewPkt: The function that creates a new packet with a different destination

address, given a packet and a routing table. The payload does not change from

one packet to the next.

consuming: An attribute of the router state describing whether the router is consuming

or not. Whenever consuming(s) is true, we say the router is currently consuming.

producing: An attribute of the router describing whether the router is producing or

not. Whenever producing(s) is true, we say the router is currently producing.

pkt: An attribute of the router indicating the packet being consumed.

The functionality of a router is described by the equations of the specification. There

are eight equations.

131

initialization: In the initial state, the router is neither consuming nor producing.

consOrprod: The router cannot be both consuming and producing at the same time.

It does however have an idle state where it is doing neither.

consCond: The router will be consuming in the next state when the input packet is

other than noPacket and the router is not currently consuming.

prodCond: The router will be producing in the next state if it is currently consuming.

pktCProp: If the router is consuming, then the packet pkt in the next state is given by

pktC.

pktGProp: If the router is producing, then the output packet pktG is given by pkt if

the request of routing for the key of the packet has been denied, else, it is a new

packet where the address of the packet has been modified, given data from the

routing table rtTable.

whenPop: The value of pop is given by whether the router is consuming or not.

whenWrite: The value of write depends on whether the router is producing or not.

An example of constructing the specification of a network by using the previously defined

specifications is given in Specification 26. Two router components communicate across

two channels, with each channel being mono-directional. There is a left router and a

right one. There are two channels: left to right, i.e. left is producer and right

is consumer, and right to left, i.e. right is producer and left is consumer. It is

important to remember that when a specification is instantiated and included in another

one, it is renamed. As such, the channel attributes of the left router component and

that of the right router component are different. Figure 5.2 shows a diagram of the

components.

We do not explicitly define any of the parameters to the specifications in twoCommuni-

catingRouters. We assume that they are all attributes of the state of that system.

This allows adding some equations that express properties that we know must hold for

132

A Specification of a Secure Network: Router Component Specification 25

facet routerComponent(pktC::input Packet; pop::output Boolean;
pktG::output Packet; write::output Boolean)

:: entity is

RoutingTable::type;
rtTable::RoutingTable;
assertBase::AssertionBase;
route::ActionStringType is constant;
createNewPkt(pkt::Packet;rtTable::RoutingTable)::Packet;

consuming(st::State)::Boolean;
producing(st::State)::Boolean;
pkt(st::State)::Packet;

begin

initialization: isInit(s) => (not consuming@s) and (not producing@s);

consOrprod: // node is consuming
(consuming@s and (not producing@s))
or // node is producing
(producing@s and (not consuming@s))
or // node is idle
((not producing@s) and (not consuming@s));

consCond: consuming’ = ((not (pktC = noPacket)) and
(not consuming));

prodCond: producing’ = consuming@s;

pktCProp: consuming@s => (pkt’ = pktC);

pktGProp: producing@s =>
(pktG =
if process(req(src(payld(pkt@s)),route),assertBase,route)
then createNewPkt(pkt@s,rtTable)
else pkt
end if);

whenPop: pop = consuming@s;

whenWrite: write = producing@s;

end facet routerComponent;

end package NetworkComponentPackage;

133

Left
Router

Component

Right
Router

Component

right_to_left

left_to_right

pktC_R2L

pop_R2L

write_L2R

pktG_L2R pktC_L2R

pop_L2R

pktG_R2L

write_R2L

Channel Component

Channel Component

Figure 5.2: Communicating Router Components across Two Channel Components

the communicating routers. These properties will help in ensuring that the structural

composition of the specifications as currently defined is consistent.

A Specification of a Secure Network: Communicating Router Components
across Two Channel Components

26

package NetworkPackage::static is

use NetworkComponentPackage;

facet twoCommunicatingRouters::entity is

begin

left: routerComponent(pktC_R2L, pop_R2L, pktG_L2R, write_L2R);

right: routerComponent(pktC_L2R, pop_L2R, pktG_R2L, write_R2L);

left_to_right: channelComponent(pop_L2R, write_L2R, pktG_L2R, pktC_L2R);

right_to_left: channelComponent(pop_R2L, write_R2L, pktG_R2L, pktC_R2L);

end facet twoCommunicatingRouters;

end package NetworkPackage;

5.3 Conclusion

This section describes two examples of using the proposed framework, and of applying

our methodology to heterogeneous design. The first example is that of a thermostat

that displays both discrete and continuous behaviors. A complete analysis of the spec-

ifications is given. The second example consists of designing secure network compo-

nents. We also show the structural composition of these components in an example

134

of two communicating routers across two mono-directional channels. Note that since

all of these components extend the same SecureNetwork domain, they all have the

notion of encryption keys. As they do not define encryption, and do not discharge

any of the proof obligations from SecureNetwork, these obligations become part of the

twoCommunicatingRouters equations.

The example of specifying a secure network can be further expanded. A network con-

tains more entities than just routers. There are firewalls, end-nodes (PCs) and others.

The main difference between a router and any other node is mainly in the actions (el-

ements of ActionStringType), the process and createNewPkt functions. The notion

of decrypting and encrypting a packet can be added to the definition of these functions.

There is also another view of networking, that of the notion of secure communication

through cryptography, that can be specified.

135

Chapter 6

Related Work

Several efforts have been directed toward defining frameworks where different method-

ologies and tools can be used together. The differences between the approaches proposed

by fellow researchers include the level of abstraction at which the engineer works, the

area of application, the models of computation involved and the use of one represen-

tation versus several representations. The one major difference between our work and

the ones mentioned below involves the notion of refining a design paradigm to obtain

another one through extension, as well as the capability of non-functional constraint

modeling in our framework. The different approaches are grouped into five categories:

(1) those that allow different models of computation to be used and composed on one

platform; (2) those that involve discrete and continuous domains; (3) those that pro-

vide meta-modeling mechanism for computational models; (4) those that are specifically

oriented toward requirements engineering; and, (5) those that combine different logics.

6.1 Composition of Models of Computation

Ptolemy II Ptolemy II [11] is a framework that allows the use of a number of different

models of computation to model concurrency. Lee and Xiong [44] describes how by

defining automata for different concurrent models of computation, and augmenting their

type system in Ptolemy II by defining interaction types derived from the automata, they

136

manage to model a concurrent system, while using different models of computation.

Ptolemy II is similar to our approach in that it provides frameworks where different

methodologies can be used together. However, Ptolemy II does not allow definition

of new interactions. This differs from our approach as we allow defining translation

relations that can be used to precisely describe interaction that occurs between two

domains. Furthermore, the framework we propose is flexible in that designers can

additionally define new computational models.

SAL The SAL, Symbolic Analysis Laboratory [9], framework is another attempt to

combine the use of many tools together. SAL differs from our approach in that it

proposes an intermediate language that can be translated to and from the languages

of different analysis tools. The advantage of SAL is that tools from model checkers to

theorem provers can be used in one integrated environment. However, it is primarily

used for concurrent systems expressed as transitional systems.

Metropolis The Metropolis project [12] is being developed to help capture the require-

ments of embedded system design. It uses a framework where formal models can be

defined and compared. The mathematical basis of the framework is based on trace

algebra and trace structure algebra. Metropolis is communication-based oriented, i.e.

components are composed through the communication that connects them. Communi-

cation and computation are separated so that existing components can easily be re-used

and composed. The framework is similar to ours as it allows defining formal models

such that a system can be designed using different models of computation. Both our

framework and the Metropolis framework also allow the use of several semantic do-

mains. The difference is that the semantics of Metropolis is given by trace algebras and

trace structure algebras where as we provide a semantics of algebras, hidden algebras

and coalgebras. In Metropolis, the semantic domains must follow linear time logic.

This is not the case for our approach. Our proposal further differs from Metropolis,

as interaction occurs only through communication (traces are defined on inputs and

outputs). In our framework, relations across domains can be analyzed without specific

communication between the models in the different domains.

137

6.2 Continuous and Real-time Modeling

Hybrid Automata A hybrid automaton [33] is a special type of automata that is used

to describe both discrete and continuous behaviors of a system. It is a generalization of

timed automaton [5] that is a finite automaton augmented by a finite number of real-

valued variables that change continuously at a constant rate of 1 and that represent

clocks. The hybrid automaton is a generalization as its real-valued variable changes are

expressed by differential equations in more general ways than clocks. The discrete states

of a system are modeled as vertices of a graph and discrete dynamics is modeled by jumps

from a state to another, i.e. edges of the graph. The continuous states are modeled

as points in Rn and continuous dynamics is modeled as flow conditions in the form of

differential equations within a state. Two hybrid automata can be composed by first

deriving the timed transition systems and the time-abstract transition systems from the

hybrid automata. Then, the product of the timed transition systems and the product

of the time-abstract transition systems give the composed system. Hybrid automata

have the advantage of being an extension of the well defined formalism of automata. As

hybrid automata can induce finitary trace equivalence relations on uncountable state

spaces, the same model-checking techniques as for finite-state automata can be applied

to hybrid automata. HYTECH [57] provides a model checker for hybrid automata, while

UPPAAL [8] provides a model checker for networks of timed automata. Their limitation

is due to the restriction of their use to modeling continuous and discrete behaviors only.

As shown in the specification of a Thermostat (see Section 5.1,) our approach compares

to hybrid automata as it is possible to describe both discrete and continuous behaviors of

systems. However, we first specify the discrete behaviors disjointly from the continuous

behaviors, before composing. Since our framework is extensible and allows defining

additional models of computation, it should be interesting to investigate the use of

hybrid automaton as a particular model of computation.

Time-Triggered Model The time-triggered model of computation [39] is a model for

designing and analyzing large hard real-time systems. A hard real-time system is a

system in which a single failure in producing results on time causes the system to fail.

138

In the time-triggered model of computation, a large distributed computer system is par-

titioned into nearly autonomous subsystems with small and stable interfaces between

these subsystems. The model of computation utilizes four basic building blocks: an

interface defining the boundary between two subsystems, a communication system con-

necting interfaces, a host computer reading, processing and writing data to and from

one or more interfaces, and a transducer connecting a real-time entity (i.e. a signif-

icant state variable that changes value with time) to an interface. These blocks are

repetitively used until the large real-time system has completely been partitioned. The

most important concept is the interface that, once defined, settles the architecture of

the distributed system. The interface establishes the global interaction patterns among

all subsystems, and interface temporal and value attributes are specified despite not

knowing anything about the implementation of the hosts. The exact implementation of

host subsystems does not matter as long as the temporal and value attributes of the in-

terfaces are satisfied. The hosts can therefore be heterogeneous computer systems. This

model of computation compares to our framework as we define attributes for states (for

state-based specifications) without knowing the exact state. The time-triggered model

of computation also allows designing heterogeneous systems. By establishing how com-

ponents are to be connected regardless of the implementation of these components, a

heterogeneous system can be obtained. High-level requirements analysis is needed to

be able to capture real-time entities and the points in time images of these entities are

accessed. This approach works only for structural decomposition, i.e. where systems

are structurally decomposed into subsystems. It accounts for exchange of data between

heterogeneous components, but not how the action of one heterogeneous component can

affect another component even if there is no communication between the components.

VHDL-AMS VHDL 1076.1 [13], also known as VHDL-AMS, is a language for mixed-

signal design. It is a hardware description language that supports the description and

simulation of digital, analog and mixed analog/digital systems within one environment.

It extends the existing VHDL 1076 language, that allows only digital modeling, with

new constructs to support analog and mixed-signal modeling. With the help of analog

modeling, designers can model parts that span across technologies, for example, they

139

can model sensors and electromagnetic devices. The analog section of the language

is based on the theory of differential-algebraic equations, thus making it unnecessary

to specify exactly how a simulator must solve the equations. The language allows the

representation of unknown variables in the system of equations by introducing the new

concepts of quantity. For example, across quantities describe effort-like effects and

through quantities describe flow-like effects. Quantities can be used to represent

voltage across a resistor, heat flow, charge in a capacitor, power dissipated in a resistor,

and writing signals in time domain. Interaction between analog and digital is modeled

with the use of events on signals and rate of change of quantities. When in an analog

part of the system a quantity crosses a threshold, an event is created on a signal in the

digital part. Conversely, when an event occurs on a signal, a quantity can be made to

vary linearly between the new value of the signal and the old value. In both VHDL-

AMS and our proposal, systems that span different technologies can be modeled. Our

framework does so at a more abstract level of design.

6.3 Meta-modeling

The notion of a meta-model is well-known in the object-oriented (OO) technology. “A

meta-model is a model of models. It contains meta-object types: i.e. object types whose

instances are also object types.” [49]. A meta-model defines objects that can be instan-

tiated to obtain objects of models. The meta-model objects can therefore be considered

to be types of model objects. Since model objects can also be instantiated, there can be

many levels of types and instances of types that are also types. However, a four layer

metamodeling framework has been adopted by the community. The layers are meta-

metamodel, metamodel, model and instance. The Rosetta language that we use can be

considered as a meta-metamodel as it provides the language for describing semantics

metamodels. Semantics objects are defined and these objects can be “instantiated” to

define the ontologies (i.e. objects) of models of computation.

The MultiGraph Architecture The MultiGraph Architecture [47] is a toolkit for

creating model integrated program synthesis (MIPS) that allows experts to integrate

140

models that represent domain-specific systems through a methodology called model-

integrated computing (MIC). A MIPS environment is based on a modeling paradigm

that defines the language for modeling systems in a specific domain. The specification of

a modeling language in a metamodel is achieved by modeling the syntax and semantics

of the language. The syntax is modeled graphically as a collection of object types

with relationships between object types. The semantics are either static, represented as

invariant properties that must hold for all models obtained from the modeling language,

or dynamic, that consists of interpreting modeling constructs in the context of the model

instances. Only the static semantics may be specified in a metamodel and are in the form

of constraints on objects and relationships. These constraints are expressed in first-order

or higher-order logic so as to allow easy verification of consistency of the metamodel.

Once a metamodel is ensured consistent, model interpreters perform translations to

synthesize domain-specific MIPS environment (DSME). The Unified Modeling Language

(UML) [31] and the Object Constraint Language (OCL) are the languages used in

defining metamodels in the MultiGraph Architecture.

GME The Generic Modeling Environment (GME) [42] provides a tool that implements

the MultiGraph Architecture. GME provides a set of first class objects such as models,

atoms, connections, references and sets, with the addition of inheritance and contain-

ment relations. The metamodel describing a model of computation can be represented

by making use of these objects. GME then creates an editor (DSME) specific to that

metamodel. This editor provides the graphical objects that were defined in the meta-

model and can be used to design system models. GME also makes use of MCL, a subset

of OCL, allowing constraints to be put on a particular object. These constraints may

be used to express invariants for a particular model. GME also allows composition of

computational models. This is achieved with the use of a proxy object. The proxy

object refers to an object from another model that can be defined with a different meta-

model. Our framework does semantically what GME does graphically. Similar to our

work, GME provides a framework where metamodels are defined. However, we provide

semantics to define objects and their relationships, while GME provides graphics that

can be used to define objects and relationships. Because our framework is inherently

141

formal (based on formal semantics), it does not suffer from the problem of lack of formal

notation as does GME because of UML.

UML-Metamodeling Architecture A metamodeling architecture is proposed as an

approach to define abstract bases of agreement for interoperability of information sys-

tems [56]. The meta-metamodel layer contains definitions of modeling paradigms in

terms of a set of concepts and a set of constraints on these concepts. In the metamodel

layer, these concepts are instantiated into corresponding metamodels. For example,

the OO modeling paradigm of UML groups concepts such as objects and constraints

on these objects. The instantiation of this modeling paradigm gives rise to the UML

metamodel, which can further be extended to various application domain-specific meta-

models. These domain-specific metamodels usually instantiate meta-metamodels that

have a subsumption relationship with the meta-metamodel representing the UML mod-

eling paradigm. Instantiation consists of expressing modeling paradigms into UML.

A modeling paradigm, mp2, is subsumed by another, mp1, if each concept of mp1 is

a concept, or a generalization of a concept, of mp2, and with constraints of mp2 as

hypothesis, it is possible to prove that each constraint of mp1 holds. High level inter-

operability between two information systems is possible if their meta-metamodels have

a common consistent ancestor. The proposed approach in ensuring consistency is to

provide an unambiguous UML-based basis of agreement. This basis of agreement can

be an unambiguous common metamodel ancestor, or the integrated metamodel of two

intermediate and consistent metamodels (an intermediate metamodel is one that is be-

tween the information system metamodel and the common ancestor in the inheritance

hierarchy), or the instantiated metamodel of the closest unambiguous successors of the

meta-metamodel of the common metamodel ancestor. Integration of two metamodels

consists of taking the union of the concepts and constraints of the metamodels. The

union of the constraint sets has to be consistent. This proposed metamodeling architec-

ture is comparable to the proposed framework in its subsumption relation and in some

ways, in its analysis of interoperability. The is subsumed relation as described here

is equivalent to our notion of extension. The extension of a domain, dom1 by another

domain, dom2 (a domain can be considered to represent a metamodel) implies that the

142

objects of dom1 are available in dom2 and the constraints of dom2 logically implies the

constraints of dom1. The search for a common ancestor of metamodels is used both

in the UML metamodeling architecture and in this work. To derive an interaction be-

tween two domains, we look for a common ancestor. A major difference between the

two approaches is that we do not limit instantiation to UML.

6.4 Requirements Engineering

The requirements engineering process consists of five activities, eliciting requirements,

modeling and analyzing requirements, communicating requirements, and evolving re-

quirements [48]. The activity that is addressed in this work is the modeling and analy-

sis of requirements. Nuseibeh and Easterbrook [48] further break the modeling activity

into five categories: enterprise, data, behavioral, domain and non-functional require-

ments modeling. The initial application of our framework is specification and analysis

of systems on chip (SoC) semiconductor devices. Although each of these categories has

its importance in this domain, a gap exists in available design tools for addressing do-

main and non-functional requirements modeling. Thus, since we provide a mechanism

to specifically address this issue, our work distinguishes itself from the other techniques

found in requirements engineering.

Viewpoints Modeling The Viewpoints [20] framework allows different perspectives

of a system to be expressed using different tools. Each viewpoint provides a template

for describing a specific formalism that will be used to specify a part of the system,

and also for providing conditions that need to hold on that section of the system. The

template is divided into five fields consisting of the description of the formalism chosen,

the domain of application of the formalism, the specification of the sub-system in the

style chosen, a work plan describing how the specification is to be implemented, and

a work record giving the history of the design. The work plan further gives directives

as to consistency checks that need to hold within the viewpoint as well as with other

viewpoints so as to make the development of the whole system correct. Our work is

similar to the Viewpoints approach in that we also allow a designer the choice of models

143

of computation. We call a formal style, a model of computation. The main difference

lies in the representation of the style. We provide the same platform for all styles so

that the representation of the styles is the same. However, the semantics of each repre-

sentation differs depending on the style. Another difference is consistency actions have

to be explicitly described in Viewpoints. In our framework, consistency checks are part

of type-checking and rewriting of rules. Viewpoints tolerate inconsistencies so as to

gain flexibility when these inconsistencies do not affect global properties. We allow a

similar concept by having verification conditions that if discharged, ensure consistency

of a specification. If they cannot be proved, the undischarged conditions may be incon-

sistencies that may or may not affect system problems. However, we use classical logic,

and if a verification condition shows a contradiction (e.g. A ∧ ¬A), then whether the

contradiction affects global properties or not, the analysis fails.

Feature Engineering Feature engineering consists of describing a system by features,

with a feature being a unit of functionality [60]. The idea is to specify features as if

they were independent and then use composition operators to combine them together.

Feature interaction analysis is then applied to discover which interactions are desirable

and which ones are not. The undesirable interactions are removed by modifying the

composition operators, without changing any of the features. We define a similar concept

of interaction, but with specifications instead of features. A facet describes a view of a

system that may represent one feature or a group of features that are domain specific. A

domain can be a representation style, i.e. a model of computation, or it can represent an

engineering field, i.e. the domain contains information relevant to that field. Interaction

of facets is analyzed through interaction between domains. An interaction between

domains describes how information from one domain affects information in another.

However, an interaction can also be observed between two facets from the same domains.

An interaction in our framework differs from feature interaction in that, if two facets

contradict one another, the interaction fails, whereas with feature interaction, there is

a notion of priority that allows two contradicting features to be composed as the one

having higher priority takes precedence.

144

Aspect-Oriented Programming Aspect-Oriented Component Requirements Engi-

neering (AOCRE) [32] is proposed to address issues of reuse of components. Compo-

nents are categorized according to the “aspects” that they either provide or need. Once

the aspects that components provide or require have been identified for each component,

engineers can reason about inter-component relationships. The notion of an aspect can

be somehow compared to the notion of a facet. Aspects describe services offered and

needed by a component. A facet can be used to do the same. However, the specification

of a facet is done at a much higher level of abstraction and it is declarative. Aspects

are used on methods [38] or on components as in AOCRE where a component contains

several methods, properties and events.

6.5 Logic of Logics

Isabelle Isabelle is a generic theorem prover [50]. It provides a logical framework, i.e.

a meta-logic, that can be used to formalize several objects-logic. Higher-order logic

is chosen to provide the foundation on which new objects-logic can be defined. The

meta-logic syntax uses special symbols, ⇒,
∧

and ≡ to represent implication, universal

qualifier and equality at the meta level. The types of the meta-logic denote non-empty

sets. Several inference rules are defined, such as implication, universal quantification

and equality rules. They include introduction and elimination rules for implication

and quantification, as well as reflexivity, symmetry and transitivity for equality. The

λ-conversions are α-conversion (variable renaming), β-conversion (application of a func-

tion) and extensionality. There are also additional rules on abstraction and combination.

The representation of an object-logic in Isabelle then consists of extending the meta-

logic with types, constants and axioms. The axioms consists of expressing the rules of

the object-logic with the help of meta-level axioms, i.e. an axiom of the object-logic is

represented by making use of the operations and rules of the meta-logic. By deriving

proof techniques, such as resolution, lifting, unification and so on in the meta-logic,

theorems in different objects-logic can be proved on the same framework. Our work

compares to Isabelle in that it also provides a meta framework where different logics,

145

through the use of different institutions, can be used. The difference is that the frame-

work in Isabelle is itself logical and thus provides the advantage of facilitating the use

of an intrinsic theorem prover.

146

Chapter 7

Conclusion and Future Work

The design of a large system can be improved when different models of computation

are used in designing its subsystems [12]. This goal requires tools to support differ-

ent paradigms integrally. This dissertation has made several contributions to this end,

specifically to the definition of a framework supported by formal semantics and contain-

ing the representations of several models of computation:

1. A modular semantics framework was developed to provide support for a model-

oriented system level design language. The framework supports heterogeneous

design paradigms by integrating different semantic modules. A semantic module

is a particular institution that provides the notion of satisfaction of equations, and

specifications, by algebraic models regardless of the syntactic representation. Fur-

thermore, the chosen institutions allow the use of formal reasoning in specification

analysis. Finally, the use of semantic modules allows for an extensible framework.

2. Several units of semantics and models of computation were represented within

a particular system level design language. Models of computation are often ex-

pressed with the same unifying semantic domain (or unit of semantics). We chose

a state-based and a trace-based unifying semantic domains in addition to static.

We showed that several most common design paradigms can be expressed using

those two representations. We also showed that some models can be represented in

147

both domains and used a translation mechanism to construct one from the other.

3. Relations between specifications were defined. They include composition, trans-

lation, inclusion and import. Composition of specifications involve forming a new

specification from a number of available ones. A translation is specific to relat-

ing heterogeneous specifications that are expressed with different paradigms. An

inclusion allows forming the specification of a system with each including spec-

ification representing a sub-system or a partial view of the overall system. The

notion of import is to allow certain definitions to be available across specifications.

These relations are also very important in the analysis of interactions between sub-

systems. We demonstrated their application and usefulness in several examples,

in the composition of analog with digital design, and in the interaction between

functional and non-functional properties.

4. Composition of specifications were demonstrated in several examples. The spec-

ifications that are composed need not be represented with the same models of

computation as long as there exists a translation between the design paradigms

used for each one.

5. A methodology for domain specific modeling was proposed. Sub-systems of large

systems can be designed with the paradigms that most naturally represent each

one. The overall system is then obtained from the composition of all sub-system

specifications. Similarly, interactions between different sub-systems, or different

views, can be analyzed.

6. Reuse of specifications was demonstrated. Reuse is achieved by constructing new

specifications from existing ones by the application of any one or a composition

of the defined relations to available specifications. A translation between design

paradigms need only be defined once. A particular example was given in the

translation of a state-based specification to a trace-based one.

148

7.1 Future Work

7.1.1 Semantics Extension of Framework

In the proposed semantic framework, we use an equational institution as well as a hidden

one. They are both many sorted institutions. However, order-sorted institutions may

be more appropriate due to the subtyping system of the specification language. In an

order-sorted signature, there is an additional ordering operation defined over its sorts,

allowing subsorts to be partially ordered. The CafeOBJ [18] language supports both

many-sorted as well as order-sorted equational and hidden institutions. Indeed, they

define morphisms between a many-sorted institution and the corresponding order-sorted

one. The same transformations can be applied to provide order-sorted semantics to our

framework.

The morphism between the equational and hidden institutions used in the proposed

framework is only briefly and informally defined. The exact morphism is also formally

defined for the CafeOBJ system. A proof is therefore needed to show that the morphism

in this work does satisfy the properties as defined in CafeOBJ. In a strict sense, the

proposed framework is not complete without this formal proof.

The use of coalgebras as models for state-based as well as trace-based models has several

benefits. It provides an elegant approach as it makes clear the notion of specifying

states through observations. It also provides a common semantic ground for translations

between state-based and trace-based specifications. However, coalgebras do have some

limitations that affect the analysis of these specifications. A coalgebraic model does

not have the concept of an initial state. As a result it is more abstract than necessary.

On the other hand, having hidden algebras for state-based specifications and algebras

for trace-based ones will require defining additional morphisms between these models

to reflect specification translations. These are not necessarily institution morphisms as

there is more information involved in the morphism than just a difference in logic.

149

7.1.2 Design Methodology

Several models of computation have been represented within the formalism of a specifi-

cation language. The design methodology proposed consists of modeling subsystems in

specific models of computation and then composing them or including them to form the

overall system. A model is not complete if there are no units of measurements defined.

We have alluded to engineering domains where such units are defined in Figure 4.1,

but have not developed the notion further. Other than defining measuring units, an

engineering domain would also contain vocabulary specific to an engineering discipline.

For example, there may be wave modulation formulas defined in the RF domain.

7.1.3 Interaction Modeling

Interactions are the cause for a lot of errors in the design of large systems. As a result,

the capability of modeling interaction at a high level of abstraction provides several ben-

efits. For example, a detection of a harmful interaction early in design reduces the cost

of the overall product. Unfortunately, interaction modeling and analysis can be quite

complicated. Harmful interactions cannot always be statically identified. This disser-

tation proposes an approach through translation and composition that detects certain

interactions. The translation mainly consists of representing the same information from

different, but homomorphic, views. Furthermore, these interactions are described at a

domain level and are quite general. Other types of interactions can also be included

during design. Specialized one-to-one interaction between two specifications can be very

helpful in ensuring overall correctness of a design.

7.1.4 Automating Verification

In several examples, we have demonstrated the steps involved in the verification of

specifications. Since the institutions defined are equational (whether they are hidden

or not), equation rewriting is extensively used to verify consistency of a specification

and to prove specific properties. As a result a theorem prover can be used and the

150

verification process can be partly or fully automated. Such a theorem prover will have

to support the notion of behavioral equivalence and satisfaction, as well as coinduction

proofs [23]. A coinduction proof first consists of defining a set of behavioral operators

that generate enough experiments to fully identify all distinct states. Then, coinduction

describes the deduction that if applying these operators to any two states have the same

results, then the two states are said to be behaviorally equivalent.

151

Bibliography

[1] Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A

calculus for access control in distributed systems. ACM Transactions on

Programming Languages and Systems, 15(4):706–734, September 1993.

citeseer.nj.nec.com/abadi91calculus.html.

[2] P. Alexander. The rosetta user’s guide. In preparation.

[3] P. Alexander, D. Barton, and C. Kong. Rosetta Usage Guide. The University of

Kansas / ITTC, 2335 Irving Hill Rd, Lawrence, KS, 2000.

[4] Perry Alexander and Cindy Kong. Rosetta: Semantic support for model-centered

systems-level design. IEEE Computer, 34(11):64–70, November 2001.

[5] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

126:184–235, 1994.

[6] P. Ashenden, G. Peterson, and D. Teegarden. The System Designer’s Guide to

VHDL-AMS. Morgan Kaufmann, 2003.

[7] M. Barr and C. Wells. Category Theory for Computing Science. Prentice Hall,

second edition edition, 1996.

[8] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

UPPAAL - a tool suite for automatic verification of real-time systems, December

1996. http://www.brics.dk/RS/96/58/.

152

[9] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, Cesar Munoz, Sam Owre,

Harald Rueb, John Rushby, Vlad Rusu, Hassen Saidi, N. Shankar, Eli Singerman,

and Ashish Tiwari. An overview of SAL. In C. Michael Holloway, editor, Fifth

NASA Langley Formal Methods Workshop, Williamsburg, VA, June 2000.

http://shemesh.larc.nasa.gov/fm/Lfm2000/Proc/.

[10] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In

Proceedings 1996 IEEE Symposium on Security and Privacy, number 96-17, pages

164 – 173, May 1996.

http://citeseer.nj.nec.com/blaze96decentralized.html.

[11] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework

for simulating and prototyping heterogeneous systems. Int. Journal of Computer

Simulation, 4:155–182, April 1994.

[12] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli. Overcoming

heterophobia: Modeling concurrency in heterogeneous systems. In Proceedings of

the second International Conference on Application of Concurrency to System

Design, June 2001.

[13] Ernst Christen. The VHDL 1076.1 language for mixed-signal design. EE Times,

June 1997. Analogy, Inc.

[14] Corina Cirstea. Integrating Observations and Computations in the Specification of

State-Based, Dynamical Systems. PhD thesis, University of Oxford, 2000.

http://web.comlab.ox.ac.uk/oucl/work/corina.cirstea/thesis.html.

[15] Corina Cirstea. A coalgebraic equational approach to specifying observational

structures. Theoretical Computer Science, 280(1-2):35–68, May 2002.

[16] R. Diaconescu. Extra theory morphisms in institutions: Logical semantics for

multi-paradigm languages. Journal of Applied Categorical Structures,

6(4):427–453, 1998.

153

[17] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularization.

In G. Huet and G. Plotkin, editors, Logical Environments, pages 83–130.

Cambridge Press, 1993.

http://www-cse.ucsd.edu/users/goguen/ps/modalg.ps.gz.

[18] Razvan Diaconescu and Kokichi Futatsugi. Logical semantics of cafeOBJ.

Technical report, Japan Advanced Institute of Science and Technology, 1996.

http://www.ldl.jaist.ac.jp/cafeobj/abstracts/Logical-Semantics.html.

[19] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifications 1: Equations and

Initial Semantics. EATCS Mongraphs on Theoretical Computer Science.

Springer–Verlag, Berlin, 1985.

[20] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke.

Viewpoints: A framework for integrating multiple perspectives in system

development. International Journal of Software Engineering and Knowledge

Engineering, 2(1):31–58, March 1992. World Scientific Publishing Co.

[21] J. Goguen. Types as theories. In Proceedings of Topology and Category Teory in

Computer Science, pages 357–390. Oxford University Press, 1991.

[22] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification

and programming. Journal of the ACM, 39(1):95–146, 1992.

[23] J. Goguen, K. Lin, and G Rosu. Circular coinductive rewriting. In The Fifteenth

IEEE International Conference on Automated Software Engineering ASE’00,

pages 123–132, September 2000.

[24] J. Goguen and G. Malcom. A hidden agenda. Theoretical Computer Science,

245(1):55–101, 2000.

[25] J. Goguen, G. Malcom, and Tom Kemp. A hidden herbrand theorem: combining

the object and logic paradigms. Journal of Logic and Algebraic Programming,

51(1):1–41, April-May 2002.

154

[26] J. Goguen and G. Rosu. Hiding more of hidden algebra. In Proceedings of World

Congress on Formal Methods, volume 1709, pages 1704–1719, Toulouse,France,

August 1999. Springer Lecture Notes in Computer Science.

[27] J. Goguen and G. Rosu. Composing hidden information modules over inclusive

institutions. In From Object-Orientation to Formal Methods: Dedicated to The

Memory of Ole-Johan Dahl, number 2635 in Lecture Notes in Computer Science.

Springer-Verlag, 2001.

[28] J Goguen and J. Tardo. An Introduction to OBJ: A Language for Writing and

Testing Software Specifications, pages 170–189. IEEE Press, 1979.

[29] J. A. Goguen and R. M. Burstall. Introducing institutions. Lecture Notes in

Computer Science, 164:221–255, 1984.

[30] Joseph A. Goguen. A categorical manifesto. Mathematical Structures in

Computer Science, 1(1):49–67, 1991.

[31] The UML Group. UML Metamodel. Rational Software Corporation, Santa Clara,

CA, 1.1 edition, September 1997. http://www.rational.com.

[32] John Grundy. Aspect-oriented requirements engineering for component-based

software systems. In Proceedings of RE’99, Limerick, Ireland, June 1999. IEEE.

[33] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th

Annual IEEE Symposium on Logic in Computer Science, pages 278–292, 1996.

[34] C. A. R. Hoare. Communicating sequential processes. Communications of the

ACM, 21(8):666–77, 1978.

[35] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.

EATCS Bulletin 62, 1997. p.222-259.

[36] S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified

framework for enforcing multiple access control policies. In SIGMOD Record

(ACM Special Interest Group on Management of Data), volume 26, pages

474–485, June 1997.

155

[37] Peter Johnstone, John Power, Toru Tsujishita, Hiroshi Watanabe, and James

Worrell. An axiomatics for categories of transition systems as coalgebras. In

Proceedings of Logic in Computer Science, Indianapolis, Indiana, June 1998.

[38] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.

Technical report, Xerox Palo Alto Research Center, 1997.

[39] H. Kopetz. The time-triggered model of computation. In The 19th IEEE

Real-Time Systems Symposium (RTSS98). IEEE Computer Society, December

1998.

[40] Alexander Kurz. Coalgebras and modal logic. Lecture notes ESSLLI’01,

http://www.cwi.nl/~kurz, October 2001.

[41] F. W. Lawvere and S. H. Schanuel. Conceptual Mathematics: A first introduction

to categories. Cambridge University Press, 1997.

[42] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,

G. Nordstrom, J. Sprinkle, and P. Volgyesi. The generic modeling environment.

In In Proceedings of WISP 2001, Budapest, Hungary, May 2001.

[43] Edward A. Lee and Alberto Sangiovanni-Vincentelli. A framework for comparing

models of computation. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 17(12):1217–1229, December 1998.

[44] Edward A. Lee and Yuhong Xiong. System-level types for component-based

design. Technical report, University of California at Berkeley, February 2000.

[45] Antoni Mazurkiewicz. Introduction to trace theory (tutorial), November 1996.

[46] J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editor, Logic

Colloquim’87, pages 275–329, North-Holland, Amsterdam, 1989.

[47] Greg Nordstrom, Janos Sztipanovits, Gabor Karsai, and Akos Ledeczi.

Metamodeling - rapid design and evolution of domain-specific modeling

156

environments. In Proceedings of the IEEE Conference and Workshop on

Engineering of Computer-Based Systems, Nashville, Tennessee, March 1998.

[48] Bashar Nuseibeh and Steve Easterbrook. Requirements engineering: A roadmap.

In A.C.W. Finkelstein, editor, The Future of Software Engineering, volume

Companion Volume to the Proceedings of the 22nd International Conference on

Software Engineering, ICSE’00. IEEE Computer Society Press, 2000.

[49] James Odell. Meta-modeling. In Metamodeling in OO, OOPSLA’95 Workshop,

October 1995.

[50] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of

Automated Reasoning, 5(3):363–397, 1989.

[51] B. Pierce. Basic Category Theory for Computer Scientists. The MIT Press, 1991.

[52] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. Spl: An access control

language for security policies with complex constraints. In Proceedings Network

and Distributed System Security Symposium (NDSS’01), pages 89–107, 2001.

http://citeseer.nj.nec.com/585263.html.

[53] M. Sabetzadeh and S. Easterbrook. Analysis of inconsistency in graph-based

viewpoints: A category-theoretic approach. In 18th IEEE International

Conference on Automated Software Engineering, Montreal,Canada, October 2003.

[54] Yellamraju V. Srinivas and Richard Jüllig. Specware(tm): Formal support for

composing software. In Proceedings of the Conference on Mathematics of Program

Construction, Kloster Irsee, Germany, July 1995.

[55] Paul Syverson and Catherine Meadows. A formal language for cryptographic

protocol requirements. Designs, Codes and Cryptography, 7(1-2):27–59, January

1996.

[56] Marie-Noelle Terrasse, Marinette Savonnet, and George Becker. An

uml-metamodeling architecture for interoperability of information systems. In 4th

157

International Conference on Information Systems Modelling, Hradec nad

Moravici, Czech Republic, May 2001.

[57] Pei-Hsin Ho Thomas A. Henzinger and Howard Wong-Toi. Hytech: A model

checker for hybrid systems. Software Tools for Technology Transfer, 1:110–122,

1997.

[58] I. Van Horebeek and J. Lewi. Algebraic Specifications in Software Engineering:

An Introduction. Springer-Verlag, Berlin, 1989.

[59] Eric W. Weisstein. Mathworld: The web’s most extensive mathematics resource.

http://mathworld.wolfram.com/.

[60] Pamela Zave. Feature-oriented description, formal methods, and dfc. In Stephen

Gilmore and Mark Ryan, editors, Language Constructs for Describing Features,

pages 11–26. Springer-Verlag London Ltd, 2000/2001. Feature Integration in

Requirements Engineering.

158

