An Architecture for negotiating QoS in the Internet

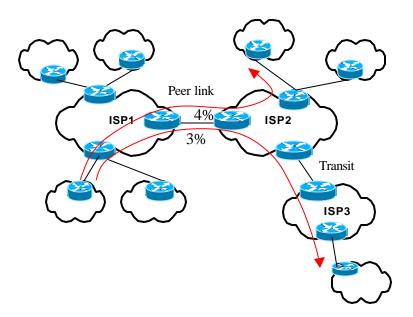
Chandrasekar Ramachandran M.S. Thesis defense

Committee:

Dr. Joseph B. Evans (chair) Dr. David W. Petr Dr. John Gauch

- Introduction
- Related Work
- Architecture
- Evaluation
- Conclusions and future work

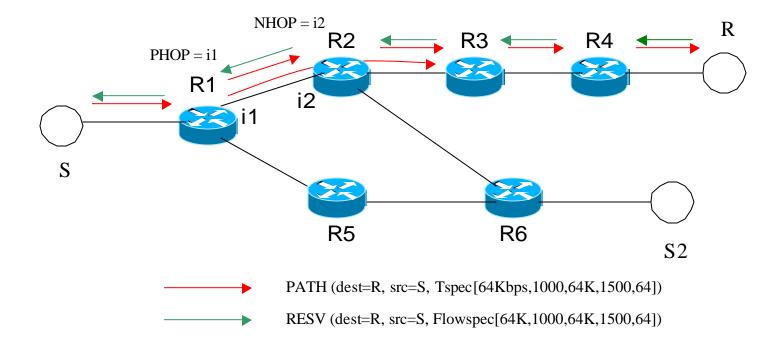
Introduction


- Over-provisioning primary method to satisfy growing demand
 - Internet Service Providers (ISPs) and enterprises provision capacity more than average utilization
 - lesser the utilization, greater the quality (delay, jitter, reliability)
- Not always true for
 - customer access links
 - ISP peering points
 - results in congestion
 - QoS needed primarily at these points

Introduction

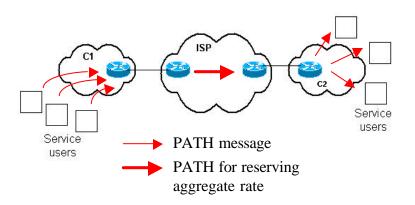
QoS provisioning problem

- Static
 - no signaling
 - ease of management
 - inefficient utilization
- dynamic
 - signaling required
 - added complexity
 - more efficient utilization
 - avoiding request rejects


Related Work

- Integrated services or IntServ and RSVP
- Aggregating RSVP-based QoS requests
- Bandwidth Broker (BB) signaling

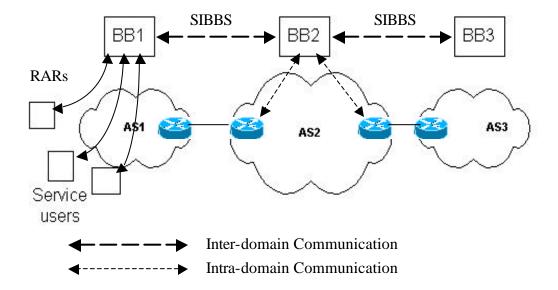
IntServ-RSVP signaling



Related Work

Aggregating RSVP-based QoS requests

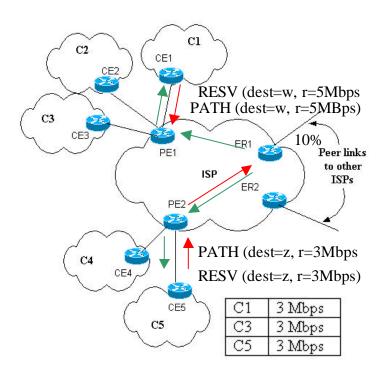
- forward individual PATH messages using a tunnel or new router alert option
- provider ingress reserves aggregate traffic volume in the core towards egress
- reduces state at ISP core, not at the edges
 - still a considerable overhead


Bandwidth Broker (BB) Signaling

- ISPs negotiate only traffic aggregates requiring specific service quality
- Simple Inter-domain Bandwidth Broker Signaling (SIBBS)
 - is lightweight since no multicast is considered
 - granularity in address blocks (CIDR prefixes) rather than individual addresses
 - request need not necessarily travel end-to-end

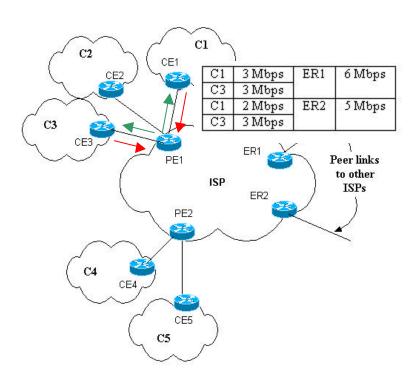
BB Signaling

Architecture



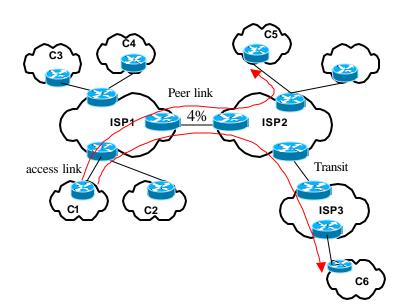
- RSVP widely available in commercial routers
- adapts automatically to routing changes
 - knowledge of routing table not necessary
- RSVP receiver proxy controlled by policy
- Creating classifiers based on source or destination address prefixes

Architecture - Case #1

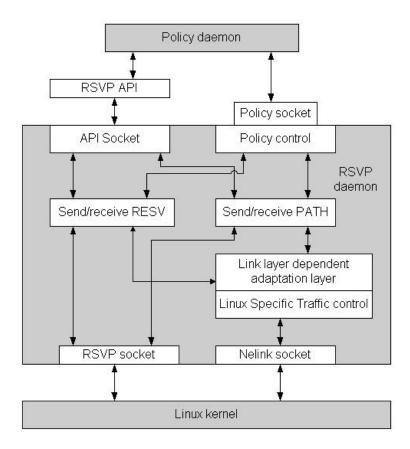

- Provider egress router:
 - sends RESV message depending on availability
 - contains access list to fairly allocate traffic rate during high utilization periods
- ingress routers only mark DSCP before forwarding packets to the core

Architecture - Case #2

- In previous scheme, egress routers need to store reservation state
- Each provider ingress allocated certain portion of peer link bandwidth
- suitable when
 - signaling is not end-to-end
 - ISP has good idea of traffic patterns

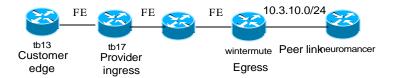

Architecture

C1 wants ISP to reserve 4% of peer link to C5 – dynamic signaling


how to reserve on access link to C5?

- dynamic
- Static
 - security?

Implementation



Evaluation

- testbed13 is the customer edge
 - sends PATH to request
 bandwidth (4MBps) to
 10.3.10.2
- egress (wintermute) sends RESV
- testbed17 is the provider ingress

RSVP dump at CE

17:01:37.718 Snd Raw PATH 10.3.10.2/0[17] 0=>eth0 PATH: Sess: 10.3.10.2/0[17] R: 30000 PHOP: <testbed13.ittc.ku.edu LIH=0> testbed13.ittc.ku.edu/0 T=[4M(15K) 4MB/s 64 1.5K] Adspec(1 hop 1.25MBW 0us 1500B, G={br!}, CL={br!})

17:01:55.259 | Rcv Raw RESV 10.3.10.2/0[17] eth0<=0 RESV: Sess: 10.3.10.2/0[17] R: 30000 NHOP: <testbed17.ittc.ku.edu LIH=0> FF testbed13.ittc.ku.edu/0 [CL T=[4M(15K) 4MB/s 64 1.5K]]

RSVP dump at egress

17:01:37.719 Rcv Raw PATH 10.3.10.2/0[17] eth0<=0 PATH: Sess: 10.3.10.2/0[17] R: 30000 PHOP: <testbed17.ittc.ku.edu/0 LIH=0>

FF Resv: Iface 5=>eth2 <10.3.10.2 LIH=5> TTD 219739 Filter testbed13.ittc.ku.edu/0 Flowspec [CL T=[4M(15K) 4MB/s 64 1.5K]] Kernel reservation: Iface 5 (10.3.10.1) Rhandle 0 Filter testbed13.ittc.ku.edu/0 Flowspec [CL T=[4M(15K) 4MB/s 64 1.5K]]

 17:01:54.745
 Snd Raw RESV
 10.3.10.2/0[17]
 0=>eth0

 RESV: Sess: 10.3.10.2/0[17]
 R: 30000
 NHOP: <wintermute.ittc.ku.edu LIH=0>

 FF
 testbed13.ittc.ku.edu/0
 [CL T=[4M(15K) 4MB/s 64 1.5K]]

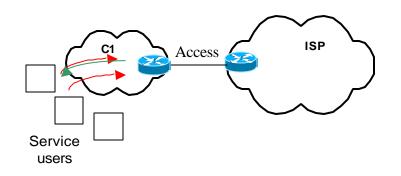
Observations

- Time taken to complete reservation : 17s 541ms
- Time taken for router to process PATH and send RESV ~ 17s
 - almost all the time taken at the router that sends RESV
- Path State Block (PSB) requires 200 bytes
- Reservation State Block (RSB) requires 124 to 192 bytes
 - if reservation is modified, old state is also stored

Evaluation

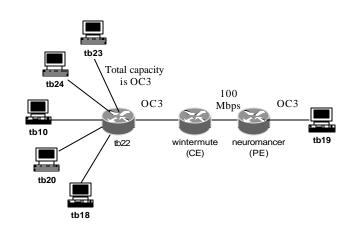
- Scalability
 - edge nodes deal only with traffic aggregates
 - state information include PSB and RSB corresponding to each request and reservation
 - O (N) where N is number of customer flows
- Management complexity
 - Access lists at the edges for policy and admission control

Evaluation...



- Management complexity
 - state information reduced if ingress routers decide to permit or deny request
 - no single point of failure
 - Inter-provider Interaction not essential due to receiver proxy

Access link

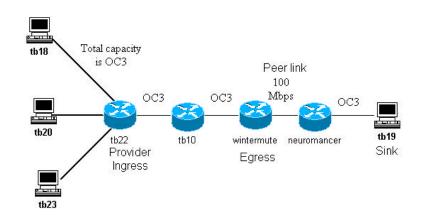

- Simplicity Vs Fairness
 - if hosts unaware of reserved rate, fairness cannot be guaranteed
- Receiver proxy for host enabled reservations

Access link (Fairness)

- Class 1
 - 10Mbps, 8 MTU sized burst
 - UDP (tb10 & tb20)
- Class 2
 - 20Mbps, 50 MTU burst
 - TCP (tb23 & tb24)
- Class 3
 - 70Mbps, no constraints
 - TCP (tb18) and all out of profile packets from other classes

Fairness Results

	Class 1 T'put (Mbps)		Class 2 T'put (Mbps)		Class 3 T'put (Mbps)
Flow#	tb10	tb20	tb21	tb23	tb18
1	2.494	2.487	4.108	4.265	11.048
2	2.428	2.423	4.313	4.339	11.061
3					11.638
4			<u> </u>		11.615
	4.922	4.910	8.421	8.064	45.362
Total	9.832		16.	485	45.362


	Class 1 T'put (Mbps)		Class 2 T'put (Mbps)		Class 3 T'put (Mbps)
Flow #					
	tb10	tb20	tb21	tb23	tb18
1	2.495	2.499	10.141	1.759	11.080
2	2.337	2.499	1.757	1.821	11.861
3	à d				11.900
4			0 00		10.082
	4.832	4.998	11.898	2.580	43.923
Total	9.830		14.478		43.923

Class 1(b=3125, t=10ms), Class 2 (b=12500, w=12500), Class 3 (b=28750, w=32000) Class 1(b=3125, t=10ms), Class 2 (b=12500, w=12500) and (b=32500, w=32500), Class3 (b=28750, w=32000)

Peering points

- Class 1
 - 10Mbps, 8 MTU sized burst
 - NetSpec UDP burst (tb20)
- Class 2
 - 20Mbps, 50 MTU burst
 - NetSpec TCP full (tb23)
- Class 3
 - 70Mbps, no constraints
 - NetSpec TCP full (tb18)

Evaluation

Flow	Class 1 T'put	Class 2 T'put	Class 3 T'put
	(Mbps)	(Mbps)	(Mbps)
1	2.499	4.907	7.428
2	2.498	4.892	7.431
3	2.498	4.894	7.150
4	2.498	4.887	7.133
Total	9.993	19.480	29.142

Flow	Class 1 T'put	Class 2 T'put	Class 3 T'put	
	(Mbps)	(Mbps)	(Mbps)	
1	2.498	4.041	8.216	
2	2.497	4.047	8.214	
3	2.497	4.060	8.208	
4	2.495	4.026	8.209	
Total	9.987	16.174	32.847	

Class1(b=3125, t=10ms), Class2 (b=22500, w=22500), class3 (b=28750, w=32000)

Class3 (b=38750, w=42000)

Flow	Class 1 T'put	Class 2 T'put	Class 3 T'put
	(Mbps)	(Mbps)	(Mbps)
1	2.491	3.004	9.114
2	2.386	3.000	9.116
3	2.438	2.984	9.068
4	2.491	2.491	9.071
Total	9.806	11.960	36.369

Class 3 (b=48750, w=52000)

Observations

- The overall performance degraded due to packet classification and queuing
 - may not be a problem with specialized router hardware
- Traffic used to test Class 2 is TCP, hence throughput reduced due to TCP back-off
 - due to two priority levels and WRR mechanism of CBQ
 - increasing share to 40Mbps but rate limiting to 20Mbps solved the problem

Conclusions

- QoS techniques needed at high utilization points of network
 - access and peering points
 - no guarantees on delay and jitter
 - introduce QoS at originating and receiving access points; if not effective, reserve at peer links
- End-to-end dynamic negotiation easier if domains travel not more than 2 transit AS

Future Work

- Measurement and analysis at a 'real' access and peer links
- Implementation supports traffic control using CBQ
 - could be extended to support WFQ in Linux

Questions ?