

Surface-Penetrating Radar for Mars Exploration

Carl Leuschen Radar Systems and Remote Sensing Laboratory The University of Kansas 2335 Irving Hill Road, Lawrence, KS 66045 Phone: (785) 864-7739, Fax: (785) 864-7789 E-mail: leuschen@rsl.ukans.edu

Why is water so important?

Mars Exploration Program Analysis Group (MEPAG). Goal - detection of water within the subsurface of the planet.

Knowledge of the 3-dimensional distribution and state of water.

- a better understanding the geological history of the planet.
- guidance in the search for evidence of past or present life.
- crucial resources for future manned exploration.

Both orbital- and lander/rover-based systems will be used.

- global coverage.
- high-resolution stratigraphy mapping.

How do we find this water? Surface-Penetrating Radar

Surface-Penetrating Radar

- Been used on earth in many environments.
- Non-intrusive, there is no direct contact with the ground surface.
- Remote operation.

Considerations

- Composition of the soil.
- Electromagnetic Attenuation.
- Penetration depth.
- Unambiguous Detection.

Surface Penetrating Radar is one of many geophysical methods that could be used. (Low-Frequency EM, Seismic, Drilling, Gravity, ...)

The University of Kansas Department of Electrical Engineering and Computer Science **25**

Research Goals

- Develop a complete SPR simulator and generate responses over a variety of geological locations.
- Construct a compact, lightweight, low-power radar system.
- Test the system over locations containing subsurface deposits of ice and water.
- Provide a description for a proposed system.

Development of a SPR OUTLINE

Simulations

Determine radar capabilities and optimize parameters.

Radar System

Prototype - off-the-shelf components and evaluation boards. evaluate antenna configurations.

Experiments

Lawrence, Kansas and Fairbanks, Alaska. Locations containing deposits of ice and water.

Signal Processing

Reduce sidelobe clutter and interpret data.

Conclusions and Future Work

Simulations

Literature shows little information of radar performance on Mars.

- Only show zero-order models.
- General plots of attenuation, clutter.

The response of a surface-penetrating radar is more complicated.

There is a need to asses radar performance using more realistic models including:

- Surface roughness (clutter).
- Volume debris.
- Fine-scale layering.

Geophysical Model Random Surface and Debris

Mars Pathfinder Image

Rocks				
Size 1 cm – 7 m				
Distribution	< 30 %			

Rough Surface Parameters					
Large Scale Small Scale					
rms height: σ		0.1 – 1 m			
corr. length: <i>l</i>	200 m – 20 km				
rms slope: s	ope: <i>s</i> < 0.02 rad 0.1 – .5 rad				

Simulations One-Dimensional Simulator

Subsurface is modeled as a layered media. For each layer:

$$k_n(f) = \omega \sqrt{\varepsilon_n(f)\mu_n(f)}$$
 EM profile

$$u_{n}(z) = A_{n}^{+} \exp(-jk_{zn}z) + A_{n}^{-} \exp(jk_{zn}z)$$
$$H(f) = \Gamma(f) = A_{0}^{+} / A_{0}^{-}$$

Transmitted Field: $P(f) = F\{p(t)\}$

Received Field: R(f) = H(f)P(f) $p(t) = F^{-1}{P(f)}$

Simulations Simple 1D Model

Two Layer Model, 20 MHz fc/5MHz BW

Link Budget for Two Layer Model

Transmit Power	Normalized	0 dB
Antenna Effective Area	4πλ	34.5 dB
Antenna Gain	dipole	0 dB
Spherical Spreading	$1/(8\pi R)^2$	-140 dB
Reflection (Surface)	${\Gamma_0}^2$	-12 dB
Total (Surface)		-117.5 dB
Transmission (Surface)	$(1 - \Gamma_0^2)^2$	-0.5 dB
Reflection (air)		-18 dB
(ice)	Γ_1^2	-14 dB
(water)		-8.5 dB
Total (air)		-124 dB
(ice)		-120 dB
(water)		-114.5 dB

Simulation Models

List of Simulation Models

- NS-1 Equatorial Site NS-2 "Shallow Seep" Site NS-3 Northern Plains Site NS-4 Simple Massive Ice Lens NS-5 Simple Near Surface Aquifer NS-6 Simple Deep Aquifer DS-1 "Shallow " Global Aquifer DS-2 "Perched and Deep" Global Aquifer P-1 Polar Basil Melting
- P-1 Polar Basil Melting
- P-2 Deep Polar Aquifer

NS-5 simple near surface aquifer

depth	Lithology	φ%	s%	fill
400km	air	100	-	-
1	eolian sediment	50	0	air
3	indurated sediment	15	0	air
5	sediment-filled basalt	50	100	ice
50	layered basalt	10	100	ice
55	eolian sediment	50	100	ice
205	layered basalt	10	100	water
225	fluvial sediment	20	100	water
1000	layered basalt	10	100	water

Simulations Summary

Dielectric Contrast	Reflection, Γ	$\frac{\sqrt{\varepsilon_1} - \sqrt{\varepsilon_2}}{\sqrt{\varepsilon_1} + \sqrt{\varepsilon_2}}$
Ohmic Loss	Attenuation, α (Np/m)	$\frac{\pi f}{v}\delta$
Fine Scale Layering*	Attenuation/Clutter	$\propto (l/\lambda)^n$
Volume Scattering	Attenuation, δ Clutter, σ	$\propto (a/\lambda)^3 \ \pi a^2 9 (2\pi a/\lambda)^4$
Surface Roughness**	Reflection/Clutter, $A\sigma^0$	$2\pi Hc\tau \frac{\left \Gamma\right ^2 \exp\left(-ct/2Hs^2\right)}{2s^2}$

* general trend, no equation.

** For an orbital system where H is much greater than the penetration depth.

Radar System

Commercial GPRs are heavy, high-power, "impulse"-type radar.

- Not a real impulse, antennas limit bandwidth.
- Oscilloscope sampling techniques.
- Difficulties concerning timing precision.

Develop a compact, light-weight, low-power system.

- Chirp compression.
- Connectorized components and evaluation boards.
- Wide bandwidth.
- Deep penetration.
- Fine, near-surface resolution.

Radar System

<u>Radar Parameters</u>			
Modulation	Pulsed, FMCW, Chirp		
Frequency	5 – 120 MHz		
Sweep Time (Pulse width)	Adjustable		
Power Output	10 dBm		
ADC Resolution, Dynamic Range	16 bit		
ADC Sampling Rate	2.5 MSPS		
Size	$7.5 \times 15 \times 12$ cm		
Weight	< 5 lbs.		

Radar System Antenna Subsystems

Antenna on a dielectric half-space

Increase effective length. Lower frequency response. Increase bandwidth (lossy ground).

17 cm bowtie

Frequency reduction: (0.93/1.2) = 0.775. Sand permittivity (dielectric probe): 2.4-2.65. Effective permittivity: $(1/0.775)^2 = 1.66$.

2.5 m bowtie

Shows greater than 3 octaves of bandwidth.

Radar System Antenna Subsystems

Transmit Antenna

Radiate power into the ground. Must match for efficient power transfer.

Receive Antenna

Measure the reflected electric field. No need for a broadband match. Effective length: $V_{oc} = \mathbf{E} \cdot \mathbf{h}$

Bowtie Transmit, Dipole Receive

Experiments Delta Junction, Alaska

Estimated Subsurface Structure.

depth	Lithology	φ%	s%	fill
1 m	silt-thaw (eolian deposit)	30	70	water
2 m	silt-frozen (eolian deposit)	20	80	ice
-	gravel (out wash)	30	0	

Delta Junction, Alaska Simulated Responses

6 m position.				
Depth	Lithology	٤ _r	loss	
1.2 m	silt-thaw	18	0.02	
2 m	silt-frozen	9	0.001	
-	gravel	3	_	

20 m position.

Depth	Lithology	٤ _r	loss
0.5 m	silt-thaw	18	0.02
2.4 m	silt-frozen	9	0.001
_	gravel	3	_

The University of Kansas Department of Electrical Engineering and Computer Science 25

Signal Processing

Signal is a composition of surface and subsurface layers. For a FM-CW radar (linear chirp),

$$S(f_T) = A_0 \cos(2\pi f_T \tau_0 + \phi_0) + \sum_{n>0} A_n \cos(2\pi f_T \tau_n + \phi_n) \longrightarrow$$

In general, response is convolution,

$$s(t) = \int r(\tau) \cdot u(t-\tau) d\tau = r(t) \otimes u(t) - \cdots$$

r(t): reflection profile \Leftarrow this is what we want to know. u(t): bandlimited radar waveform (sin(x)/x).

Sidelobes may mask weaker reflections.

S(f)

IFFT

Signal Processing: Reconstruction/Reflection Profile

Reconstruction of the original response – add up all the components. Frequency domain:

$$S(f_T) = \sum_n \hat{A}_n \cos\left(2\pi f_T \hat{\tau}_n + \hat{\phi}_n\right) + S_e(f_T)$$

Time domain:

$$s(t) = \sum_{n} \hat{A}_{n} e^{j\hat{\phi}_{n}} u(t - \hat{\tau}_{n}) + s_{e}(t) \quad \text{similar forms}$$

As a convolution:
$$s(t) = \left[\sum_{n} \hat{A}_{n} e^{j\hat{\phi}_{n}} \delta(t - \hat{\tau}_{n})\right] \otimes u(t) + s_{e}(t) \iff s(t) = \int r(\tau) \cdot u(t - \tau) d\tau = r(t) \otimes u(t)$$

Estimation of the reflection profile.

$$\hat{r}(t) = \sum_{n} \hat{A}_{n} e^{j\hat{\phi}_{n}} \delta(t - \hat{\tau}_{n})$$

The University of Kansas Department of Electrical Engineering and Computer Science

RSL

Signal Processing Example: SPR Data (Pingo Site)

Conclusions and Future Work

Simulations

Accomplishments

1. Developed a detailed simulator to asses radar performance including scattering off rough surfaces, volume debris, and layering.

2. Generated radar responses of a wide variety of geological locations.

Conclusions

1. The performance of a SPR on Mars is dependent on a number of factors that are unknown.

2. Lower frequencies will ensure deeper penetration and increase the probability of detecting water/ice

3. Unambiguous detection is difficult using reflectivity data alone.

System/Experiments

Accomplishments

1. Developed a compact, lightweight, low-power prototype system.

2. Tested the system over locations containing subsurface ice and water.

3. Showed similar performance compared to a commercial "impulse"-type system.

Conclusions

1. Frequency modulation (stepped, swept FM) can be used in a low-frequency GPR and produce similar results to a heavy "impulse"-type system.

