Using Genetic Algorithms to Discover Selection Criteria for Resolving Contradictory Solutions Returned by CBR

Brent Stephens Master's Oral Defense May 20, 2005

Case Based Reasoning

- Problem Solving Method

 Results easily understood by users
- Direct application of experience to new problems
 - Case Base
 - Similarity Metric
 - Adaptation

CBR for Classification

- Solution is classification
- Simpler version
- No adaptation
- Learning by retention

Domain

- Real world domains
 - Corporate database
 - Large and Redundant
 - Unstructured and Error prone
- BNSF Railroad
 - Shipping data
 - Correcting unclassified cases by assigning a billing code
 - User Errors
 - Domain Shifts
 - Cyclical billing
 - Existing Rule Based System was inadequate

CBR Properties

• Weighted matching

• Minimum normalized similarity threshold

- Resulting case set
 - All solutions match
 - Contradictory solutions returned

Limitation of CBR in this Domain

- Contradictory solutions retrieved
 - No method available from experts to select correct solution
- Options
 - Maintenance of Case Base
 - Eliminate redundant or contradictory solutions
 - Expensive because of the volume of new cases
 - May require lots of work by operator
 - Improve Similarity Metric
 - Inaccuracy or incompleteness of expert matching methods
- Experts recommended looking at other qualities of set of cases retrieved

Problem Significance

- CBR ability to deal with contradictory solution
- Better apply CBR to real world domains
- Better emulate expert knowledge that is difficult to apply
- Replace workers in doing tedious, boring work
- Unique in that it applies properties of the returned cases rather than features

Solution

• Selection criteria for contradictory cases

• Basic formulas used to derive solution

• Use Genetic Algorithms to learn formulas

Implementation

- Use CBR to retrieve cases
 - Features and weights given by experts
- Frequency and recency
 - Features of returned cases recommended by experts but no method of applying them is given
- Discover formulas to determine significance of both
- Use Genetic Algorithms to determine formulas

Frequency and Recency

• Frequency

- Percentage of cases with a common solution

- Recency
 - How long before new case did retrieved case occur
 - Maximum age is learned by GA

Scoring

- Frequency or recency score fed into formula
- Result multiplied by CBR score
- Scores for a solution are summed within formula
- Total scores for formula are normalized
- Highest scoring solution is selected

Example Formulas

• Step

$$\left|\frac{\text{frequency}}{\frac{1}{\alpha}}\right| \times \beta$$

• Exponential $\alpha \times e^{-(\beta(1-recency))} + \gamma$

• Linear $\alpha \times frequency - \beta$

Additional Formulas

• Most Recent

• Most Frequent

• K-Nearest Neighbor

Combining Scores

- Weighting for each formula learned by GA
- Score generated for each solution by each formula
- Scores normalized
- Final score for a solution generated by summing weighted formula scores

GA Properties

- Generation Size 1000
- Number of generations -1000
- Mutation 1%
- Crossover Mating 99%
- Succeeding generation creation
- Variable Representations

Formula Learning Procedure

- Training set 10 sets of 50 cases
 - Chromosome converted to variables
 - Set of training cases evaluated
 - Fitness formula applied to results
 - Next generation created
 - Switch to next training set
- Repeat for all 6 formulas
- Repeat at each minimum similarity

Fitness Formulas

• Fitness Formula 1

- Percentage of cases correctly classified

- Fitness Formula 2
 - Percentage of cases correctly classified
 - Difference in score when correctly classified
 - Difference in score when incorrectly classified

Resultant Formula Example

- Fitness Formula 2
- Minimum Similarity .98
- Step function for frequency - *cutoff date* =16

$$= \left[\frac{recency}{\frac{1}{7}}\right] \times 0.02$$

Combination weight learning

- After formula learning is completed
- Same fitness formulas used

$$=\omega_1f_1+\omega_2f_2+\omega_3f_3+\ldots$$

Testing procedure

- Test set 500 cases
- CBR Matching
- Formulas Evaluated
- Formula scores combined
- Correctness checked for individuals formulas and combined formulas

Formula 1 Classification Rate

Formula 2 Classification Rate

Percentage Correct Fitness Formula 2

Fitness Formula Accuracy

Comparison of Fitness Formulas for Combinations

Overall Classification Rate

Overall Classification Rates

Meaning

• GA trained formulas show significant improvement over traditional selection methods

• Combined solution outperformed individual formulas

Conclusions

• Improve performance of CBR using GAs

• Selection of features and formulas appropriate to domain

• Fitness method significantly affects performance

Conclusions

• Combining results improved performance

• Applicable in domains where expert knowledge is incomplete or inaccurate