
SPARTACAS - Automating Component Adaptation for Reuse

by

Brandon W. Morel

BSCoE, University of Kansas, 2001

Thesis submitted to the Department of Electrical Engineering and Computer Science and

the Faculty of the Graduate School of the University of Kansas in partial ful�llment of the

requirements for the degree of Master of Science.

Chairman, Dr. Perrry Alexander

Committee Member, Dr. Susan Gauch

Committee Memeber, Dr. Costas Tsatsoulis

Abstract

A mounting challenge for software designers is to �nd eÆcient and cost-e�ective implementations for

large and complex software problems. Many see software reuse as an intuitive approach, however

the cost of reuse tends to outweigh the potential bene�ts. The costs of software reuse include

establishing and maintaining a library of reusable components, searching for applicable components

to be reused in a design, as well as adapting components toward a solution. This thesis introduces

SPARTACAS, a framework for automating speci�cation-based component retrieval and adaptation.

Using speci�cations, instead of implementations, allows automated theorem-provers to formally

verify logical relationships between components and problems. Logical relationships are used to

evaluate the feasibility of reusing the implementations of components to implement a problem.

Retrieving a component that is a complete match to a problem is rare, it is more common to

retrieve a component that partially satis�es the requirements of a problem. Such components have

to be adapted. Rather than adapting components at the code level, SPARTACAS adapts the

behavior of partial matches by imposing interactions with other components in an architecture.

Based on the unsatis�ed constraints of the problem, a sub-problem is synthesized that speci�es

the missing functionality required to complete the problem; the sub-problem is used to query the

library for components to adapt the partial match. The framework was implemented and evaluated

empirically, the results suggest that automated adaptation using architectures successfully promotes

software reuse, and hierarchically organizes a solution to a design problem.

ii

Acknowledgments

I regret that this section only returns modest acknowledgments to those who have contributed

encouragement, ideas, and opinions to my research and study over the last two years.

I can not overstate my gratitude to my advisor, Dr. Perry Alexander, for his guidance, support,

and sound advice. It has been an extraordinary experience to work for him on a project that

provided me with such challenge, stress, intrigue, and reward. I also wish to thank Dr. Susan

Gauch and Dr. Costas Tsatsoulis for participating on my thesis committee and their educational

teachings on related issues.

I am indebted to the brilliant people who researched speci�cation-based component retrieval

before me, speci�cally John Penix and Bernd Fischer, for my achievements are a result of standing

on their shoulders. Thanks to EDAptive Computing and NASA for their sponsorship and e�ort on

the research project.

I owe a great deal to my many student colleagues for providing a environment in which to

learn and grow. Thanks to the members and alumni of the Systems Level Design Group: Srinivas

Akkipeddi, Satyanarayana Kakarlamudi, Garrin Kimmell, Ed Komp, Cindy Kong, David Schon-

berger, Jesse Stanley, Zhongjun Wang, Justin Ward, and Kalpesh Zinjuwadia for the enjoyable

research experience. Thanks to Shyang Tan who o�ered little or no technical assistance, but was

entertaining and made me laugh everyday. I am grateful to Adam Gossman who has been there

for me since day one, and to Samata Pokharel who has taught me the most about myself. My

special thanks to my biggest supporters, my cheer-leading section, my family. They have given me

iii

so much love and support to which I'm overwhelmingly thankful. I must also thank the professors,

secretaries, librarians, sta�, and students at the University of Kansas for providing a wonderful

experience.

iv

\Thou shalt study thy libraries and strive not to reinvent them without cause, that thy code may

be short and readable and thy days pleasant and productive.\

- Henry Spencer

\Considering the current sad state of our computer programs, software development is clearly still

a black art, and cannot yet be called an engineering discipline.\

- President Bill Clinton

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 3

1.3 Proposed Solution . 3

1.4 Thesis Outline . 5

2 Background 7

2.1 Software Component Representation for Reuse . 7

2.2 Formal Speci�cations . 8

2.3 Component Retrieval . 9

2.3.1 Feature-based Retrieval . 9

2.3.2 Signature-based Retrieval . 12

2.3.3 Speci�cation-based Retrieval . 12

2.4 Architecture Speci�cation . 14

3 Component Reuse Framework 16

3.1 Component Retrieval Framework . 17

3.2 Component Adaptation Framework . 19

vi

3.2.1 Veri�cation Framework . 20

4 Adaptation Architecture Theories 22

4.1 Sequential Architecture . 24

4.2 Alternative Architecture . 25

4.3 Parallel Architecture . 26

5 Port Connection Methods 29

5.1 Connection Trade-o�s . 32

6 Automated Component Adaptation 34

6.1 Sequential Adaptation . 35

6.1.1 Post-match Driven Synthesis . 35

6.2 Alternative Adaptation . 39

6.3 Parallel Adaptation . 41

6.4 Partial Connection Adaptation . 45

7 Examples 52

7.1 Record Find Example . 52

7.2 Flip Flop Example . 53

8 Evaluation 57

8.1 Evaluation Library and Query Set . 59

8.2 Empirical Results . 59

8.3 Implementation Platform . 62

9 Future Work and Limitations 64

vii

10 Related Work 66

10.1 Speci�cation-based Retrieval . 66

10.2 Component Adaptation . 67

10.3 Synthesizing, Slicing, and Architecting for Reuse . 68

11 Conclusions 70

viii

List of Figures

2.1 Speci�cation structure in Rosetta . 9

2.2 Feature-based retrieval framework . 10

2.3 Speci�cation match lattice . 14

2.4 Architecture theory instantiation . 15

3.1 General component reuse framework . 17

3.2 Component retrieval framework . 17

3.3 Component adaptation framework . 19

3.4 Component veri�cation framework . 21

4.1 Sequential architecture theory . 24

4.2 Alternative architecture theory . 27

4.3 Parallel architecture theory . 28

5.1 Problem speci�cation of a simple addition problem 30

5.2 Solution to problem P1 using the sequential architecture 31

6.1 Post-match driven sequential synthesis inference tree 36

6.2 Problem speci�cation of a simple math problem . 37

6.3 Small library of math components . 46

ix

6.4 Post-match driven synthesis to problem P2 using component pInc and the sequential

architecture . 47

6.5 Pre-match driven sequential synthesis inference tree 47

6.6 Pre-match driven synthesis to problem P2 using component absVal and the sequential

architecture . 48

6.7 Synthesis to problem P2 and component pInc using the alternative architecture . . . 48

6.8 Alternative synthesis inference tree . 49

6.9 Problem speci�cation of comparison block math problem 49

6.10 Rosetta speci�cation slicing algorithm . 49

6.11 Smallest criterion partition/smallest slice partition algorithm 50

6.12 Solutions to problem P2 using the sequential architecture (left) and the alternative

architecture (right) . 50

6.13 Solution to problem P6 using the parallel architecture 51

6.14 Pre-match driven synthesis to problem P1 using component negate and the sequential

architecture . 51

7.1 Classical record �nd problem . 52

7.2 Post-match driven synthesis to �nd using component binary search and the sequential

architecture . 54

7.3 Search space for the �nd problem . 55

7.4 Flip op problem . 55

7.5 Search space for the ip-op problem . 56

8.1 Calculating recall example using components a, b, and c 58

8.2 Search depth e�ects on performance (� = 1-1) . 61

x

8.3 Port connection e�ects on performance . 62

xi

List of Tables

4.1 Available adaptation architecture tactics . 23

5.1 Maximum instantiation combinations per port connection method 32

8.1 Empirical results . 60

xii

Chapter 1

Introduction

1.1 Motivation

Reuse is an established practice and considered a sound engineering principle in many design

�elds. Some engineering disciplines, such as hardware engineering, have seen the proliferation

of commercial-o�-the-shelf components that can be used to successfully construct progressively

complex systems. As software systems continue to increase in complexity and size, there is a

greater demand to design and deploy these systems as safely and quickly as possible while keeping

costs down. Reuse potentially o�ers many attractive bene�ts to the software design cycle, including

the ability to: reduce errors early in system design, increase the productivity of software engineers,

and increase the quality and reliability of the software produced. However, the bene�ts of software

reuse must outweigh its costs for it to become widespread. These costs include the e�ort to create

and maintain a library of reusable components, and the costs associated with retrieving, adapting,

and integrating reusable components into an implementation to a design problem.

Software reuse [19, 35] requires an initial investment to collect a library of reusable software

components. These components may come from a variety of sources such as individuals, orga-

1

nizations, and the World-Wide-Web. Software reuse can also be applied to most objects in the

software life-cycle: concept designs, requirements, speci�cations, code, and even test plans. Several

works have focused on solving the management, maintenance, organization, and representation of

software libraries and repositories in which these objects are stored and retrieved [36, 28, 7].

In order for a component to be reused, the component has to be located. Once a library of

components has been established, a user must spend the time browsing through the library until

a component that matches, or closely approximates, the requirements of the problem. Even if

the components in the library are somehow indexed, browsing through thousands of components

is not feasible. It must be more eÆcient to locate a matching component than it is to design it.

Automated component retrieval has long been an area of research, generating a range of retrieval

systems and frameworks at various levels of software abstraction [27, 37, 12, 24, 49, 56].

Prior work has shown to considerable improve the eÆciency in retrieving components that match

a particular problem. While successful experiments are becoming more common, the practice of

software reuse has been slow to realize the potentials claimed by software reuse advocates. Several

works [20, 33] attribute the unful�lled promise to various technical and non-technical reasons. While

non-technical issues are unavoidable, one technical obstacle still remains to be resolved, namely

automating the adaptation of components. One would not expect to always �nd a component that is

a perfect match to a design problem. Generally there is a higher probability of �nding a component

that almost matches the object the user is searching for, rather than �nding a complete match.

These \partial matches" require modi�cation or adaptation. Although automating adaptation has

been an area of research in case-based reasoning and knowledge-based systems [58, 34, 52], few

experiments have attempted to address the issue of software adaptation [46, 25].

Safely and correctly modifying software code is not a trivial task [38], in some instances adapting

complex software code may outweigh the cost of producing the software from scratch. Penix [46, 45]

2

proposed adapting software components using adaptation architectures. Adaptation architectures

modify the behavior of a software component by imposing interactions with other components.

The components in the architecture adjust the input and output values of the partial match such

that for all legal inputs of the problem, the architecture generates the valid outputs. Not only

do adaptation architectures increase the prospects of reuse, they also provide an organizational

hierarchy in the implementation to the design problem.

1.2 Problem Statement

Most software reuse frameworks that have been developed retrieve components from a library

that satisfy the constraints speci�ed by a design problem. One can not always expect a library

to contain a component that satis�es a large or complex problem. It is more feasible to expect

that a component exists in the library that partially satis�es the constraints of a design problem.

This work addresses this issue by adapting partially matching components to satisfy a design

problem. To decrease the costs to the user, the methodology must be fully automated and ideally

produce accurate and precise solutions in a timely manner. It also must be e�ective across multiple

component libraries to be considered a general purpose approach.

1.3 Proposed Solution

Adapting software to meet the needs of a software programmer occurs in the present-day software

engineering design cycle, however, the methods used are often based on ad-hoc techniques that

have no formal basis. Using these methods has a profound a�ect on the correctness and security of

the component and its role within a larger system. Current adaptation techniques depend on the

software engineer's knowledge of the component and its overall interaction in a system, limiting its

3

use.

We address the problem of adaptation in this work by developing a framework for reuse called

SPeci�cation-based Architecture and Retrieval Techniques for Automating Component Adaptation

and Synthesis. SPARTACAS uses a layered component retrieval engine and formal architectural

adaptation tactics for software component reuse. Based on the unsatis�ed constraints of a partially

matching component, the missing functionality required to solve the problem is synthesized in a

sub-problem. Using formal methods allows for a rigorous technique to mathematically verify that

the adaptation conforms to the requirements of the problem, thus preventing errors and ambiguities

in the adaptation process.

SPARTACAS uses an automated theorem-prover to automate the retrieval of exact and partial

matches. An adaptation architecture theory is a speci�cation that formally speci�es the inter-

action of sub-components and the relationship between the functionality of the sub-components

and the functionality of the system. Using this relationship, the functionality of the system and

the functionality of a partially matched component can be used to formally de�ne a sub-problem.

The sub-problem represents the required functionality to adapt the partially matched component.

The sub-problem is automatically synthesized and used to re-search the library for components for

adaptation. If a component is found for adaptation, the adaptation architecture theory is instanti-

ated with the partial match and the adapting component, resulting in an architectural solution to

the design problem.

The objective of this thesis is to de�ne and evaluate the SPARTACAS reuse and adaptation

framework. Components are represented at the speci�cation-level using Rosetta [2]. Using speci�ca-

tions over implementation allows for a formal representation that allows automation of the retrieval,

synthesis, and adaptation processes. The goal will be to show that the automated adaptation pro-

cess in SPARTACAS leads to a reliable design using existing components, thereby reducing the

4

time to implement and test a solution.

1.4 Thesis Outline

Chapter 2 gives a brief introduction on the background theory on formal speci�cations, compo-

nent retrieval, component adaptation, and system architectures. The chapter motivates the use

of formal speci�cations as a representation of software components. It outlines some of the auto-

mated retrieval techniques used at the speci�cation level, such as feature-based, signature-based,

and speci�cation-based retrieval engines. The chapter goes on to describe architecture speci�ca-

tions and how they can be used for adaptation. Chapter 3 presents the SPARTACAS framework.

Each module in the framework is introduced and the module's role within the reuse framework is

detailed. Chapter 4 describes three adaptation architecture theories: sequential, parallel, and alter-

native. These theories are formally speci�ed and their similarities and di�erences are described. To

adapt the behavior of a partial match, the input and output values must be adjusted to satisfy the

requirements of the problem. A partially matching component and components to adapt its behav-

ior are interconnected using port connections. The methods for port connection and its impact on

retrieval is the theme of chapter 5. Chapter 6 elaborates on the adaptation of components toward

a solution to a problem. Speci�cally, the tactics used and the de�nitions for sub-problem synthesis

will be presented. The chapter shows that the behavior of the problem being solved is properly

maintained during each adaptation step, implying that the architectural solution generated is cor-

rect by composition. Two adaptation examples are explained in chapter 7 and the SPARTACAS

framework is evaluated in chapter 8. The chapter draws on empirical results to show that the

framework increases the prospects of reuse. Chapter 9 summarizes the future work and limitations

of the current framework. Related work is compared in chapter 10, followed by a summary of the

5

results and contributions of this work in chapter 11.

6

Chapter 2

Background

2.1 Software Component Representation for Reuse

Numerous reuse frameworks have been developed at almost every level of software design, rang-

ing from the high-level requirements level [24] to the low-level execution level [27]. Frakes and

Gandel [18] have outlined some of the important issues in selecting a reuse representation. The

representation should be consistent in the way all designers interpret, create, and understand a

software design component in the reuse framework. The representation is also dependent on the s-

cope (i.e. domain-speci�c, level-speci�c) of the reuse framework. Issues, such as the expressiveness,

granularity, integrity, complexity, and stability of the representation also needs to be considered.

Although each abstraction level certainly has its advantages, using formal speci�cations over

code to represent software allows a designer to precisely model, verify, and analyze software com-

ponents. A formal speci�cation [61] states the behavior of a component without stating the im-

plementation details. The mathematical foundations of formal speci�cations are bene�cial when

designing complex systems. Formal speci�cation tools, e.g. theorem-provers and model-checkers,

can be used to detect errors and verify properties of high-level systems quickly and eÆciently.

7

Modeling software components at the speci�cation level o�ers greater integrity, stability, consis-

tency, and understand-ability. Formal speci�cations also o�ers greater exibility in the complexity,

expressiveness, and granularity of the systems that can be represented.

2.2 Formal Speci�cations

Each component is described by a formal speci�cation [61] that states the behavior of a component

without stating the implementation details. Using formal speci�cations over implementations al-

low automated theorem-provers to verify match conditions between two components. The formal

component speci�cations use a simple axiomatic structure [26, 29, 57]:

8d 2 D; 9r 2 RjI(d)) O(d; r)

D and R are the domain and range respectively. The domain represents the input values to

the component and the range represents the output values of the component. I is a set of pre-

conditions that de�ne the legal inputs to the component. The pre-conditions constrain the domain

to the values that have a de�ned output. O is a set of post-conditions that de�ne the feasible outputs

for each legal input based on a D�R relation. If the pre-conditions hold then the component will

end in a state such that the post-conditions are true. If the pre-conditions do not hold then there

are no guarantees that the post-conditions will hold, however, termination is assumed in all cases.

Component speci�cations are written in Rosetta [1], a systems level design language for modeling

heterogeneous systems. A Rosetta facet describes the requirements or behavior of a particular

aspect of a system or component. Facet parameters declare the domain (input typed variable

declarations) and range (output typed variable declarations) of the component. A facet operates

in a declared domain, which de�nes the vocabulary of semantics available to the facet. Facet term

labels starting with pre and post are used to de�ne the pre- and post-conditions over the domain

8

and range respectively. Facet term labels that start with arch will be used to de�ne structural

component speci�cations and structural solutions to problems. The structure of the speci�cations

in Rosetta is shown in �gure 2.1.

package componentName() :: domainName is
export all;

begin

facet componentName(parameterList) :: domainName is
export all;

begin

termLabel: term;
...

end facet componentName

end package componentName

Figure 2.1: Speci�cation structure in Rosetta

2.3 Component Retrieval

A number of works have applied formal speci�cations to automated reuse [9, 31, 32, 13, 53, 47] with

attractive results. Formal speci�cations allow formal veri�cation tools to verify logical relationships

between speci�cations. The relationships are used to determine the degree to which a component

can be reused to implement the problem.

2.3.1 Feature-based Retrieval

One of the simplest and most common approaches to component retrieval is to classify a component

by assigning it keywords. Components are retrieved for problem queries using a Boolean relationship

between the keywords of the component and the keywords of the problem. The components that are

retrieved are in the same \class" as the problem. The feature-based retrieval scheme in �gure 2.2

represents the framework to automate the classi�cation and retrieval of speci�cations using domain-

speci�c features. The framework is analogous to classifying components with keywords, and retrieval

9

based on keyword similarity between a component and the problem query.

ENGINE
RETRIEVAL

FEATURE−BASED

FEATUREBASE
DOMAIN

FEATURES

CLASSIFICATION
FEATURE
DOMAIN Feature Set

FEATURE−BASED RETRIEVAL

Specification
Problem

Components
Similar

Figure 2.2: Feature-based retrieval framework

Feature Classi�cation

The feature-based retrieval framework contains a collection of domain-dependent features [48],

which are a set of theorems or predicates that capture some characteristic or trait within a speci�c

domain. The following is an example of a feature that �lters elements from a list:

FILTER(list; element) � 9x; y : listj8z : elementj(z 2 y) z 2 x)^ (x 2 D) ^ (y 2 R)

A speci�cation is assigned a domain feature if the feature can be logically derived from the

speci�cation. Although a domain expert is required to develop and specify the set of domain-speci�c

feature de�nitions, a theorem-prover can be used to automate the process of classifying [23, 50, 48]

components using domain-speci�c features. A feature set, see de�nition 2.3.1, is assigned to a

component in the library and stored in a database called a featurebase. Classi�cation of component

10

speci�cations is performed o�-line, only classi�cation of problem speci�cations is perform during

retrieval.

De�nition 2.3.1 A feature set FS is a collection of features fi with predicates �i that can be

assigned to a component C

FS(C) = ffikIC ^OC) �ig

Feature-based Filter

A feature-based retrieval engine [48] �lters out all of the components that do not have the same

feature classi�cation. Components that are retrieved through feature-based matching is based on

a similarity threshold. Similarity between a component C and problem P is based on the number

of features they have in common:

Similarityfeature � (C; P) =
size(Cfeatureset\Pfeatureset)
size(Cfeatureset[Pfeatureset)

Once the library of components has been classi�ed with features, the bene�t of feature matching

is quick and eÆcient retrieval of components to problems with the same classi�cation. Feature

matching is a necessary, but not suÆcient, match condition: matching features are necessary for

a component to satisfy a problem, but the components retrieved are not guaranteed to satisfy the

problem. For instance, a problem may specify low-pass �ltering of digital signals, which would

be classi�ed as a FILTER. The problem query may retrieve a component that performs high-pass

�ltering of digital signals. The component has the same classi�cation, but does not completely

satisfy the problem. Feature-based matching is generally used to restrict the search of a large

library of components to a few components that belong in the same class.

11

2.3.2 Signature-based Retrieval

A signature represents the collection of domain and range types of a unit of software; it does not

contain any semantic information. A signature-based retrieval engine [62] �lters out components

that do not have compatible signatures. The signature-matching process is simply described as type

matching, where the input and output types of a component must match the input and output

types of a problem respectively. A type is de�ned as is either a type variable in the set of simple

types or a type constructor over the simple types. The generic signature matching is described in

de�nition 2.3.3.

De�nition 2.3.2 Type equality is de�ned as � =� �
0 i� they are lexically identical simple type vari-

ables or for type constructors tc and tc', � = tc(�1; :::; �n); �
0 = tc

0(� 01; :::; �
0

n); tc = tc
0
; and 81 �

i � n; �i = ��
0

i

De�nition 2.3.3 Signature match condition M over the component signature of types �C and a

problem signature of types �C is de�ned as M(�C, �P) = 9 a transformation function T and match

relation R such that T(�C) R T(�P)

The transformation functions include a variety of operations over the sequence of types, such as

reordering, substitution, and currying [62]. The relation R can include equality or relaxed matches,

such as generalization or specialization [62].

2.3.3 Speci�cation-based Retrieval

A speci�cation-based retrieval engine performs speci�cation matching [31]. The set of pre-conditions

(I) and the set of post-conditions (O) are used to verify that a logical relationship holds using

the semantics of a component (C) and problem (P). The speci�cation matching condition for a

component to satisfy a problem is given in the following two conditions:

12

8d : DP k IP (d)) IC(d)

8d : DP ; r : RP k IP (d)^OC(d; r)) OP (d; r)

The �rst condition states that any legal input to the problem must be a legal input to the

component. The component speci�cation (i.e. IC) OC) assures that, given a legal input, an

output will be produced. The second condition states that all the feasible outputs of the component

for legal problem inputs are valid outputs of the problem. In case of an illegal input, the behavior of

the component is unpredictable. Given a problem speci�cation and a component speci�cation, reuse

can be demonstrated by proving that the two satisfaction conditions hold. Often the components

retrieved are not exact matches and they need to be adapted to satisfy the problem. Zaremski

and Wing [64] established a number of match conditions (sometimes referred to as the degree of

a match or degree of satisfaction) for assessing speci�cation reuse. Figure 2.3 shows a portion of

these match conditions.

If a component C formally Satis�es a problem P, then the implementation of C can be reused

to implement P. C satis�es P if C accepts all legal inputs to P, and the valid outputs of C are valid

outputs of P when given legal inputs. Weak Plug-in and Plug-in are stronger match conditions of

Satis�es. The Plug-in Pre match condition implies that a component meets only the pre-condition

requirements. The Plug-in Post and Weak Post match conditions imply that a component meets

the post-condition requirements, but operates in a more restrictive environment. Plug-in Pre,

Plug-in Post, and Weak Post are referred to as partial match conditions.

Several speci�cation-based retrieval engines [15, 48] have been developed using automated

theorem-provers to logically verify that a component speci�cation matches a problem speci�ca-

13

Stronger

Weaker
Weak Plug−in

Weak Post
OpOcIc

Plug−in Pre

(Ip Ic) (Ip Oc Op)
Satisfies

IcIp() (Ic Oc Op)

Plug−in

Oc

(Ic)Ip

Ic)(Ip (Oc Op)

Plug−in PostPlug−in Post
Op

.

Figure 2.3: Speci�cation match lattice

tion. Although theorem proving is sound and precise, it can not be practically applied when using

a large library of components. Typically, a less formal syntactic matching process is used to reduce

the number of components used during speci�cation matching.

2.4 Architecture Speci�cation

An architecture theory is a collection of axioms that specify the relationship between the behavior

of a system and the behavior of the interconnected sub-components. An architecture theory is

a parameterized theory speci�cation that can be instantiated with component and system con-

straints. Figure 2.4 shows the architecture theory instantiated with constraints from system and

component speci�cations. The result is an architecture morphism [46] that allows the problem to

be decomposed into a system of sub-components.

14

Component

Component

Problem
Theory

Problem
Theory

Problem
Theory

System Specialized
Architecture
Theory

Theory
Architecture Architecture

Schema

Instantiated
Architecture

Figure 2.4: Architecture theory instantiation

15

Chapter 3

Component Reuse Framework

The primary goal of SPARTACAS is to retrieve solutions to a design problem from a library

of components at the speci�cation-level. Several speci�cation-based retrieval frameworks [14, 15,

48, 9] have already been developed with success. Although these frameworks eÆciently retrieve

components that are exact or partial matches to a problem query, few deal with adapting partial

matches to completely satisfy the problem. The SPARTACAS framework, shown in �gure 3.1,

di�ers from other frameworks by including an automated adaptation capability.

In the SPARTACAS framework, a formal speci�cation that speci�es a design problem is used

to query the retrieval engine. The retrieval engine returns component speci�cations that are either

total and partial matches from a library of components (the component library contains a collection

of existing component speci�cations that have been created, tested, and shown to correctly speci-

fy the component's functionality). For partial matches, the adaptation engine selects a tactic for

adapting the component. The tactic synthesizes sub-problems that speci�es the missing function-

ality required to solve the rest of the problem. The sub-problem is used to search for components

to adapt the behavior of the partially matching component. The components are instantiated in an

architecture. The potential architectural solutions are veri�ed and added to the component library,

16

further increasing the potential of reuse.

LIBRARY
COMPONENT

RETRIEVAL ADAPTATION

VERIFICATION

Matching Components

Sub-problems
Problem
Specification

Potential
Solutions

Solutions

Figure 3.1: General component reuse framework

3.1 Component Retrieval Framework

The retrieval framework, �gure 3.2, uses a layered architecture of retrieval engines, where each layer

progressively �lters out irrelevant components. The components that pass through all the �lters

have the highest probability of matching the problem. This layered approach to retrieval is similar

to work by Fischer [13].

ENGINE
RETRIEVAL

FEATURE−BASED
BASED RETRIEVAL

ENGINE

SIGNATURE−

ENGINE
BASED RETRIEVAL
SPECIFICATION− Components

Matching

Components
Similar Similar

Components

Component
Library

Specification
Problem

RETRIEVAL FRAMEWORK

Figure 3.2: Component retrieval framework

17

In the �rst layer, a feature-based retrieval engine classi�es the problem speci�cation by assigning

it domain-speci�c features. The feature-based retrieval engine retrieves components that have

similar features, thereby �ltering out components that are not in the same class as the problem.

The component search space is reduced by the feature-based retrieval engine and given to the

signature-based retrieval engine. In the second layer, the signature-based retrieval engine �lters

out components that do not have compatible signatures. A signature is the collection of input

and output variable declarations declared in the speci�cation's interface. Components that do

have compatible (exact or relaxed mappings from component to problem ports) signatures can be

instantiated to possibly solve the problem. The information used by the signature-based retrieval

engine is also used in the instantiation of components in an architecture. The last layer is the

speci�cation-based retrieval engine, which performs speci�cation matching using an automated

theorem-prover to logically verify that a component speci�cation matches a problem speci�cation.

Figure 2.3 shows a portion of these match conditions, proposed by Zaremski and Wing [64], that

are used to evaluate reuse.

Proving logical relationships for the entire library using an a theorem-prover is not feasible

since formal veri�cation is a time consuming task [44]. The feature-based and signature-based

retrieval engines perform fast and eÆcient matching of feature keywords and signatures respectively,

therefore �ltering out, with reasonable certainty, components that do not match the problem. The

layered architecture approach to retrieval allows a subset of promising components to pass to the

next level of computationally intensive retrieval. The layered approach to retrieval using feature-

based and speci�cation-based retrieval engines has been implemented in other works [46, 42].

18

ADAPTATION
EVALUATION

ARCHITECTURE

THEORIES
ARCHITECTURE

BIN

SYNTHESIS
SUB-PROBLEM

ARCHITECTURAL
SOLUTION

GENERATION

ADAPTATION FRAMEWORK

Problem
Specification

Matching
Components

Architecture

Missing Functionality

Completed Architecture

Proposed
Solutions

(Sub)Contract

Sub-problem

Figure 3.3: Component adaptation framework

3.2 Component Adaptation Framework

It is naive to assume that a component will exist in a library that satis�es a large and complex

problem. It is more feasible to retrieve a component that has a subset of the properties of the

problem. The behavior of the component can be adapted to obtain the properties of the problem by

placing the component in an architecture with other components, where in this work an architecture

is simply de�ned as a collection of interconnected components.

The adaptation framework, shown in �gure 3.3, contains a collection of adaptation architecture

theories. They specify the constraints on the interconnection of sub-components and the behavioral

relationship between the sub-components and the overall system. Given a partially matching com-

ponent to a problem, the adaptation evaluation module determines which adaptation architecture

should be applied. It is possible that several adaptation architectures are applicable. The adapta-

tion tactic and the component is added to the architecture bin as a \contract". The architecture

bin acts as a tree of architectural blueprints, which is used to plan the execution of contracts toward

a solution.

19

The missing functionality required to adapt a partial match is synthesized into a sub-problem

speci�cation. The synthesizer generates a sub-problem speci�cation that is re-submitted to the

retrieval engine. Complete matches to the sub-problems may not exist in the library. If a component

is a partial match to a sub-problem, then the adaptation process can be repeated. Adaptation

required for sub-problems results in sub-architectures within architectures. A component that

completely satis�es a problem (or sub-problem) signi�es that an architectural contract has been

completed. Adaptation continues until (1) an architecture of interconnected components satisfying

the problem has been constructed, (2) a solution to the design problem is known not to exist given

the current component library, or (3) a solution to the design problem can not be realized using

the heuristic limitations of the retrieval and adaptation process, e.g. a ceiling on the number of

components used in an architecture.

3.2.1 Veri�cation Framework

As is the case with physical architectures, inconsistencies between the constructed product and

the conceptual blueprints may exist. In a design of a critical system it is important that aws

are identi�ed and removed from the product. Ideally, the causes of inconsistencies or aws should

be avoided during construction. Figure 3.4 shows the framework for verifying and validating ar-

chitectural solutions to a problem. Given a possible solution to the problem, the domain features

are assigned to a solution, which are compared to the features of the problem speci�cation. The

speci�cation-based veri�cation module proves that the solution logically satis�es the problem. Ver-

i�cation of an architecture requires a considerable amount of computation, increasing the time to

retrieve a solution set. If component adaptation is performed correctly, then veri�cation can be

avoided.

20

DOMAIN
FEATURES

DOMAIN
FEATURE

CLASSIFICATION

FEATURE-BASED SPECIFICATION-Feature Set

VERIFICATION FRAMEWORK

VERIFICATION
ENGINE

BASED
VERIFICATION

Potential
Solutions Solutions

Similar Solutions

Figure 3.4: Component veri�cation framework

21

Chapter 4

Adaptation Architecture Theories

Black-box reuse [55] involves reusing a software component without modifying the internal imple-

mentation, however, modi�cation of the component interface may be required for reuse. Com-

ponents in black-box reuse can typically be reused \as is" or adapted using a simple interface

wrapper [51] to modify its interface (i.e. reordering the parameters). White-box reuse [55] involves

reusing a software component after modi�cation of the internal implementation to meet the re-

quirements of a problem. Performing white-box reuse safely and correctly can be very diÆcult,

but can be applied to solve many problems. Black-box reuse is often easy to perform, yet limit-

ed in the problems that can be solved. Behavioral adaptation [44] is the process of altering the

functionality of a component by imposing interactions with other components in an architecture.

The components in the architecture adjust the input and output values of the component to be

adapted, resulting in valid outputs for all legal inputs of the problem. The components used in the

architecture can be used \as is" or modi�ed with interface wrappers.

An adaptation architecture theory [44] is a formal speci�cation of an architecture that speci�es

the interaction and con�guration of sub-components in the composition of a system, as well as the

relationship between the functionality of the sub-components and the functionality of the system.

22

There are several advantages to using formal speci�cations to represent adaptation architectures:

formal speci�cations specify the abstract relationships between sub-components without specifying

the implementation details of the architecture, they allow for a precise de�nition of the component

adaptation process, and the architecture solutions generated from the architecture theories will be

in a representation that is consistent with components in the library, which can be added to the

component library.

Architecture Match Condition Instantiation

Sequential Plug-in Post Plug component into tail position, derive

Weak Post sub-problem to satisfy head position

Plug-in Pre Plug into head position, derive

sub-problem to satisfy tail position

Alternative Weak Post Plug into either position, derive

sub-problem to satisfy missing functionality

Parallel N/A Problem decomposition, independent instantiation

Table 4.1: Available adaptation architecture tactics

Penix [47] proposed three adaptation architecture theories: sequential, alternative, and parallel.

One or more of these adaptation architectures can be applied to adapt the behavior of a partial-

ly matched component. The degree to which a component satis�es a problem determines which

adaptation architecture tactic can be applied. Table 4.1 shows the adaptation tactics associated

with each match condition. The three adaptation architectures can be used to compose increas-

ingly complex architecture structures. A component declared in an adaptation architecture theory

speci�cation can abstractly represent other architectures. Moreover, components in the library can

also represent user-de�ned or domain-speci�c architectures which can be retrieved and instantiated

within other architectures.

23

4.1 Sequential Architecture

The sequential architecture, �gure 4.1, is the interconnection of two components where the output

of one component is the input to another component through some type of communication medium.

The head component adapts the input values to the tail component such that the tail component

generates feasible outputs. Conversely, the tail component adapts results generated by the head

component for all legal inputs.

Component B

I O
B B

Component A

O
A

I
A

Problem P

I O

Sequential Architecture Theory
BEGIN

// Problem and component de�nitions
Problem(D, R, I, O)
ComponentA(DA, RA, IA, OA)
ComponentB(DB, RB, IB , OB)

// Domain and range constraints
drConstraint1: D � DA

drConstraint2: RA � DB

drConstraint3: RB � R

// Pre and post-condition constraints
behConstraint1: 8 d : D j I(d)) IA(d)
behConstraint2: 8 d : D, x : DB j I(d) ^ OA(d, x)) IB(x)
behConstraint3: 8 d : D, y : RA, r : R j I(d) ^ OA(d, y) ^ OB(y, r)) O(d, r)

END Sequential Architecture Theory

Figure 4.1: Sequential architecture theory

Double arrows represent the collection of interconnected ports. A port is an input or output

typed variable that is constrained by the domain or range. During retrieval, the signature-matching

24

engine attempts to �nd components with matching signatures. The signature is used to connect

ports of a component to the ports of the problem or other components. Input ports of a component

can be connected to the input ports of a problem or to output ports of another component, while

output ports of a component can be connected to the output ports of a problem or to input ports of

another component. Figure 4.1 also speci�es constraints over the types of interconnected ports. The

bottom of �gure 4.1 lists several constraints that specify the relationships between the functionality

of the problem and the functionalities of the sub-components.

4.2 Alternative Architecture

The alternative architecture is the interconnection of two independent components that work simul-

taneously whose outputs are combined to satisfy the problem requirements (shown in �gure 4.2).

In this architecture, one component satis�es the problem for some subset of legal input values to

the problem. This component is adapted with another component which correctly covers the rest

of the input values.

This architecture requires a control structure to achieve correct cooperation to reach the solution

to a problem. Without a control structure, the two components could possibly diverge on a given

input and drive contradictory results on the output. A forward control structure routes inputs to

the appropriate component based on some control function, forcing one and only one component

to drive the output. Although two variables drive the problem output port, the forward control

structure acts as a resolution function since, for any give input, the variable the drives the the

output port can be determined. The reverse control structure demultiplexes the two outputs values

of the components to drive a single output based on the same control function as the forward

control structure. The alternative architecture may have one or both control structures.

25

4.3 Parallel Architecture

The parallel architecture, �gure 4.3, is similar to the alternative architecture. Independent com-

ponents work simultaneously and their outputs collectively satisfy the problem requirements. The

di�erence is that the output values generated by the components in the parallel architecture are

not combined to a�ect a single output. The components in the parallel architecture compute on

disjoint sub-ranges, which collectively form the range of the problem. Each component computes

results for some (not necessarily disjoint) sub-domain of the problem.

Figure 4.3 uses the jj notation to represent the composition of some disjoint sub-ranges into

the range. For instance, a problem may have the following output ports: fx::integer, y::boolean,

z::realg. The range could possibly be represented as: fy::booleangjjfx::integer, z::realg. The parallel

adaptation architecture decomposes a problem into independent sub-problems. Components that

satisfy these sub-problems never interact with each other, they merely solve an isolated aspect of

the problem.

26

Component B

I
B

O
B

Component A

I
A

O
A

Problem P

I O

CC C

Alternative Architecture Theory
BEGIN

// Problem and component de�nitions
Problem(D, R, I, O)
ComponentA(DA, RA, IA, OA)
ComponentB(DB, RB, IB , OB)

// Domain and range constraints
drConstraint1: D � DA

drConstraint2: D � DB

drConstraint3: RA � R
drConstraint4: RB � R

// Pre and post-condition constraints
behConstraint1: 8d : Dj(I(d)) IA(d)) _ (I(d)) IB(d))
behConstraint2: 8d : D; r : Rj(IA(d) ^OA(d; r)) O(d; r))_ (IB(d) ^OB(d; r)) O(d; r))

END Alternative Architecture Theory

Figure 4.2: Alternative architecture theory

27

Component B

I
B

O
B

Component A

I
A

O
A

Problem P

I O

Parallel Architecture Theory
BEGIN

// Problem and component de�nitions
Problem(D, R, I, O)
ComponentA(DA, RA, IA, OA)
ComponentB(DB, RB, IB , OB)

// Domain and range constraints
drConstraint1: D � DA [DB

drConstraint2: RA jj RB � R

// Pre and post-condition constraints
behConstraint1: 8d1 [d2 : Dj(I(d1 [d2)) IA(d1) ^ IB(d2)
behConstraint2: 8d1 [d2 : D; r1jjr2 : RjI(d1 [d2) ^OA(d1; r1) ^OB(d2; r2)) O(d1 [d2; r1jjr2)

END Parallel Architecture Theory

Figure 4.3: Parallel architecture theory

28

Chapter 5

Port Connection Methods

Component and problem speci�cations de�ne a domain and range through port declarations. A

port is an input/output typed variable that is constrained in the pre- and post-conditions. Much

of the early work in software retrieval dealt with signature matching [62], where a signature is

comprised of input parameters and return types of functions, procedures, and other such software

artifacts. In speci�cation-based matching, the problem interface acts as a foundation: the input

and output ports are de�ned to interface with the world. Components are constructed within the

foundation to implement the functionality required by the problem. The ports of a component

are connected with the ports of a problem, which requires that the component and problem have

compatible input and output ports. The instantiation of ports, or port connection, is given in

de�nition 5.0.1. Operations such as currying, generalization, and specialization [62] of types can

be applied to �nd a proper mapping.

De�nition 5.0.1 A port connection � is a function mapping the ports of component C(DC, RC ,

IC, OC) to the ports of problem P(D, R, I, O) such that:

� 8 input port ci : Tc 2 DCj9 input port pi : Tp 2Dj(�(ci)! pi) ^ (Tp � Tc)

29

� 8 output port co : Tc 2 RCj9 output port po : Tp 2 Rj(�(co)! po)^ (Tc � Tp)

Bijective port connection retrieves components to problem for which there is a one-to-one and

onto mapping from input ports of the component to the input ports of the problem, and similarly

a mapping of component output ports to problem output ports. In traditional signature matching,

the component and problem must have an equal number of compatible input ports and output

ports. This can hinder potential applications for adaptation. Figure 5.1 speci�es a problem to

perform simple addition on two real numbers. Figure 5.2 shows a successfully instantiated solution

using the simple mathematical operations library in �gure 6.3. Following retrieval, it is determined

that the numerical subtraction (sub) component is a (bijective) Plug-in Pre partial match to the

problem. The numerical negation (negate) component is not retrieved since it does not have the

proper number of ports for instantiation. Clearly a solution can not be found using bijective

signature matching for even the simplest problems, thus motivating the need for less restrictive

port connection methods.

// Simple addition problem

package P1() :: null is

export all;

begin

facet P1(a :: input real; b :: output real;

c :: output real) :: state_based_semantics is

export all;

begin

pre: true;

post: c' = (a + b);

end facet P1;

end package P1;

Figure 5.1: Problem speci�cation of a simple addition problem

A less restrictive port connection method is the one-to-one port connection. The one-to-one port

connection requires that all component input ports be driven by one and only one problem input

30

negate

sub

f

s
o

i o

true o’ = −i

o’ = (f − s)true

Problem P1

a

b

c

true c’ = (a + b)

// Sequential architecture solution to problem P1

problem P1() :: null is

export all;

begin

use negate;

use sub;

facet P1(a :: input real; b :: input real;

c :: output real) ::

state_based_semantics is

export all;

x__0 :: M__Type(sub.s);

begin

arch0: negate(b, x__0);

arch1: sub(a, x__0, c);

pre: true;

post: c' = (a + b);

end facet P1;

end package P1;

Figure 5.2: Solution to problem P1 using the sequential architecture

31

port, and all component output ports drive one and only one problem output port. This allows

potential components to have fewer number of input/output ports than the problem. However,

since not all the ports of the problem can be instantiated, components that are retrieved will not

completely satisfy the problem (assuming the uninstantiated ports have meaningful constraints on

them). A sub-problem is required to search for other components to instantiate and satisfy the

functionality of the unconnected ports.

The onto port connection method simply requires that, for all ports in the component, there is a

connection to some problem port with respect to port direction. Potentially a single problem input

port can drive multiple component input ports, and a single problem output port can be driven by

multiple component output ports (in such a case the �nal output value needs to be resolved). This

allows the component to have more ports than the problem.

5.1 Connection Trade-o�s

Using a less restrictive port connection method to increase recall may result in expensive overheads.

Table 5.1 shows the maximum number of signature instantiations per component for each of the port

connection methods. The number of instantiations per component may drown the speci�cation-

based retrieval engine from making timely progress.

Port Connection Method Maximum Combinations

Bijective (
P

portsCi)! � (
P

portsCo)!

One-to-one
(
P

portsPi)!

(
P

portsCi)!�((
P

portsPi)�(
P

portsCi))!
�

(
P

portsPo)!

(
P

portsCo)!�((
P

portsPo)�(
P

portsCo))!

Onto (
P

portsCi)
(
P

portsCi) � (
P

portsCo)
(
P

portsCo)

Table 5.1: Maximum instantiation combinations per port connection method

It can also be argued that feature-matching is not a necessary condition if the signature-matching

engine uses a less restrictive port connection method. Assume the domain features for the math

32

library consists of: ADDITION, SUBTRACTION, and NEGATION over real numbers. In such

an example, the problem would clearly be classi�ed with the following feature set: fADDITIONg.

However, none of the components in the library can be classi�ed with the ADDITION feature,

therefore none of the components would be retrieved when queried with Problem P1. As a result,

the threshold of the feature-based retrieval engine may have to be relaxed in order to �nd a solution.

Relaxing the retrieval �lters, in order to increase recall, increases the probability of resorting to a

complete (and often very expensive) search of the component library.

33

Chapter 6

Automated Component Adaptation

Using the system/sub-component functionality relationships speci�ed in an adaptation architecture

theory, the functionality required to adapt a partially matching component toward a solution can

be derived and synthesized into a sub-problem. The adaptation theory used is contingent on the

match condition between the problem and the partially matched component. The sub-problem

represents the missing functionality required to ful�ll the problem. The sub-problem is used to

re-search the library to identify applicable components for adaptation (if an exact match can not

be found, the process repeats resulting in sub-architectures). The partially matched component,

and the component (sub-architecture) to adapt its behavior, are instantiated in an architecture.

Once an architecture has been constructed, the potential solution still needs to be veri�ed that

it correctly solves the problem. However, if the sub-problem constraints are strictly and properly

maintained during each step of adaptation, then a correct solution to the problem is guaranteed by

composition.

34

6.1 Sequential Adaptation

Recall from table 4.1 that Plug-in Post, Weak Post, and Plug-in Pre matched components can

be adapted using the sequential adaptation architecture. The missing functionality synthesized

in a sub-problem for Plug-in Post and Weak Post adaptation is referred to as post-match driven

synthesis since the post-conditions of the problem have been met. Pre-match driven synthesis

refers to synthesizing sub-problems for adaptation using Plug-in Pre matched components since

the pre-conditions have been met.

6.1.1 Post-match Driven Synthesis

A Weak Post or Plug-in Post matched component is abstractly represented by ComponentB in

the sequential architecture in �gure 4.1. A sub-problem speci�cation must be synthesized in order

to �nd a component, i.e. ComponentA, to adapt ComponentB. ComponentA must change the

environment to allow ComponentB to execute and satisfy the behavior of the problem for all legal

inputs. Using the relationship between the functionality of the system and the functionalities of the

sub-components in the sequential architecture, the missing functionality required to adapt a partial

match can be derived by instantiating the architecture theory with the problem as the system and

the partial match as one of the sub-components. The unknown sub-component pre- and post-

conditions can be solved in terms of the system and partial match pre- and post-conditions. The

sub-problem synthesis is speci�ed in de�nition 6.1.1.

De�nition 6.1.1 Given a problem P(D, R, I, O) and a Weak Post/Plug-in Post matched compo-

nent B(DB, RB, IB, OB), the synthesized sub-problem for the missing functionality in the sequential

architecture is:

� Domain: D

35

� Range: DB [fr 2 Rj:9x 2 RBj�(x)! rg

� Pre-conditions: 8d : DjI(d)

� Post-conditions: 8d : D; x : DB; y : fr 2 Rj9x 2 RBj�(x)! rg; r : Rj

IB(x)^ (:OB(x; y)_ O(d; r))

In �gure 6.1, the behavioral relationships speci�ed in the sequential architecture theory are

inferred from the match conditions. The inference starts from the Weak-Post (Plug-in Post can also

be inferred) match condition between the partially matched component and the problem, and the

Satis�es match condition between the component for adaptation and the synthesized sub-problem.

In step 1, the conjunction is split for simpli�cation. The synthesized pre- and post-conditions are

replaced with de�nition 6.1.1 in step 2, and the conjunction is split in step 3. The �rst behavioral

constraint of the sequential architecture follows immediately in step 4. The conjunction in the

consequent is split in step 5, and the second behavioral constraint is satis�ed in step 6. Lastly, the

negated term is moved to the antecedent in step 7, which leads to the third behavioral constraint.

IB ^OB) OP

behConstraint1
IP) IA

(4)

behConstraint2
IP ^OA) IB

(6)

behConstraint3
IP ^OA ^OB) OP

(8)

IP ^OA) :OB _OP
(7)

IP ^OA) IB ^ (:OB _OP)
(5)

(IP) IA) ^ (IP ^OA) IB ^ (:OB _OP))
(3)

(Isynth) IA) ^ (Isynth ^OA) Osynth)
(2)

(IB ^OB) OP) ^ ((Isynth) IA) ^ (Isynth ^OA) Osynth))
(1)

Figure 6.1: Post-match driven sequential synthesis inference tree

For illustration purposes, the simple math problem in �gure 6.2 is used to query the small

component library of simple math functions in �gure 6.3. The library also shows the degree of

match between a component and a problem as well as the port connections that were used to

obtain the match condition. The library shows that the pInc component is a Weak Post match to

problem P2 using a bijective port connection. The synthesized sub-problem using de�nition 6.1.1 is

36

speci�ed in �gure 6.4. The range of the sub-problem consists of the input types to the component as

well as any output types of the problem that were not instantiated during signature matching. Since

all output ports of the problem were instantiated in this example, the range of the sub-problem

reduces to the input types of the component.

// Simple math problem

package P2() :: null is

export all;

begin

facet P2(x :: input real;

z :: output real) :: state_based_semantics is

export all;

begin

pre: true;

post: if (x < 0)

then (z' = ((-1 * x) + 1))

else (z' = (x + 1)) end if;

end facet P2;

end package P2;

Figure 6.2: Problem speci�cation of a simple math problem

The sub-problem in this example thus speci�es:

8d : D; dB : DB; r : RjI(d)) IB(x) ^ (:OB(x; r)_ O(d; r))

or more speci�cally:

x : real; a : real; z : realj(true) (a0 >= 0))^ (:(z = (a0 + 1))_

(if(x < 0) then(z0 = ((�1 � x) + 1)) else(z0 = (a+ 1)) endif))

The variables x and a are the domain and range of the synthesized sub-problem respectively,

however the variable z is being referenced. This variable represents a quanti�ed variable over the

pre- and post-conditions. In order to avoid variable name conicts, the variable names have been

mapped to unique names, i.e. P2.x : real ! P3.i 0 : real, pInc.a : real ! P3.o 0 : real, and P2.z

: real ! P3.q 0 : real. The absVal component is the only component that completely satis�es the

37

requirements of sub-problem P3. Figure 6.12 shows a solution to problem P2 using the sequential

architecture.

Pre-match Driven Synthesis

A component retrieved using the Plug-in Pre match condition can be abstractly represented as

ComponentA in the sequential architecture in �gure 4.1. A sub-problem speci�cation has to be

synthesized in order to �nd components, i.e. ComponentB, to adapt ComponentA. ComponentB

must change the results of ComponentA to satisfy the behavior of the problem in all cases. The

sub-problem synthesis is de�ned in de�nition 6.1.2. The behavioral relationships speci�ed in the

sequential architecture theory are inferred from the match conditions in �gure 6.5.

De�nition 6.1.2 Given a problem P(D, R, I, O) and a Plug-in Pre matched component A(DA,

RA, IA, OA), the synthesized sub-problem for the missing functionality in the sequential architecture

is:

� Domain: RA [fd 2 Dj:9x 2 DAj�(x)! dg

� Range: R

� Pre-conditions: 8d : fd 2 Dj9x 2 DAj�(x)! dg; x : RAjI(d)^ OA(d; x)

� Post-conditions: 8d : D; r : RjO(d; r)

Consider starting with the absVal component to solve problem P2. The synthesized sub-problem

using constraints from this component and problem P2 using the de�nition in 6.1.2 is speci�ed in

�gure 6.6. The pInc component is retrieved to generate the same sequential adaptation architecture

solution in �gure 6.12.

38

6.2 Alternative Adaptation

In the alternative architecture theory, ComponentA can perform the same functionality as the prob-

lem, but only on a subset of the legal inputs. The problem would be solved if another component,

namely ComponentB, performs the same functionality but covers the rest of the legal inputs. Since

the pInc component satis�es problem P2 when the input is positive, the alternative adaptation

tactic can be applied to �nd a component (or another architecture) that satis�es the rest of the

problem when the input is (at least) not positive. The synthesis is de�ned in de�nition 6.2.1.

Using this de�nition, the synthesized sub-problem specifying the missing functionality is shown in

�gure 6.7.

De�nition 6.2.1 Given a problem P(D, R, I, O) and a Weak Post/Plug-in Post matched compo-

nent A(DA, RA, IA, OA), the synthesized sub-problem for the missing functionality in the alternative

architecture is:

� Domain: D

� Range: R

� Pre-conditions: 8d : DjI(d)^ :IA(d)

� Post-conditions: 8d : D; r : RjO(d; r)

The behavioral constraints are inferred from the match conditions in �gure 6.8. In step 1, the

synthesized pre- and post-conditions are replaced with de�nition 6.2.1. Given that IP ^:IA) IB,

the equation is rewritten in step 2. Step 3 involves the joining of the antecedents of sequents with

OP in the consequence. By splitting the conjunction in step 4, the behavioral constraints become

apparent.

The solution to the sub-problem in �gure 6.7 requires another adaptation architecture. It is clear

to see that a sequential architecture using the negate and pInc components provides a solution. The

39

limitation of the alternative architecture is that a control sub-problem also needs to be synthesized.

Assuming two components are found for the alternative architecture, both components will drive

the output of the problem, therefore a control mechanism needs to select which component will

drive the output in the appropriate situation. For instance, pInc will generate an output even when

the input is not positive, driving a nonsensical value on the output of the problem. The synthesis

process for the forward and reverse control structures are shown in de�nitions 6.2.2 and 6.2.3.

The control structures de�ne mappings from input ports to output ports based on some control

function.

De�nition 6.2.2 Given a problem P(D, R, I, O) and a Weak Post/Plug-in Post matched compo-

nent A(DA, RA, IA, OA) which is adapted with component B(DB, RB, IB, OB), the synthesized

forward control structure sub-problem for the alternative architecture is:

� Domain: D

� Range: DA [DB

� Pre-conditions: true

� Post-conditions: 8d : Dj(IA(d)) f8x : Dj9y : DAj�(x) ! yg) ^ (:IA(d)) f8x : Dj9y :

DBj�(x)! yg)

De�nition 6.2.3 Given a problem P(D, R, I, O) and a Weak Post/Plug-in Post matched compo-

nent A(DA, RA, IA, OA) which is adapted with component B(DB, RB, IB, OB), the synthesized

reverse control structure sub-problem for the alternative architecture is:

� Domain: RA [RB [D

� Range: R

� Pre-conditions: true

40

� Post-conditions: 8d : Dj(IA(d)) f8x : RAj9y : Rj�(x) ! yg) ^ (:IA(d)) f8x : RBj9y :

Rj�(x)! yg)

Expecting control structures to exist in the library is a signi�cant drawback to the alternative

architecture. Frequently it is suÆcient to synthesize the language's control structures for an archi-

tectural solution since the control structures are simple (i.e. if-then-else statement). The solution

to problem P2 using the alternative architecture is shown in �gure 6.12.

6.3 Parallel Adaptation

In the previous adaptation architectures, a partially matching component was retrieved and a sub-

problem was synthesized to search for other components to satisfy the missing properties. The

sub-problem is dynamically de�ned based on the partially matching component. This type of

behavioral adaptation is referred to as bottom-up behavioral adaptation. In top-down behavioral

adaptation, the design problem is decomposed into sub-problems and each sub-problem is used

to search for components for adaptation. In this type of adaptation (albeit loosely de�ned as

adaptation), all possible decompositions must be applied until components in the library are found

to match some combination of sub-problems.

In the parallel architecture, the goal is to adapt components that compute values on indepen-

dent output variables. The speci�cation-based match lattice describes match conditions over the

set of range variables and sets of pre- and post-conditions, therefore bottom-up behavioral adapta-

tion is not suited for the parallel adaptation tactic. Moreover, using the theorem-prover to prove a

logical relationship between components using some subset of range variables and behavioral rela-

tionships is a very expensive and tedious task. Rather, SPARTACAS uses the top-down approach

to parallel adaptation. Using speci�cation slicing, a problem can be decomposed into independent

41

sub-problems quickly and eÆciently.

Program slicing [59] is a decomposition process used to isolate a subset of program behavior. A

program slice is a sub-program that contains only those statements and variables that a�ect or are

a�ected by a slicing criterion. A slice criterion is a set of variables that are of interest at some point

in the program. Program slicing has generated a breadth of applications at the implementation

level of software design, including debugging [60], maintenance [21], and reuse [8].

Program slicing is applied at the speci�cation level by Oda and Araki [41]. They de�ne a

technique for slicing Z speci�cations. A slice contains a portion of the statements in the speci�cation

that constrain the value of a variable. Speci�cation slicing is applied to the speci�cations written

in Rosetta. The goal will be to use speci�cation slicing to decompose a problem speci�cation

by isolating the independent behaviors; a retrieval engine will be used to locate components that

satisfy the slices.

If a term p potentially a�ects term q, then term q is data dependent on p. Post-condition terms

are data dependent on other post-conditions if they both constrain a range variable. Similarly,

pre-condition terms are data dependent on other pre-conditions if they both constrain a domain

variable. The functions for data dependency are de�ned:

dDepend(q; p : O) : bool = 9r 2 Rjconstrains(q; r)^ constrains(p; r)

dDepend(q; p : I) : bool = 9d 2 Djconstrains(q; d)^ constrains(p; d)

If a term p potentially determines if term q is applied, then term q is control dependent on p.

Pre-conditions control the application of the post-conditions, therefore a post-condition is control

dependent on a pre-condition if the pre-condition constrains the legal inputs required to compute

the feasible outputs. The function for control dependency is de�ned:

cDepend(o : O; i : I) : bool = 9d 2 Djconstrains(i; d)^ requires(o; d)

42

A speci�cation slice is represented by a tuple (Ds, Rs, Is, Os). The slice criterion is a set

of range variables. A speci�cation slice is computed with the algorithm in �gure 6.10. Initially,

the post-conditions that a�ect or are a�ected by the criterion are assigned to Os, then all post-

conditions that are data dependent on post-conditions in Os are added in steps 1 and 2. Next all

the pre-conditions that potentially determine if the post-conditions in Os are applied are added to

Is in step 3. Then all pre-conditions that a�ect or are a�ected by the pre-conditions in Is are added

to Is in steps 4 and 5. Finally, the domain and range variables involved in Os and Is are selected

in steps 6 through 9.

Rs represents all the range variables that a�ect or are a�ected by the criterion. If the speci�-

cation was re-sliced with criterion
0 Rs, the same slice would be obtained. A slice may contain

the original speci�cation or an empty speci�cation. An empty speci�cation has no pre-conditions

or post-conditions, i.e. pre: true and post: true.

De�nition 6.3.1 A "criterion partition" is the disjoint subsets of the range variables such that

1) the union of the subsets equals the range

2) a subset is not empty

3) a subset does not a�ect or is not a�ected by another subset, meaning the subsets are all inde-

pendent

A criterion partition is the same as a traditional partition of a set if all the range variables (R)

are independent. A criterion partition generates a slice partition.

De�nition 6.3.2 A "slice partition" is the partition of slices generated by a criterion partition.

A slice partition must also be disjoint since a criterion partition is disjoint, meaning each slice

is independent of all other slices in the set (one slice does not inuence and is not inuenced by

another slice).

43

A criterion may contain several range variables. If the variables are all interdependent, then

the criterion is referred to as the smallest criterion.

De�nition 6.3.3 The "smallest criterion partition" contains the disjoint subsets of smallest cri-

terion.

In terms of the Stirling number of the second kind [11], the smallest criterion partition corre-

sponds to S(n, n), where S(n, k) states the number of partitions of an n-set into k blocks. Here "n"

is the number of disjoint smallest criterion.

The algorithm in �gure 6.11 is used to generate the smallest criterion partition. CF represents

the range variables. A single range variable is selected from CF and is used as a slicing criterion.

The slicing algorithm is used to generate Rs, which represents the smallest criterion that generates

that particular slice. By removing Rs from CF and repeating, the smallest criterion partition, Cscp,

can be obtained. The algorithm is also used to generate the smallest slice partition, Sssp.

De�nition 6.3.4 The "smallest slice partition" contains the disjoint subsets of smallest speci�ca-

tion slices generated from the smallest criterion partition.

Each slice in the smallest slice partition represents the smallest independent behavior of the

speci�cation, referred to as the smallest independent slice.

De�nition 6.3.5 The "smallest independent slice" is a speci�cation slice that can not be further

sliced. The criteria variables for generating the smallest independent slice are interdependent.

Each slice speci�cation in a partition is submitted to a retrieval engine. If a matching component

is found for each slice, then the partition represents the collection of components to connect in

parallel. Based on set union and composition, it is intuitive to infer the properties of the parallel

architecture theory from the Satis�es match conditions between slices and matching components.

44

Component speci�cations in the library are not guaranteed to be in the smallest independent

form, thus the smallest slice partition does not guarantee a complete solution. Therefore every

possible slice partition must be generated (generated by every possible combination of the smallest

criterion). The number of partitions of an n-set follow the Bell numbers, bn [5, 54], which increase

exponentially. If none of the slice partitions generate a complete solution, then there does not exist

a parallel composition architecture to solve the problem.

It is clear to see the problem speci�cation in �gure 6.9 can be decomposed into the following

independent sub-problems: (fa, bg, fxg, fpreg, fpost1g), (fa, bg, fyg, fpreg, fpost2g), and (fa,

bg, fzg, fpreg, fpost3g). Figure 6.13 shows one of many possible solutions to the problem.

6.4 Partial Connection Adaptation

As described in section 5, the bijective port connection can be too restrictive. To see the po-

tential bene�ts of the one-to-one port connection method, it is applied to the solution search

of problem P1 in �gure 5.1. Following retrieval, the numerical negation component (one-to-one

Plug-in Pre) is retrieved. Note the 1-1 port mappings from the negate component to problem

P1: [(�1�1(negate:i)! P1:b)(�1�1(negate:o)! P1:c)]). Using the sequential adaptation architec-

ture synthesis and the partially matched negate component, the sub-problem to solve the missing

functionality is derived, see �gure 6.14. Synthesis de�nition 6.1.2 states that the domain of the syn-

thesized sub-problem contains output ports from the partially matched component (i.e. negate.o,

renamed as P7.i 0) and the collection of problem input ports that are not connected to any of the

input ports of the partially matched component (i.e. P1.a, renamed as P7.i 1). The sub-problem

query results in locating the subtraction component for adaptation (see �gure 5.2).

45

(Bijective) Match on P2: (Weak Post [(a −> x)(b −> z)])
(Bijective) Match on P3: (nil)
(Bijective) Match on P4: (Satisfies [(a −> i__0)(b −> o__0)])

(Bijective) Match on P1: (nil)
(1−1) Match on P1: (nil)

(Bijective) Match on P6: (nil)
(Bijective) Match on P7: (nil)

(Bijective) Match on P5: (Weak Post [(a −> i__0)(b −> o__0)])

(Bijective) Match on P3: (nil)

(Bijective) Match on P1: (nil)
(1−1) Match on P1: (nil)

(Bijective) Match on P6: (nil)
(Bijective) Match on P7: (nil)

(Bijective) Match on P2: (nil)

(Bijective) Match on P4: (nil)
(Bijective) Match on P5: (nil)

(Bijective) Match on P3: (nil)

(Bijective) Match on P1: (nil)
(1−1) Match on P1: (nil)

(Bijective) Match on P6: (nil)
(Bijective) Match on P7: (nil)

(Bijective) Match on P2: (nil)

(Bijective) Match on P4: (nil)
(Bijective) Match on P5: (nil)

(Bijective) Match on P1: (nil)

(Bijective) Match on P6: (nil)
(Bijective) Match on P7: (nil)

(1−1) Match on P1: (Plug−in Pre [(i −> b)(o −> c)])
(Bijective) Match on P2: (Plug−in Pre [(i −> x)(o −> z)])
(Bijective) Match on P3: (Satisfies [(i −> i__0)(o −> o__0)])
(Bijective) Match on P4: (nil)
(Bijective) Match on P5: (nil)

// Positive constrained increment
package pInc() :: null is
 export all;
begin
 facet pInc(a :: input real;

 export all;
 begin
 pre: a >= 0;
 post: b’ = (a + 1);
 end facet pInc;
end package pInc;

// Real number subtraction component
package sub() :: null is
 export all;
begin
 facet sub(f :: input real;
 s :: input real;
 o :: output real) :: state_based_semantics is
 export all;
 begin
 pre: true;
 post: o’ = (f − s);
 end facet sub;
end package sub;

// Absolute value component
package absVal() :: null is
 export all;
begin
 facet absVal(i :: input real;
 o :: output real) :: state_based_semantics is
 export all;
 begin
 pre: true;
 post: o’ = abs(i);
 end facet absVal;
end package absVal;

 export all;
begin

 export all;
 begin
 pre: true;

 export all;
begin

 export all;
 begin

// Numerical negation component
package negate() :: null is
 export all;
begin
 facet negate(i :: input real;
 o :: output real) :: state_based_semantics is
 export all;
 begin
 pre: true;
 post: o’ = −i;
 end facet negate;
end package negate;

 b :: output real) :: state_based_semantics is

(Bijective) Match on P3: (nil)

(Bijective) Match on P6: (nil)

(Bijective) Match on P1: (Plug−in Pre [(f−>a)(s−>b)(o−>c)])
(1−1) Match on P1: (Plug−in Pre [(f−>a)(s−>b)(o−>c)])
(Bijective) Match on P2: (nil)

(Bijective) Match on P5: (nil)
(Bijective) Match on P4: (nil)

(Bijective) Match on P7: (Satisfies [(f−>i__1)(s−>i__0)(o−>o__0)])

// Greater than component
package gt() :: null is

 facet gt(m :: input real; n :: input real;
 o :: output boolean) :: state_based_semantics is

 post: o’ = (m > n);
 end facet gt;
end package gt;

// Great than equal to component
package geq() :: null is

 facet geq(m :: input real; n :: input real;
 o :: output real) :: state_based_semantics is

 pre: true;
 post: o’ = (m >= n);
 end facet geq;
end package geq;

(Bijective) Match on P1: (nil)

(Bijective) Match on P6: (nil)
(Bijective) Match on P7: (nil)

(1−1) Match on P1: (Plug−in Pre [(i −> b)(o −> c)])
(Bijective) Match on P2: (Plug−in Pre [(i −> x)(o −> z)])

(Bijective) Match on P4: (nil)
(Bijective) Match on P5: (nil)

(Bijective) Match on P3: (Plug−in Pre [(i −> i__0)(o −> o__0)])

Figure 6.3: Small library of math components

46

// Post-match driven synthesis to problem P2 using

// component pInc and the sequential architecture

package P3() :: null is

export all;

begin

facet P3(i__0 :: input real;

o__0 :: output real) :: state_based_semantics is

export all;

q__0 :: real;

begin

pre: true;

post: (o__0' >= 0) and

((not(q__0 = (o__0' + 1))) or

(if (i__0 < 0)

then (q__0' = ((-1 * i__0) + 1))

else (q__0' = (i__0 + 1)) end if));

end facet P3;

end package P3;

Figure 6.4: Post-match driven synthesis to problem P2 using component pInc and the sequential

architecture

behConstraint1
IP) IA

(2)

behConstraint2
IP ^OA) IB

(5)
behConstraint3

IP ^OA ^OB) OP
(6)

(IP ^OA) IB) ^ (IP ^OA ^OB) OP)
(4)

(Isynth) IB) ^ (Isynth ^OB) Osynth)
(3)

(IP) IA) ^ ((Isynth) IB) ^ (Isynth ^OB) Osynth))
(1)

Figure 6.5: Pre-match driven sequential synthesis inference tree

47

// Pre-match driven synthesis to problem P2 using

// component absVal and the sequential architecture

package P4() :: null is

export all;

begin

facet P4(i__0 :: input real;

o__0 :: output real) :: state_based_semantics is

export all;

q__0 :: real;

begin

pre: true and (i__0 = abs(q__0));

post: if (q__0 < 0)

then (o__0' = ((-1 * q__0) + 1))

else (o__0' = (i + q__0)) end if;

end facet P4;

end package P4;

Figure 6.6: Pre-match driven synthesis to problem P2 using component absVal and the sequential

architecture

// Synthesis to problem P2 and component pInc using the

// alternative architecture

package P5() :: null is

export all;

begin

facet P5(i__0 :: input real; o__0 :: output real)

:: state_based_semantics is

export all;

begin

pre: true and not(i__0 >= 0);

post: if (i__0 < 0)

then (o__0' = ((-1 * i__0) + 1))

else (o__0' = (i__0 + 1)) end if;

end facet P5;

end package P5;

Figure 6.7: Synthesis to problem P2 and component pInc using the alternative architecture

48

behConstraint2
(IA ^OA) _ (IB ^OB)) OP

(5)

behConstraint1
IP) IB _ IA

(7)

IP ^ :IA) IB
(6)

((IA ^OA) _ (IB ^OB)) OP) ^ (IP ^ :IA) IB)
(4)

(IA ^OA) OP) ^ (IP ^ :IA) IB) ^ (IB ^OB) OP)
(3)

(IA ^OA) OP) ^ ((IP ^ :IA) IB) ^ (IP ^ :IA ^OB) OP))
(2)

(IA ^OA) OP) ^ ((Isynth) IB) ^ (Isynth ^OB) Osynth))
(1)

Figure 6.8: Alternative synthesis inference tree

// Comparison block math problem

package P6() :: null is

export all;

begin

facet P6(a :: input real;

b :: input real;

x :: output real;

y :: output real;

z :: output real) :: state_based_semantics is

export all;

begin

pre: true;

post1: x' = (a > b);

post2: y' = (a = b);

post3: z' = (a < b);

end facet P6;

end package P6;

Figure 6.9: Problem speci�cation of comparison block math problem

INIT : Rs criterion;

Os foj8o 2 O; 9r 2 Rs; constrains(o; r)g
Ds ;; Is ;;

1:O0

s Os [foj8o 2 O; 9x 2 Os; dDepend(o; x)g
2:Repeat step 1 until O0

s = Os

3:I0s Is [fij8i 2 I; 9x 2 Os; cDepend(x; i)g
4:I0s Is [fij8i 2 I; 9y 2 Is; dDepend(i; y)g
5:Repeat step 4 until I0s = Is
6:D0

s Ds [fdj8d 2 D; 9o 2 Os; requires(o; d)g
7:D0

s Ds [fdj8d 2 D; 9i 2 Is; constrains(i; d)g
8:D0

s Ds [frj8r 2 R; 9o 2 Os; requires(o; r)g
9:R0

s Rs [frj8r 2 R; 9o 2 Os; constrains(o; r)g

Figure 6.10: Rosetta speci�cation slicing algorithm

49

INIT : CF R;

criterion ;

Cscp ;; Sssp ;;

1:criterion frj9r 2 CF g

2:(Ds; Rs; Is; Os) slice(criterion)
3:S0ssp Sssp [f(Ds; Rs; Is; Os)g
4:C 0

scp Cscp [fRsg

5:C 0

F CF �Rs

6:Repeat step 1 until CF = ;

Figure 6.11: Smallest criterion partition/smallest slice partition algorithm

true o’ = abs(i) a >= 0 b’ = (a + 1)

absVal pInc
oi a bx z

Problem P2

if (x < 0) then (z’ = ((−1 * x) + 1)) else (z’ = (x + 1))true

// Sequential architecture solution

package P2() :: null is

export all;

begin

use absVal;

use pInc;

facet P2(x :: input real;

z :: output real) ::

state_based_semantics is

export all;

x__0 :: M__Type(pInc.a);

begin

arch0: absVal(x, x__0);

arch1: pInc(x__0, z);

pre: true

post: if (x < 0)

then (z' = ((-1 * x) + 1))

else (z' = (x + 1)) end if;

end facet P2;

end package P2;

a >= 0 b’ = (a + 1)

pInc
a b

a >= 0 b’ = (a + 1)

pInc
a b

C

true

oi

zx

o’ = −i

negate

Problem P2

if (x < 0) then (z’ = ((−1 * x) + 1)) else (z’ = (x + 1))true

// Alternative architecture solution

package P2() :: null is

export all;

begin

use negate;

use pInc;

facet P2(x :: input real;

z :: output real) ::

state_based_semantics is

export all;

x__0 :: M__Type(pInc.a);

x__1 :: M__Type(pInc.a);

x__2 :: M__Type(negate.i);

begin

arch0: if (x >= 0) then (x__1' = x)

else (x__2' = x) end if;

arch1: pInc(x__1, z);

arch2: negate(x__2, x__0);

arch3: pInc(x__0, z);

pre: true

post: if (x < 0) then (z' = ((-1 * x) + 1))

else (z' = (x + 1)) end if;

end facet P2;

end package P2;

Figure 6.12: Solutions to problem P2 using the sequential architecture (left) and the alternative

architecture (right)

50

// Parallel architecture solution to problem P6

package P6() :: null is

export all;

begin

use gt;

use geq;

use and;

facet P6(a :: input real; b :: input real;

x :: output real; y :: output real;

z :: output real)

:: state_based_semantics is

export all;

x__0 :: M__Type(and.m);

x__1 :: M__Type(and.n);

begin

arch0: gt(a, b, x);

arch1: geq(a, b, x__0);

arch2: geq(b, a, x__1);

arch3: and(x__0, x__1, y);

arch4: gt(b, a, z);

pre: true;

post1: x' = (a > b);

post2: y' = (a = b);

post3: z' = (a < b);

end facet P6;

end package P6;

m

n
ogt

m

n
ogt

and

m

n
o

true

m

n
o

a

m

n
o

geq

geq

b

z

y

x

(x’ = (a > b)) and (y’ = (a = b)) and (z’ = (a < b))

Problem P6

Figure 6.13: Solution to problem P6 using the parallel architecture

// Pre-match driven synthesis to problem P1 using

// component negate and the sequential architecture

package P7() :: null is

export all;

begin

facet P7(i__0 :: input real;

i__1 :: input real;

o__0 :: output real) :: state_based_semantics is

export all;

q__0 :: real;

begin

pre: true and (i__0 = (-1 * q__0));

post: o__0' = (i__1 + q__0);

end facet P7;

end package P7;

Figure 6.14: Pre-match driven synthesis to problem P1 using component negate and the sequential

architecture

51

Chapter 7

Examples

7.1 Record Find Example

In the classic �nd example, �rst introduced by Penix [44], the problem (in �gure 7.1) spci�es the

retrieval of a record (de�ned as a key-value pair) from a list of records given a key. The key type is

de�ned as the set of all unique key names used to construct records in the list, therefore a record

must exist in the list of records for all legal keys to the problem.

// Find record given a unique key name

package find() :: null is

export all;

begin

facet find(a :: input recordList;

k :: input key;

z :: output record) :: recorddomain is

export all;

begin

pre: true;

post: (getKey(z') = k) and (isMember(z', a));

end facet find;

end package find;

Figure 7.1: Classical record �nd problem

52

Following retrieval, the binary search component is determined to be a (Bijective) Plug-in Post

match. As step 1 in �gure 7.3 shows, the binary search component is a partial match because

of the additional pre-condition that the record list must be ordered. Intuitively, the input list of

records should be sorted to adapt the binary search component and then the problem would be

complete, as shown in step 1a. The sub-problem can not be sliced into the parallel architecture as

suggested in step 1a for two reasons: 1) the top sub-problem only speci�es that the output must

be ordered, thus a component that generates an empty list for all inputs would be a match, 2) the

semantics of the key varaible can not be rigorously maintained if the key and record list ports are

seperated during parallel adaptation. As �gure 7.2 shows, parallel adaptation can not be applied

since the semantics of the operation of the binary search, with respect to the key value, must be

maintained as a partial solution to the �nd problem. Otherwise the key could be safely modifed in

the currently adaptation step, but violate a constraint in a previous adaptation step. Using step 1

fails to locate a solution to the problem.

An appropriate solution follows step 2 using the (1-1) Plug-in Pre matched sort component

with sequential adaptation results in locating the binary search component to successfully adapt

the sort component towards the solution in step 2a.

7.2 Flip Flop Example

The following example illustrates using architectural components to construct larger and more

complex architectures to solve new problems. The ip op problem in �gure 7.4 speci�es feedback

of the output signals into the input signals.

The problem is submitted to SPARTACAS, the �rst step in the retrieval of the ipFlop compo-

nent. The component retrieved, see �gure 7.5, can not be instantiated because the component does

53

// Post-match driven synthesis to find using

// component binary search and the sequential architecture

package P8() :: null is

export all;

begin

facet P8(i__0 :: input recordList;

i__1 :: input key;

o__0 :: output recordList;

o__1 :: output key) :: recorddomain is

export all;

q__0 :: recordList;

begin

pre: true;

post: (ordered(o__0')) and

(not((getKey(q__0) = o__1') and (isMember(q__0, o__0'))) or

(getKey(q__0) = i__1) and (isMember(q__0, i__0)))

end facet P8;

end package P8;

Figure 7.2: Post-match driven synthesis to �nd using component binary search and the sequential

architecture

not specify the implementation of a ip-op, rather its speci�es an architecture that implements

the functionality. The sub-components of the architecture are submitted to SPARTACAS, resulting

in component population of the architecture in step (1a).

54

Search
Binary r

e

isMember(z’ , a)
getKey(z’) = k and

isMember(z’ , a)
getKey(z’) = k and

z

ordered(l)

l

true

SORT ???

ordered(l)

la

k r

true

SORT
i o

true
ordered(o’) and
bag(i) = bag(o’)

true
getKey(z’) = k and

isMember(z’ , a)

z
a

k

a

k

BINARY SEARCH

bag(i) = bag(o) isMember(z’ , o)
getKey(z’) = k andtrue and ordered(o) and

o

k
z

forall (i: recordList):

STEP 1

STEP 1a

STEP 2

STEP 2a

Figure 7.3: Search space for the �nd problem

// Flip flop problem

package ff() :: null is

export all;

begin

facet ff(i0 :: input boolean;

i1 :: input boolean

o0 :: output boolean;

o1 :: output boolean) :: state_based_semantics is

export all;

begin

pre: true;

post0: o0' = (i0 and o1);

post1: o1' = (i1 and o0);

end facet ff;

end package ff;

Figure 7.4: Flip op problem

55

true (o0’ = (i0 and o1)) and (o1’ = (i1 and o0))

true (o0’ = (i0 and o1)) and (o1’ = (i1 and o0))

STEP 1

i0

i1

o0

o1

flipFlop

true (o0’ = (i0 and o1)) and (o1’ = (i1 and o0))

i0

i1

o0

o1

STEP 1a

true c’ = (a and b)

true c’ = (a and b)

a
b

c

a
b

c

true (o0’ = (i0 and o1)) and (o1’ = (i1 and o0))

i0

i1

o0

o1

STEP 1b

boolAnd

boolAnd

Figure 7.5: Search space for the ip-op problem

56

Chapter 8

Evaluation

Precision and recall metrics are traditionally used to evaluate the performance of component re-

trieval. Precision is de�ned as the ratio of correct solutions retrieved to the total number of results

retrieved. High precision is the result of retrieving few irrelevant or invalid results. Recall is de�ned

as the ratio of the number of correct solutions retrieved to the number of correct solutions that

exist in the library. Ideally recall should be high, meaning correct solutions should not be missed

in the library. Generally, the trade-o� between recall and precision is inversely proportional since

increasing recall increases the probability of retrieving irrelevant results.

The equation for recall must be modi�ed since a library may contain an in�nite number of

possible architectural solutions. Some of these solutions may contain nonsensical or redundant

con�gurations of components, yet nevertheless solve the problem. For instance, if the goal is to

�nd a solution to a problem that increments an input value, an in�nite number of solutions can be

constructed by using N decrement components and N+1 increment components. The traditional

equation for recall will always evaluate to zero when an in�nite number of solutions exist. Three

di�erent methods for calculating recall are proposed in de�nitions 8.0.1, 8.0.2, and 8.0.3, which

use di�erent �nite grouping relations. Figure 8.1 illustrates the solution grouping relationships

57

for calculating recall. In addition to precision and recall, the average number of components per

solution and the average number of proof obligations will also be calculated.

De�nition 8.0.1 Recall1 is de�ned as the ratio of the number of relevant component groups re-

trieved to the number of relevant component groups in the library. The grouping relation is de�ned

as the containment of some combination (without replacement) of components such that a solution

exists.

De�nition 8.0.2 Recall2 is de�ned as the ratio of the number of relevant component groups re-

trieved to the number of relevant component groups in the library. The grouping relation is de�ned

as the containment of the smallest combination (without replacement) of components such that a

solution exists.

De�nition 8.0.3 Recall3 is de�ned as the ratio of the number of relevant solutions retrieved to the

number of relevant solutions in the library, where a solution contains a threshold of N components,

where N is some integer greater than 0.

a

b

c

c a b c

Solution #1 Solution #2 Solution #3

Equation Solution Groups Number of Solutions

Recall1 Solutions in group fag: #1 3

Solutions in group fb, cg: #2

Solutions in group fa, b, cg: #3

Recall2 Solutions in group fag: #1 and #3 2

Solutions in group fb, cg: #2 and #3

Recall3 Solutions with N=2: #1 and #2 2

Figure 8.1: Calculating recall example using components a, b, and c

58

8.1 Evaluation Library and Query Set

Evaluation is performed over a library containing 46 complex mathematical speci�cations, a library

of 106 list manipulation speci�cations, a library of 30 record manipulation speci�cations, and a

library consisting of 42 digital signal processing speci�cations. These libraries have also been used

in evaluating other works [47, 17, 42, 4].

The query set contains 103 queries, which can be classi�ed into six types: queries for solutions

that are solved (1) by one and only one component, (2) by a single component, but can also be solved

by an architecture of components, (3) only by an architecture of components, (4) by an in�nite

number of architecture con�gurations, (5) by multiple sub-architectures, or (6) by components

from multiple libraries. The experiments are designed to test the automated adaptation of partial

solutions using adaptation architectures, hence the majority of queries are designed to be solved

by an architecture. The experiments in other works using the same libraries focused on retrieval of

single component solutions to queries, therefore a direct comparison of results can not be performed.

8.2 Empirical Results

The SPARTACAS framework can be tuned using the port connection and depth variables. The

port connection method, �, can be one of the methods described in chapter 5. As outlined, the

less restrictive port connection methods generate a greater number of signature combinations than

the bijective port connection method. The signature combinations must be checked by a theorem-

prover, resulting in a time and computation expense. A trade-o� in recall and proof obligations is

expected when comparing the port connection methods.

The retrieval framework uses a depth-�rst architecture construction strategy. Since it is possible

to get trapped in the construction of an architecture without an end, there has to be a depth, or a

59

limit on the number of components used in the construction of an architecture. The depth, denoted

as Æ, is equivalent to the number N in the de�nition of Recall3. Clearly a trade-o� in recall and

proof obligations is expected since increasing the depth allows SPARTACAS to search longer. The

experiment will be performed with (� = 1) and without (� = 0) adaptation capabilities.

Expr (�; �; Æ) Recall1 Recall2 Recall3 Precision Proof Obligations Components

Solution

1. (0, -, 2) .04(0-1) .08(0-1) .15(0-1) 1(1-1) 2.5(1-4) 1(1-1)
2. (0, -, 5) .04(0-1) .08(0-1) .15(0-1) 1(1-1) 2.5(1-4) 1(1-1)
3. (0, -, 8) .04(0-1) .08(0-1) .14(0-1) 1(1-1) 2.5(1-4) 1(1-1)
4. (1, Bi, 2) .29(0-1) .35(0-1) 1(1-1) 1(1-1) 24.5(1-41) 1.3(1-2)
5. (1, 1-1, 2) .33(0-1) .52(0-1) 1(1-1) 1(1-1) 33.8(1-50) 1.4(1-2)
6. (1, Onto, 2) .31(0-1) .5(0-1) 1(1-1) 1(1-1) 51.0(1-71) 1.4(1-2)
7. (1, Bi, 5) .4(0-1) .58(0-1) 1(1-1) .99(.8-1) 57.3(1-80) 2.4(1-5)
8. (1, 1-1, 5) .64(0-1) .79(0-1) .99(.8-1) .99(.8-1) 88.2(1-102) 2.8(1-5)
9. (1, Onto, 5) .59(0-1) .64(0-1) .99(.75-1) .99(.8-1) 118.0(1-145) 2.6(1-5)
10. (1, Bi, 8) .61(.15-1) .70(.4-1) .97(.75-1) .98(.8-1) 150.0(1-188) 4.0(1-8)
11. (1, 1-1, 8) .82(.4-1) .91(.54-1) .96(.75-1) .98(.8-1) 188.9(1-201) 4.5(1-8)
12. (1, Onto, 8) .78(.35-1) .81(.5-1) .96(.75-1) .98(.8-1) 258.4(1-289) 4.3(1-8)

Table 8.1: Empirical results

The framework was implemented and evaluation results were obtained over the query set. Ta-

ble 8.1 shows a portion of the results obtained, minimum and maximum values are shown in

parentheses. Experiments 1 trough 3 show the results of running SPARTACAS without the adap-

tation features. Although SPARTACAS was able to retrieve results quickly with high precision,

the recall was around 10%. Low recall in these experiments were the result of queries that could

not be solved by a single component in the library. Experiments 4 through 12 used the adaptation

features in SPARTACAS. The results generally show that high recall was gained without giving

up precision. High precision was the result of using formal methods to verify and maintain the

constraints of the problem during solution construction. Variable renaming in one example caused

an architectural resolution conict, thus adversely a�ecting precision.

Figure 8.2 shows the relationships between recall and the number of proof obligations versus the

60

Figure 8.2: Search depth e�ects on performance (� = 1-1)

search depth. Since the number of components per solution as well distributed for small depths,

Recall1 had a steady increase versus the search depth before leveling o�. Recall2 initially had

large gains since many solutions groups were found with a small search depth, however as the

search depth was increased there was diminishing returns since SPARTACAS is less likely to �nd

a solution to an undiscovered solution group. Recall3 was high for small search depths, but slowly

decreased as the search depth increased. This result is accredited to the theorem-prover's strategies

inability to prove match conditions on some of the large and complex synthesized sub-problems.

The results also show an exponential increase in the number of proof obligations per solution. This

result was expected since as the search depth is increased SPARTACAS is likely to generate more

proof obligations when adapting partial matches.

Figure 8.3 shows the impact that the port connection methods have on recall (using Recall2)

and the number of proof obligations. The graph clearly shows an increase in recall at the expense of

proof obligations when using a less restrictive port connection. The onto port connection method

had early gains in recall but did not provide much increase when the depth was increased, whereas

the one-to-one port connection provided better recall results. The functionality of components using

one-to-one port connection were more applicable to the problems than using onto port connection.

61

Figure 8.3: Port connection e�ects on performance

Using onto port connection also had higher proof obligation count since onto port connection

requires an exponential number of possible port instantiantions to verify.

8.3 Implementation Platform

The Rosetta speci�cations are initially parsed by the RosettaANTLR parser, which generates a data

structure called the Rosetta Object Model (ROM). The ROM is then converted to an intermediate

notation (XML) using a simple multi-visitor pattern written in Java. The bene�t of using an

intermediate notation is that it allows SPARTACAS to be theorem-prover independent. Various

retrieval engines can be plugged into the layered architecture, as long as the engine can translate

the XML to its native language. For this experiment, SPARTACAS uses SOCCER2 (an updated

version of SOCCER [42]) as the retrieval engine. SOCCER2 uses PVS to perform automated

theorem-proving for feature classi�cation in the feature-based retrieval engine and logical relational

proofs in the speci�cation-based retrieval engine. An XSLT script converts the XML into a PVS

form that can be interpreted by SOCCER2. SOCCER2 generates a list of components that match

or partially match the problem as well as the signature used to instantiate the component. For

partial matches, a Common Lisp program synthesizes sub-problems which are fed back to the

62

retrieval engine. A small Java program is used to coordinate the process and keeps a record of the

architectural blueprints that have been constructed. Users can also run SPARTACAS interactively

at each search/adaptation step.

Several search and strategy variables can be used to tune SPARTACAS. In addition to setting

the search depth and port connection method, the number of solutions retrieved can be speci-

�ed. The retrieval strategies can also be modi�ed, including the feature-match threshold and the

speci�cation-match strategy. The user can specify any match condition listed in �gure 2.3, or

use order-by-strength, satis�es-�rst, or complete-search strategies. The order-by-strength strategy

will �rst return components that are a complete match to the problem. If no matches exist, then

post-matches are returned. If no matches yet exist, pre-matches are attempted and returned. The

satis�es-�rst strategy will �rst return complete matches, else will return post- and pre-matches if no

complete matches exist. Lastly, the complete search will return components that match under any

of the match conditions. During this experiment, SPARTACAS was set to search for all possible

solutions while varying the search depths and port connection methods. The feature-match thresh-

old was set to 50% and the complete-search strategy was used in the speci�cation-based retrieval

engine.

63

Chapter 9

Future Work and Limitations

The architectures synthesized by SPARTACAS use shared-variable communication. SPARTACAS

needs to address various communication protocols. The framework can resolve this issue by: 1)

including communication protocols as a search criteria when selecting components during retrieval,

or 2) populating the component library with communication connector speci�cations [3] that can

be retrieved and instantiated. The latter approach would maintain the generality of the component

speci�cations and the SPARTACAS framework, however it would increase the overhead in the

retrieval engine due to the additional connector searches.

Work needs to be invested in applying reuse to di�erent domains. The reuse framework was

evaluated on components in domains that used state-based semantics, where results are computed

and placed on the output in the next state after the arrival of input. Domains may also determine

the type of architectures that are applicable. Other semantic issues also need to be explored when

constructing solutions. For instance, the user may consider the propagation delay of values in an

architecture as a factor in a solution.

SPARTACAS is limited in the type of adaptation architectures that it can synthesize. SPARTA-

CAS is only capable of synthesizing three types of adaptation architectures (sequential, alternative,

64

and parallel). Future work may include other architectures as tactics for adaptation. The currently

framework allows architectures, such as feedback architectures, to be stored in the library which

can be retrieved and populated in a solution.

SPARTACAS is limited by the proving power of theorem-provers. There are proofs that are

incapable of being solved, even with today's theorem-provers and processing power. The implemen-

tation is also limited by the depth that can be searched, SPARTACAS currently uses a depth-�rst

search strategy in the architectural search tree. Other search strategies that estimate the cost (e.g.

number of proof obligations) to reach a solution could also be applied. SPARTACAS could also

be parallelized and distributed among processors, which might reduce the cost or time to reach a

solution. Other methods to decrease the cost to reach a solution set also need to be investigated.

SPARTACAS currently does not rank solutions since the ranking criteria is dependent on the

features that the user wishes the solutions to possess. Allowing the user to specify such criteria (e.g.

number of components used, propagation delay, extra technical information [22]) before retrieval

can be added. In the event that a complete solution can not be found, the framework optionally

returns all partially completed architectures and the sub-problem speci�cation required to satisfy

the rest of the problem. The sub-problem may or may not be easier to implement from scratch

than the original design problem, although estimating the complexity of implementing one of the

sub-problem speci�cations is diÆcult.

65

Chapter 10

Related Work

10.1 Speci�cation-based Retrieval

SPARTACAS builds largely upon previous work on speci�cation-based retrieval techniques. Zarem-

ski and Wing [64, 63] provided the precise logical relationships for comparing and organizing spec-

i�cations. They constructed a tool to retrieve Larch/ML speci�cations and to evaluate issues such

as subtyping and interoperability. The lattice of logical relationships is not only used to evaluate

retrieval in the SPARTACAS framework, but also to evaluate the tactics for adaptation. The match

conditions are used to determine which adaptation architecture tactic can be applied and to derive

the functionality required for successful adaptation.

John Penix [48, 47] presented a methodology to automate the classi�cation and retrieval of

VSPEC components using the Larch theorem-prover. Penix motivates the use of semantic feature

classi�cation of components to improve the performance of speci�cation-based retrieval. Feature-

based retrieval is used to reduce the search space by eliminating components that do not have

features in common with the problem. The reduced search space is given to the theorem-prover

where match conditions are proven and used to evaluate reuse. Empirical experiments were carried

66

out to evaluate the performance of the retrieval mechanism. Makarand Patil [42] later extended this

methodology to Rosetta speci�cations and the PVS theorem-prover in a system called SOCCER.

SPARTACAS uses an improved version of SOCCER (the new version includes stronger proof tactics

and a layered retrieval engine) as the main retrieval engine.

Bernd Fischer and others [13, 14, 17] designed a deductive retrieval tool called NORA/HAMMR

to progressively �lter components using a series of �lters, theorem-provers, and model checkers.

They also used techniques to reduce the axiom and proof sets when proving a match between

speci�cations. SPARTACAS also uses the layered �lter approach to retrieval, making use of feature-

and signature-based retrieval engines to �lter out components. The last layer is a speci�cation-based

retrieval engine that proves a match condition between a component and a problem.

10.2 Component Adaptation

Penix [43, 45] presents a framework called REBOUND for component retrieval and adaptation.

He introduces behavioral adaptation using adaptation architectures. SPARTACAS uses the RE-

BOUND framework to automate the adaptation of components that partially match a problem.

The framework and implemented and experimental results were presented in this work and else-

where [39, 40]. The adaptation tactics are used to select an adaptation architecture theory, which

is used to precisely deduce and synthesize a sub-problem to solve the adaptation requirements.

Penix suggested that the parallel adaptation tactic uses the bottom-up approach to adaptation,

where components are adapted in parallel such that union of all the features of the components

matched those of the problem. SPARTACAS uses the top-down approach to decompose problems

using speci�cation slicing. Components that match the sub-problems are composed in parallel to

satisfy the problem.

67

Purtilo and Atlee [51] have developed a system, called NIMBLE, that aides software designers

by automating the adaptation of module interfaces. Adaptation of a module interface involves

reordering, type coercion, and/or initializing or masking parameters. NIMBLE allows programmers

to declare mappings and type adaptations of a program's interface, which gets transformed into

a module that encapsulates the desired adaptation. SPARTACAS uses a signature-based retrieval

engine that automates the necessary reordering and type coercion when matching the interface of

the problem to the interface of the component. The information is stored and later used to properly

instantiate the parameter con�gurations in an architecture speci�cation.

Jeng and Cheng [30] describe an approach to reusing general components and identifying modi�-

cations required to satisfy a query speci�cation. The modi�cations include solving type inconsisten-

cies and unde�ned operations. Although SPARTACAS does not modify a component speci�cation,

SPARTACAS uses a similar notion to identify the missing functionality which is synthesized into a

sub-problem. The necessary behavioral modi�cations occurs during component interactions in the

architecture.

10.3 Synthesizing, Slicing, and Architecting for Reuse

Chen and Cheng [10] developed an architecture-based reuse environment called ABRIE. ABRIE

provides a graphical representation of an architecture where each architectural element (e.g. com-

ponents and connectors) contain a description of its properties. ABRIE also provides a semi-

automated capability to evaluate reuse of existing components to be reused and instantiated in the

architecture. SPARTACAS automates the construction and instantiation of architectures to satisfy

design problems without user assistence.

Zhao [65] developed a slicing approach for architecture description speci�cations for reuse-of-the-

68

large. A large description of a software system is described in an ADL using a collection of elements

(components and connectors); slicing is used to extract and reuse elements or collections of elements

in other system designs. SPARTACAS uses slicing for reuse-of-the-small at the speci�cation level.

Problems are decomposed into smaller sub-problems such that matching components can be reused

to solve the independent sub-problems.

Fischer and Whittle [16] have investigated the integration of deductive retrieval and deductive

synthesis into one framework. Meta-variables are used to represent program fragments yet to be

synthesized. They discuss that the meta-variables can be used to represent the synthesis of a

speci�cation required for component adaptation based on pre-de�ned tactics. Their framework was

only able to achieve partial automation.

Bhansali [6] uses a hybrid approach to obtain a cost-e�ective reuse strategy at the code level to

solve con�gurations of geometric bodies. The approach uses a combination of architecture-driven

reuse, code component retrieval, as well as program synthesis. In their work they recognize that a

component is more likely to be reused in an architectural design. The synthesizer semi-automatically

synthesizes partial code fragments from high-level speci�cations of domain knowledge. SPARTA-

CAS uses an automated synthesizer to synthesize sub-problems, which are recursively used to search

for solutions in the library.

69

Chapter 11

Conclusions

Reuse can potentially contribute many bene�ts to the software design cycle, but the costs associated

with reuse must be reduced for reuse to become more common. A signi�cant cost is the search

and adaptation of components to satisfy a design problem. Most works have achieved eÆcient and

e�ective component retrieval, but few works have concentrated on adapting partial matches. For

adaptation to be feasible, the process needs to be reliable, scalable, error-free, and automated.

In this thesis, the SPARTACAS framework for automating speci�cation-based component re-

trieval and adaptation for software reuse was presented. The thesis motivated using formal speci�ca-

tions to represent reusable software; which gives a formal foundation to the retrieval and adaptation

process. SPARTACAS uses a layered retrieval architecture using feature-based, signature-based,

and speci�cation-based retrieval engines to retrieve components that, completely or partially, match

a problem. The layered approach to retrieval reduces the cost of retrieving components from large

and diverse libraries. Three adaptation architecture theories for adapting the behavior of partially

matching components were speci�ed. These theories (sequential, alternative, and parallel) specify

the con�guration of sub-components and specify the relationship between the functionality of the

architecture and the functionality of the sub-components. Using this relationship, a sub-problem

70

can be synthesized and used to search for components for adaptation. The components are instan-

tiated in the adaptation architecture. The adaptation architecture e�ectively adapts the behavior

of partially-matched components by imposing interactions with other components. The resulting

architecture is a solution to the problem that can be added to the library of components, further

increasing the prospects of reuse.

This work makes the following contributions:

� Presents SPARTACAS, a fully automated speci�cation-based component retrieval and adap-

tation tool.

� Illustrate behavioral adaptation can be implemented using adaptation architectures.

� Demonstrates speci�cation slicing as a tactic for problem decomposition for parallel adapta-

tion.

� Provides a sound and formal methodology for synthesizing sub-problems for adapting partial

matches.

� Supports the retrieval and adaptation framework with empirical results.

� Discusses the trade-o�s in recall and the number of proof obligations to prove.

The framework was implemented and evaluated. The results showed SPARTACAS was able to

recall approximately 94% of possible solutions while maintaining high precision with adaptation,

compared to 4-15% recall without adaptation. The adaptation process was time consuming on

large and complex examples, however, in general, correct solutions were retrieved if such solutions

exist. Other limitations and future work on the framework were also discussed.

71

Bibliography

[1] P. Alexander, D. Barton, and C. Kong. Rosetta Usage Guide. The University of Kansas /

ITTC, 2335 Irving Hill Rd, Lawrence, KS, 2000.

[2] Perry Alexander and Cindy Kong. Rosetta: Semantic support for model-centered

systems-level design. IEEE Computer, 34(11):64{70, November 2001.

[3] R. Allen and D. Garlan. Formalizing Architectural Connection. In Proc. Sixteenth

International Conference on Software Engineering, pages 71{80, May 1994.

[4] Thomas Baar and Bernd Fischer. Solving software reuse problems with theorem provers. In

CADE-15 Workshop Problem-solving Methodologies with Automated Deduction, Lindau,

Germany, 1998.

[5] E. T. Bell. Exponential numbers. American Math Monthly, 41:411{419, 1934.

[6] Sanjay Bhansali. A hybrid approach to software reuse. In ACM-SIGSOFT Symposium on

Software Reusability, Seattle, WA, April 1995.

[7] Bruce B. Burton, Rhonda Wienk Aragon, Stephen A. Bailey, Kenneth D. Koehler, and

Lauren A. Mayes. The reusable software library. IEEE Software, 4:25{33, July 1987.

72

[8] G. Canfora, A. Cimitile, A. De Lucia, and G.A. Di Lucca. Software salvaging based on

conditions. In Proceedings of the International Conference on Software Maintenance, pages

424{433, Victoria, Canada, 1994.

[9] Patrick S. Chen, Rolf Hennicker, and Matthias Jarke. On the retrieval of reusable software

components. In Advances in Software Reuse - Second International Workshop on Software

Reusability, Lucca, Italy, 1993. IEEE Computer Society.

[10] Yonghao Chen and Betty H. C. Cheng. Facilitating an automated approach to

architecture-based software reuse. In Proceedings of 12th IEEE International Conference on

Automated Software Engineering, pages 238{245, Incline Village, NV, November 1997.

[11] J. H. Conway and R. K. Guy. The Book of Numbers. Springer-Verlag, New York, 1996.

[12] David Eichmann and Kankanahalli Srinivas. Neural network-based retrieval from software

reuse repositories. In R. Beale and J. Findlay, editors, Neural Networks and Pattern

Recognition in Human Computer Interaction, pages 215{228. Eillis Horwood Ltd., West

Sussex, UK, March 1992.

[13] B. Fischer, M. Kievernagel, and G. Snelting. Deduction-based software component retrieval.

In IJCAI95 Workshop on formal Approaches to the Reuse of Plans, Proofs, and Programs,

1995.

[14] B. Fischer, M. Kievernagel, and W. Struckmann. VCR: A VDM-based software component

retrieval tool. In Proc. ICSE-17 Workshop on Formal Methods Application in Software

Engineering Practice, 1995.

[15] B. Fischer and J. Schumann. SETHEO goes software engineering: Application of ATP to

software reuse. In Proc. CADE-14, July 1997.

73

[16] B. Fischer and J. Whittle. An integration of deductive retrieval into deductive synthesis. In

Automated Software Engineering, pages 53{61, Cocoa Beach, FL, October 1999.

[17] Bernd Fischer and Johann Schumann. NORA/HAMMR: Making deduction-based software

component retrieval practical. In Proc. CADE-14 Workshop on Automated Theorem Proving

in Software Engineering, July 1997.

[18] W. B. Frakes and P. B. Gandel. Representation methods for software reuse. In Proceedings

of Tri-Ada '89, pages 302{314. Association for Computing Machinery, October 1989.

[19] William Frakes and Carol Terry. Software reuse: Metrics and models. ACM Computing

Surveys, 28(2):415{435, June 1996.

[20] William B. Frakes and Christopher J. Fox. Sixteen questions about software reuse.

Communications of the ACM, 38(6):75{87, June 1995.

[21] K.B. Gallagher and J.R. Lyle. Using program slicing in software maintenance. IEEE

Transaction on Software Engineering, 17(8):751{761, 1991.

[22] John H. Gennari and Mark Ackerman. Extra-technical information for method libraries. In

Proceedings of 12th Workshop on Knowledge Acquisition, Modeling and Management (KAW

'99), Ban�, Alberta, Canada, October 1999.

[23] M. R. Girardi and B. Ibrahim. Automatic indexing of software artifacts. In Proceedings of

3rd. International Conference on Software Reuse, pages 24{32, Rio de Janeiro, Brazil,

November 1994.

[24] M. R. Girardi and B. Ibrahim. Using english to retrieve software. The Journal of System and

Software, 30(3):249{270, September 1995. Special Issue on Software Reuse.

74

[25] Allen Goldberg. Reusing software developments. In R. N. Taylor, editor, Proceedings of the

4th ACM SIGSOFT Symposium on Software Development Environments, pages 107{119,

Irvine, California, USA, December 1990. ACM Press.

[26] D. Gries. The Science of Programming. Texts and Monographs in Computer Science.

Springer-Verlag, New York, NY, 1981.

[27] Robert J. Hall. Generalized behavior-based retrieval. In Proceedings of the 15th International

Conference on Software Engineering, pages 371{380, Baltimore, MD, May 1993. ACM Press.

[28] Scott Henninger. Supporting the construction and evolution of component repositories. In

Proceedings of the 18th International Conference on Software Engineering, pages 279{288,

Berlin, Germany, March 1996. IEEE Computer Society Press.

[29] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communications of the

ACM, 12:576{580,583, 1969.

[30] Jun-Jang Jeng and Betty H. C. Cheng. A formal approach to using more general

components. In Proceedings of the 9th Knowledge-Based Software Engineering Conference,

pages 90{97, September 1994.

[31] Jun-Jang Jeng and Betty H. C. Cheng. Speci�cation matching for software reuse: A

foundation. In Proceedings of the ACM SIGSOFT Symposium on Software Reuse, pages

97{105, Seattle, Washington, April 1995.

[32] L. Jilani, J. Desharnais, M. Frappier, R. Mili, and A. Mili. Retrieving software components

that minimize adaptation e�ort. In Automated Software Engineering, pages 255{, 1997.

[33] Capers Jones. Economics of software reuse. Computer, 27:106{7, July 1994.

75

[34] David B. Leake Andrew Kinley and David Wilson. Case-Based Reasoning: Experiences,

Lessons, and Future Directions, chapter Learning to Improve Case Adaptation by

Introspective Reasoning and CBR. AAAI Press/MIT Press, 1996.

[35] Charles W Krueger. Software reuse. Computing Surveys, 24:131{83, June 1992.

[36] Yoelle S. Maarek, Daniel M. Berry, and Gail E. Kaiser. An information retrieval approach for

automatically constructing software libraries. IEEE Transactions on Software Engineering,

17:800{13, August 1991.

[37] A. Mili, R. Mili, and R. Mittermeir. Storing and retrieving software components: A

re�nement based system. In Proc. 16th Int'l Conf. on Software Engineering, pages 91{100,

Sorrento, Italy, May 1994.

[38] Hafdeh Mili, Fatma Mili, and Ali Mili. Reusing software: Issues and research directions.

IEEE Transactions on Software Engineering, 21(6):528{562, June 1995.

[39] Brandon Morel and Perry Alexander. A slicing approach for parallel component adaptation.

In Proceedings of the Tenth IEEE International Conference and Workshop on the

Engineering of Computer-Based Systems, pages 108{114, Huntsville, AL, April 2003. IEEE

Computer Society Press.

[40] Brandon Morel and Perry Alexander. Spartacas: Automating component adaptation and

reuse. Technical report, Information and Telecommunication Technology Center, University

of Kansas, August 2003.

[41] Tomohiro Oda and Keijiro Araki. Speci�cation slicing in formal methods of software

development. In Proceedings of the 17th Annual International Computer Software and

Applications Conference, pages 313{319. IEEE Computer Society Press, November 1993.

76

[42] Makarand Patil. Soccer - a speci�cation matching-based component retrieval system.

Master's thesis, University of Kansas, 2000.

[43] J. Penix and P. Alexander. Component reuse and adaptation at the speci�cation level. In 8th

Annual Workshop on Institutionalizing Software Reuse, Ohio State University, Columbus,

March 1997.

[44] John Penix. Automated Component Retrieval and Adaptation Using Formal Speci�cations.

PhD thesis, University of Cincinnati, April 1998. In preparation.

[45] John Penix. Rebound: A framework for automated component adaptation. In Proceedings of

the 9th Annual Workshop on Software Reuse, January 1999.

[46] John Penix and Perry Alexander. Toward automated component adaptation. In Proceedings

of the Ninth International Conference on Software Engineering and Knowledge Engineering,

pages 535{542. Knowledge Systems Institute, June 1997.

[47] John Penix and Perry Alexander. EÆcient speci�cation-based component retrieval. In

Automated Software Engineering, volume 6, pages 139{170. Kluwer Academic Publishers,

1999.

[48] John Penix, Phillip Baraona, and Perry Alexander. Classi�cation and retrieval of reusable

components using semantic features. In Proceedings of the 10th Knowledge-Based Software

Engineering Conference, pages 131{138, November 1995.

[49] Dewayne E. Perry and Steven S. Popovitch. Inquire: Predicate-based use and reuse. In

Proceedings of the 8th Knowledge-Based Software Engineering Conference, pages 144{151,

September 1993.

77

[50] Rub�en Prieto-D�iaz. Implementing faceted classi�cation for software reuse. Communications

of the ACM, 34(5):88{97, May 1991.

[51] James M. Purtilo and Joanne M. Atlee. Module reuse by interface adaptation. Software:

Practice & Experience, 21(6):539{556, June 1991.

[52] Ashwin Ram and Jr. Anthony G.Francis. Case-Based Reasoning: Experiences, Lessons, and

Future Directions, chapter Multi-plan Retrieval and Adaptation in an Experience-Based

Agent. AAAI Press/MIT Press, 1996.

[53] Eugene J. Rollins and Jeannette Wing. Speci�cations as search keys for software libraries. In

Proceedings of the Eight International Conference on Logic Programming. 1991.

[54] G. C. Rota. The number of partitions of a set. American Math Monthly, 71:498{504, 1964.

[55] Andreas Schlapbach. Enabling white-box reuse in a pure composition language. Master's

thesis, University of Bern, January 2003.

[56] Guttorm Sindre, Reidar Conradi, and Even-Andre Karlsson. The REBOOT approach to

software reuse. The Journal of Systems and Software, 30(3):201{212, September 1995.

[57] Douglas R. Smith. KIDS: A Semiautomatic Program Development System. IEEE

Transactions on Software Engineering, 16(9):1024{1043, 1990.

[58] Barry Smyth and Mark T. Keane. Experiments on adaptation-guided retrieval in case-based

design. Technical Report TCD-CS-94-17, Trinity College, Dublin, dec 1994.

[59] Mark Weiser. Program Slices: Formal, Psychological, and Practical Investigations of an

Automatic Program Abstraction Method. PhD thesis, University of Michigan, Ann Arbor,

MI, 1979.

78

[60] Mark Weiser. Programmers use slices when debugging. Communications of the ACM,

25(7):446{452, July 1982.

[61] J. Wing. A Speci�er's Introduction to Formal Methods. IEEE Computer, 23(9):8{24, sep

1990.

[62] A.M. Zaremski and J.M. Wing. Signature matching: A key to reuse. In ACM SIGSOFT

Symp. on the Foundations of Software Engineering, December 1993.

[63] Amy Moormann Zaremski. Signature and Speci�cation Matching. PhD thesis, Carnegie

Mellon University, January 1996.

[64] Amy Moormann Zaremski and Jeannette M. Wing. Speci�cation matching of software

components. In 3rd ACM SIGSOFT Symposium on the Foundations of Software

Engineering, October 1995.

[65] Jianjun Zhao. A slicing-based approach to extracting reusable software architectures. In

Proceedings of the 4th European Conference on Software Maintenance and Reengineering,

pages 215{223, 2000.

79

