Implementation and evaluation of OSPF Optimized Multipath Routing

Balasubramanian Ramachandran M.S. Thesis defense

Committee:

Dr. Joseph B. Evans (chair) Dr. David W. Petr Dr. Susan Gauch

Organization

- Introduction
- Motivation
- Open Shortest Path First (OSPF) Optimized Multipath(OMP) and Opaque-LSA overview
- Design and Implementation
- Performance Evaluation
- Conclusions

Introduction

- Traffic Engineering What is it?
- Objectives
 - Improve network performance
 - Utilize resources efficiently
 - load-balancing in presence of varying traffic patterns
- Styles
 - Off line
 - On-line

Motivation

- On-line load balancing hard
 - "It is easier to move a problem around than it is to solve it" - Ross Callon
 - Necessity for efficient algorithms imperative for online load balancing
 - Uniform link utilization in networks
 - stability concerns

Adaptive weights method

- Given traffic demand, optimization using link metrics is not possible
- Dynamic weights
- Use of multiple equalcost paths came into practice

Equal Cost Multipath (ECMP)

- R1-R4 uses ECMP
- Simple and stable
- Congestion caused by overlapping of shortest paths
 - R1 Unaware of R3-R4 link utilization
- Consider cost (R1-R3-R4) just greater than (R1-R2-R4)

OSPF OMP Overview

- Network designed to support multiple paths between high traffic end-points
- Identify congested links
 - Use IGP to flood load statistics
- move traffic away from congested paths
 - vary traffic injection in multiple paths based on link utilization
 - soft on previous congested links
- Relaxes shortest path criteria

OMP Model in TE context

OSPF Opaque-LSA

- Facilitates dissemination of application oriented information using existing infrastructure
- Link-local, area-local, Autonomous System (AS)-local scopes
- Trade-off
 - additional traffic over-head
 - Additional memory

OSPF Opaque LSA packet format

Link State Advertisement Age		Options	LSA Type
Opaque Type	Opaque ID		
Advertising Router			
Link State Advertisement Sequence Number			
LSA Checksum		LSA length	
Application oriented information			

- Link State Advertisement (LSA) types 9,10 and 11
- opaque type/opaque id replacing LS id
- Lsa header followed by application specific info

Design and Implementation

- OSPFd
 - load query
 - load flood
 - traffic adjustments
- Kernel
 - Forwarding

Link load querying module

- Interface Management Information Base (MIB) parameters sampled every 15 sec
- Values are filtered using a simple filter
- Fractional Link utilization calculated

Load flooding module

- uses type-9 opaque LSA
- fractional link utilization, link bandwidth
- flooding decision based on
 - current value of the load
 - difference between current and previous loads
 - elapsed time since last flooding
- trade-off: flooding frequency and traffic overhead

Nexthop structures

- For each multipath destination,
 - list of nodes from source to destination {R1-R2-R4, R1-R3-R4}
 - critical segment R2-R4
 - previous critical segment
 - Traffic adjustment information

Traffic adjustments

- Traffic moved away from congested links
- move exponentially into non congested paths
 - To ease out congestion quickly

parameter units

T C

Forwarding module

Evaluation

- Opaque LSA propagation time
 - less than 2 seconds
- Per-packet load balancing tests
 - UDP burst traffic generated from R1 towards R5
 - R2->R5 have multipaths
 - R4-R5 link congested

UDP traffic

- Starts with Equal traffic distribution
- On feedback R2 sends more traffic onto R3
- R3-R5 link utilization increases
- R4-R5 link utilization decreases

UDP Traffic contd...

UDP Traffic contd...

- Three paths from R2 to R5
- High link util in R4-R5
- After about 645 seconds R3-R5 link util is increased

UDP Traffic contd...

TCP Traffic

- TCP traffic
 - 1500 byte serialized in 120? sec in 100 Mbps
 - If Delay diff > 3 * serialization time, packet re-ordering can occur
 - Poor thruput in per-packet load balancing
- Per-destination load balancing
 - Traffic generated from R1 towards R6
 - R4-R5 link congested
 - Thruput low for flows taking R4 nexthop
 - Feedback shifts more flows from R4 to R3

- Both R3-R5 and R4-R5 congested
- Only one critical segment
- Not enough to prove instability
- No traffic shifts in the midst
- Hash-space adjustment will dampen oscillation

Conclusions

- Algorithm achieves gradual traffic shift
- Rate of traffic shift into a path depends on previous congestion
- Big networks opaque-LSA propagation time ??
 - Speed of feedback, response determines success
- Trade-off
 - Complexity
 - Traffic overhead
- How effective would over-provisioning be?

Future Work

- Implementation can be extended to support other link types and to inter-area
- Relax shortest path criteria
- Framework used to evaluate MPLS-OMP

THANK YOU