



### TIME FREQUENCY ANALYSIS – An Application to FMCW Radars

#### **BALAJI NAGARAJAN**

Master's Project Defense January 27, 2004

#### Committee:

Dr. Glenn Prescott (Chair) Dr. Christopher Allen Dr. Swapan Chakrabarti



Information & Telecommunication Technology Center our focus is your future







### OUTLINE

- Introduction
  - What is Joint Time Frequency analysis ?
  - Application of JTFA to radar signal processing
- Background
  - FMCW (sea-ice) radar system design & specifications
  - Need for Time Frequency analysis of radar range profiles
- Time Frequency Representation
  - Different techniques classification & description
- Experiments and Results
  - Ideal simulations
  - Sea-ice radar testing
- Conclusions & Future Work



nformation & Telecommunication Technology Center our focus is your future



# What is Joint Time – Frequency Analysis ?

- Fourier Analysis
  - Signal superposition of weighted sinusoidal functions
  - Frequency attributes are exactly described
- Drawbacks
  - Inability to express signals whose frequency contents change over time
  - Examples speech & music
- Joint Time Frequency transforms
  - Characterize behavior of time-varying frequency content of signal
  - Powerful tool for removing noise & interference



nformation & Telecommunication Technology Center our focus is your future



29







#### \*

> 50 – 250 MHz radar  $\Rightarrow$  thick 1<sup>st</sup> year/multiyear sea-ice thickness in Arctic region

- Generates linear chirp signal of frequency 4.5 6Ghz & down-converted
- DAC: 16-bit analog-to-digital converter, sampling beat frequencies at 5MHz







### **Sea – ice Radar Specifications**

#### Calculation of beat frequency



| System Parameters        | Value         |
|--------------------------|---------------|
| Chirp Frequency<br>Range | 50 – 250 MHz  |
| Unambiguous Range        | 3 – 30 meters |
| Transmit Power           | 20 dBm        |
| Chirp Time               | 5 msec        |
| Range Resolution         | 75 cms        |



Information & Telecommunication Technology Center our focus is your future





#### Fourier Spectrum

- Variation of signal amplitude in decibels over distance traveled by radar signal
- Amplitude-scope of sea-ice radar range profile from 'traverse2.bin'

#### Features

- Signals of varying amplitudes over different distances
- Highest signal peak at 0dB indicating '*Top*' of range profile
- Drawbacks
  - Prediction of ice-bottom
  - Distinguish surface returns from noise signals and multiples



nformation & Telecommunication Technology Center our focus is your future









### **Need for Time – frequency analysis (contd...)**

#### Time – frequency spectrum

- 2 dimensional analysis
  - > Determine range to a target function of time
  - Measure the target speed function of frequency
- Indicates position of different layers
  - > Layers are identified by peaks at specific frequencies for all time
  - > Attempts to distinguish between top and bottom of range profiles from other noise signals
- Time varying filtering
  - > Separating noise from data signal



nformation & Telecommunication Technology Center our focus is your future









### **Short Time – Fourier Transform (STFT)**

#### STFT

 Modified Fourier transform by comparing signals with elementary functions localized in time & frequency

 $STFT(t,\omega) = \int s(\tau)\gamma_{t,\omega}^*(\tau)d\tau = \int s(\tau)\gamma^*(\tau-t)e^{-j\omega\tau}d\tau$ 

- Computes the Fourier transform on a block-by-block basis
- Analysis window function 
   *i*(*t*)
   balances time & frequency
   resolutions
  - Smaller the time duration of \(\gamma(t)\), the better the time resolution (poorer frequency resolution) and vice-versa





nformation & Telecommunication Technology Center our focus is your future







# **Short – time Fourier transform (contd...)**

- STFT spectrogram
  - Squared magnitude of STFT
  - Simple & often used time-dependant spectrum
- Signal reconstruction

• Sampled version of STFT 
$$STFT(mT, n\Omega) = \int_{0}^{+\infty} s(t)\gamma^{*}(t - mT)e^{-jn\Omega t} dt$$

- > T,  $\Omega$  time & frequency sampling steps
- > Useful in determining relationship between STFT and Gabor expansion



nformation & Telecommunication Technology Center our focus is your future



# **Gabor expansion**

#### Definition

- Use coefficients as description of signal's local property  $s(t) = \sum_{m=0}^{\infty} \sum_{m=0}^{\infty} C_{m,n} h_{m,n}(t)$ 
  - >  $C_{m,n}$  are the Gabor coefficients
- Gaussian-type signal was chosen as elementary function

$$g(t) = \left(\frac{\alpha}{\pi}\right)^{\frac{1}{4}} \exp\left\{-\frac{\alpha}{2}t^{2}\right\}$$

- > Offered optimal joint time-frequency concentration
- Necessary condition for existence :  $T\Omega \le 2\pi$ 
  - >  $T\Omega = 2\pi$  critical sampling ( gives most compact representation )
- Relationship with STFT
  - $C_{m,n} = \int s(t)\gamma_{m,n}^{*}(t)dt = STFT(mT, n\Omega)$  i.e. STFT  $\Leftrightarrow$  Gabor coefficient
  - Gabor expansion inverse of STFT



nformation & Telecommunication Technology Center our focus is your future









# **Continuous Wavelet Transform (CWT)**

- Alternative approach to STFT
  - Spectrogram is limited in resolution by extent of sliding window function
- Differences between STFT & CWT
  - Fourier transforms of windowed signals are not taken
  - Width of window changed as transform is computed

• Definition : 
$$CWT_x^{\psi}(\tau, s) = \Psi_x^{\psi}(\tau, s) = \frac{1}{\sqrt{|s|}} \int x(t) \psi^* \left(\frac{t-\tau}{s}\right) dt$$

- $\psi(t)$  denotes the *mother wavelet*, *s* represents scale index
- Wavelet Denoising
  - Basis is the principle of 'noise decorrelation'
  - Types soft thresholding & hard thresholding



nformation & Telecommunication Technology Center our focus is your future





# Wigner – Ville Distribution (WVD)

Introduction

• WVD is defined as 
$$WVD_s(t, \omega) = \int s\left(t + \frac{\tau}{2}\right) s^*\left(t - \frac{\tau}{2}\right) \exp\{-j\omega\tau\} d\tau$$

where time – dependant autocorrelation function is  $R(t,\tau) = s\left(t + \frac{\tau}{2}\right)s^*\left(t - \frac{\tau}{2}\right)$ 

Properties

Satisfies time marginal & frequency marginal condition

$$\int TFR \rightarrow |s(t)|^2 \text{ i.e. Instantaneous energy of signal at particular instance}$$

$$\int TFR \rightarrow |S(\omega)|^2 \text{ i.e. Power spectrum of signal at a particular frequency}$$

- $\int_{time} TFR \rightarrow |S(\omega)|^2$  i.e. Power spectrum of signal at a particular frequency
- Mean frequency of WVD at time t is equal to signal's weighted average instantaneous frequency
- Energy of WVD is same as the energy content in signal

$$\frac{1}{2\pi}\int_{-\infty-\infty}^{\infty}\int_{-\infty-\infty}^{\infty}WVD(t,\omega)dtd\omega = \int_{-\infty}^{\infty}\left|s(t)\right|^{2}dt = \frac{1}{2\pi}\int_{-\infty}^{\infty}\left|S(\omega)\right|^{2}d\omega$$



nformation & Telecommunication Technology Center our focus is your future







# Wigner – Ville Distribution ( contd...)

#### Advantages

- No window effect
- Better time & frequency resolutions compared to STFT spectrogram

#### Drawbacks

- Cross term interference
  - > 2 points of TFR interfere to create a contribution on 3<sup>rd</sup> point located at their geometrical midpoint
  - Oscillate perpendicularly to line joining two points interfering, with a frequency proportional to distance between two points

#### Alternatives

- Cohen's class of distributions
- Gabor spectrogram



nformation & Telecommunication Technology Center our focus is your future







### **Cohen's class of distributions**

### Smoothed Pseudo – WVD

- Pseudo WVD
  - > Windowed version of WVD because of difficulty in determining  $R(t, \tau)$

$$PWVD_{s}(t,v) = \int_{-\infty}^{\infty} h(\tau)s(t+\tau/2)s^{*}(t-\tau/2)e^{-j2\pi v\tau}d\tau$$

- > Equivalent to frequency smoothing of WVD where h(t) is a regular window
- Oscillating nature attenuates interferences
- > Drawback : controlled only by short time window h(t)
- SPWVD
  - Separable smoothing kernel  $\Psi_T(t, f) = g(t)H(f)$  where *g* and *h* are two even windows with h(0) = G(0) = 1
  - > Progressive and independent control, in both time & frequency



nformation & Telecommunication Technology Center our focus is your future







### **Choi – Williams Distribution**

#### Kernel design

- Theory of interference distributions developed by Choi & Williams
- Exponential kernel:  $\Phi(\vartheta, \tau) = \exp\{-\frac{(\pi \vartheta \tau)^2}{2\sigma^2}\}$  where  $\sigma$  is scaling parameter
- Properties
  - Suppresses the cross-terms created by two functions having different time & frequency centers
  - σ controls the decay speed
    - > as  $\sigma$  decreases the interference is reduced
    - $\succ$  When  $\sigma \rightarrow \infty$  we obtain the WVD.
  - Essentially a low pass filter in (v, t) plane which preserves properties of WVD while reducing cross-term interference



nformation & Telecommunication Technology Center our focus is your future







### **Time – Variant Filter**

#### Application of TFR

- Detection & estimation of noise-corrupted signals
- SNR is substantially improved in joint time-frequency domain
- Filtering mechanism
  - Based on both linear & bilinear time-frequency representations
  - Gabor expansion-based filter is most widely used

#### Techniques

- Least Square Error (LSE) filter
- Iterative Time Variant Filter



nformation & Telecommunication Technology Center our focus is your future







### **Experiments & Results – Outline**

- Ideal Simulations
  - Sum of frequency tones
  - Linear chirp signal
- Sea ice radar data
  - Measured depth from field tests
  - How does TFD distinguish surface return from noise ?
- Time frequency techniques
  - Linear transforms STFT
  - Quadratic transforms WVD, SPWVD, CWD
- Time variant filtering
  - Drawbacks of aforementioned techniques
  - Wavelet denoising



nformation & Telecommunication Technology Center our focus is your future







### **Ideal Simulations**

- Test of TFR with cosine signal
  - Input frequency tones :

 $x_{1}[n] = a\cos(2*\pi * f_{1}*n_{1}Ts), a = 0.5; f_{1} = 50KHz$   $x_{2}[n] = b\cos(2*\pi * f_{2}*n_{2}Ts), b = 1; f_{2} = 150KHz$   $x[n] = x_{1}[n] + x_{2}[n]$ where  $n_{1} = 0:999, n_{2} = 1250:2249$  and

 $f_s = 1/Ts = 500Khz$ 

- Power spectrum does not indicate when frequency tones occur
- TFR results
  - Frequency tones at 50KHz & 150KHz varying from (0-2ms), (2.5-4.5ms)
  - Image frequencies at 200KHz and 100KHz respectively
  - Differences in amplitudes indicated by respective colormap scales of frequency tones



nformation & Telecommunication Technology Center our focus is your future









### **Ideal Simulations (contd...)**

#### Test of TFR with *chirp* signal

Input chirp signal:

$$s(t) = \cos(2\pi(f_0t + \frac{1}{2}\alpha t^2)), \alpha = \frac{f_1 - f_0}{T}$$

where  $f_0 = 50 Khz$ ,  $f_1 = 200 Khz$ ,  $T = 5m \sec$ 

#### TFR results

- SPWVD applied to linear sweptfrequency signal
- Signal with linearly varying frequency for full duration of time of 5msec
- Image frequency shown as another chirp from 450-300KHz





Information & Telecommunication Technology Center our focus is your future





### Sea – ice radar experimental data

- Sea-ice (FMCW) radar
  - Data set from field experiments in Barrow, Alaska
  - Measured sea-ice depth compared with depth calculated from signal processing experiments



EM-31 and Measured Ice Thickness Data: Chuk01

#### Ice thickness data

- Field experiments show the measured ice thickness at various depths
- Ascope-60 of file *traverse2.bin* at distance of 0-20m from 1<sup>st</sup> point
- Calculations suggest
  - > Antenna feedthrough 3.45m
  - Ice bottom 7.35m



nformation & Telecommunication Technology Center our focus is your future







# How does TFD distinguish surface return from noise ?

- Frequency is expressed as function of distance or range
- Time dependant spectrum expresses variation of beat signal at different instances of time for a given frequency
- Presence of surface return
  - Signal exists for entire duration of time interval at given frequency
  - Otherwise, signal is assumed to be noise or multiple return



nformation & Telecommunication Technology Center our focus is your future







### **STFT – based Spectrogram**

- Narrow Window
  - Good time resolution & poor frequency resolution
  - Peaks are well separated from each other in time
  - In frequency domain, every peak covers a range of frequencies instead of a single frequency
- Wide Window
  - Good frequency resolution & poor time resolution
  - Frequency resolution is much better with continuous variation in time
  - In time domain, peaks are not observed







**The University of Kansas** Department of Electrical Engineering and Computer Science



Information & Telecommunication Technology Center our focus is your future



# **Wigner – Ville Distribution**

- *Top* of the range profile
  - Observed at distance of around 3.5m
  - Varying over all instances of time (high colormap scale)
- Ice bottom
  - Observed at distance of around 7.5m
  - Yellow colormap scale which is 6dB lower than highest scale
- Drawbacks
  - Suffers from cross-term interference effects
- Best performance
  - Energy distribution being optimally concentrated in the joint timefrequency domain





**The University of Kansas** Department of Electrical Engineering and Computer Science



Information & Telecommunication Technology Center our focus is your future



### **Smoothed Pseudo WVD**

- Defined by smoothing kernel
  - $\psi_{\scriptscriptstyle T}(t,f) = g(t) H(f)$
  - g & h are time and frequency smoothing windows respectively
- ✤ Trade off
  - Improves the cross-term interference at the cost of lower resolution
  - More the smoothing in time and/or frequency, the poorer the resolution in time and/or frequency
- Surface returns
  - clearly visible





nformation & Telecommunication Technology Center our focus is your future









# **Choi – Williams Distribution**

• Employs the exponential kernel  $\psi(v, \tau) = \exp\{-v^2 \tau^2 / \sigma\}$ 

where  $\sigma$  is a scaling factor

- Effect of  $\sigma$ :
  - *σ* = 0.01
    - cross-terms diminish in size
    - width of the signal component spreads
    - > surface returns distinguished easily
    - mild loss in resolution
  - $\sigma \rightarrow \infty$ 
    - approaches the Wigner transform, since the kernel is nearly constant
    - interference terms become more prominent
    - Frequency & time resolution are comparable to that of WVD





**The University of Kansas** Department of Electrical Engineering and Computer Science



Information & Telecommunication Technology Center our focus is your future



### **Time – Variant Filtering**

- Time variant denoising
  - Investigated for FMCW radar signals
  - Discrete Gabor transform is used
  - Not suitable for radar chirp signals

#### Alternative

- Wavelet transforms can be used
- Currently used for 'depth sounder radar' in RSL
- Wavelet denoising
  - Radar echogram showing the noisy signal
  - SNR of denoised signal : 1.4 dB (clean signal)



Echogram of noisy signal



**The University of Kansas** Department of Electrical Engineering and Computer Science



Information & Telecommunication Technology Center our focus is your future





### CONCLUSIONS

- Comparison between Fourier analysis & Joint time frequency analysis
- Time frequency analysis
  - Classification
  - Need for TFA of radar range profiles
- Signal processing experiments
  - STFT spectrogram worst resolutions
  - WVD best performance / optimal concentration in joint time-frequency domain
    - > surface returns clearly visible
    - > Depth from radar matched that of measured depth
  - Cohen's class of distributions compromise between interference reduction & loss in resolution
- Time variant filtering
  - Discrete Gabor transform cannot be used



nformation & Telecommunication Technology Center our focus is your future







# **FUTURE WORK**

- Wavelet denoising can be investigated for FMCW radars
- Time variant filtering can be attempted for other radar signals
  - Particularly for moving targets
- Applications of Time frequency analysis
  - Speech & music signal processing



nformation & Telecommunication Technology Center our focus is your future



