
Real-Time Networking for Quality of Service on TDM based
Ethernet

by

Badri Prasad Subramanyan

B.E. (Computer Science and Engineering),

Bangalore University, Bangalore, India

September 2001

Submitted to the Department of Electrical Engineering and Computer Science and the

Faculty of the Graduate School of the University of Kansas in partial fulfillment of the

requirements for the degree of Master of Science

Dr. Douglas Niehaus, Chair

Dr. David Andrews, Member

Dr. Jerry James, Member

Date Thesis Accepted

c
�

Copyright 2004 by Badri Prasad Subramanyan

All Rights Reserved

Dedicated to my family and friends

Acknowledgments

I would like to thank Dr. Douglas Niehaus, my advisor and committee chair, for

providing guidance during the work presented here. I would also like to thank Dr.

David Andrews and Dr. Jerry James for serving as members of my thesis committee.

I would like to thank my family for their support and encouragement. I would also

like to thank my sister and my close relatives who have been by my side when I needed

them the most. I would also like to thank my younger sister for keeping me smiling.

I would also like to thank Hariprasad Sampathkumar for his collaborative work

with me. I would also like to thank Tejasvi Aswathnarayana, Hariharan Subramanian,

Deepti Mokkapati, Ashwinkumar Chimata and Noah Watkins for their help during

the course of my thesis.

I am grateful to Danico Lee and Dr. Costas Tsatsoulis who gave me an opportunity

to work as a Graduate Research Assistant and funded me during the course of my

thesis.

I would like to thank my roommates who have made my stay in Lawrence memo-

rable. I would also like to thank all my friends who have directly or indirectly helped

me with my thesis work.

Abstract

The most commonly used LAN technology - the Ethernet, suffers from the fact that
transmission of a message across the network is non-deterministic. There have been
many suggestions provided like Time Division Multiplexing which make the network
more deterministic. However, this deterministic network does not differentiate be-
tween processes and provides the same Quality of Service for all applications. Here
we modify the Linux network stack to provide end-to-end Quality of Service for real-
time applications.

Contents

1 Introduction 1

1.1 CSMA/CD Protocol . 2

1.2 Shortcomings of Ethernet . 3

1.3 Existing Solutions . 3

1.4 Proposed Solution . 4

2 Related Work 6

2.1 Hardware Solutions . 6

2.1.1 Shared Memory Methods . 7

2.1.2 Switched Ethernet . 9

2.1.3 Token Passing Protocols . 10

2.2 Software Solutions . 12

2.2.1 RTNet . 13

2.2.2 Rether . 14

2.2.3 Traffic Shaping . 15

2.2.4 Master/Slave Protocol . 16

3 Background 18

3.1 UTime . 18

3.2 DSKI/DSUI . 20

3.3 NetSpec . 21

3.4 Group Scheduling Framework . 23

3.5 Linux Traffic Control . 27

i

3.6 Linux Network Stack . 31

3.6.1 Transmit packet flow . 32

3.6.2 Receive packet flow . 37

4 Implementation 42

4.1 Priority in packet processing . 43

4.1.1 Queue on the Transmit Side . 43

4.1.2 Queue on the Receive Side . 46

4.1.3 Classification of packets . 47

4.2 Group Scheduling Model to achieve Quality of Service 50

4.3 User Interface . 55

4.3.1 Setting Priority on Transmit side 55

4.3.2 Setting Priority on Receive side . 56

4.3.3 Add/Remove Real-time process 57

5 Evaluation 59

5.1 End-to-End Quality of Service . 59

5.2 Pipeline Computation . 65

6 Conclusions and Future Work 69

ii

List of Tables

5.1 End-to-End packet transfer time . 63

5.2 Packet processing time . 67

iii

List of Figures

3.1 Group Scheduling Framework to implement TDM 28

3.2 Packet processing on Linux . 29

3.3 Combination of queuing discipline and classes 31

3.4 Network Transmit . 36

3.5 Network Receive . 41

4.1 TDM Queuing Discipline . 45

4.2 Queuing Discipline on the Receive side 49

4.3 Group Scheduling model for Real-Time Networking 53

5.1 End-to-End packet transfer time for a single real-time process 61

5.2 End-to-End packet transfer time for a non real-time process 62

5.3 End-to-End packet transfer time for a real-time process 62

5.4 Packet processing time on transmit system 64

5.5 Packet processing time on receive system 64

5.6 Packet processing time on transmit side - user process to Traffic Control 64

5.7 Pipeline Computation . 65

5.8 Pipeline Computation Visualization . 67

iv

Chapter 1

Introduction

A Local Area Network is a multi-access channel or a shared media where all the sys-

tems in the LAN share or access the same media to communicate with the other sys-

tems. A multi-access channel can use static channel or dynamic channel methods to

allocate the channel for different systems in the LAN. Static allocation of the channel

can be configured independent of the host systems, but dynamic allocation of the chan-

nel would need the systems in the LAN to communicate with each other to determine

who gets to use the channel. The Medium Access Control (MAC) Layer, which is part

of the Data Link Layer of the network stack, implements different protocols which are

used to determine who goes next on a multi-access channel. The MAC layer imple-

ments different protocols depending on the hardware and the type of network. Some

of the common LAN protocols are Ethernet or IEEE 802.3, Token Ring Protocol or IEEE

802.5 and Token Bus Protocol or IEEE 802.4. The Ethernet is the most widely used LAN

technology due to its simple protocol design. Ethernet uses the Carrier Sense Multi-

ple Access with Collision Detection (CSMA/CD) technique to share the multi-access

channel.

We discuss the CSMA/CD protocol in greater detail in Section 1.1. We discuss

about the shortcoming of the present Ethernet in Section 1.2. We explain about some of

the existing approaches and the problems they address in Section 1.3. Finally we talk

about the proposed solution leveraging KURT-Linux capabilities in Section 1.4.

1

1.1 CSMA/CD Protocol

Ethernet uses the Carrier Sense Multiple Access / Collision Detection (CSMA/CD)

access method to provide a shared media between computers. In this system, each

computer senses the carrier or listens to the shared media to check if the network is

being used by any other system. A system transmits only if the network is clear and

is not being used by any other system. This takes care of the situation that no system

uses the shared media when a single system has already acquired it and using it to

transmit.

Ethernet uses Collision Detection (CD) in order to take care of situations when two

or more systems try to transmit through a clear network at the same time. A collision

is said to occur when two or more systems try to transmit a packet through the same

media at the same time. CD detects a collision in a network after the computer trans-

mits a packet, by listening to the network to check for any collisions to the transmitted

packet. In the case of no collision, the transmission took place successfully. In the case

of a collision, the computer stops the transmission immediately and transmits a 32-bit

jam sequence instead. The jam sequence ensures that any other node, which may cur-

rently be receiving this frame, will receive the jam signal in place of the correct 32-bit

MAC CRC, and discard the frame. The frames from all the systems involved in the

collision need to be resent, as the frames were lost in the collision. So, each of the com-

puter backs off for a random amount of time and retransmits the packet once again.

This process continues until each of the packet is transmitted successfully. The amount

of back off time is randomly selected based on the equation (r x 51.2 � s), where r is a

random number between 0 to 2
���

-1.

Ethernet has been the most widely accepted shared media access method for many

reasons. Ethernet is one of the cheapest means of providing a shared media between

computers. The set up cost of Ethernet would include setting up NIC cards and connec-

tors on computers. Hubs, switches and cables are used to interconnect the computers.

All these components are available at a reasonable price. Ethernet also gives the flexi-

bility to operate at varying data rates; from 10Mbits/s to several Gigabits/s. Ethernet’s

wide acceptance has also brought wide availability of hardware and support. It is sim-

2

ple in terms of use, installation and configuration. The wide acceptance of Ethernet has

made the Ethernet network adapters a standard feature within present day computer

systems.

1.2 Shortcomings of Ethernet

Despite wide acceptance, Ethernet has a number of shortcomings. Ethernet was de-

signed to provide a simple solution to using shared media. Typical Ethernet networks

have a lot of collisions. Every collision and loss of packet is bounded by retransmis-

sion of the packet. Retransmissions brings randomness into network behavior, as each

system involved in collision backs off for a random amount of time. This delay due

to the collisions and retransmission can be overlooked in a normal scenario when the

load on the network is low. However, when the load on the shared media is increased,

then the message delay increases further due to a greater number of collisions. Real-

time applications require predictable Quality of Service. Hence, this non-deterministic

model of Ethernet, coupled with the increased delay, makes it unsuitable for using it

for real-time networking purposes.

1.3 Existing Solutions

In order to make the Ethernet support real-time applications, we have to make Eth-

ernet behavior deterministic. There are many suggestions that have been formulated

over a period of time to solve this problem. The suggestions can be basically divided

into two categories - hardware solutions and software solutions. Hardware solutions

like SCRAMNet and Token Ring Protocol bring in real-time capabilities to the network

by changing the hardware of the systems. Software solutions like RTnet and Rether try

to achieve real-time capabilities by modifications to the software and no modifications

to the hardware. The hardware solutions normally have better real-time capabilities,

whereas the software solutions provide more economical solutions with broader ap-

plicability. The solutions have been discussed in greater detail in Section 2.

One of the solutions, to achieve real-time capabilities, is to implement Time Divi-

3

sion Multiplexing over Ethernet. As the name suggest, this method multiplexes dif-

ferent systems’ use of the LAN based on time. In this method, each computer in the

Local Area Network is allotted a time-slot, when it can transmit a packet. A computer

would transmit only in the allocated time-slot. As a result of this, at any point of time,

only one machine would transmit hence avoiding collisions. This would also make the

network behavior more deterministic as there would be no collisions, hence avoiding

back off or retransmissions. By this method, we are essentially splitting up the total

bandwidth among all the machines in the LAN, and providing each computer with an

assured bandwidth. The performance of this system may be worse than Ethernet when

we have a single machine transmitting a large quantity of data due to the reason that

the transmitting system cannot use the other time slots even if it is unused by the other

systems. However, this method provides an assured bandwidth and the performance

does not drop below the assured bandwidth even when all the systems in the network

are transmitting a large quantity of data.

1.4 Proposed Solution

We consider building a system using Time Division Multiplexing over Ethernet to pro-

vide Quality of Service (QoS) that would be appropriate for real-time applications.

Once the network is made deterministic, we need to study the Linux operating sys-

tem, to look for other scenarios which can cause delays to the packet flow through the

kernel. The Linux network stack is modified to reduce these delays that are present in

the packet flow to achieve predictable end-to-end delays. Reducing these delays not

only makes the packet flow through the kernel more deterministic, but also gives it

real-time capabilities as it is more predictable. We also add other features which lets us

differentiate between the real-time and non real-time packets, so that we can improve

the performance of the real-time packets through the network stack.

The rest of the paper first discusses related work in Chapter 2, and then describes

the background work in Chapter 3, explains the implementation of our system in

Chapter 4. Chapter 5 describes the experiments performed along with the results

4

demonstrating the performance of our system and Chapter 6 presents the conclusion

and the future work.

5

Chapter 2

Related Work

Ethernet was introduced in the 1970’s by Xerox Corporation to provide a means of

shared media network access. In due time people realized the shortcoming of Ethernet

of not being able to satisfy the needs of a real time network. Research was carried

out and various solutions were provided to solve this problem. The solutions can be

classified broadly as hardware and software based solutions.

2.1 Hardware Solutions

Hardware solutions include those adding new hardware or modifying the present

hardware to make the network appropriate for real-time applications. Most of the

hardware modifications would require changing the NIC card to make the network

appropriate for real-time applications. Hardware changes would also include minimal

software changes to port software for the existing hardware. Some of the hardware

solutions are shared media methods like SCRAMNet [6], RT-CRM [21], switched Eth-

ernet and Token passing protocols like Token Ring [7] and FDDI[12]. Hardware solu-

tions normally give better real-time performance, but are expensive to setup, as they

require purchasing and setting up of new hardware devices.

6

2.1.1 Shared Memory Methods

Shared Memory or Reflective memory is one of the solutions to achieve real-time capa-

bilities. In this method, each system in the network has a memory card which is used

to store global data-structures of the system and the application. Each system can ac-

cess its local copy of the global shared memory image. The NIC card and the network

have been designed to maintain consistency among the content of the memories in all

the systems in the network. We have discussed two methods which use the shared

memory method to provide real-time capabilities. They are SCRAMNet and RT-CRM.

SCRAMNet

Shared Common Random Access Memory Network (SCRAMNet) [6] was designed

first by Curtiss Weight Controls Embedded Computing Inc. This model uses a repli-

cated shared memory model to provide low latency, system determinism, high through-

put and guaranteed data delivery.

Each SCRAMNet card has a memory, which is available to the host computer like

its physical memory. This memory is used by the computer to store its global data-

structures. The network maintains consistency among the data stored in all the SCRAM-

Net cards in the computers. Whenever there is a change in a node’s memory, the net-

work protocol broadcasts this change and updates the memory on all the other nodes.

The network uses a unidirectional ring topology to provide predictable data update

latency. The speed of network transmission is much faster in this case as the broad-

cast does not have any CPU overhead and is solely a hardware communication link

protocol.

SCRAMNet had different types of network cards available to work at varying net-

work speeds. The improved version of SCRAMNet boards contain dual-ports, one of

the ports is used by the system to read and write data into the memory. The other

port is used to read and write data into the memory by the network. This dual-port

architecture further improves the speed of the system.

Though SCRAMNet has proved quite effective in the field of real-time networking,

it requires a hardware change, which imposes a cost for a network which is already up

7

and running. We may also need to port applications to work in this environment if the

hardware changes of SCRAMNet are not encapsulated within existing APIs used by

the application layer. This would also bring in the Inter-Process Communication code

which would be used to encapsulate the shared memory model.

RT-CRM

Real-Time Channel-based Reflective Memory (RT-CRM) [21] uses the reflective mem-

ory technique to provide distributed real-time industrial monitoring and control appli-

cations. RT-CRM characterizes the requirements of a distributed industrial application

and was designed to meet its needs. This method uses reflective memory to achieve

this, but in a way different from that of SCRAMNet. SCRAMNet used a method where

the hardware took care of reflecting each system’s memory contents to every other sys-

tem in the network. RT-CRM uses the idea that there is a data sharing pattern which is

followed in distributed industrial applications where:

1. Data sharing is unidirectional

2. There are a set of producers/writers and consumers/readers, and each consumer

would need data only from a subset of the producers. The number of producers

are normally greater than the number of consumers.

3. Historical data from the recent past will be accessed very frequently.

The RT-CRM method is built upon the fact that the amount of memory on the NIC

card is limited and needs to be used efficiently. Since all the consumers do not need

the same data, using a SCRAMnet reflective memory may not be effective, as it would

replicate all data on all nodes, thus consuming memory on many nodes to hold unused

data. RT-CRM uses two key features to support a real-time distributed programming

model.

1. Writer-push data reflection model.

2. Decoupling of writer’s and reader’s Quality of Service.

8

Data Reflection is accompished by Data Push Thread (DPA) residing in the writer’s

node. Every application in a distributed real-time monitoring and control system spec-

ifies the potential users of this data and also the frequency of update. This information

could be used by the DPA thread to write the data into the consumer’s memory. The

consumer uses a couting semaphore to control the number of users who are accessing

its memory at any given time. Each system has a set of QoS parameters which are avail-

able. The DPA thread updates the consumer’s memory based on the QoS parameters

from the producer system.

RT-CRM addresses the problem of real-time networking to a very specific domain

of distributed real-time monitoring and control system. It also requires modification to

the hardware and tends to be expensive in a small network scenario.

2.1.2 Switched Ethernet

A LAN, which uses a switch to connect the individual systems, is called a Switched

Ethernet. Switches are replacing hubs these days due to their better performance, ease

of availability and economical price. They are used in Ethernet to reduce the collision

rate and improve the performance.

A hub basically repeats and transmits all the incoming frame out of all its ports. A

switch is a smarter device which examines the header of the incoming packet to deter-

mine the MAC address of the destination device. A switch also has a built-in MAC-

lookup table which shows the destination port for a given MAC address. Hence the

switch transmits the incoming packet out on the appropriate port only. The switch thus

provides a private collision domain for each of its ports and a guaranteed bandwidth

per port. Switches are Layer 2 devices which drastically reduce the network conges-

tions caused by using CSMA/CD medium access control protocol. Some switches also

have inbuilt buffers which are used to store the incoming frames in situations where

the out going port is busy. If several incoming packets are received for the same re-

ceiver in a short interval, they are queued in the buffer and send out one after another.

But if the number of packets received are greater than the size of the buffer, then some

packets are dropped.

9

A switch by itself does not ensure real-time behavior; it only improves the perfor-

mance of Ethernet by reducing the number of collisions by reducing the congestion

through communication path segmentation. Switched Ethernet offers simultaneous

multiple transmission paths, provided the receivers in all these paths are different.

Switched Ethernet has its own shortcomings, the main one being the latency at the

switch. This latency varies, based on the switch and the number of frames transmitted

to a particular segment on the switch. Switched Ethernet, though it improves the per-

formance of Ethernet, is not deterministic in nature. It does not provide priority levels

which distinguish the real-time and non real-time connections.

2.1.3 Token Passing Protocols

Token passing protocols are distributed polling protocols, where each machine is polled

to check if there is any data to be transferred. The polling method used in these pro-

tocols is by passing a token among the systems. A system, which needs to transmit,

needs to acquire a token before transmission. A token is a small control message, which

is transmitted between systems. By limiting the number of tokens in the network to

one, we can ensure that only one system transmits at a time thus avoiding collision in

the network. There are many different token passing protocols implemented, most of

them differing in the network topology and network connectivity. We talk about a few

of the token based protocols in greater detail below.

Token Ring Protocol

Token Ring protocol or IEEE 802.5 [7], is a token based protocol which uses the ring

topology. As previously mentioned, a token needs to be acquired by a system in order

to transmit. The token, which is a small control message, is passed between machines

sequentially from system to system. A system which needs to transmit, holds the token

and transmits the data. The data, which is transmitted, moves from system to system

in the ring. Each system repeats the data on the network, checks for errors, and makes

a local copy of it, provided the data is destined for this system. When the data reaches

the transmiting system, it acts like an acknowledgement for the reception of data. The

10

transmitting system removes the data; transmits more data if it has any, otherwise it

passes the token to the next system. The Token Ring protocol can also support priority

by setting some priority bits in the Token Ring frame. This protocol also uses some

timers to prevent a single system from holding the token for a long time. One of the

systems in the ring acts as the ringleader and is responsible to preserve the token. It

takes care of a lost or corrupted token situation.

The Token Ring protocol has a deterministic response time and has a single system

transmitting at any point of time; hence it avoids collisions due to multiple systems

transmitting at the same time. The performance of the network does not drop with

the increase in load. On the other hand, if a single transmission line in the ring fails,

then the whole network would stop functioning because of an incomplete ring. The

token ring protocol uses a specific Network Interface Card (NIC), different from the

one used by Ethernet, to support it. This protocol also has the overhead of maintaining

and passing the token. Due to this overhead, the throughput of Token Ring protocol is

worse than Ethernet when the traffic is low.

Token Bus Protocol

The Token Bus protocol or the IEEE 802.4 [24], is a token based protocol which uses

the bus topology. All the systems in the network are connected to the bus which has

a master controller. A logical ring is formed among the systems, with the help of the

master controller. The packets are transferred from one system to the next system in

the logical ring, thus maintaining an order and direction of data flow. As previously

mentioned, a token is passed between machines, which needs to be acquired by a sys-

tem to transfer data. It is a collision free network as there is only one token at any

point of time, thus guaranteeing that only one system transmits packets at any given

point of time. The Token Bus protocol can also support priority using priority bits, and

uses timers to avoid a system from overusing the network bandwidth. The Token Bus

protocol is quite similar to Token Ring protocol except for two major differences; the

different topology used by the two networks and the master controller present in the

token bus protocol to create the logical ring.

11

The Token Bus protocol also has all the advantages of the Token Ring protocol. The

bus structure also sorts the problem of a single problematic node or link bringing down

the network. All these features are achieved by making the protocol more complex and

adding more overhead to the network. The Token Bus protocol uses a specific NIC,

different from that of Ethernet, to support it.

Fiber Distributed Data Interface (FDDI)

FDDI [12] is an improvement over the Token Ring protocol. FDDI is similar to To-

ken ring protocol except that it uses two network connections between each system

in the ring - one for each direction. This is designed so that the network can work

properly even under a broken ring condition. The token is passed simultaneously on

the network’s inner and outer ring which back up each other. In the case of a station

malfunction or a broken ring, the closest station closes the network loop by sending

the token received in the inner ring to the outer ring and outer ring to the inner ring.

This would remove the faulty system or connection from the FDDI ring structure, but

would let the remaining systems function normally.

This has all the advantages of the Token ring network with more fault tolerance.

FDDI uses optical fiber transmission links operating at 100 Mbps. This makes the net-

work faster, but is expensive to implement in a LAN. Hence FDDI is mostly used as

a backbone network. The throughput of FDDI is low, as at any time only one of the

network connectors are used to communicate while the other one remains idle.

2.2 Software Solutions

Software solutions include only software modification without any changes to the

hardware. Software solutions, in general are cheaper alternatives to achieve real-time

capabilities, as they do not require any hardware changes. Some of the software solu-

tions include RTNet, Rether, Traffic shaping and Master/Slave protocols. These have

been expained in greater detail below.

12

2.2.1 RTNet

RTnet [15] is a hard real-time network protocol stack for RTAI. RTnet uses a software

protocol, rather than modifying or adding new hardware to the computer system, to

achieve bounded transmission delays.

RTnet has implemented the UDP/IP protocol stack including basic ICMP and ARP.

RTnet uses the Linux network stack’s implementation for TCP/IP. TCP represents the

non real-time traffic generated by the computer. RTnet implements a protocol - Rtmac,

to enable the flow of both, real-time and non real-time traffic on the computer. RTnet

has a real-time enabled network adapter driver which controls the NIC card. The Real

Time Media Access Protocol (Rtmac protocol) runs on top of this driver. There are 2

stacks built over this protocol, the RTNet’s real-time protocol stack which implements

UDP/IP and the Linux network stack which implements TCP/IP for non real-time

traffic. The Rtmac implements a Virtual Network Interface Card (VNIC) device driver

which emulates a Ethernet device driver for the Linux stack. So the implementation

of the Rtmac layer is concealed from the Linux network stack. The Rtmac layer is

implemented as an optional module which can be disabled if real-time networking is

not desired or is already available.

The RTMac implementation also includes other features such as a basic TDMA

protocol. In TDMA, every machine on the LAN has a fixed unique time slot when it

is allowed to transmit. One of the stations is configured to be a Master and the rest

of the systems act as slaves. The master is responsible for sending configuration and

transmission slot information to the slave machines. The master has a global time

schedule, based on which it sends synchronization packets at the beginning of each

time cycle. The slaves use this synchronization signal to confirm their slot time. The

master also distributes the global timestamp to the slave machines.

RTMac also provides a prioritized queue for the outgoing packets. RTMac imple-

ments 32 levels of outgoing queues, with the lowest one being reserved for non real-

time protocols.

Another important feature in RTnet is the buffer management. A communication

system might lock up when it sends or receives large amount of data, due to avail-

13

ability of buffers. Dynamic allocation of input and output buffer may not be sufficient

because of the strictly bounded execution time of real-time processes. Hence RTnet

implements a multiple pool based allocation mechanism for its fixed-sized buffers. It

has a pool for each critical component, like NIC receive pools, user socket pools and

VNIC pools.

RTnet gives a good software solution to the real-time networking problem. RTnet

does not implement TCP, which forces the usage of TCP as a non real-time protocol.

RTnet also re-implements network stack for UDP/IP, ICMP protocols, which would

mean that at any given point of time there would be 2 network stacks loaded in the

kernel which deviates from the idea of having a single Linux network stack. RTMac

layer acts like a hardware abstraction layer between the Ethernet card and the Linux

network stack. The Ethernet drivers need to be ported to the Rtmac layer to make them

real time enabled adaptive drivers.

2.2.2 Rether

Rether [5] stands for Real-Time Ethernet protocol. Rether is mainly implemented for

supporting smooth delivery of multimedia streams over the network. Distributed mul-

timedia applications are time critical packets and cannot be used on Ethernet because

of its non-deterministic nature.

The Rether project is implemented in software without any change to the Ethernet

hardware of the computer. Rether is based on a token passing scheme that regulates

the access to the network by passing a control token among the nodes of the Ethernet

segment. A system needs to obtain and hold a token in order to transmit data. By re-

ducing the number of tokens to one, we can see to it that only a single system transmits

at any given point of time, thus bringing the collisions to zero. Rether has also imple-

mented a hybrid mode of operation. In this mode, the setup can automatically switch

between the Rether mode (Token passing mode to support real-time applications) and

the CSMA/CD (Ethernet) mode depending on if there are any real-time connections

active at that point of time. Rether also takes care of allocating some bandwidth for non

real-time applications so that the non real-time applications don’t starve for network

14

bandwidth in the Rether mode. The amount of bandwidth allocation for the non real-

time applications is set such that the higher-level protocols using TCP don’t timeout.

Rether is already implemented and tested for 10Mbps and 100Mbps Ethernets.

Rether is a token based protocol with minimal changes to software and no changes

to the hardware. Most of the changes to the software are to the lower layers and are

encapsulated from the upper layers of the Linux protocol stack. Hence all applications

on the system could run without even being changed or being aware of the existence

of the changes for Rether. Rether is specifically designed for multimedia traffic on

Ethernet, which include data transfers that occur periodically. Rether does not handle

the situation of large bursts of data transfer between machines. If multiple machines

try to transfer files at the same time, it can lead to contention for the token.

2.2.3 Traffic Shaping

Traffic shaping [20] builds a relationship between bus utilization and collision prob-

ability. Traffic shaping technique addresses the problem of delay in real-time packet

transmission in a network where real-time and non real-time packets are concurrently

transmitted. It stresses the fact that the delay in real-time packet transmission is due to

two main reasons:

1. Contention of the real-time packet with the non real-time packet at the local node

where they originate.

2. Collision of real-time and non real-time packets from different nodes.

Traffic shaping technique is built on the assumption that by keeping the bus uti-

lization below a threshold would result in a desired collision probability. In order to

resolve the problem of delay in real-time traffic, this technique uses two adaptive traf-

fic smoothers - one at the kernel level and the other at the user-level. The kernel-level

traffic smoother is installed between the IP layer and the Ethernet MAC Layer. This

smoother takes care of prioritizing the real-time packet and avoiding contention be-

tween the real-time and non real-time packets on a local node. The user-level traffic

smoother is built on top of the transport layer. This smoother is used to control the non

15

real-time traffic generated by a node. This traffic smoother controls the transmission of

the non real-time traffic on a node to keep the network load below the threshold level.

This would regulate the non real-time traffic generation to adapt itself to underlying

network load conditions. This should reduce the collision of the non real-time traffic

from this node with the real-time traffic generated on other nodes.

Traffic shaping is implemented on Linux kernel with minimal changes to the kernel

and without any modification to the network protocols. Traffic shaping can be used

only for soft real-time applications. It does not make complete use of the network

bandwidth as it tries to keep the load on the network below a threshold which tends

to drop the network throughput. It may not be able to satisfy the needs of the nodes

when the network usage of all the nodes increases.

2.2.4 Master/Slave Protocol

The Master/Slave protocol tries to achieve determinism by using a centralized traffic

controller called the master. Every other node present it the network transmit message

on receiving an explicit control message from the master.

The Flexible Time Triggered (FTT) Ethernet protocol [17] is one such protocol, which

uses the Master/Slave configuration to support hard real-time communication in a

flexible and bandwidth efficient way. The key concept of this protocol is the ’Elemen-

tary Cycle’, which are fixed duration time slots. The bus time is organized as an infinite

succession of ECs, each of which are started by the master by sending a trigger mes-

sage. The EC mainly consists of two windows - the Synchronous window and the

Asynchronous window. The Synchronous window is subject to admission control and

used for real-time traffic. The Asynchronous window on the other hand, is used for

event-triggered communication.

The master node in this protocol plays the role of a system coordinator. The mas-

ter maintains a database holding system configurations and communication require-

ments, and builds the ECs accordingly. The nodes on the other hand maintain a table

identifying the synchronous messages it produces. Upon reception of an EC trigger,

the slave node decodes the EC message to identify the synchronous message it needs

16

to transmit and queues it for transmission in the synchronous window. Though this

protocol can maintain precise timeliness, they have considerable amount of protocol

overhead. The Master/Slave model uses centralized control, which implies a single

point of failure. This protocol needs to address the issues such as fault tolerance when

the master node goes down. It may need a backup master or a method of electing a

new master when the master node goes down.

17

Chapter 3

Background

The Linux system programming involves adding enhancement to the already avail-

able open source Linux code. In order to make this possible, we need to understand

the working of the Linux operating system. The modifications needed to the present

system may not be large depending on the type of enhancement required. However,

in order to know the exact place and exact code which needs to be added to bring

about the enhancement without breaking the rest of the system can be significant task.

Most of the time spent in the project is on understanding the present system rather

than modifying it. It is very important to understand the system well before a pro-

grammer begins to modify it, as half knowledge can cause more harm than good. A lot

of time was spent studying the Linux network stack in order to identify the best and

least intrusive way to bring real-time capabilities to the network protocol stack. All

the background work done for the project has been summarized in this section. This

section also includes the other tools and features used to understand and implement

real-time networking for Quality of Service over Time Division Multiplexed Ethernet.

3.1 UTime

Linux uses a timer chip to maintain a sense of time. The timer chip usually provides

a periodic interrupt where the period corresponds to 10ms in Linux 2.4.x and 1ms in

Linux 2.6. This amount of timer resolution may not be sufficient for real-time require-

18

ments when we want to process an event at a particular time.

The Utime project [13] was implemented to improve the temporal resolution of

Linux. In order to improve the resolution of the timer, the obvious suggestion would

be to increase the rate at which the timer interrupts the system so that the timer chip

would interrupt the kernel at a higher frequency. This would not be an acceptable

solution as this would increase the overhead of running the timer service routines.

Utime handles the problem in a different way. It changes the mode of the timer

from periodic to a one-shot mode. The one-shot mode allows the timer chip to inter-

rupt the kernel at specified times rather than at periodic times. We would then use this

method to interrupt the kernel at times when we need to run some computation rather

than only at periodic intervals. The disadvantage of this method is that the timer chip

needs to be programmed for each interrupt.

The Utime project also includes the addition of the Utime timerlist to the kernel. A

timer contains a top-half which is the Interrupt service routine which is called when the

timer expires, and a bottom-half which is the function added by the user which needs

to be executed when the timer expires. The Utime timers are similar to the kernel timer,

the only difference being the context in which the timer bottom half is executed.

When a kernel timer, which is added to kernel timerlist, expires, the top-half of the

timer is executed as an Interrupt Service Routine. A flag is set to execute the bottom-

half in the softirq context. We can notice that the time delay between the time when

the timer expires and the execution of the bottom-half can be quite large depending on

the number of interrupts that arrive at the system in that interval. Utime timers takes

care of this by executing the bottom-half of the timer just after executing the top-half

of the timer, in the same context without any delay.

Utime timers were used in this project to get accurate control over time. Utime

timers were used in Time Division Multiplexing to enforce use of the Ethernet by a

machine only during its assigned slot. Utime timers were critical at this point as the

accuracy of these timers have a fundamental influence on the accuracy and efficiency

of Time Division Multiplexing for the Ethernet resource.

19

3.2 DSKI/DSUI

Debugging the kernel code is much more complex than debugging user level code. The

main reason for this is that the kernel is much bigger and complex code than most of the

user level application. The other main reason being that there are no easy debugging

techniques that can be used with the kernel as it can be done in the user space. The

third reason being the large amount of concurrency that exists in the kernel. One of

the simplest debugging technique which is used in the user space is the use of a print

statement which log events on the standard output or into an output file. This method

cannot be directly applied to the kernel as this would mean recompiling the kernel

every time we include a new print statement. The kernel does not give us the flexibility

to open a file and write out the log into it and the print statement also has a high

overhead on the system.

The Data Stream Kernel Interface (DSKI) [4] is a pseudo device driver which lets us

log events occuring in the kernel. This gathers performance data from the operating

system and outputs it to the user in a presentable format. It also contains a time-stamp

for each of the events.

The kernel code is modified to include instrumentation code which act as log points.

Instrumentation points are defined as points which log an event when a thread of ex-

ecution passes through this point in the kernel code. Each of these instrumentation

points can be an ’Event’, ’Counter’ or a ’Histogram’ depending on the kinds of data

required. Once the user decides on the relevant code which needs to be studied, he can

use the DSKI’s external interface to collect events which are relevant to the code under

study and the experiment being run. This external interface also takes other inputs

including the events which need to be logged and duration of logging events.

The collection of events is in binary format to reduce the data collection overhead

to minimum. Once the log file is collected in binary format, we can use various post-

processing tools to get the event log in one of the more user-friendly formats. Postpro-

cessing also includes a set of filters which could process only a subset of the event log

based on the values set for the filters. DSKI not only provides an easy way of debug-

ging the kernel, but also lets us change the desired points for instrumentation without

20

recompiling the kernel. The postprocessing also provides a GUI which can be used to

visualize the occurrence of events on a timeline which would give a better perception

of the events.

The Data Stream User Interface (DSUI) [4] is a similar instumentation method which

is available for user level programs. A user needs to instrument the user level applica-

tions with the DSUI instrumentation points. Once this is done, these instrumentation

points can be used to log events as with the DSKI. This is very useful when we need

to check the user-level code along with a few kernel level instrumentation points us-

ing the same timeline. The DSKI and DSUI generate seperate data files, which can be

combined into a single log file, based on the time of occurrence of the events, using dif-

ferent post processing routines. Once the log file is generated, it would containi, both

the DSKI and DSUI instrumentations and this could be used to check the performance

of the user routine with the kernel’s timeline.

The DSKI was used in this project to understand the flow of control in the Linux

network stack. The Linux network stack was instrumented under DSKI using different

event tag values to get information regarding the flow of control through the network

stack for different protocols. The DSUI was mainly used to compare the flow of control

through the network stack and the flow of control through the user routine on the same

timeline. DSUI and DSKI instrumentation points were also helpful in calculating the

delay of packet processing as control and packets moved from the kernel space to the

user space.

3.3 NetSpec

Netspec [16] [14] was a tool which was designed for network experimentation and

testing. Netspec provides a way to run distributed applications from a single central

location. Netspec provides a framework which enables a user to centrally control dae-

mons running on other machines.

Netspec daemon is run on each of the daemon machines. The Netspec daemon also

takes a configuration file which gives the path to different executables on the daemon

21

system. It also takes a few command line options which configures the daemon being

controlled. The Netspec server routines takes an input file which contains informa-

tion regarding the number of daemons, the mode in which each daemon needs to be

run and the applications which each of the daemon needs to fork. Netspec also gives

the flexibility to transfer files between the server and the daemon systems. Netspec

can create and pass the configuration file to the daemon routine which configures the

daemon for its assigned role. Once the tests are complete on the daemon system, the

output file can be transferred back to the server routine. Using Netspec we can have a

single point of control with easy reproductivity of the experiment.

Netspec also gives the server control of the daemon routine which is running on

the remote system. The remote daemon is divided into four major routines - setup

command, open command, run command and finish command. The Netspec server is

given the flexibility to change the order and time of occurrence of these commands on

the individual daemon systems.

Netspec is also given control of the time and order of execution of each of the dae-

mon with respect to the other daemons. The Netspec server can run the daemon rou-

tines serially or in parallel. In the serial mode of execution, the execution of one dae-

mon is completed before the execution of the other daemon is started. In the parallel

mode of execution, the server calls and executes the daemons concurrently, i.e. each

phase of each of the daemon executes concurently.

Netspec gives the needed flexibility to run distributed applications. Netspec was

used in this project to control different tests in a Local Area Network to test the system

and evaluate the performance of our approach to end-to-end Quality of Service over

TDM based Ethernet. Netspec was used to run different programs and collect log

information on different systems in a LAN. Once this was done, all the reports were

returned to the server routine for analysis. Netspec not only gave a central location

of control for the distributed experiments, but also a single location for storing and

analyzing the results.

22

3.4 Group Scheduling Framework

The traditional Linux scheduler is a priority-based scheduler. Each process that runs

on the system has a static and dynamic priority assigned to it. Every time the Linux

scheduler needs to select a new process for execution, it calculates the goodness value

of a process using the static and dynamic priority, and the process with the maxi-

mum goodness is selected to run next. In order to support real-time processes, Linux

scheduler has ’rt priority’ which is used during the goodness calculation. This method

works well when there is just one real-time process. When there are more than one

real-time processes, they often compete with each other for the processor time. The

traditional Linux Scheduler does not give direct control to the programmer over pro-

cess execution.

The Group Scheduling framework [11] was built to overcome the shortcomings of

the Linux scheduler. This model allows us to configure the scheduling semantics for se-

lected Linux processes. The Group Scheduling framework treats every process, which

needs the processor time, as a computational component. It gives the flexibility to ar-

range the control algorithms for these components in a hierarchical fashion where the

hierarchic decision tree decides what to execute next. It also supports explicit control

of computational components in the OS. When we talk about the processes, which use

the CPU time, we can segregate them into 3 main types. They are:

Hardirq: Hardirqs are basically the hardware interrupt’s service routines. These are

also known as the top-halves. Whenever a hardware device needs processing, it raises

a hardirq. It has the highest priority among the three types of computational compo-

nents. Most of the I/O devices have an interrupt associated with them, which is called

when the device needs the CPU time. Every interrupt has an Interrupt Service Routine

(ISR), which is called when the interrupt occurs to process the interrupt. Each inter-

rupt has a priority of its own. If an interrupt with a higher priority than the one being

processed, occurs, then it is immediately sent to the CPU for processing, otherwise it is

queued for later processing.

23

Softirq: Softirqs are similar to interrupts, but these are processes, which can be de-

ferred for some time. The interrupt service routines need to be executed as soon as the

interrupt occurs in a system. But executing the whole ISR might be time consuming, so

the ISR is split into 2 parts - top halves , which need to be processed immediately and

bottom halves, which can be delayed for a sometime. These bottom halves are nor-

mally processed as softirqs. These are processed when there are no more interrupts to

be processed. Linux checks to see whether any softirqs were raised in different parts of

the code and processes them at the earliest possible time. The kernel maintains softirq

flags which are data structures that track the pending softirqs. Softirqs are scheduled

using the do softirq routine which checks for each of the softirq flags and processes

the one, which is pending. This do softirq routine is called from five different places

in the kernel. They are:

1. When the do IRQ [arch/i386/kernel/irq.c] routine finishes handling a

hardirq, then it checks to see if there are any pending softirqs to execute.

2. When the local bottom half enable routine is called which re-enables the softirq.

3. When thesmp apic timer interrupt[arch/i386/kernel/apic.c] func-

tion completes handling a timer interrupt, then checks to see if there are any

pending softirqs.

4. When the Ksoftirq CPU thread runs which is started by the wakeup softirq

[kernel/softirq.c].

5. When a packet is received at the network interface and the ISR for a packet re-

ception is completed - this is applicable only to some of the drivers.

There are 4 basic softirq listed below based on their priority:

1. HI SOFIRQ - This softirq processes the bottom halves of high priority interrupts.

2. NET TX SOFTIRQ - This softirq is responsible for transmitting a packet out of

system.

24

3. NET RX SOFTIRQ - This softirq is responsible for processing a packet received

by the system.

4. TASKLET SOFTIRQ - This softirq processes the bottom halves for lower priority

interrupts.

Process: Process is a generic term that is used for any instance of a program of ex-

ecution. In our context we would define ’process’ as any process other than a softirq

or a hardirq. These processes also include the user level applications. When we talk

about processes, the kernel level process always has a greater priority than the user

level processes. The priority of the user process can be changed to execute the process

faster and more often.

The Group Scheduling framework is made up of three main components - group,

member and the scheduler. These three components are used to build up the group

hierarchy. We explain these components in detail.

Group: A group is a special entity which forms a place holder for other entities. The

group decides the internal structure of the Group Scheduling framework. A group

contains members which are called as the group members. A group is also associated

with a scheduler which decides the scheduling policy within the group. The scheduler

selects one of the members based on its scheduling policy for execution. Each group

has a unique number called the GroupID. A group is also associated with a unique

name called the group name.

Member: A member is a member of a group. A member can be a computational

component like a process, hardirq, softirq or another group. A group contains a list

of members whose selection for execution is under its control. The scheduler selects

one of the processes to be processed based on the scheduling function. By adding

a group as a member of another group we can build hierarchical structure based on

which processing takes place.

25

Scheduler: A scheduler is a decision making routine which uses some algorithm to

select one of the group members for processing. There are many built in schedulers

like the sequential, round robin and priority schedulers that can be associated with a

group to schedule members. A group can be associated with any one of the built-in

schedulers to achieve the desired scheduling discipline.

By using these features, we can build a hierarchy of group structure which can exe-

cute computations on the machine according to the policies we desire. The framework

also gives the flexibility of having more than one group scheduling hierarchy config-

ured, so that the hierarchy can be changed dynamically on runtime without restarting

the system. There are many APIs available to the user which lets us modify the group

scheduling hierarchy after the system is up without restarting the system. The Top

group is the top most group in the group scheduling framework. The reference to this

group is provided in the group scheduling framework. It also has routines which can

be used to set any group as the top group of the framework.

The Group Scheduling framework also supports the concept of the programming

model. A model is a loadable module which establishes the scheduling hierarchy. The

model has the option to have its own hardirq and softirq processing routines which can

be plugged in the place of the default routine using function pointer hooks. A model

can have one or more Group Scheduling System Scheduling Decision Function (SSDF)

structures which are established when the model is loaded. The model also defines the

way in which this model executes each of the computational components. The model

also has routines which lets the model select/deselect a computational component re-

turned by the group scheduling hierarchy for execution. These routines give the model

total flexibility to control execution as desired. We design a particular model to achieve

a desired functionality and implement it using the scheduling hierarchy of the model.

The group scheduling framework has a few built in models which can be loaded

on startup. The Basic model controls the system by default. We also have other models

like the Vanilla Linux softirq model which emulates the working of the Vanilla Linux

kernel, after gaining control over softirqs, using the Group Scheduling framework. We

also have an option to select the TDM model which configures the Group Scheduling

26

hierarchy so that the kernel can be configured to perform Time Division Multiplexing

on Ethernet.

We talk in detail about the TDM model as the Real-time networking model is built

on the TDM model. The group structure of the TDM model is given in Figure 3.1. This

hierarchy contains 3 groups. The ’Top’ group is a sequential scheduler with 2 groups

attached to it, a ’TDM’ group and a ’Softirq’ group. The first member to be executed by

the ’Top’ group is the TIMER BH in order to get good timer interrupt responses. The

TDM group has a TDM scheduler which executes the transmit softirq depending on

the TDM schedule of the system. If the system is not in TDM mode, then this group is

not used.

The Softirq group has a sequential scheduler. It has 5 members, 4 of which are

the Linux softirqs which are scheduled in sequential order based on their priority. In

the TDM model, the timeslot for transmission is very precious and needs to be used

efficiently for transmit only. In Linux, the transmit softirq not only transmits a packet

but also frees the packet’s memory once the transmission is complete. Hence, under

the TDM model, the Linux transmit softirq has been broken into 2 separate softirqs -

one to transmit the packet and the other to free an already transmitted packet. This

is done so that the scheduler only transmits during the TDM timeslot and does not

spend any processing time in freeing the sent packets which can be done during any

other time. The 5th softirq which is called the NET KFREE SOFTIRQ is used to free

the memory of an already transmitted packet. This has the lowest priority and is the

last in the list of members in the softirq group.

3.5 Linux Traffic Control

Linux provides a very rich set of tools for managing and manipulating the transmis-

sion of packets. These tools include a set of queuing structures which can queue and

transmit packets. These tools are collectively called Linux Traffic Control [2]. This

provides features which help provide Quality of Service on Linux.

The Figure 3.2 shows the method in which the kernel processes the incoming pack-

27

Figure 3.1: Group Scheduling Framework to implement TDM

ets and the locally generated packets on Linux. The input de-multiplexer checks every

packet that comes into the system. If the packet is for the local node, then it is sent

up the network stack, else it is sent to the forwarding routine which uses the routing

table to lookup the next-hop for the packet. Similarly, locally generated packet comes

down the network stack to reach the forwarding routine which uses the routing table

to lookup the next-hop for the packet. Once this is done, the packet is queued to be

transmitted on the output interface. This queue corresponding to the output interface

forms the part of the Traffic Control. Traffic Control gives flexibility to build a complex

combination of queuing disciplines and filters to control the packet flow through the

output interface.

The three main components of the Linux Traffic Control are:

� Queuing Discipline

� Classes

� Filters

Each of these have been described in greater detail below.

Queuing Discipline: A queuing discipline includes a queue which is used to hold

packets. Each queuing discipline is associated with an algorithm which controls the

28

Figure 3.2: Packet processing on Linux

way in which the enqueued packets are treated. A simple queuing discipline is a FIFO

(First-In First-Out) queue where the first packet queued would be the first packet to be

sent out. There are 11 types of queuing disciplines which are currently supported in

Linux.

Each queue has routines which help it initialize itself, enqueue a packet, dequeue

a packet, requeue a packet and drop a packet. Each of the queues also have a set of

QoS parameters defined which help the queues maintain the traffic based on the QoS

parameters. Queues are identified by a handle of the form <major number:minor

number>. Queuing disciplines can also be classified as classless queuing discipline

and classful queuing discipline which will be explained in greater detail once classes

have been defined.

Classes: Classes and queuing disciplines are intimately tied together. Each class

owns one or more queues. By default on creation, the class owns a FIFO queue, but

this can be changed to any other queue type. A class is identified by a class ID which is

specified by the user. The kernel maintains an internal identifier for each of the classes

which are in use.

Filters: Filters are used to classify packets based on the properties of the packet.

For example IP address or port number etc. Filters provide a convinient mechanism

for gluing together several of the key elements of the Traffic Control. A filter can be

29

attached either to a classful queueing discipline or to a class. The filter can redirect the

packet into any of the subclasses associated with this filter.

Queueing disciplines can further be distinguished based on their relation with

classes. This has been explained in detail below:

Classless Queuing Discipline: A classless queuing discipline is defined as a queu-

ing discipline which can be owned by another class, but it cannot own a class. Hence

these queuing disciplines form the leaf nodes of a complex queuing discipline hier-

archy. First-In-First-Out (FIFO), Stochastic Fairness Queuing (SFQ), Generalized Ran-

dom Early Detection (GRED), Token Bucket Filter (TBF) are some of the classless queu-

ing disciplines.

Classful Queuing Discipline: A classful queuing discipline is one which can be

owned by a class and can also own a class in turn. Classful queuing disciplines can be

used to create complex hierarchical queuing discipline structures to segregate packets

and provide the desired Quality of Service. Hierarchal Token Bucket (HTB), Priority

(PRIO) and Class Based Queuing (CBQ) are the classful queuing discipline.

After explaining some of the components of the Traffic Control subsystem, we get

down to explaining Traffic Control as a whole. Each network device on a Linux system

has a queuing discipline associated with it. Any packet needing to be transmitted by

this device will be enqueued on its queuing discipline before being transmitted out.

Figure 3.3 shows the Traffic Control as a whole system. FIFO is the default queuing

discipline which is loaded on start up. This is a classless queuing discipline which

enqueues and dequeues packet in a first-in first-out order. Traffic Control provides

routines which can be used to replace this default queuing discipline with any other

queuing discipline. By loading a classful queuing discipline we can add sub classes

to a queuing discipline which will contain queues in turn. Filters are used to distin-

guish packets based on the characteristics of the packet and to enqueue the packet into

different queues. By controlling the way in which these packets are enqueued we can

control the way in which the packets are transmitted.

One of the main advantages of the QoS support on Linux is the flexibility with

30

Figure 3.3: Combination of queuing discipline and classes

which the queues and classes can be set up. Each queuing discipline can contain a

number of classes. These classes in turn use queues to store packets which can again

contain a number of classes. In this way the Traffic Control layer on Linux gives us the

flexibility to construct a hierarchy of policy and achieve the desired quality of service.

Traffic Control provides a user level command called ”tc” (Traffic Controller) which

can be used to create and associate queues to the output device on a given system. It

also lets users to add classes, filters and associates queues to the queuing discipline.

The Traffic Control routine also has an option to be compiled as a module in the Linux

operating system. Additions and changes to the Traffic Control can be done dynam-

ically after startup without recompiling or restarting the system. This gives us the

flexibility to modify the system’s QoS as desired without shutting down the system.

3.6 Linux Network Stack

In order to make any changes, we need to first understand the exact implementation

of the Linux network protocol stack. Once this is done, we can look into the execution

delays that a packet may incur in the present implementation of the network stack and

try to reduce the delay with minor modifications. The study of the network stack was

done using DSKI instrumentation points. The Linux network stack was instrumented

using the DSKI and the flow of control through the kernel was understood. This ex-

planantion also includes names of functions, along with their path relative to the base

31

installation directory of Linux. The format followed to represent these functions are :

fuction name [file name]. We can split up the Linux network stack components

into 2 broad categories.

� Transmit side - The code which transmits a locally generated packet out of the

system.

� Receive side - The code which receives and processes a packet whose desination

is the local system.

Other than this we also have packets which are received, but are not for this system.

These packets use parts of the transmit and receive sides. We do not bother with these

packets as we are more concerned about packets which go in and out of a local system.

We next explain each of the above categories in greater detail.

3.6.1 Transmit packet flow

This section describes packet flow through the kernel starting from when the packet

was generated by the Application layer. The packet flow description is segregated

based on the layer which processes the packet. We also split the processing into points

which can be correlated to Figure 3.4 which gives a pictorial view of the flow of packet

on the transmit side.

Application Layer

Step 1: Application writes to the socket using a socket system call. This is done at the

application level by the user program. Linux provides many system calls which can be

used to ’write to’ and ’read from’ a socket. Some of the common system calls to send

message over a socket are send, sendto, sendmsg, write and writev. Each of the

system call interface routine in the user library, has a corresponding implementation

of the function in the kernel.

32

Step 2: We consider using the sock write [net/socket.c] function here. All

the system calls related to writing to a socket finally call the sock sendmsg [net/-

socket.c]. This function checks if the user buffer space is readable. It gets the socket

structure using the file descriptor provided by the user program. It creates a message

header structure and fills the data into it. This also creates the socket control message

which has few fields which hold the control information like the UID, GID and PID of

the process.

Step 3: The control then flows to the INET layer specific function, under the Socket

layer which acts like an interface between TCP layer and Socket layer. The INET layer

does some validation for the socket structure. It checks for the lower layer protocol

pointer and calls the appropriate protocol. This is mainly implemented in the inet -

sendmsg [net/ipv4/af inet.c] routine.

Transport Layer (TCP/UDP)

Step 4: The control next flows to the Transport layer. Depending on the protocol used

in the Transport layer, TCP or UDP, appropriate functions are called. Here we explain

the functions done by both the layers, one after another.

We will talk about the TCP layer first. The tcp sendmsg[net/ipv4/tcp.c] cre-

ates the sk buff [include/linux/skbuff.h] structure first. The sk buff struc-

ture is the most important structure in the Linux networking stack. Instead of passing

the data packet from layer to layer, a reference to this sk buff structure is passed be-

tween the layers. In the TCP layer, first the state of the TCP connection is checked.

Control waits until the connection is complete, if not completed previously. The pre-

viously used sk buff is checked for any tail space available to hold the current data.

If found then the same sk buff is used to send the present data, otherwise the data is

stored in the new sk buff. It copies the data from the user space to the appropriate

sk buff structure. It also computes the checksum of the packet.

In the UDP layer, theudp sendmsg[net/ipv4/udp.c] routine checks the packet

length, flags and the protocol used. It then builds the UDP header, at the same time

33

checking and verifying the fields in the header. It checks if it is a connected socket, if

so it sends the packet directly, else it does a route lookup based on the IP address.

Step 5: The tcp transmit skb [net/ipv4/tcp output.c] routine builds the

TCP header and adds it to the sk buff structure. The checksum is counted and added

to the header. It also checks for the ACK and SYN bits. It also checks the header for the

IP address, state of the connection and the source, destination port addresses.

The udp getfrag [net/ipv4/udp.c] routine copies the UDP packet from the

user space to the kernel space. It then calculates the checksum for that packet. How-

ever, this function is also called from the IP layer which initializes the sk buff space

for the packet.

Network Layer (IP)

Step 6: The IP layer receives the packet sent from the TCP layer and builds an IP

header for it. It also calculates the IP checksum. The ip queue xmit [net/ipv4/-

ip output.c] routine in IP layer does a route lookup, for a TCP packet, based on the

destination IP address and figures out the route the packet has to take.

In the case of a UDP connection, the IP layer creates a sk buff structure to store

the packet. It then calls the udp getfrag function mentioned above to copy the data

from the user space to the kernel space. Once this is done, it directly goes to the Link

layer without getting into the next step of fragmentation.

Step 7: The packet is next checked to see if fragmentation of the packet is required, i.e.

if the packet size is greater than the permitted size. If fragmentation is needed, then the

packets are fragmented in the routine ip queue xmit2 [net/ipv4/ip output.c]

and sent to the Link layer. This routine is implemented only for a TCP connection.

Data Link Layer

Step 8: The dev queue xmit [net/core/dev.c] routine in the Data Link layer,

receives the packet and completes the checksum calculation if not already done in the

34

previous layers or if the output device supports a different type of checksum. It checks

if the output device has a queue and queues the packet in the output device. It also

initiates the scheduler to dequeue the packet and send it out.

Step 9: The qdisc run [include/net/pkt sched.h] routine checks the device

queue for any pending packets which need to be transmitted. If present it initiates

the transmission. This function runs in the process context, the first time it is tries

to transmit a packet. However, if the device is not free or the process is not able to

transmit the packet out for some other reason, then this function is executed again in a

softirq context.

Step 10: Theqdisc restart[net/sched/sch generic.c] routine checks to see

if the device is free, if so it transmits the packet. If the device is not available or free to

transmit, then the transmit softirq, NET TX SOFTIRQ is raised.

Step 11: If the device is free, then thehard start xmit[drivers/net/device.c]

is called which transmits the packet out of the system. This routine is a device specific

routine and implemented in the device driver code.

Step 12: The packet is sent out to the output medium by calling the I/O instructions

to copy the packet to hardware and start transmission. Once the packet is transmitted,

it also frees the sk buff space occupied by the packet in the hardware. It also records

the time when the transmission took place.

Step 13: This is the path taken if the device is not free to send the packet. In this

case the packet is requeued again for processing at a further time. The scheduler calls

the netif schedule [include/linux/netdevice.h] function which raises the

NET TX SOFTIRQ, which would take care of the packet processing at the earliest avail-

able time.

35

Figure 3.4: Network Transmit

36

Step 14: Once the device finishes sending the packet out it raises a hardirq to in-

form the system that it has finished sending the packet. If the sk buff is not free at

this point of time, then it is freed. It then calls the netif wake queue [include/-

linux/netdevice.h]which is basically to inform that the device is free for sending

further packets. This function in turn raises a softIrq to schedule the sending of the

next packet.

3.6.2 Receive packet flow

Here we explain packet flow through the kernel starting from when the packet was

received at the network interface. The receive side of the network stack is more com-

plicated than the transmit side as the control flow is not linear. For example there is

control flow from the device layer up the stack and there is control flow from the ap-

plication layer which initiates the further processing of the packet. We segregate them

based on the layer in which the particular processing takes place. We also split the pro-

cessing into points which can be correlated to Figure 3.5 which gives a pictorial view

of the flow of packet on the receive side.

Application Layer

Step 1: The user process reads data from a socket using the read or the variants of

receive socket API calls (recv, recvfrom). These functions are mapped onto the sock -

read and sys recvfrom [net/socket.c] system calls.

Step 2: The system calls setup the message headers and call the sock recvmsg

[net/socket.c] function. The sock recvmsg function calls the receive function

for the specific socket type, for INET socket type the inet recvmsg [net/ipv4/-

af inet.c] routine is called.

Step 3: The inet recvmsg checks if the socket is accepting data and calls the corre-

sponding protocol’s receiver function depending on the Transport layer protocol used

37

by the socket. For TCP it is tcp recvmsg [net/ipv4/tcp.c] and for UDP it is

udp recvmsg [net/ipv4/udp.c].

Transport Layer (TCP/UDP)

Step 4: The TCP receive message routine checks for errors in the socket connection

and waits until there is at least one packet available in the socket queue. It cleans up

the socket if connection is closed. It calls memcpy toiovec [net/core/iovec.c]

to copy payload from the socket buffer to the user space.

Step 5: The UDP receive message routine gets the UDP packet from the queue by call-

ing skb recv datagram[net/core/datagram.c] routine. It then calls skb copy -

datagram iovec [net/core/datagram.c] to move the payload from the socket

buffer to the user space. It also updates the socket timestamp, fills in the source infor-

mation in the message header and frees the packet memory.

The control flow from the application layer is blocked until data is available to be

read by the user process. We proceed ahead by explaining the reception of a packet at

the physical layer.

Physical Layer

Step 6: A packet arriving through the medium to the Network Interface Card (NIC) is

checked and stored in its RAM. It then transfers the packet to the kernel memory using

DMA. The kernel maintains a receive ring-buffer ”rx ring” which contains packet de-

scriptors pointing to locations where the received packets can be stored. The NIC then

interrupts the CPU to inform about the received packets. The CPU stops its current

operation and calls the core interrupt handler to handle the interrupt.

Step 7: This interrupt handling routine, which is device dependent, creates a socket

buffer structure (sk buff) to store the received data. The interrupt handler then calls

38

netif rx schedule [include/linux/netdevice.h] routine which puts a ref-

erence to the device in a queue attached to the interrupted CPU known as the poll -

list. It also marks for further processing of the packet as a softirq by calling the

cpu raise softirq [kernel/softirq.c] (NET RX SOFTIRQ).

Step 8: When the NET RX SOFTIRQ softirq is scheduled, it executes its registered

handler - the net rx action [net/core/dev.c] routine. Here the CPU polls the

devices present in its poll list to get all the received packets from their rx ring

or from the backlog queue, if present. Further interruptions are disabled until all the

received packets presents in the rx ring are handled by the softirq. The process -

backlog [net/core/dev.c] function is assigned as the poll method of each cpu’s

socket queue’s backlog device (blog dev) in thenet dev init [net/core/dev.c]

routine. The backlog device is added to the poll list, (if not already present), when-

ever netif rx [net/core/dev.c] routine is called. This routine is called from

within the net rx action [net/core/dev.c] receive softirq routine, and in turn

dequeues packets and passes them for further processing to netif receive skb

[net/core/dev.c] routine.

Step 9: The device’s main receive routine is the netif receive skbwhich is called

from within NET RX SOFTIRQ softirq handler. It checks the payload type, and calls

any handler(s) registered for that type. For IP traffic, the registered handler is the ip -

rcv [net/ipv4/ip input.c] routine.

Network Layer (IP)

Step 10: The main IP receive routine is ip rcvwhich is called from netif receive -

skb when an IP packet is received on an interface. This function examines the packet

for errors, removes padding and defragments the packet if necessary. The packet then

passes through a pre-routing netfilter hook and then reaches ip rcv finish [net/-

ipv4/ip input.c] routine which obtains the route for the packet.

39

Step 11: If it is to be locally delivered then the packet is given to ip local deliver

[net/ipv4/ip input.c] function which in turn calls the ip local deliver -

finish [net/ipv4/ip input.c] function to send the packet to the appropriate

Transport layer function; tcp v4 rcv in case of TCP and udp rcv in case of UDP.

If the packet is not for local delivery then the routine to complete packet routing is

invoked.

Transport Layer (TCP/UDP)

Step 12: Thetcp v4 rcv[net/ipv4/tcp ipv4.c] function is called from the ip -

local deliver function in case the packet received is destined for a TCP process

on the same host. This function in turn calls other TCP related functions depend-

ing on the state of the connection. If the connection is established it calls the tcp -

rcv established [net/ipv4/tcp input.c] function which checks the connec-

tion status and handles the acknowledgements for the received packets. It in turn in-

vokes the tcp data queue [net/ipv4/tcp input.c] function which queues the

packet in the socket receive queue after validating if the packet is in sequence. This

also updates the connection status and wakes the socket by calling the sock def -

readable[net/core/sock.c] function. The tcp recvmsg copies the packet from

the socket receive queue to the user space.

Step 13: The udp rcv [net/ipv4/udp.c] function is called from the ip local -

deliver if the packet is destined to an UDP process in the same machine. This func-

tion validates the received UDP packet by checking its header, trimming the packet

and verifying the checksum if required. It calls udp v4 lookup [net/ipv4/udp.c]

to obtain the destination socket. If no socket is present it sends an ICMP error mes-

sage and stops, else it invokes the udp queue rcv skb [net/ipv4/udp.c] function

which updates the UDP status and invokes sock queue rcv skb [include/net/-

sock.h] to put the packet in the socket receive queue. It signals the process that data

is available to be read by calling sock def readable [net/core/sock.c]. The

udp recvmsg copies packet from the socket queue to the user space.

40

Figure 3.5: Network Receive

41

Chapter 4

Implementation

The network contributes significant variation to the application behavior because of

the lack of determinism in terms of transfer time. In order to make the network suit-

able for real-time applications, we have to provide QoS such that the end-to-end packet

transfer time for a real-time application is determinitstic. We try achieve this through

two changes - make the network deterministic in terms of packet transfer time, and

reduce the processing time for each packet through the network stack. We achieve a

considerable amount of determinism by using Time Division Multiplexing over Eth-

ernet. TDM divides the transmission time into timeslots, which can be used by the

systems on the LAN. As each system gets a unique time slice for transmission, only

one system transmits at a given time, hence avoiding collisions in the LAN.

In order to make the network more suitable for real-time applications, we have

to reduce the packet processing latency, for the real-time applications, in the network

stack. There are two main types of packet processing that takes place in the networking

stack.

1. Packet processing on the transmit side - The message is split, embedded in a

packet and sent out of the system.

2. Packet processing on the receive side - A received packet is processed and de-

fragmented in order to get the message.

The working of the Linux network stack has been explained in detail in section 3.6.

42

We study the transmit and the receive side of the network stack, to identify the places

in the code which could cause delays in packet processing. We also make modifications

to the code to include packet queue ordering decisions in the network stack. Using this

method, we could select a channel or a particular connection, which needs to receive

non-uniform treatment over the rest of the connections.

4.1 Priority in packet processing

Packet processing is the processing that takes place on a packet in the network stack.

The packet processing time may be very small compared to network transfer time in

most of the scenarios. However, when the system is loaded with lots of applications,

or when the system has to send or receive lots of data, the processing time for a packet

may be considerable. In order to maintain the performance of the system for a connec-

tion in such a scenario, we can give preference to a particular connection or channel.

The method of prioritizing the channel includes differentiating the channel from the

rest of the channels and processing it before the rest of them. Modifications done in the

kernel to prioritize channels and process these channels have been explained in greater

detail in Section 4.1.1 and Section 4.1.2

4.1.1 Queue on the Transmit Side

When we study the transmit side, we can see that a packet is processed in the same

context from the application layer, through the network stack, until it gets enqueued in

the Traffic Control queue. The NET TX SOFTIRQ takes over the process at the Traffic

Control queue, dequeues the packet and sends it out on the network device. The only

delay in processing is the time, when the packet is in the queue, waiting to be dequeued

and processed. The dequeuing of the packet takes place in the NET TX SOFTIRQ,

which is executed only when it is time for transmission i.e. when the time-slot for this

system occurs.

We have to choose between two options - one is to disable TDM and transmit the

packet immediately, hence reducing the time delay between enqueuing and dequeuing

43

the packet. This would reduce the time delay in the kernel considerably, but would

work on normal Ethernet, thus increasing the transmission delay due to collisions and

retransmissions. The other option is to use TDM, which might cause a delay in the

kernel, but would provide guaranteed transmission of the packet without collision.We

chose to use TDM instead of normal Ethernet. We are compromising with the delay in

the transmit processing in order to attain a collision free network.

We could use different methods to uniquely select a connection and prioritize it.

We need to select one of the parameters which uniquely identify a connection. We

chose the method of using port numbers to uniquely select a connection. In order to

prioritize a packet which is being transmitted out of a queue, we need to identify it

and process it before the other packets. The simple method to implement this is to

use a queue which enqueues all packets for transmission and processes the prioritized

packets before the non-prioritized packets. This method is more appropriate in this

situation as the packets are already being enqueued in the Traffic Control queue be-

fore being processed by the NET TX SOFTIRQ. We implemented a new Traffic Control

queuing discipline, called the ’TDM queue’ to include all the desired features.

TDM Queuing Discipline

Traffic Control was used to implement the queue on the transmit side for many reasons.

The first reason being that the packets were already being queued at the Traffic Control

queue, so it would be efficient in using the same queue and not having another point

of queuing to implement prioritization. Another reason was that the Traffic Control

provides a variety of tools which gives the flexibility to add a new queue, change a

queue, set Quality of Service (QoS) parameters etc. We could use all these features

available in the TDM queuing discipline, to achieve the desired Quality of Service.

The TDM queuing discipline, shown in Figure 4.1, is a simple queuing discipline,

which consists of a single First-in First-out queue by default. It has a single queue

which enqueues packets on one side and dequeues packets on the other side for trans-

mission. This queuing discipline can be configured to contain more than one queue

where the number of queues required is decided by the user. Each queue in the queu-

44

ing discipline, except for the default queue, corresponds to atleast one port number,

i.e. each queue enqueues and dequeues a packet corresponding to a particular port

number(s). These queues are First-in First-out queues and are processed one after the

other. So the first queue to be processed is the queue with the highest priority and so

on. The default queue is always the last queue to be processed. The user can select the

port number for each of the queues and the order in which the queues are processed,

hence setting up a priority based on the port numbers.

Figure 4.1: TDM Queuing Discipline

45

4.1.2 Queue on the Receive Side

The receive side of the network stack has been explained in detail in Section 3.6.2. In

order to include priority processing on the receive side; we need to devise a method to

differentiate a particular connection or channel and prioritize it. Similar to the transmit

side, we have used port numbers to uniquely identify a connection on the receive side,

and to process the received packets under a configurable policy. There are many ways

to implement prioritization of a packet. We have implemented queues on the receive

side to differentiate packets and process the prioritized packets.

There were 2 major modification on the receive side to implement prioritization of

packets are:

1. Addition of a queuing discipline on the receive side.

2. Breaking up of the receive softirq into 3 separate softirqs.

Section 4.1.3 explains the breaking up of the softirq in detail. Here we discuss the

addition of the queue in greater detail.

Adding a queuing discipline on the receive side

A new queuing discipline (set of queues) was added on the receive side to include

priority processing, which functions similarly to the one on the transmit side. By de-

fault, the queuing discipline has a single First-in First-out queue which enqueues pack-

ets on one side and dequeues them on the other side. When the queuing discipline is

not configured to provide priority to a particular port number, the packets are not dif-

ferentiated. All packets are enqueued into the default queue, dequeued, processed

and sent up the network stack. This queuing discipline can be configured to contain

more than one queue, where each queue is associated with atleast one prioritized port

number, along with the default queue for the default packets. Each of the queues cor-

responds to a particular connection receiving QoS. The packets in the priority queues

are processed first, followed by the packets in the default queue. The queue that is

processed first, corresponds to the port number which has the highest priority and so

on.

46

The queuing discipline has been designed to work independently of the Time Divi-

sion Multiplexing feature of the kernel. The queuing discipline has been implemented

as a part of the kernel that can be set and reset dynamically at runtime. The user can

select the number of queues needed in the queuing discipline, at runtime. The kernel

allocates space for these queues, based on the user’s selection. Since these queues are

implemented independently of the network stack, they can be reset and reloaded with

a new set of queues, which are associated with a different set of port numbers.

We have also implemented a user level module which will interact with the queues

to set the required parameters from command line. These command line parameters

help the user configure and assign port numbers to the queues on the receive side. The

details of the command line options have been discussed in greater detail in Section

4.3.

4.1.3 Classification of packets

The NET RX SOFTIRQ processes the packet received by the system. This softirq pro-

cesses the packet, from the hardware device, all the way up the network stack. In

order to add a new queue for priority processing on the receive side, this softirq was

modified and split into three separate softirqs.

1. NET RX SOFTIRQ

2. NET RX PRIORITY PROCESS SOFTIRQ

3. NET RX NORMAL PROCESS SOFTIRQ

The NET RX SOFTIRQ is split based on its functionality. One of the softirqs is used

to classify the packets based on their port numbers, where as the other two are used to

process the packets, one to process non real-time packets and the other one to process

real-time packets. The functionality of the softirq has been explained in greater detail

in Figure 4.2.

47

NET RX SOFTIRQ

The NET RX SOFTIRQ is the first softirq to be executed on the receive side after the

interrupt service routine. This softirq looks at the packets and classifies them based

on their port number. In a Linux system, on reception of a packet, an entry indicating

the network device requires service is added to the input queue, without processing

the packet. All the processing of the packet is done in softirq context. The NET RX -

SOFTIRQ, polls the device queue on the receive side to dequeue service requirement

records one after another and process the packets ready on those devices. The NET -

RX SOFTIRQ has been modified and does not process the packet all the way up to the

Transport layer, instead, has the responsibility of classifying the packet and enqueuing

it into one of the queues based on the classification. Classification is done based on

a data structure maintained in the kernel which contains the list of prioritized port

numbers. The NET RX SOFTIRQ processes each of the packets from the device queue,

checks to see if it is a prioritized packet or not. If it is a prioritized packet, it is enqueued

in the appropriate queue; else it is enqueued in the default queue. In this way the

NET RX SOFTIRQ processing is modified to take the responsibility of classifying the

packets and enqueuing it into different queues based on the classification.

NET RX PRIORITY PROCESS SOFTIRQ

The modified NET RX SOFTIRQ does not process a packet all the way up to the

Transport layer queue, instead classifies it. NET RX SOFTIRQ adds the prioritized

packets, which needs to be processed at the earliest, into the appropriate queue, and

the rest of the packets into the default queue. NET RX PRIORITY PROCESS SOFTIRQ

was created to complete the packet processing of priority packets after classification.

The NET RX PRIORITY PROCESS SOFTIRQ picks up packets from the prioritized

queue and processes it all the way up to the Transport layer. This softirq does not

dequeue or process any packet in the default queue. So if there are no priority packets

present in the priority queues, or if none of the priority queues are initialized, then this

softirq does not process any packets. The NET RX PRIORITY PROCESS SOFTIRQ

48

checks for packets in the priority queues, one after another based on the priority, de-

queues them, if any are found, and processes them. It then continues to the next queue

until it reaches the last queue in the list of priority queues.

Figure 4.2: Queuing Discipline on the Receive side

NET RX NORMAL PROCESS SOFTIRQ

This softirq represents the original semantics of the receive softirq. This softirq is

similar to the NET RX PRIORITY PROCESS SOFTIRQ, except that this softirq pro-

cesses the normal packets rather than the priority packets. As there is only one default

queue in our implementation, this softirq checks this default queue for any packets.

If the softirq finds a packet in the queue, then it dequeues it and processes it all the

49

way up to the Transport layer. This softirq does not process any of the priority pack-

ets found in the priority queues and only processes the packets in the default queue.

The default queue is present in the system on start up. So before the configuration of

the priority queues on the system, all packets are classified as normal packets and are

added into the default queue. Hence, all the packets are processed by this softirq. Once

the priority queues are configured on the receive side, new queues are created for the

prioritized port number and these queues are processed by the NET RX PRIORITY -

PROCESS SOFTIRQ.

4.2 Group Scheduling Model to achieve Quality of Service

Group Scheduling framework lets us build a hierarchy of groups in order to control

the scheduling of processes. It gives us more control over the order in which com-

putational components, which include hardirq, softirq and processes, are selected for

execution. This has been explained in greater detail in section 3.4. Here we build upon

the TDM Group Scheduling Model to add real-time capabilities to the network stack

over Time Division Multiplexed Ethernet.

The Group Scheduling framework has been used in this implementation to reduce

the latency in packet processing in the Linux network stack. Section 3.6 gives us a

detailed explanation of packet processing in the Linux network stack. We try to re-

duce this packet processing time, thus giving the network stack, real-time capabilities.

We use the Group Scheduling framework to control the sequence of processing of the

packets in the kernel to achieve better packet processing latency. The modifications

to the Group Scheduling framework fall into two broad categories which is explained

here.

Modifications to the Group Scheduling framework to improve performance on the

transmit side

When we study the packet processing on the transmit side in the Linux network

stack, we can note that the processing is done in the process context until the packet

50

is enqueued in the Traffic Control queue. The NET TX SOFTIRQ dequeues the packet

in the softirq context, processes it and transmits it out of the device. This would imply

that a packet is processed without any delay on the transmit side till it reaches the

Traffic Control queue. The only possible delay on the transmit side is when the packet

waits in the Traffic Control queue to be processed by the NET TX SOFTIRQ. Once it is

enqueued in the traffic control queue, the NET TX SOFTIRQ processes it as scheduled.

This does not leave much scope for improvement in performance. We could improve

the priority of the process, so that it gets executed before the other processes. We

could also increase the priority of the NET TX SOFTIRQ or schedule the NET TX -

SOFTIRQ before the rest of the softirqs. But the problem with this setup is that, we

are currently using TDM on Ethernet as the protocol for the Physical layer, so every

system has a fixed time slot when a packet can be sent out. So increasing the priority

of the softirq is not going to help us in improving the performance of the packet on the

transmit side, unless it is the system’s time slot to transmit. By looking at Figure 3.1 we

can observe that the TDM Group Scheduling model gives the NET TX SOFTIRQ the

highest priority during the transmit time slot, which is exactly the desired change. So,

no modifications have been done to the Group Scheduling framework used by TDM

on the transmit side.

Modifications to the Group Scheduling framework to improve performance on the

receive side

When we study the packet processing on the receive side in Section 3.6.2, we can note

that the processing sequence has been split into two sections. The processing of each

of these sections is initiated from different layers in the network stack. The process-

ing of one of the sections is initiated from the Application layer where the user-level

application, which initiates the packet reception, waits on the packet at the Transport

layer. This application process runs when the process gets scheduled, which might

vary depending on the priority of the process. The processing of the other section is

initiated from the Physical layer on reception of a packet. This process is executed in

the softirq context and hence proceeds without any delay after being scheduled. There

51

is scope for delay in packet processing between the time when the packet is added

to the Transport layer queue by the softirq and when the application process reads it

out of the queue. The application process can get delayed in getting scheduled due to

many reasons causing the packet to wait in this queue, hence increasing the process-

ing time. We can reduce this delay by scheduling the application process at an earliest

possible time, once the packet reaches the Transport layer queue.

We try to achieve this by using the Group Scheduling framework to schedule softirqs

and processes. We add another group called the ’Priority Group’ to the Group Schedul-

ing framework that is positioned after the softirqs in the scheduling hierarchy. The

Group Scheduling routine would schedule the processes in this group, once it has fin-

ished executing all the pending softirqs. Once a packet arrives at a system, the receive

softirqs which include all the three softirqs, process the packet all the way up to the

Transport layer. The Group Scheduling routine, will execute any of the other pending

softirqs, and then schedule the application process in the ’Priority Group’, which cor-

responds to the process waiting for the packet. Using this model we can reduce the

waiting time of the packet in the Transport layer queue. The Group Scheduling frame-

work model used by real-time networking model is explained in greater detail later in

this section.

The processing done by the receive softirq on the receive side has been split into

three separate softirqs. The NET RX SOFTIRQ classifies the packet and enqueues the

packet in the appropriate receive queue. The NET RX PRIORITY PROCESS SOFTIRQ

processes the prioritized packets up to the Transport layer. The NET RX NORMAL -

PROCESS SOFTIRQ processes the normal packets or the packets in the default queue,

up to the Transport layer. The softirqs were split into in order to differentiate the

packets based on their priority and processes them accordingly. The method of dif-

ferentiating the packets is done by the NET RX SOFITRQ which classifies the packets

and enqueues them in different queues. The method of processing the different pack-

ets based on their priority can be achieved by changing the priority of the NET RX -

PRIORITY PROCESS SOFTIRQ such that the prioritized packets are scheduled at an

earliest possible time.

52

We try to achieve this by changing the priority of the softirqs using the Group

Scheduling framework. NET RX SOFTIRQ has to have the highest priority among

the three receive softirqs, as it needs to be processed first to classify the packets. The

NET RX PRIORITY PROCESS SOFTIRQ has to be scheduled next to process the prior-

ity packets, if any present. The NET RX NORMAL PROCESS SOFTIRQ can be sched-

uled any time after the priority packets are processed as processing of normal packets

can be delayed. The exact priority of these softirqs and the Group Scheduling hierarchy

used is explained in detail later in this section.

Figure 4.3: Group Scheduling model for Real-Time Networking

The Real-Time Networking model of the Group Scheduling framework was built

on the Time Division Multiplexing model. This model is explained in detail in Sec-

tion 3.4. The Top group contains two sub groups - ’TDM group’, which uses the

TDM scheduler to control the transmission of packets in the appropriate time slots

and ’Softirq group’, which processes the remaining softirqs. The modifications made

to the TDM model to achieve real-time capabilities falls into two main categories.

53

Addition of ’Priority Group’ - We can notice from the Figure 4.3, that ’Priority Group’

is added to schedule prioritized or real-time processes. When a packet arrives on the

system, it is processed in softirq context by the receive softirqs and then gets added to

the Transport layer queue. The scheduling hierarchy processes the remaining softirqs

in the order of their priority and then starts scheduling processes in the ’Priority Group’.

This would assure that the process, for which the packet is waiting in the Transport

layer queue, gets scheduled at an earliest possible time. This would reduce the wait-

ing time of the packet in the Transport layer queue, thus reducing the delay in packet

processing.

The Priority Group can be placed anywhere after the NET RX PRIORITY PROCESS -

GROUP, in the Real-Time Networking Group Scheduling model. A design decision

needs to be done regarding the placement of the ’Priority Group’. Placing it immedi-

ately after the priority process softirq, schedules the processes in the ’Priority Group’

even before scheduling the remaining softirqs. Other options include placing the ’Pri-

ority Group’ in the middle of the softirq group so that it can get scheduled between the

QoS network and non-priority network. Looking at Figure 4.3 we can see that we have

different options for placing the ’Priority Group’. We have chosen to place the ’Priority

Group’ after all the softirqs, as we wanted to process the softirqs at the earliest possi-

ble time. We assume that the processes in the Priority Group can accommodate this

amount of delay in processing.

Placement of Receive Softirq - We can also notice from Figure 4.3, that the posi-

tion and hence the priority of the receive softirqs has been changed. We can note

that the priority of the NET RX SOFTIRQ has been increased, as this softirq needs

to be processed first for a packet to be received and classified. After classification, a

packet can be identified as a prioritized or a normal packet. We can notice that the

next softirq which is processed after the receive softirq is the NET RX PRIORITY -

PROCESS SOFTIRQ which processes the prioritized packets, if any are present in the

queue, at an earliest possible time. We also notice that the priority of the NET RX -

NORMAL PROCESS SOFTIRQ is unaltered, as the normal packets can be processed

54

at a later point of time.

4.3 User Interface

Once the modifications to the kernel were complete, we have to provide a user-friendly

method to access and configure the kernel with the required Real-time parameters.

The method used by the TDM module to configure the kernel was used, as the Real-

Time Networking system was an enhancement to this module. TDM uses a loadable

module, which needs to be inserted into the kernel on startup. The user can use a

user-level program, which takes command line options, to set, start and stop TDM in a

LAN. Routines have been added to this module and the user-level program to enhance

it, so that it could be used to configure the Real-Time Networking parameters in the

kernel.There are three enhancements added to the TDM module and the user-level

program that have been explained in the following sections.

4.3.1 Setting Priority on Transmit side

Traffic Control is being used to implement priority on the transmit side. A Traffic Con-

trol queuing discipline called the TDM queue is used for this purpose. This queuing

discipline in turn is made up of a number of queues. Each of these queues is associated

with atleast one port number, where a port number uniquely identifies a connection. A

command line utility is provided, which lets the user, set the port numbers associated

with these queues. The command line parameters are:

tdm send <# of queues> <space-delimited list (port# priority)>

’tdm’ is the user-level program which is used. ’send’ is the parameter, which spec-

ifies to the user-level program that the user is trying to associate port numbers with

the transmit queues, followed by the number of queues that need to be created. This

is followed by a list of space-delimited port number, which need to be prioritized, and

the priority associated with this port number. Each of these port numbers is associated

with a queue with the priority as specified by the user.

55

bash> tdm send 3 15001 2 15002 4 15003 1

This example creates three queues and sets three prioritized ports on the transmit

side of the system - 15001, 15002, and 15003. Port number 15001 is assigned a priority

of 2, 15002 is assigned a priority of 4 and the port number 15003 is assigned a priority

of 1. We need to note that, a lower number corresponds to a higher priority. So in this

example, port number 15003 has the highest priority followed by 15001 and 15002.

4.3.2 Setting Priority on Receive side

A queuing discipline is being used on the receive side to implement priority. This

queuing discipline in turn is made up of a number of queues. These queues are used

to classify packets on the receive side and process the prioritized packet at the earliest.

Each of these queues is associated with atleast a port number, where the port num-

ber reflects a connection. A command line utility is provided, which lets the user set

the port numbers associated with the queues on the receive side. The command line

parameters are:

tdm recv <# of queues> <space-delimited list (port# priority)>

’tdm’ is the user-level program which is used. ’recv’ is the parameter, which spec-

ifies to the user-level program that the user is trying to associate port numbers with

the receive queues, followed by the number of queues that need to be created. This is

followed by a list of space-delimited port number, which need to be prioritized, and

priority associated with this port number. Each of these port numbers is associated

with a queue with the priority as specified by the user.

bash> tdm recv 3 15004 3 15005 5 15006 2

This example creates three queues and sets three prioritized ports on the receive

side of the system - 15004, 15005, and 15006. Port number 15004 is assigned a priority

of 3, 15005 is assigned a priority of 5 and port number 15006 is assigned a priority of 2.

We need to note here that the queues on the transmit side and the receive side are

independent of each other. The port numbers on the transmit side and on the receive

56

side could match, but they need not match. On the transmit side, we would set priority

to the port numbers corresponding to the port number of prioritized outgoing packets.

On the receive side, we would set priority to the port numbers which corresponds to

the port number of the prioritized incoming packets.

4.3.3 Add/Remove Real-time process

The ’Priority Group’ was created under the Group Scheduling framework to sched-

ule real-time processes, to reduce the delay in packet processing on the receive side.

Adding a process to this group would ensure that the process would get scheduled

once all the pending softirqs are processed. This would reduce the waiting time of a

packet in the Transport layer queue; hence reduce the packet processing time. A com-

mand line utility is provided that let the user add or remove a process from this group.

The command line parameters are

tdm add process <space-delimited list of process id>

tdm remove process <space-delimited list of member id>

’tdm’ is the user-level program which is used. ’add process’ is the parameter, which

specifies to the user-level program that the user is trying to add a process to the ’Pri-

ority Group’ and ’remove process’ is the parameter which specifies to the user-level

program that the user is trying to remove a process from the ’Priority Group’. The user

also needs to provide a list of processes, which needs to be added while using the ’add

process’ option. The processes, which need to be added to the ’Priority Group’, are

input as a list of space delimited process IDs or PID. These processes are added to the

’Priority Group’ sequentially. The user also needs to provide a list of processes, which

need to be removed while using the ’remove process’ option. The processes, which

need to be removed from the ’Priority Group’, are input as a list of space delimited

member IDs. The member ID is the unique ID which is used to identify a member

of the Group Scheduling hierarchy. The member ID for a process is returned to the

user when he adds a process to the ’Priority Group’. These processes, if present, are

removed from the ’Priority Group’.

57

bash> tdm add process 1219 1251

bash> tdm remove process 12 56

The example above adds the processes with PIDs 1219 and 1251 to the ’Priority

Group’. The second example removes processes with member IDs 12 and 56 from the

’Priority Group’.

58

Chapter 5

Evaluation

Once the modifications to the kernel and the Group Scheduling model were completed,

we needed to test the system for correctness. We need to verify the working of the sys-

tem and measure its performance as compared to the original system. In this chapter

we discuss the testing techniques used to test the performance of the system and eval-

uate it.

5.1 End-to-End Quality of Service

This test measures the end-to-end packet transfer time between two processes which

are running on two different systems that are on TDM based Ethernet. As previously

mentioned, TDM does not differentiate between real-time and non real-time processes

and only considers the end-to-end packet transfer time of packets awaiting transmis-

sion. The modifications to the kernel and the Group Scheduling framework presented

in this thesis were done to achieve the required Quality of Service for real-time appli-

cations.

The end-to-end packet transfer time is a reasonable metric, which is used to mea-

sure the performance of the QoS provided. This could also be expressed in terms of

packet processing times on the transmit and receive systems. When we consider a

single packet which is being transferred between two applications on different sys-

tems, we can consider the time taken for packet processing on the transmitting system,

59

time taken for the packet to propagate to the receiving system and the time taken for

the receiving system to process the packet. Processing on the transmitting system in-

cludes the packet processing in the kernel. The packet propagation time includes the

time taken for transmitting the packet to the network and for the packet to propagate

through the network to the receiving system. Processing on the receiving system is the

processing done in the kernel, which includes the packet processing in the softirq and

the processing contexts.

There are many factors in the LAN which affect the performance of this test. Factors

such as LAN speed (10/100 Mbps), hub or switch, number of systems in the LAN and

accuracy of clock synchronization affect this configuration. The TDM schedule decides

when a system in the LAN gets to transmit a packet, and hence affects the end-to-

end packet transfer time. The other factors which affect the performance of the test

includes the number and types of processes running on each of the systems involved

in transfer of the packet. In this test scenario, we evaluate the performance of a single

real-time process by measuring its end-to-end packet transfer time. We also evaluate

the performance of a real-time process with other non real-time processes transfering

packets.

The testing involved 4 systems, which were in a LAN setup using a 100Mbps hub.

All the systems were using TDM as the MAC layer protocol to communicate with each

other. In this test, the TDM schedule used had a total transmission cycle of 1040 � s with

4 individual time slots of 260 � s (220 � s of transmission time and 40 � s of buffer time

between transmissions) each. All the messages transmitted by both the processes were

64 bytes long. One of the four systems acted as the Time synchronization master and

kept the time on all the systems synchronized. Two of the three systems were involved

in packet transmission, whereas the fourth system was used to generate other non

real-time traffic in the network. The testing was done using a client-server application.

The server starts and waits for the client to connect to the server and initiate a packet

transfer. Once the client starts execution, it connects to the server and transmits a

packet to the server. The server receives the packet, processes it and transmits it back

to the client. Once the client receives the processed packet, it sends another packet and

60

 1

 10

 100

 1000

 10000

 100000

 50 143 236 329 514 607 700 886 978 1071 1257 1350 1442 1628 1721 1814 1906

n
u

m
b

e
r_

o
f_

p
a

c
k
e

ts
 <

lo
g

 s
c
a

le
>

end_to_end_packet_transfer_time (in usec on a 497 Mhz machine)

End_to_End_Priority_Packet_Transfer_Graph

Min Value=50.0,Max Val=1028.0;Underflow=0,Overflow=0
Total number of values : 100693

Figure 5.1: End-to-End packet transfer time for a single real-time process

repeats the process for more packets. Time-stamps were collected at different points in

the kernel and user space, which marks the flow of packet through the network stack.

The time-stamps were used to calculate the packet processing time and the end-to-end

packet transfer time.

The Data Stream Kernel Interface (DSKI) and Data Stream User Interface (DSUI)

were used to log events at different points in the kernel and user space along the

end-to-end execution path. The log events also include a time-stamp, which gives

the time of occurrence of the event and can be used for calculating the performance

of the system. DSUI events were logged in the user space in the application program.

DSUI events EVENT SERVER SEND DATA and EVENT SERVER RECV DATA were

logged every time the server application sent and received a packet from the client

system respectively. Similarly, events EVENT CLIENT SEND DATA and EVENT -

CLIENT RECV DATA were logged every time the client application sent and received

a packet from the server application respectively. DSKI events were logged in the ker-

nel to record the time of transmission and reception of a packet at a system. The log

event HARD START XMIT was logged when a packet was transmitted out of a sys-

tem. On the receiving side, EVENT CLASSIFY PACKET was logged which signifies

the reception of a packet. The tag field of these events gives the port number of the

61

 1

 10

 100

 1000

 10000

 100000

 100 500 1000 1500 2000 2500 3400

n
u

m
b

e
r
_

o
f_

p
a

c
k
e

ts
 <

lo
g

 s
c
a

le
>

end_to_end_packet_transfer_time (in usec on a 497 Mhz machine)

End_to_End_Normal_Packet_Transfer_Graph

Min Value=185.0,Max Val=394566.0;Underflow=0,Overflow=23,Avg=1049.000
Total number of values : 74683

Figure 5.2: End-to-End packet transfer time
for a non real-time process

 1

 10

 100

 1000

 10000

 100000

 100 500 1000 1500 2000 3400

n
u

m
b

e
r
_

o
f_

p
a

c
k
e

ts
 <

lo
g

 s
c
a

le
>

end_to_end_packet_transfer_time (in usec on a 497 Mhz machine)

End_to_End_Priority_Packet_Transfer_Graph

Min Value=113.0,Max Val=5122458.0;Underflow=0,Overflow=36,Avg=877.000
Total number of values : 102205

Figure 5.3: End-to-End packet transfer time
for a real-time process

packet which caused these events to be logged. We use DSKI kernel filters to only log

events which were relevant to the port number we were using, as this number identi-

fies a connection between the systems.

These events were logged and analyzed to know the different processing time for

a packet. Post processing filters applied to the DSKI data from different machines

remapped these events onto a common global timeline [23]. Other DSKI filters were

used to calculate the various values needed to evaluate this system. The difference

between the EVENT CLIENT SEND DATA and the EVENT SERVER RECV DATA,

gives the end-to-end packet transfer time for a packet. These end-to-end packet trans-

fer times were used to compare the performance of the system for real-time and non

real-time processes.

For the first test, we executed a single real-time process in this environment. This

bascially illustrates a real-time process scenario, where the packet transfer rate is not

high, but packet delay and packet loss are not tolerated. The results of this test have

been shown in Figure 5.1. From the histogram we can see that all the real-time packets

62

transmitted have an end-to-end transfer time of less than 1040 � s which corresponds to

the total transmission cycle used in this experiment.

Table 5.1: End-to-End packet transfer time
Message Size Total Slot time Average Time

(Bytes) (� s) (� s)
64 1040 592

256 1200 698

1472 1920 1244

For the second test, we executed a single real-time process along with other non

real-time processes and measured its performance. We also ran a non real-time process

in the same scenario and measured its performance. From the output shown in Figure

5.3, we can note that most of the real-time packets have an end-to-end transfer time

of less than 1040 � s. We can also compare this with the end-to-end transfer time for

packets from a non real-time application shown in Figure 5.2. We can note that the end-

to-end packet transfer time for a non real-time process is almost equally distributed

between the first and the second time slot in the TDM schedule.

The packet processing time on the transmit and receive system was calculated for a

real-time process. This is displayed in Figure 5.4, Figure 5.5 and Figure 5.6. We can note

that the amount of variation in packet processing time on the receive side, as displayed

in Figure 5.5, is minimal compared to the packet processing time on transmit side, as

displayed in Figure 5.4. We can also note that the variation in packet processing time on

the transmit side before enqueuing it in the Traffic Control queue, displayed in Figure

5.6 is also minimal. This implies that the the variation on the transmit side is mainly

due to the wait for the transmission time slot.

The other test that was conducted was the end-to-end packet transfer time for dif-

ferent TDM slot times. Tests were conducted with three different slot sizes based on

the size of the packet used for transmission [19]. The results of the test have been

summarized in Table 5.1. For these tests we could observe that the end-to-end packet

transfer time varied based on to the total transmission cycle used for the TDM sched-

ule. The average end-to-end packet transfer time for a packet was close to half of the

63

 1

 10

 100

 1000

 10000

 100000

 65 154 242 330 507 595 684 860 948 1037 1213 1302 1390 1567 1655 1743 1831

n
u

m
b

e
r
_

o
f_

p
a

c
k
e

ts
 <

lo
g

 s
c
a

le
>

packet_processing_on_transmitting_system (in usec on a 497 Mhz machine)

Packet_Processing_Time_-_Transmitting_System

Min Value=65.0,Max Val=891.0;Underflow=0,Overflow=0
Total number of values : 100693

Figure 5.4: Packet processing time on trans-
mit system

 1

 10

 100

 1000

 10000

 100000

 39 53 67 81 95 109 123 137 151 165 179

n
u

m
b

e
r
_

o
f_

p
a

c
k
e

ts
 <

lo
g

 s
c
a

le
>

packet_processing_time_receiving_system (in usec on a 497 Mhz machine)

Packet_Processing_Time_-_Receiving_System

Min Value=39.0,Max Val=159.0;Underflow=0,Overflow=0
Total number of values : 100693

Figure 5.5: Packet processing time on receive
system

 1

 10

 100

 1000

 10000

 100000

 51 75 99 123 147 170 194 218 242 266 289

n
u

m
b

e
r_

o
f_

p
a

c
k
e

ts
 <

lo
g

 s
c
a

le
>

packet_processing_time_-_Userlevel_to_traffic_control (in usec on a 497 Mhz machine)

Packet_Processing_Time_-_Transmitting_System

Min Value=51.0,Max Val=220.0;Underflow=0,Overflow=0
Total number of values : 100693

Figure 5.6: Packet processing time on transmit side - user process to Traffic Control

64

total transmission cycle used for transmission.

5.2 Pipeline Computation

This test was used to calculate the performance of the system for an n-pipe computa-

tion where we have ’n’ machines lined up for computation and each machine does a

part of the computation. This is more of a distributed computation scenario, where the

computation is distributed among different systems in a LAN.

There are a few factors that affect the performance of the system for this test sce-

nario. Factors such as LAN speed (10/100 Mbps), hub or switch, number of systems

and the accuracy of clock synchronization affect this configuration. The other factors,

which affect this test, include the number of computational components that are spread

across computers.

Figure 5.7: Pipeline Computation

The testing involved four systems, which were in a LAN setup using a 100Mbps

hub. All the systems were using TDM as the MAC layer protocol to communicate

with each other. The individual time slots were 260 � s (220 � s of transmission time and

40 � s of buffer time between transmissions), with a total transmission cycle of 1040 � s.

All the messages transmitted by all the computations in the pipeline were 10 bytes

long. One of the four systems acted as the Time synchronization master and kept the

local clocks on all the systems synchronized. The other three systems formed three

nodes of the pipeline computation. The pipeline computation was used to calculate

the packet processing time in the kernel. This experiment was also visualized using

the Datastream visualizer to get a better idea of the sequence of events in the pipeline

processing.

The pipeline computation is illustrated in Figure 5.7. Each node contained two

65

pipeline computation components. The computation starts in the source node, which

generates a stimulus that it uses for computation. Once the computations on a partic-

ular system completes, it moves to the next system by passing on the stimulus to the

next system. This process continues until it reaches the sink system, which ends the

pipeline computation. This emulates a distributed computation scenario, where a com-

putation is split into smaller parts that are computed on different systems to distribute

the load. Computations on all the systems need to finish to get the end result.

The Data Stream Kernel Interface (DSKI) and the Data Stream User Interface (DSUI)

were used to log events at different points in the kernel and user space along the end-

to-end computation path. The log events also include a time-stamp, which gives the

time of occurrence of the event and can be used for calculating the performance of the

system. DSUI events were logged in the user space in the application program. DSUI

log events EVENT START CYCLE and EVENT END CYCLE were used to log events

at the start and end of each computation. EVENT STIMULUS SENT and EVENT -

STIMULUS RECD were used to log events at the time when a stimulus was sent and

received from a particular system to another computation on the same system. Events

REMOTE STIMULUS SENT and REMOTE STIMULUS RECD were used to log events

at the time when a stimulus was sent and received between computations that were on

different systems.

Other than the DSUI events, DSKI events were logged at different points in the ker-

nel. HARD START XMIT was logged in the device driver when a packet was transmit-

ted out of the system. On the receiving side, EVENT CLASSIFY PACKET was logged

which signifies the reception of the packet. The tag field of these events gives the port

number of the packet which caused these events to be logged. We use DSKI kernel

filters to log events which were relevant to the port number we were using. In this

experiment, the port number identifies a connection between two systems.

These events were logged and analyzed to know the different processing time for

a packet. Post processing filters applied to the DSKI data from different machines

remapped these events onto a common global timeline [23]. Other DSKI filters were

used to calculate the values of the various performance metrics needed for this test.

66

Figure 5.8: Pipeline Computation Visualization

The time difference between REMOTE STIMULUS SENT and HARD START XMIT,

gives the packet processing time on the transmit side. The time difference between

REMOTE STIMULUS RECD and EVENT CLASSIFY PACKET, gives the time taken

for packet processing on the receive side. Similarly, the time difference between the

events REMOTE STIMULUS SEND and REMOTE STIMULUS RECD gives the end-

to-end packet transfer time for the stimulus. The average packet processing time for

the packets on the transmit and receive side have been shown in Table 5.2.

Table 5.2: Packet processing time
Average Time (� s)

Packet processing time on Transmit side 492

Packet processing time on receive side 41

End-to-End transfer time 537

The postprocessed output was fed into a Datastream Visualizer to visualize the

events on a global timeline. The output of the visualizer is shown in Figure 5.8. The vi-

sualizer was configured to show the execution timelines for all pipelines. The different

lines in the output represent the different events that occurred during different point

67

of time. The packet processing time on the transmit and receive side are represented

as intervals on the visualizer.

68

Chapter 6

Conclusions and Future Work

Time Division Multiplexing over Ethernet provides a good collision free protocol for a

LAN. This protocol deals only with the MAC layer and does not provide any features

to differentiate between the processes running on each of the system. This thesis work

intended to provide an enhancement in this TDM model so that it can differentiate

between the real-time and non real-time processes running on each of the system and

provide the appropriate Quality of Service (QoS) as required by the applications. The

test results have verified that the enhancements added to the TDM model do provide

the required QoS to the real-time processes.

Time constraint in Quality of Service

The method used to provide priority in this project, works independently of the

TDM model and the process seeking priority. The method used does not associate a

real-time process with any values. It only differentiates between a real-time and a non

real-time process, and tries to provide resources to the real-time process to perform

better. This implementation does not interact or negotiate with the process using any

Quality of Service parameters.

We could extent this project to include a set of QoS parameters, which could be

exchanged between the process and the system before the system starts providing QoS.

Each process should be aware of the deadline it is trying to achieve and negotiate with

the system based on this deadline. The system should maintain the list of real-time

69

processes running on this system and the QoS parameters of each of these processes.

The system should be able to judge whether it would be able to provide the desired

QoS, based on the number and QoS parameters of each of the real-time process running

on the system. The system should not commit to provide QoS to a process when it

cannot achieve it.

The Quality of Service parameters could also be applied to a single message, where

each message transmitted or received at a system, has a deadline associated with it,

and the system should strive to achieve this deadline.

Resource Reservation Protocol

The Resource Reservation Protocol (RSVP) [3] is used to enhance the current Internet

architecture with support for Quality of Service. The RSVP protocol is used by a host

to request for a specific QoS from the network, on behalf of an application data stream.

This request is done along the reverse data path. This protocol carries this request

through the network, visiting each node on the path requesting the desired QoS. This

protocol tries to reserve resource on each node for this particular connection so that the

connection has the requested Quality of Service.

The Quality of Service discussed in this thesis work, is confined to the particular

LAN where it is implemented. This allocates resources in each of the host systems

involved in the transfer as in a LAN, message transfer takes place directly between two

nodes without a third intermediate node. We can enhance this project so that the QoS

module on each of the systems interacts with the RSVP protocol to reserve resources

on nodes beyond the LAN. In this way we can extend the Quality of Service provided

by this project to go beyond a single LAN.

70

Bibliography

[1] Linux cross reference. http://lxr.linux.no/source.

[2] Werner Almesberger. Linux network traffic control - implementation overview.

Technical report, April 1999.

[3] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation

protocol (rsvp). RFC 2205, Septmeber 1997.

[4] B. Buchanan, D. Niehaus, G. Dhandapani, R. Menon, S. Sheth, Y. Wijata, and

S. House. The Datastream Kernel Interface (Revision A). Technical Report

ITTC-FY98-TR-11510-04, Information and Telecommunication Technology

Center, University of Kansas, 1994 June.

[5] Tzi-cker Chiueh Chitra Venkatramani. Supporting real-time traffic on ethernet.

In Proceedings of IEEE Real-Time Traffic Systems Symposium, December 1994.

[6] Curtiss-Wright Controls Embedded Computing. Scramnet+ shared memory

speed, determinism, reliability, and flexibility for distributed real-time systems.

http://www.systran.com/ftp/literature/sc/scsmwp.pdf.

[7] Stephen D Cote. Token-ring architecture.

http://www.bralyn.net/techpages/papers/token.ring.html.

[8] Marco Cesati Daniel P. Bovet. Understanding the Linux Kernel. 2002.

[9] Will Dinkel, Douglas Niehaus, Michael Frisbie, and Jacob Woltersdorf.

KURT-Linux User Manual, 2002.

[10] L. Torvalds et al. The Linux Kernel Archives. http://www.kernel.org.

71

[11] Michael Frisbie. A unified scheduling model for precise computation control.

Master’s thesis, University of Kansas, March 2004.

[12] Leon Garcia and Widjaja. Communication Networks. McGraw Hill, 2000.

[13] R. Hill, B. Srinivasan, S. Pather, and D. Niehaus. Temporal Resolution and

Real-Time Extensions to Linux. Technical Report ITTC-FY98-TR-11510-03,

Information and Telecommunication Technology Center, University of Kansas,

June 1998.

[14] R. Jonkman, D. Niehaus, J. Evans, and V. Frost. NetSpec: A Network

Performance Evaluation Tool. Technical Report ITTC-FY98-TR-10980-28,

Information and Telecommunication Technology Center, University of Kansas,

December 1998.

[15] Jan Kiska. Rtnet - hard real-time protocol for rtai/linux.

www.rts.uni-hannover.de/rtnet/index.html.

[16] Radhakrishnan R. Mukkai. Design of the new and improved netspec controller.

Master’s thesis, University of Kansas, December 2003.

[17] Paolo Gai Paulo Pedreiras, Lus Almeida. The ftt-ethernet protocol: Merging

flexibility, timeliness and efficiency. In 14th Euromicro Conference on Real-Time

Systems, 2002.

[18] Miguel Rio, Mathieu Goutelle, Tom Kelly, Richard Hughes-Jones, Jean Philippe

Martin-Flatin, and Yee-Ting Li. A map of the networking code in linux kernel

2.4.20, technical report datatag-2004-1. Technical report, March 2004.

[19] Hariprasad Sampathkumar. Using time division multiplexing to support real

time networking on ethernet. Master’s thesis, University of Kansas, January

2005.

[20] Kang G. Shin Seok-Kyu Kweon, Min-gyu Cho. Soft real-time communication

over ethernet with adaptive traffic smoothing.

72

[21] Chia Shen and Ichiro Mizunuma. Real-Time Channel-based Reflective Memory.

IEEE Transactions on Computers, 49(11):1202–1214, 2000.

[22] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus. A Firm Real-Time

System Implementation using Commercial Off-The-Shelf Hardware and Free

Software. In Real-Time Technology and Applications Symposium, June 1998.

[23] Hariharan Subramanian. Systems performance evaluation methods for

distributed systems using data streams. Master’s thesis, University of Kansas,

2004.

[24] Andrew S. Tanenbaum. Computer Networks 3rd Edition. Prentice Hall, 1996.

[25] Matthew Wilcox. I’ll do it later : Softirqs, tasklets, bottom halves, task queues,

work queues and timers.

73

