Detection and Mitigation of Impairments for Real-Time Multimedia Applications

Soshant Bali

Ph.D. Final Exam, December 3, 2007

Research Questions

- Can we
 - define RTM impairments?
 - detect RTM impairments?
 - detect causes of RTM impairments?
 - mitigate RTM impairments?

Main Contributions (I)

- Methods to detect RTM impairments
- Methods to detect causes of impairments
 - Congestion
 - Heuristics-based
 - Route changes
 - Heuristics-based
 - Model-based
 - Optimal model-based route change detector parameter aware (PAD): provides performance bound
 - Analysis to predict performance of PAD
 - Practical model-based route change detector parameter unaware (PUD)
 - Compare performance of heuristics-based, PUD and ideal
 - Evaluation using Internet measurements

Main Contributions (II)

- Methods to mitigate RTM impairments
 - Discovery that proportional fair (PF) scheduler induces RTM impairments
 - New scheduler that mitigates impairments
 - New alpha initialization strategy

Relevance of this Research

- Detect RTM impairments
 - Impairments QoS metric for SLAs
- Detect causes of RTM impairments
 - Fault/state detection for ISPs
 - Routing for overlay/underlay networks
 - Improved Internet tomography
 - Next-steps in signaling
 - Improved minimum RTT estimation
 - TCP throughput improvement
- Mitigate RTM impairments
 - Robust schedulers for wireless networks

Outline

- Mitigating RTM impairments
 - PF scheduler starvation problem
 - Robust scheduling
- Detecting impairments
- Detecting causes of impairments
 - Heuristic methods: congestion, route changes
 - Model-based methods: route changes

Discussed in Ph.D. proposal

PF Scheduler

- PF Scheduler
 - Channel aware, downlink scheduler
 - Maximizes system throughput
 - Long-term fairness
 - Widely deployed: EVDO, HSDPA
 - Schedule ATs with good channel conditions
 - Each AT k reports achievable rate R_k(t) in slot t
 - Scheduler calculates average rates A_k(t)
 - $A_{k}[t] = \begin{cases} (1-\alpha)A_{k}[t-1] + \alpha R_{k}[t] & \text{if k is scheduled in slot t} \\ (1-\alpha)A_{k}[t-1] & \text{if k is not scheduled in slot t} \end{cases}$
 - Schedule AT with maximum $R_k(t)/A_k(t-1)$

How PF scheduler works

Exponential weighted average throughput to each AT $A_{k}[t] = \begin{cases} (1-\alpha)A_{k}[t-1] + \alpha R_{k}[t] & \text{if } k \text{ is scheduled in slot } t \\ (1-\alpha)A_{k}[t-1] & \text{if } k \text{ is not scheduled in slot } t \end{cases}$

Schedule AT that has its better than average conditions i.e., schedule AT with maximum R/A

A_i[t] of AT i updates as $A_i[t] = (1-\alpha)A_i[t-1] + \alpha R_i[t]$

 $A_{k}[t]$ of all other ATs k updated $A_{k}[t] = (1 - \alpha) A_{k}[t - 1]$

PF Scheduler Starvation

- PF design assumes infinite backlog
 - Traffic commonly on-off, e.g., web browsing
- Problem: on-off traffic causes starvation
 - When off, no slots allocated to that AT
 - Average decays when no slots allocated
 - When on after long off, average is very low
 - AT that restarts has highest R/A amongst all ATs (low A)
 - AT that restarts gets all slots until A increases
 - This starves other ATs
- PF widely deployed and can be easily corrupted
 - Deliberately (attacks using burst UDP)
 - Accidentally (web browsing)

Measurement Setup

- Experiments in deployed network and in laboratory
 - No cross traffic in laboratory

Scheduler-Induced Jitter

- AT1: cbr traffic; AT2: 250 1500B pkts every 6 sec
- Increase in delay a function of AT1s rate
 - Assume DRCs are constant
 - If $A1_T = \beta 1_T R1$ and $A2_T = \beta 2_T R2$, then jitter=time until $\frac{R1}{A1_{t-1}} > \frac{R2}{A2_{t-1}}$

- Predicted jitter
$$J = \left| \frac{\log \left(\frac{1}{1 + \beta l_T - \beta 2_T} \right)}{\log(1 - \alpha)} \right|$$

- Predicted jitter matches measured jitter when $\beta 2_T = 0$

Measurement Results

AT2 Data Rate [Kbps] / Inter-burst Gap [sec]

AT1 downloads 20MB file. AT2 receives cbr or bursty traffic. A burst has 150 pkts of size 1500 Bytes each.

Solution: parallel PF scheduler

Summary:-

- PF1 decides final scheduling
- PF2 only virtual scheduling
- PF1 aware of queue size
- PF2 unaware of queue size
- When on after off, copy averages from PF2 to PF1

Compute $R_k[t]/A_k[t-1]$ for AT k=1, since there is no data for AT2. Final scheduling decided by PF1

and AT2 queue is empty (in off state)

Compute $R_k[t]/A_k^{P}[t-1]$ for each AT k. PF2 does not look at the Queues.

Update $A_k[t]$ for all k Update $A_k^P[t]$ for all k

At time t+M, AT2 queue receives data for AT2

 $A_{k}[t+M-1] = A_{k}^{P}[t+M-1]$

Compute $R_k[t]/A_k[t-1]$ for all k. AT with highest ratio gets slot.

Robust Scheduling

- Adaptive alpha initialization
 - After long inactivity, AT dormant
 - No SINR reporting in dormant mode
 - Parallel PF cannot work
 - Initialize alpha for faster convergence of average
 - Shortens starvation duration

Simulation setup

- Collect stationary user DRC trace in deployed system using CDMA air interface tester (CAIT)
- DRC trace input to ns-2
- Server-base station 100Mbps
- Base-station to AT DRC variable (from trace)
 - Loss probability = 0
 - RLP not implemented (not needed)
- High bandwidth link from AT to server

Parallel PF: simulation results

UDP data rate (Kbps) / inter-burst gap (sec)

Model-Based Approach

- Model-based v/s heuristic
 - Predictable performance
 - Quantifiable performance tuning
 - Better performance?
 - Provides theoretical performance bound
- Model-based detection
 - RTTs i.i.d. samples from Gamma distribution
 - Hypothesis test
 - H₀: All n samples from Gamma: $\alpha_0, \beta_0, \gamma_0$
 - H_1 : First $\lfloor n/2 \rfloor$ from Gamma: $\alpha_1, \beta_1, \gamma_1$ and next $\lfloor n/2 \rfloor$ from Gamma: $\alpha_2, \beta_2, \gamma_2$
 - Find likelihood ratio L
 - If $L > \lambda$ then H_0 true, else H_1 true

Parameter-Unaware Detector

 Assume RTTs modeled with Gamma PDF

$$f_{T}(t \mid \alpha, \beta, \gamma) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} (t - \gamma)^{(\alpha - 1)} e^{-\frac{(t - \gamma)}{\beta}} & \gamma \le t < \infty \\ 0 & \text{otherwise} \end{cases}$$

- Given n samples, estimate parameters using: -
 - All n samples: $\hat{\alpha}_0, \hat{\beta}_0, \hat{\gamma}_0$
 - First $\lfloor n/2 \rfloor$ samples: $\hat{\alpha}_1, \hat{\beta}_1, \hat{\gamma}_1$
 - Last $\lceil n/2 \rceil$ samples: $\hat{\alpha}_2, \hat{\beta}_2, \hat{\gamma}_2$
- find L

$$L = Log \frac{\prod_{i=1}^{n} f_T \left(t = t_i \mid \hat{\alpha}_0, \hat{\beta}_0, \hat{\gamma}_0 \right)}{\prod_{j=1}^{\lfloor n/2 \rfloor} f_T \left(t = t_j \mid \hat{\alpha}_1, \hat{\beta}_1, \hat{\gamma}_1 \right) \prod_{k=\lfloor n/2 \rfloor+1}^{n} f_T \left(t = t_k \mid \hat{\alpha}_2, \hat{\beta}_2, \hat{\gamma}_2 \right)}$$

• If $L > \lambda$ then H_0 true, otherwise H_1 true

Parameter-Aware Detector

Assume RTTs modeled with Gamma PDF

 $f_T(t \mid \alpha, \beta, \gamma) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} (t - \gamma)^{(\alpha - 1)} e^{-\frac{(t - \gamma)}{\beta}} & \gamma \le t < \infty \\ 0 & \text{otherwise} \end{cases}$

• Given n samples, and 9 parameters, find L

$$L = Log \frac{\prod_{i=1}^{n} f_T(t = t_i \mid \alpha_0, \beta_0, \gamma_0)}{\prod_{j=1}^{\lfloor n/2 \rfloor} f_T(t = t_j \mid \alpha_1, \beta_1, \gamma_1) \prod_{k=\lfloor n/2 \rfloor+1}^{n} f_T(t = t_k \mid \alpha_2, \beta_2, \gamma_2)}$$

- If $L > \lambda$ then H_0 true, otherwise H_1 true
- Observations
 - Not practical: prior knowledge of parameters
 - Optimal detector in likelihood ratio sense

Performance Metrics

Useful to know the functions

 $P_{D} = f^{D} (\lambda, n, \alpha_{0}, \beta_{0}, \gamma_{0}, \alpha_{1}, \beta_{1}, \gamma_{1}, \alpha_{2}, \beta_{2}, \gamma_{2})$ $P_{F} = f^{F} (\lambda, n, \alpha_{0}, \beta_{0}, \gamma_{0}, \alpha_{1}, \beta_{1}, \gamma_{1}, \alpha_{2}, \beta_{2}, \gamma_{2})$ $\lambda = f^{\lambda} (P_{D}, P_{F}, n, \alpha_{0}, \beta_{0}, \gamma_{0}, \alpha_{1}, \beta_{1}, \gamma_{1}, \alpha_{2}, \beta_{2}, \gamma_{2})$

20

Performance Metrics (II)

• To derive expressions for P_D , P_F and λ , need PDF of L|H₀ and L|H₁

$$f_{L|H_0}(l) = f^{L|H_0}(n, \alpha_0, \beta_0, \gamma_0, \alpha_1, \beta_1, \gamma_1, \alpha_2, \beta_2, \gamma_2)$$

$$f_{L|H_1}(l) = f^{L|H_1}(n, \alpha_0, \beta_0, \gamma_0, \alpha_1, \beta_1, \gamma_1, \alpha_2, \beta_2, \gamma_2)$$

• Then,

PAD Analysis

- What is PDF of $L|H_0$ and $L|H_1$?
 - Difficult: find first two moments instead
 - Assume $L|H_0$ and $L|H_1$: Gaussian PDF
- Parameter subspaces
 - H₀ true
 - If $\gamma_0 \ge Max(\gamma_1, \gamma_2)$ *L-finite* space
 - If $\gamma_0 < Max(\gamma_1, \gamma_2)$ *L-infinite* space
 - P_{LF|H0} Equations 3.7, 3.8, 3.9
 - H₁ true
 - If $\gamma_0 \leq \operatorname{Min}(\gamma_1, \gamma_2)$ *L-finite* space
 - If $\gamma_0 > Min(\gamma_1, \gamma_2)$ *L-infinite* space
 - P_{LF|H1} Equations 3.45, 3.46, 3.47
- Expressions for first two moments
 - *L-finite:* $E[L|H_0] Eq. 3.16; E[L^2|H_0] Eq. 3.35; E[L|H_1] Eq. 3.49; E[L^2|H_1] Eq. 3.71$
 - *L-infinite:* $E[L|H_0] Eq. 3.40; E[L^2|H_0] Eq. 3.42; E[L|H_1] Eq. 3.73; E[L^2|H_1] Eq. 3.74$

PAD Analysis (II)

- Assume L|H₀ and L|H₁ are Gaussian RVs
- Then, $P_{D} = P_{LF|H_{1}} \frac{1 + erf\left(\lambda - \mu_{L|H_{1}} / \sigma_{L|H_{1}} \sqrt{2}\right)}{2} + \left(1 - P_{LF|H_{1}}\right)$ $P_{F} = P_{LF|H_{0}} \frac{1 + erf\left(\lambda - \mu_{L|H_{0}} / \sigma_{L|H_{0}} \sqrt{2}\right)}{2}$

PAD Analysis: Validation

- Simulation setup
 - 10,000 samples of L|H₀
 - 10,000 samples of L|H₁
 - Vary threshold over the entire range
 - Find P_D and P_F for each value of threshold
- Result: Predicted ROCs match simulations
 - Moments separately validated
 - Validates analysis
 - Validates Gaussian assumption

PAD Acceptable Performance Region

- What are the parameter values for which PAD has acceptable performance?
- Acceptable performance region

- Parameter space for which $P_D \ge 0.999$, $P_F \le 0.001$

PUD Analysis

- Difficult
 - We need $f_{L|H_0}(l) = f^{L|H_0}(n, \alpha_0, \beta_0, \gamma_0, \alpha_1, \beta_1, \gamma_1, \alpha_2, \beta_2, \gamma_2)$ $f_{L|H_1}(l) = f^{L|H_1}(n, \alpha_0, \beta_0, \gamma_0, \alpha_1, \beta_1, \gamma_1, \alpha_2, \beta_2, \gamma_2)$

$$- L = Log \frac{\prod_{i=1}^{n} f_T \left(t = t_i \mid \hat{\alpha}_0, \hat{\beta}_0, \hat{\gamma}_0 \right)}{\prod_{j=1}^{\lfloor n/2 \rfloor} f_T \left(t = t_j \mid \hat{\alpha}_1, \hat{\beta}_1, \hat{\gamma}_1 \right) \prod_{k=\lfloor n/2 \rfloor+1}^{n} f_T \left(t = t_k \mid \hat{\alpha}_2, \hat{\beta}_2, \hat{\gamma}_2 \right)}$$

- Here $\hat{\alpha}_0, \hat{\beta}_0, \hat{\gamma}_0, \hat{\alpha}_1, \hat{\beta}_1, \hat{\gamma}_1, \hat{\alpha}_2, \hat{\beta}_2, \hat{\gamma}_2$ are random variables
- Value of $\hat{\alpha}_0, \hat{\beta}_0, \hat{\gamma}_0$ correlated with $\hat{\alpha}_1, \hat{\beta}_1, \hat{\gamma}_1, \hat{\alpha}_2, \hat{\beta}_2, \hat{\gamma}_2$

PUD Simulation Methodology

- Generate 10,000 windows of n samples
 - Generate samples using $\alpha_0, \beta_0, \gamma_0$
 - Apply PUD to each of the 10,000 windows
 - Gives 10,000 samples of $L|H_0$
- Generate 10,000 windows of n samples
 - First $\lfloor n/2 \rfloor$ samples using $\alpha_1, \beta_1, \gamma_1$
 - Next $\lceil n/2 \rceil$ samples using $\alpha_2, \beta_2, \gamma_2$
 - Apply PUD to each of the 10,000 windows
 - Gives 10,000 samples of L|H₁
- P_{D} and P_{F} can be estimated from distribution of $L|H_{0}$ and $L|H_{1}$

PUD ROCs

PAD performance better than PUD

PUD Acceptable Performance Region

Evaluation Using Internet Measurements

- Methodology
 - Collect RTTs using PlanetLab
 - Extract statistically homogeneous data
 - Segment into n sample windows
 - Calculate $L|H_0$ for each window
 - Add ΔT to last $\lceil n/2 \rceil$ samples
 - Calculate $L|H_1$ for each window
- Data
 - Athens, Greece Tokyo, Japan
 - October 25, 2006
 - $\Delta T = 1$ ms
 - n=100, acceptable performance

Acceptable Performance Region: All Three Algorithms

31

Minimum Sampling Rate

- Detect route changes 1 min apart
- Probing rate:
 - Congestion => 5 samples/sec
 - No congestion => 1.66 samples/sec
- Automation: estimate parameters determine rate

Conclusions: Model-Based Approach

- Proposed optimal detector (PAD)
 Developed opplyging to predict perform
 - Developed analysis to predict performance
- Proposed practical detector (PUD)
- Performance evaluation
 - PUD performance region larger than heuristic
 - PUD performance region increases with n and approaches that of PAD
 - Heuristic performance region not sensitive to window size n

Conclusions

- Developed methods to detect impairments
 - Evaluated using PlanetLab data
- Proposed/evaluated heuristic methods
 - Congestion and Route changes
- Proposed optimal detector (PAD)
 - Developed analysis to predict performance
- Proposed practical detector (PUD)
 - Performance better than heuristics-based
- Discovered the impairment vulnerability of PF
 - Proposed parallel PF and adaptive alpha initialization

Future Work

- Analysis to predict performance of PUD
 - Analysis is difficult
 - Make some simplifying assumptions
 - Useful in predicting threshold in real-time
- PAD to detect changes during route flaps
 - When to start applying PAD
 - Detect when flapping stops and apply PUD

Publications

- Soshant Bali, Yasong Jin, Victor S. Frost, Tyrone Duncan, "Characterizing User-Perceived Impairment Events Using End-to-End Measurements," International Journal for Communication Systems, Vol. 18, No. 10, pp. 935-960, December 2005.
- Soshant Bali, Sridhar Machiraju, Hui Zang and Victor Frost, "A Measurement Study of Scheduler-Based Attacks in 3G Wireless Networks," Passive and Active Measurements Conference, Louvain-La-Neuve, Belgium, May 5-6, 2007.
- Soshant Bali, Sridhar Machiraju and Hui Zang, "Beyond Proportional Fair: Designing Robust Wireless Schedulers," poster in IFIP Networking, 2007.
- S. Bali, S. Machiraju and H. Zang, "PAQ: A Starvation Resistant Alternative to Proportional Fair," Submitted to ICC 2008.
- Soshant Bali and Victor S. Frost, "Model-based detection of Route Changes," submitted to IEEE/ACM Transactions on Networking.
- Soshant Bali and Victor S. Frost, "A New Algorithm for Fitting MMPP to IP Traffic Traces," IEEE Communications Letters, Vol. 11, No. 2, pp. 207-209, Feb. 2007.
- Yasong Jin, Soshant Bali, Tyrone Duncan and Victor Frost, "Predicting Properties of Congestion Events for a Queuing System with fBm Traffic," IEEE/ACM Transactions on Networking, Vol. 15, No. 5, pp. 1098-1108, October 2007.