

Introduction

- 3-D modeling is an increasingly important application, *however...*
- Modeling software is not widely used outside industry.

The Trouble with Current Systems

- For Consumers:
 - Complex modeling methods require expertise.
 - Too expensive.
- For Artists / Designers:
 - Unintuitive interfaces based on underlying representations and engineering tools.
- For Researchers / Engineers:
 - Difficult to generate simple experimental or preparatory models quickly.
- For Everyone:
 - Difficult to interact with the 3-D environment through the 2-D interface.

Research Response: Sketch-Based Modeling

- Develop more intuitive modeling interfaces.
- Often based on physical artistic techniques.
- Focus on preparatory designs and early planning stages of modeling.
- Utilize a variety of modeling methods and interfaces.
- Three areas of weakness in sketch-based modeling.

(1) Trying to Mimic Physical Technique

- Problem:
 - Frustrates users who are expecting a familiar experience.
 - Provides system with impoverished 3-D information.

(2) Result Is 3-D but the Interface is 2-D

• Problem:

- User's experience is necessarily 2-D
 - 2-D display device.
 - 2-D input devices (mouse, tablet, etc.)
- 3-D Artistic techniques do not translate.
 - Clay sculpture.
 - Carving.
- Navigating 3-D environment is challenging.

(3) Digitizing Tablets are Underutilized

- Problem:
 - Tablets also provide dynamic physical information.
 - Stylus position above the tablet's surface.
 - Pressure exerted on the stylus tip.
 - Angle of the stylus in relation to the tablet.
 - This information is largely ignored by other systems.

The Present Work

- Developed a prototype sketch-based modeling interface and modeling method:
 - Based on how artists *think* about sketching.
 - Generate 3-D models from user's 2-D strokes.
- Developed system of tablet gestures:
 - Inspired by natural hand and drawing gestures.
 - Demonstrates the utility of this information.
 - Provides a more intuitive means of controlling the system and navigating 3-D environment.

Our Agenda

- Introduction / Background
- Related Work
- Design of the Present System
- Implementation Details
- Preliminary Assessment
- Conclusions

Sketch-Based Modeling Approaches

- Gesture Created Primitives
- Al and Machine Learning
- Height-Field and Shape-from-Shading
- Line Labeling
- Blobby Inflation
- Deformation
- Contour Curves and Drawing Surfaces
- Stroke-Based Constructions

Gesture Created Primitives

Java version of SKETCH [Zeleznik *et al.*, 1996] [Doppelt, 1997]

Expectation Lists [Pereira *et al.*, various]

> Suggestive Interface [Igarashi & Hughes, 2001]

Blobby Inflation

Teddy [Igarashi *et al.*, 1999]

SmoothSketch [Karpenko *et al.*, 2002

Contour Curves and Drawing Surfaces

Principle 3-D Curves [Grossman *et al.*, 2002]

Modeling Stage and 2-D Construction Planes [Grossman *et al.*, 2001]

Construction Planes [Tsang *et al.*, 2004]

Stroke-Based Construction

Rotational and Cross-Sectional Blending Surfaces [Cherlin *et al.*, 2005]

Sketch and Constraint Based B-Spline Surfaces [Michalik *et al.*, 2002]

Related Work Summary

- Interaction heavy interfaces get in the way of the sketching process.
- Sketching is inherently ambiguous, and defies interpretive systems.
- Inflation and Gesture systems were effective in creating geometry, but too constraining.
- Stroke based systems were more expressive, but difficult to control.

Design of the Present System

- Introduction / Background
- Related Work
- Design of the Present System
 - Approach
 - System Components
- Implementation Details
- Preliminary Assessment
- Conclusions

A New Approach:

- Input based on 2-D sketching into a 3-D environment.
 - Accept familiar 2-D drawing skills.
 - Expand those to define 3-D objects.
- A construction system based on the way artists *think* about drawing.
 - Cater the the *mental* processes that underlie physical techniques.
 - Skills translate, even when techniques are incongruous.
- Offer system control though tablet gestures.
 - More direct physical means of navigating in 3-D.
 - Based on natural / intuitive physical motions.

Components of the System

- Stroke System
- Drawing Planes
- 3-D Construction System
- Tablet Gestures

Representing Strokes

- 2-D art systems use raster graphics to mimic natural media.
 - Might encourage 2-D rather than 3-D drawing.
 - Does not provide geometric information.
- Vector graphic representation.
 - Strokes are collected as polyline.
 - Converted to a parametric representation.

Raster Graphic

Vector Graphic

Collecting Strokes

- On-the-fly fitting
 - Very resource intensive.
 - Unsettling to the user.
 - Often unstable results.
- Stepwise fitting
 - Distracting to the user.
 - Occasionally unstable.
- Batch processing
 - Least distracting to user.
 - Highly stable results.

Batch Processing Temporary (top) and Final (bottom) Visualization

Dealing with Strokes

- `mark-based' or `stroke-based' editing systems.
 - Overdrawing replaces segment. OR...
 - Additional curves act as attractors.
- Drawbacks:
 - Interpreting the meaning of a correction is non-trivial.
 - Frustrating for users.
 - Curve degradation.
 - Lose extraneous and contemplative strokes.

Editing with Overdrawing [Pereira *et al.*, 2003]

Traditional Technique: The Cleanup Artist

- In the world of hand-drawn animation:
 - Original animators' messy sketches are traced to clean lines by a *cleanup artist*.

Rough Sketch

Cleaned Sketch

Inked Drawing

The Stroke Tool

- Stroke tool with 3 pens indicate system interpretation of strokes.
 - Last stroke created with each pen is color coded.
 - Historical strokes are muted.
- Direct control of final stroke.
- No need for an interpretive system.

Tool Palette: Stroke Tool

Drawing Planes: Placing 2-D strokes in 3-D

- 2-D drawing surfaces in 3-D space.
- User adjustable position, orientation.
- Draw geometry in place.
- Planes automatically created as user works.
 - Adjustment to a clean plane adjust plane.
 - Adjustment to an active plane clone plane and adjust clone.

Drawing Planes

3-D Construction System: Artistic Basis

• Artists deconstruct subjects into basic shapes.

[Roberts & Reardon, 1991]

[Hogarth, 1996]

Artistic Basis (cont.)

- Basic shapes rendered with silhouette lines.
 - Define a basic cross section.
 - Sweep or manipulate 2-D shape through space.

How does this translate to a modeling interface?

- Strokes are tagged for interpretation by the pen used to make them.
 - Die stroke end shape swept through space.
 - Path stroke extension outline defining the sweep path.
 - Size Stroke variation in size along the sweep.
- These serve as input to 3 construction methods.

Closed Polygon

- Defined by a single die stroke.
- Forms a 2-dimensional closed polygon.
 - Represent flat shapes.
 - Place solid caps at the end of other 3-D components.

Sweep

- Defined by a die stroke and path stroke.
- Die stroke is swept along the path stroke.
- Construct shapes that maintain a consistent cross section.
 - Connected Tubes boxes, cylinder, and ducts.
 - Unconnected Sheets, ribbons, hulls, walls, and flags.

Generalized Cylinder

- Defined by die, path, and size strokes.
- Die shape varies along path.
- Shape is swept along average of path and size strokes.
- Construct modeling components with variably sized cross section.
 - Closed pyramids, cones, balloons, lampshades, dishes, and vases.
 - Abstract or open leaves, sword blades, fruit, fish bodies, character heads, plant stalks, beveled letters, and mechanical parts.

Interacting With the System: Tablet Gestures

- Brush Off / Rehearsal
- Lift and Lead
- Pounce
- Joystick
- Flick
- Low-Angle Push

Lift-and-Lead

- Reposition hand, drawing surface, or both to improve dexterity.
- Hovering stylus leads movement in 3-D Environment.
 - While hovering, barrel button activates system.
 - Tilt of the stylus selects the parameter to adjust.
 - Positional movement above the tablet surfaces adjusts the parameter.
- Lift-and-Lead controls the user's viewpoint.
 - Translation tilt stylus to the right.
 - Zoom keep stylus vertical.
 - Rotation tilt stylus to the left.

Pounce

- A quick, isolated, high-pressure event used to signal a modal transition.
 - Detected by a brief high pressure event.
 - Remains in contact with surface to provide further input.
- Advantages
 - No need to maintain a pressure level over a long period.
 - Less need to tune pressure for individual users.
 - System is free to interpret variable pressure levels in other tools.
- Used to define constraint axis for plane rotation.

Flick

- Resembles a flicking or flip through motion.
 - Cycle though a series of options in 2 directions.
 - Activated with upper barrel button.
- Advantages
 - Simple and intuitive.
 - Works in 2 directions.
 - Ambidextrous.
- Used to switch stroke pens while drawing.

Implementing the System

- Introduction / Background
- Related Work
- Design of the Present System
- Implementation Details
 - Stroke System
 - Constructing Models from Strokes
- Preliminary Assessment
- Conclusions

Implementing the Stroke System

- Strokes are collected as raw sample points.
- Converted into a parametric curve representation.
- A 3 stage process:
 - Filtration simple distance filter.
 - Classification find the corners.
 - Conversion stroke fitting.

Stroke Fitting

- Recursive least-squares fitting algorithm based on [Schneider, 1990].
 - Generates a chain of cubic Bézier curves.
 - Smooth segments: G¹ geometric continuity.
 - Corner segments: C⁰ parametric continuity.

Constructing Models from Strokes

- Model Representation
- Sweep Construction
- Generalized Cylinder Construction

Model Representation

- Data is stored in 2 parallel structures
 - Vertex Array memory efficient geometric structure for hardware.
 - Halfedge Mesh complex topological structure for algorithms

Sweep Construction

- Preparation Process
 - Calculate stroke lengths.
 - Convert the input strokes into construction curves.
 - Orient the construction curves.
 - Generate the parametric parameters that will define the surface.
 - Prepare for the iteration.
- Iteration
 - Propagate the alignment frame.
 - Generate a profile curve.
 - Position the profile curve.
 - Evaluate the profile over the parametric parameters.
 - Extend the mesh with the resulting surface points.

Generalized Cylinder Construction

Preparation Process

- Calculate stroke lengths.
- Convert the input strokes into construction curves.
- Orient the construction curves.
- Generate the parametric parameters that will define the surface.
- Prepare for the iteration.
- Iteration
 - Generate the alignment frame.
 - Generate a profile curve.
 - Position and scale the profile curve.
 - Evaluate the profile over the parametric parameters.
 - Extend the mesh with the resulting surface points.

Preliminary Assessment

- Introduction / Background
- Related Work
- Design of the Present System
- Implementation Details
- Preliminary Assessment
 - Stroke and Sketching System
 - Drawing Planes & 3-D Construction
 - Tablet Gestures
- Conclusions

Strokes and Sketching System

• Affordances

- Unhindered free drawing.
- Stroke collection is stable and visually comfortable.
- Allows full variety of sketching strokes.
- Difficulties
 - Contemplative and extraneous strokes are underutilized.
- Future Work
 - Incorporate raster-based visualizations.
 - Limited stroke correction.

Drawing Planes & 3-D Construction

• Affordances

- Arbitrary plane positioning.
- Automatic plane creation with user control.
- 2-D free drawing input.
- Basis in cognitive artistic technique.
- Sharp features, open die shapes, flat polygons.
- Difficulties
 - Noisy path strokes.
 - Limited variety of models.
- Future Work
 - Additional construction methods.
 - Grouping and visibility control of planes.

Lift-and-Lead

- Affordances
 - More intuitive physical navigation of 3-D environment.
 - Access to navigation in-context.
- Difficulties
 - Far angle rotation is uncomfortable/unstable.
- Future Work
 - Compress selection range to the comfortable side of vertical.

Pounce

- Affordances
 - In-context access to a related command.
- Difficulties
 - Occasional misinterpretation.
- Future Work
 - Delayed version for novice users.
 - Interactive adjustment interface.

Flick

- Affordances
 - Extremely successful and intuitive.
 - Bidirectional selection from choices.
 - In-context selection.
- Difficulties
 - none
- Future Work
 - Expand into other areas of the program.
 - Basis for other, more involved gestures.

Conclusions

- Introduction / Background
- Related Work
- Design of the Present System
- Implementation Details
- Preliminary Assessment
- Conclusions
 - Contributions
 - Limitations
 - Future Work

Contributions

- Developed sketch-based modeling interface.
 - Based on a cognitive model of sketching rather than a physical technique.
 - Accepts 2-D drawing input to construct 3-D models.
- Developed a system of tablet gestures.
 - Demonstrates utility of dynamic physical tablet input.
 - Provides more intuitive navigation of 3-D environment.
 - Allows uninterrupted sketching.

Limitations

- Lacks a full feature set.
 - Export models.
 - Manipulate modeling components after the fact.
 - Combine components beyond adjacency.
- Variety of models that can be created is limited.
 - Generally 2-manifold forms.
 - Some common shapes are difficult to create.
- Some gestures need further development.

Future Work

- User testing.
- Improve cleanup artist system.
- Additional construction methods.
 - Dynamic die shapes.
 - Stroke based deformation.
- Continue to develop gestures.
- Alternative model representations.
 - Implicit modeling.

