
PADL 2016

Domain Specific Languages
for Small Embedded Systems

Mark Grebe
 Department of Electrical Engineering and Computer Science

The University of Kansas
April 27, 2018

Small Embedded Systems
• Small, resource constrained embedded systems provide a

challenge to programming with high level functional
languages.

• Their small RAM and permanent storage resources make it
impossible to run Haskell directly on them.

• Embedded Domain Specific Languages
(EDSL) provides an alternative.

• Using an EDSL a user is able to write  
in a high level, functional host language.

• Execution can be through either 
interpretation or compilation.

Embedded Domain
Specific Languages

Interpretation/Remote
Execution

Code Generation/
Compilation

Shallow
EDSL

Examples
 Blank Canvas
 hArduino
 Haxl

Advantages
 Ease of development
 Quick turnaround

Examples
 Haskino

Advantages
 Ease of development
 Performance
 Resource Optimization

Deep
EDSL

Advantages
 Debugging

Examples
 Kansas Lava
 Feldspar
 Ivory

Advantages
 Performance
 Resource Optimization

Haskino Overview
Remote
Monad
Send

Trans-
compiler

Plugin
Translation

Firmware
Interpreter

Haskell GHC
Core

Library ArduinoCompiler

Runtime

+

Shallow
DSL

Deep
DSL

Deep
AST

Shallow AST

C Code

Haskino Overview
Remote
Monad
Send

Trans-
compiler

Plugin
Translation

Firmware
Interpreter

Haskell GHC
Core

Library ArduinoCompiler

Runtime

+

Shallow
DSL

Deep
DSL

Deep
AST

Shallow AST

C Code

Haskino Overview
Remote
Monad
Send

Trans-
compiler

Plugin
Translation

Firmware
Interpreter

Haskell GHC
Core

Library ArduinoCompiler

Runtime

+

Shallow
DSL

Deep
DSL

Deep
AST

Shallow AST

C Code

Haskino Overview
Remote
Monad
Send

Trans-
compiler

Plugin
Translation

Firmware
Interpreter

Haskell GHC
Core

Library ArduinoCompiler

Runtime

+

Shallow
DSL

Deep
DSL

Deep
AST

Shallow AST

C Code

Remote Monads

 8

GHCi> send conn $ digitalWrite 2 True
Arduino: LED on pin 2 turns on

A remote command is a request to perform an action for remote effect,
where there is no result value

A remote procedure is a request to perform an action for its remote
effects, where there is a result value or temporal consequence

GHCi> send conn $ digitalRead 3
Arduino: Returns the state of Pin 3

digitalWrite :: Word8 -> Bool -> Arduino ()
send :: ArduinoConnection -> Arduino a -> IO a

digitalRead :: Word8-> Arduino Bool

Shallow Haskino example

program :: Arduino ()
program = do
 let button1 = 2
 button2 = 3
 led = 13
 loop do
 a <- digitalRead button1
 b <- digitalRead button2
 digitalWrite led (a || b)
 delayMillis 100

• To to demonstrate shallow Haskino syntax, I will use a simple
Haskino example.

• The example consists of two buttons and a LED and will light the
LED if either button is pressed.

• The shallow version of the example is:

Deep: Adding Expressions
The tethered shallow Haskino uses commands and procedures
such as:

digitalWrite :: Word8 -> Bool -> Arduino ()
analogRead :: Word8 -> Arduino Word16

To move to the deeply embedded version, we instead use:

digitalWriteE :: Expr Word8 -> Expr Bool ->
 Arduino (Expr ())
analogReadE :: Expr Word8 ->
 Arduino (Expr Word16)

Expression Types
The Haskino EDSL provides Expr a parameterized over the
following types, which are instances of the ExprB typeclass:

• Word8

• Word16

• Word32

• Int8

• Int16

• Int32

• Bool

• Float

• [Word8]

• Numeric operations include addition, subtraction, division, multiplications,
comparisons, and conversion between numeric types.

• Boolean operations include not, and, and or. Integer operations include
standard bitwise operations.

• [Word8] operations include append and element retrieval.

• Values are lifted into the Expr type by the lit function.

Conditionals
Conditionals become another data structure
constructor when we move to the deep DSL:

 button <- digitalRead 2
 if button
 then digitalWrite 2 True
 else digitalWrite 3 True

button <- digitalReadE (lit 2)
ifThenElseE button (digitalWriteE (lit 2) (lit True))
 (digitalWriteE (lit 3) (lit True))

Transformations

Worker-Wrapper
• In general, these take a function  

f = body

• And apply transforms such that  
f = wrap work 
work = unwrap body

• Moving between the A and B types.

• In our specific case, we move
between a and Expr a

• rep is the equivalent of lit, and abs
corresponds to evaluation of the Expr.

GPCE’17, October 23–24, 2017, Vancouver, Canada Mark Grebe, David Young, and Andy Gill

A B

unwrap

wrap

Figure 2.Worker-Wrapper Transformation

representation back to the abstract type. This is illustrated
in Figure 3.

a Expr a

rep

abs

Figure 3. Expression Transformation

These conversions between the abstract type a and the
concrete type Expr a depend on the worker-wrapper as-
sumption that:

wrap � unwrap = idA
Stating this in our DSL terms:

abs � rep = idA
In the context of our expression language, that means that

if we take a literal value in a base Haskell type such asWord8,
move it the expression language with the rep function, then
evaluate the resulting expression with the abs function, we
will get the original value back.

4 Shallow to Deep Transformation
Our shallow to deep transformation of a programwritten in a
monadic EDSL uses a worker-wrapper based transformation
to move from a shallowly to a deeply embedded language.
We start with a basic example in the shallowly embedded
Haskino language to demonstrate how our transformations
work. The following simple Haskino program reads the value
of two digital inputs, which represent the state of two but-
tons, and then outputs a value to a digital output. The output
will light a LED if either button one or button two is pressed.
The program runs in an in�nite loop (we will later show in
Section 6 how this can be written in a recursive style and
transformed into the loop primitive), with a 1 second delay
between each loop.

let button1 = 2
let button2 = 3
let led = 13
loop $ do

a <- digitalRead button1
b <- digitalRead button2
digitalWrite led (a || b)
delayMillis 1000

The primitives used in the example are shallow commands
and procedures in the Haskino Remote Monad [15] based
DSL. They have the following types:

loop :: Arduino () -> Arduino ()
digitalRead :: Word8 -> Arduino Bool
digitalWrite :: Word8 -> Bool -> Arduino ()
delayMillis :: Word8 -> Arduino ()

With the shallow version of Haskino, the results of each
of the computations (in this example, the value of the but-
ton state in digitalRead) are returned to the host com-
puter and used in computations which will be sent as pa-
rameters of future commands (the value of the LED state in
digitialWrite in this example).

The Haskino language also has a deeply embedded form,
where parameters to the commands and procedures are not
native Haskell types, but instead are values in an expression
type, Expr. The type class ExprB is used to specify Haskell
base types whichmay be lifted into the Expr type. The deeply
embedded version of the language allows all of the compu-
tations to take place remotely on the Arduino, either as a
stored program running in the Haskino interpreter, or trans-
lated to C, and compiled to assembly language to run directly
on the Arduino.
The deep versions of the Arduino primitives used in our

example have the following types:
loopE :: Arduino () -> Arduino ()
digitalReadE :: Expr Word8 -> Arduino (Expr Bool)
digitalWriteE :: Expr Word8 -> Expr Bool ->

Arduino ()
delayMillisE :: Expr Word8 -> Arduino ()

Using these deep primitives, we could write a deeply em-
bedded version of our shallowly embedded example, which
would have the following form:

let button1 = 2
let button2 = 3
let led = 13
loopE $ do

a <- digitalReadE (lit button1)
b <- digitalReadE (lit button2)
digitalWriteE (lit led) (a ||* b)
delayMillisE (lit 1000)

The lit operations lift a basic Haskell type into the Expr
expression type, and the ||* operator is the logical or oper-
ation between two values of the Expr Bool type.

Writing even this simple example in the deeply embedded
style presents challenges to the programmer, as opposed

GPCE’17, October 23–24, 2017, Vancouver, Canada Mark Grebe, David Young, and Andy Gill

A B

unwrap

wrap

Figure 2.Worker-Wrapper Transformation

representation back to the abstract type. This is illustrated
in Figure 3.

a Expr a

rep

abs

Figure 3. Expression Transformation

These conversions between the abstract type a and the
concrete type Expr a depend on the worker-wrapper as-
sumption that:

wrap � unwrap = idA
Stating this in our DSL terms:

abs � rep = idA
In the context of our expression language, that means that

if we take a literal value in a base Haskell type such asWord8,
move it the expression language with the rep function, then
evaluate the resulting expression with the abs function, we
will get the original value back.

4 Shallow to Deep Transformation
Our shallow to deep transformation of a programwritten in a
monadic EDSL uses a worker-wrapper based transformation
to move from a shallowly to a deeply embedded language.
We start with a basic example in the shallowly embedded
Haskino language to demonstrate how our transformations
work. The following simple Haskino program reads the value
of two digital inputs, which represent the state of two but-
tons, and then outputs a value to a digital output. The output
will light a LED if either button one or button two is pressed.
The program runs in an in�nite loop (we will later show in
Section 6 how this can be written in a recursive style and
transformed into the loop primitive), with a 1 second delay
between each loop.

let button1 = 2
let button2 = 3
let led = 13
loop $ do

a <- digitalRead button1
b <- digitalRead button2
digitalWrite led (a || b)
delayMillis 1000

The primitives used in the example are shallow commands
and procedures in the Haskino Remote Monad [15] based
DSL. They have the following types:

loop :: Arduino () -> Arduino ()
digitalRead :: Word8 -> Arduino Bool
digitalWrite :: Word8 -> Bool -> Arduino ()
delayMillis :: Word8 -> Arduino ()

With the shallow version of Haskino, the results of each
of the computations (in this example, the value of the but-
ton state in digitalRead) are returned to the host com-
puter and used in computations which will be sent as pa-
rameters of future commands (the value of the LED state in
digitialWrite in this example).

The Haskino language also has a deeply embedded form,
where parameters to the commands and procedures are not
native Haskell types, but instead are values in an expression
type, Expr. The type class ExprB is used to specify Haskell
base types whichmay be lifted into the Expr type. The deeply
embedded version of the language allows all of the compu-
tations to take place remotely on the Arduino, either as a
stored program running in the Haskino interpreter, or trans-
lated to C, and compiled to assembly language to run directly
on the Arduino.
The deep versions of the Arduino primitives used in our

example have the following types:
loopE :: Arduino () -> Arduino ()
digitalReadE :: Expr Word8 -> Arduino (Expr Bool)
digitalWriteE :: Expr Word8 -> Expr Bool ->

Arduino ()
delayMillisE :: Expr Word8 -> Arduino ()

Using these deep primitives, we could write a deeply em-
bedded version of our shallowly embedded example, which
would have the following form:

let button1 = 2
let button2 = 3
let led = 13
loopE $ do

a <- digitalReadE (lit button1)
b <- digitalReadE (lit button2)
digitalWriteE (lit led) (a ||* b)
delayMillisE (lit 1000)

The lit operations lift a basic Haskell type into the Expr
expression type, and the ||* operator is the logical or oper-
ation between two values of the Expr Bool type.

Writing even this simple example in the deeply embedded
style presents challenges to the programmer, as opposed

Shallow/Deep Translation
• Using worker-wrapper based transformations, the shallow DSL

can be changed to the deep DSL.

• We automate this using a GHC plugin to do transformations in
Core to Core passes.

loop do
 a <- digitalRead button1
 b <- digitalRead button2
 digitalWrite led (a || b)))
 delayMillis 100

loopE do
 a’ <- digitalReadE (rep button1)
 b’ <- digitalReadE (rep button2)
 digitalWriteE (rep led) (a' ||* b')))
 delayMillisE (rep 100))

Translate the Primitives
Insert worker-wrapper ops by translating primitives of the form:

a1 -> ... -> an -> Arduino b
to ones of the form:
 Expr a1 -> ... -> Expr an -> Arduino (Expr b)

loop (
 digitalRead button1 >>=
 (\a -> digitalRead button2 >>=
 (\b -> digitalWrite led (a || b))) >>
 delayMillis 100)

loopE (
 abs <$> digitalReadE (rep button1) >>=
 (\ a -> abs <$> digitalReadE (rep button2) >>=
 (\ b -> digitalWriteE (rep led) (rep (a || b)))) >>
 delayMillisE (rep 1000))

Transform Operations

loopE (
 abs <$> digitalReadE (rep button1) >>=
 (\ a -> abs <$> digitalReadE (rep button2) >>=
 (\ b -> digitalWriteE (rep led) (rep (a || b)))) >>
 delayMillisE (rep 1000))

loopE (
 abs <$> digitalReadE (rep button1) >>=
 (\ a -> abs <$> digitalReadE (rep button2) >>=
 (\ b -> digitalWriteE (rep led) ((rep a) ||* (rep b)))) >>
 delayMillisE (rep 1000))

Translate the shallow operations to deep Expr operations:
rep (x `shallowOp` y) transforms to (rep x) `deepOp` (rep y)

where the types of shallowOp and deepOp are:
shallowOp :: a -> b -> c and deepOp :: Expr a -> Expr b -> Expr C

Move Abs Through Binds

loopE (
 abs <$> digitalReadE (rep button1) >>=
 (\ a -> abs <$> digitalReadE (rep button2) >>=
 (\ b -> digitalWriteE (rep led) ((rep a) ||* (rep b)))) >>
 delayMillisE (rep 1000))

loopE (
 digitalReadE (rep button1) >>=
 (\ a -> digitalReadE (rep button2) >>=
 (\ b -> digitalWriteE (rep led) ((rep a) ||* (rep b))) . abs
) . abs >>
 delayMillisE (rep 1000))

Move the abs operations through the monadic binds
(abs <$> f) >>= k

making it a composition of the continuation with the abs:
 f >>= k . abs

Move the abs
inside the Lambdas

loopE (
 digitalReadE (rep button1) >>=
 (\ a’ -> digitalReadE (rep button2) >>=
 (\ b’ -> digitalWriteE (rep led) ((rep (abs a’)) ||* (rep
(abs b’))))) >>
 delayMillisE (rep 1000))

loopE (
 digitalReadE (rep button1) >>=
 (\ a -> digitalReadE (rep button2) >>=
 (\ b -> digitalWriteE (rep led) ((rep a) ||* (rep b))) .
abs) . abs >>
 delayMillisE (rep 1000))

Move the abs operations inside the Lambdas
(\ x -> f[x]) . abs

by changing the parameter of the lambda to have the abs applied.
 (\ x’ -> let x=abs x’ in f[x])

Fuse Rep/Abs

loopE (
 digitalReadE (rep button1) >>=
 (\ a’ -> digitalReadE (rep button2) >>=
 (\ b’ -> digitalWriteE (rep led) ((rep (abs a’)) ||* (rep
(abs b’))))) >>
 delayMillisE (rep 1000))

loopE (
 digitalReadE (rep button1) >>=
 (\ a’ -> digitalReadE (rep button2) >>=
 (\ b’ -> digitalWriteE (rep led) (a’ ||* b’))) >>
 delayMillisE (rep 1000))

Finally, with the abs moved into position, we are able to fuse the
rep and the abs:

rep (abs a) becomes a

Conditional Transformation
Conditionals are handled similarly to the primitive
transformations:

 forall (b :: Bool) (m1 :: ExprB a => Arduino a)
 (m2 :: ExprB a => Arduino a).
 if b then m1 else m2
 =
 abs <$> ifThenElseE (rep b) (rep <$> m1)
 (rep <$> m2)

 forall (b :: Bool) (t :: ExprB a => a)
 (e :: ExprB a => a).
 if b then t else e
 =
 abs $ ifB (rep b) (rep t) (rep e)

Recursion vs Iteration

led = 13
button1 = 2
button2 = 3

blink :: Word8 -> Arduino ()
blink 0 = return ()
blink t = do
 digitalWrite led True
 delayMillis 1000
 digitalWrite led False
 delayMillis 1000
 blink $ t-1

• The Haskino EDSL includes an iteration primitive...

• However, we would like to write in a recursive style, as
opposed to an iterative imperative style as follows:

iterateE :: Expr a ->
 (Expr a -> Arduino (ExprEither a b)) ->
 Arduino (Expr b)

Deep Recursion
blinkE :: Expr Word8 -> Arduino (Expr ())
blinkE t =
 ifThenElseE (t ==* rep 0)
 (return (rep ()))
 (do digitalWriteE (rep led) (rep True)
 delayMillisE (rep 1000)
 digitalWriteE (rep led) (rep False)
 delayMillisE (rep 1000)
 blinkE (t - (rep 1))

blinkE :: Expr Word8 -> Arduino (Expr ())
blinkE t =
 iterateE t $ do
 ifThenElseEither (t ==* rep 0)
 (return (ExprRight (rep ())))
 (do digitalWriteE (rep led) (rep True)
 delayMillisE (rep 1000)
 digitalWriteE (rep led) (rep False)
 delayMillisE (rep 1000)
 return (ExprLeft (t - (rep 1)))

Shallow/Deep + Recursion Translation

analogKey :: Arduino Word8
 analogKey = do
 v <- analogRead button2
 case v of
 _ | v < 30 -> return KeyRight
 _ | v < 150 -> return KeyUp
 _ | v < 350 -> return KeyDown
 _ | v < 535 -> return KeyLeft
 _ | v < 760 -> return KeySelect
 _ -> analogKey

analogKeyE :: Arduino (Expr Word8)
 analogKeyE = analogKeyE' (lit ())

analogKeyE' :: Expr () -> Arduino (Expr Word8)
analogKeyE' t = iterateE t analogKeyE'I

analogKeyE'I :: Expr () ->
 Arduino (ExprEither () Word8)
 analogKeyE'I _ = do
 v <- analogReadE button2
 ifThenElseEither (v <* 30)
 (return (ExprRight (lit KeyRight)))
 (ifThenElseEither (v <* 150)
 (return (ExprRight (lit KeyUp)))
 (ifThenElseEither (v <* 350)
 (return (ExprRight (lit KeyDown)))
 (ifThenElseEither (v <* 535)
 (return (ExprRight (lit KeyLeft)))
 (ifThenElseEither (v <* 760)
 (return (ExprRight (lit KeySelect)))
 (return (ExprLeft (lit ())))))))

Mutual Recursion

State1

State3State2

Right

Left

Other
Key

Other
Key

SelectSelect

Any
Key

Power
On

Mutual Recursion

stateMachine :: LCD -> Arduino ()
stateMachine lcd = state1 $ keyValue KeyNone
 where
 state1 :: Word8 -> Arduino ()
 state1 k = do
 displayState lcd 1 k
 key <- analogKey
 case key of
 _ -> state2 key

 state2 :: Word8 -> Arduino ()
 state2 k = do
 displayState lcd 2 k
 key <- analogKey
 case key of
 1 -> state3 key
 5 -> state1 key
 _ -> state2 key
state3 :: Word8 -> Arduino ()
state3 k = do
 displayState lcd 3 k
 key <- analogKey
 case key of
 2 -> state2 key
 5 -> state1 key
 _ -> state3 ke

Mutual Recursion
stateMachine_deep :: LCD -> Arduino (Expr ())
stateMachine_deep lcd = state1_deep (lit (keyValue KeyNone))
 where
 state1_deep :: Expr Word8 -> Arduino (Expr ())
 state1_deep k = state1_deep_mut (lit 0) k

 state2_deep :: Expr Word8 -> Arduino (Expr ())
 state2_deep k = state1_deep_mut (lit 1) k

 state3_deep :: Expr Word8 -> Arduino (Expr ())
 state3_deep k = state1_deep_mut (lit 2) k

 state1_deep_mut :: Expr Int -> Expr Word8 -> Arduino (Expr ())
 state1_deep_mut = iterateE i k state1_dep_mut_step

Mutual Recursion

state1_deep_mut_step :: Expr Int -> Expr Word8 -> Arduino (ExprEither Word8 ())
 state1_deep_mut_step i k =
 ifThenElseEither (i ==* (lit 0))
 (transformed state 1 deep code)
 (ifThenElseEither (i ==* (lit 1))
 (transformed state 2 deep code)
 (transformed state 3 deep code)

GHC Plugins

• GHC’s compiler plugin architecture
allows the compiler user to modify or
add passes to the compiler’s
optimizer phase.

type Plugin =
[CommandLineOption] -> [Pass] -> CoreM [Pass]

• Each pass is a Core to Core transformation.

type Pass = ModGuts -> CoreM ModGuts

Limitations
• Recursion Transformation only works on functions of zero or one

arguments.

• Addition of tuples to EDSL would remove limit.

• Three known untranslatable syntax constructs

• l ++ [c] (ironically due to build construct)

• Enum typeclass (limits on fromEnum)

• modifyRemoteRef (translation of lambda function parameters)

• These may be addressed by additions to the transformation
logic/EDSL, and currently all have workarounds.

Haskino Bootstrap
GHC

Translation
Plugin

Haskino
Compiler

GCC
Compiler

Haskino
Interpreter in

Haskino

Haskino
Interpreter
in Haskino

Flash
Programmer
AVRDUDE

Haskino
Application

Remote
Monad
Send

Arduino
Flash

Interpreter Resource Usage
Shallow Haskino
Interpreter in C

Shallow Haskino
Interpreter in Haskino

Arduino Libraries 1032 bytes 1032 bytes

Haskino Runtime - 3602 bytes

Applications 11396 bytes 18384 bytes +61%

Total Flash 12428 bytes 23018 bytes +85%

Shallow Haskino
Interpreter in C

Shallow Haskino
Interpreter in Haskino

Scheduler - 84 bytes

Message Buffers 32 bytes 96 bytes
Apps/Libs 502 bytes 561 bytes +12%

Total Static Ram
Size

 534 bytes 742 bytes +39%
Total Stack Ram 51 bytes 50 bytes 0%

Ram Usage

Flash Usage

Interpreter Performance

Shallow Haskino
Interpreter in C

Shallow Haskino
Interpreter in Haskino

Processing digitalRead 4.168 ms 4.093 ms -1.8%

Communication Time 1.042 ms 1.042 ms

Host Time 0.133 ms 0.133 ms

Processing digitalWrite 8.204 ms 8.222 ms +0.2%

Communication Time 6.163 ms 6.163 ms

Host Time 0.188 ms 0.188 ms

Code Sharing

exampleFunc :: Expr Int -> Expr Int -> Arduino(Expr Int)
exampleFunc x y = return $ x + y

exampleFunc :: Expr Int -> Expr Int -> Arduino(Expr Int)
exampleFunc x y =
 app2Arg "exampleFunc" (exprArgType x) (exprArgType y)
 (exprRetType (exampleFunc_orig (remArg 0) (remArg 1)))

exampleFunc_orig :: Expr Int -> Expr Int -> Arduino(Expr Int)
exampleFunc_orig x y = return $ x + y

• Some Deep Functions are “staged” by the plugin
such that the Haskino Compiler is able to transform
them into C functions as opposed to inlined code.

Flash Usage After
Optimization

Shallow Haskino
Interpreter in C

Shallow Haskino
Interpreter in Haskino

Arduino Libraries 1032 bytes 1032 bytes

Haskino Runtime - 3602 bytes

Applications 11396 bytes 12744 bytes +12%

Total Flash 12428 bytes 17378 bytes +40%

Future Work

• Implement Sharing Optimization

• Extend Translation to Higher Order Transversal
functions.

• Generalization to non-monadic EDSLs

Publications
• M. Grebe and A. Gill. Haskino: A Remote Monad for Programming the Arduino. In

Practical Aspects of Declarative Languages, Springer (2016) 153-168

• M. Grebe and A. Gill. Threading the Arduino with Haskell. In Trends In Functional
Programming, Springer 2017 (In Press)

• M. Grebe, D. Young, and A. Gill, “Rewriting a shallow dsl using a ghc compiler
extension,” in Proceedings of the 16th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, ser. GPCE 2017, New York,
NY, USA: ACM, 2017, pp. 246–258.

• A. Gill, N. Sculthorpe, J. Dawson, A. Eskilson, A. Farmer, M. Grebe, J. Rosenbluth,
R. Scott, J. Stanton. The remote monad design pattern. In Proceedings of the 8th
ACM SIGPLAN Symposium on Haskel, pages 59–70. ACM, 2015.

• J. Dawson, M. Grebe, and A. Gill, “Composable network stacks and remote
monads,” in Proceedings of the 10th ACM SIGPLAN International Symposium on
Haskell, ser. Haskell 2017. New York, NY, USA: ACM, 2017, pp. 86–97.

• M. Grebe, D. Young, and A. Gill, “Rewriting a shallow dsl using a ghc compiler
extension,” extended version submitted to Computer Languages, Systems &
Structures, Elsevier 2018

Accepted

Submitted

Conclusion

• One set of shallow source....

• Passed through a transformation plugin which is
customizable for many EDSLs....

• Produces an language system with both ease of
use, quick turnaround, and good performance.

github.com/ku-fpg/haskino

Thank you for your attention

http://ku-fpg.github.io/people/markgrebe/

