
MSRR: Leveraging dynamic measurement for
establishing trust in remote attestation

Jason Gevargizian

Information and Telecommunication Technology Center
University of Kansas

jgevargi@ittc.ku.edu

April 25, 2019

Jason Gevargizian (KU) MSRR April 25, 2019 1 / 68

Overview

1 Introduction

2 Measurement System

3 Measurement Policy Language

4 Measurement Policy Generation

5 Suite Fitness & Performance Benchmarking

6 Case Study, DreamChess

7 Conclusions

Jason Gevargizian (KU) MSRR April 25, 2019 2 / 68

Introduction, Remote Attestation

Remote attestation is a mechanism for establishing trust

Needed for communicating entities in distributed computing

In remote attestation:
1 Appraiser queries attester of target system
2 Attester form a proof by invoking measurers
3 Measurers collect evidence for proof

Key Concept: Trust

Unambiguous identification + Expected behavior compliance − > Trust

Jason Gevargizian (KU) MSRR April 25, 2019 3 / 68

Remote Attestation, Scenario Architecture

Jason Gevargizian (KU) MSRR April 25, 2019 4 / 68

Introduction, Measurement Systems

Static measurement
Employed by majority of measurers
E.g. measured boot = cumulative hash of software binary sequence
Does not evidence integrity throughout runtime

Dynamic measurement
Sample runtime properties
Properties are richer than static hashes
Vary greatly from software to software
Difficult to measure

Jason Gevargizian (KU) MSRR April 25, 2019 5 / 68

Introduction, Dynamic Measurers

Must be customized to each application

Must establish behavioral expectations

Must specify measurer to evidence expectations

Customizing measurers is very labarious

Must analyze source & identify trust critical features

Burden typically on developer or motivated appraiser

Cost prohibits widespread adoption of dynamic remote attestation

Measurement Experts

An expert must undertake the task of writing measurers. Such a person
must have a firm grasp of the purpose and implementation of the target
application. Furthermore, they must understand trust, how to evidence
trust, and be trained to write good measurers.

Jason Gevargizian (KU) MSRR April 25, 2019 6 / 68

Introduction, MSRR Approach

We contribute the MSRR measurement suite

Techniques to reduce the cost of building measurers

Make more structured, maintainable, & testable measurers

Experts no longer need to write measurers from scratch

Write in efficient high-level policy language

Leverage automatically generated ‘free’ policies as much as possible

Jason Gevargizian (KU) MSRR April 25, 2019 7 / 68

MSRR, Components

1 General Purpose Measurer (MSRR Measurer)

novel lightweight general purpose measurer
provides the common core measurement capabilities
low-level querying interface: MSRR Evidence Querying Language
(MSRR-EQL).

2 Measurement Policy Language (MSRR Policy Language /
MSRR-PL)

high-level policy language
encapsulates the expected behavior of the target (for appraisal)
specifies a sampling schedule (for measurer)

3 Measurement Policy Generator (MSRR Policy Generator)

leverage state of the art static analysis techniques
automatically generate MSRR-PL policies
automatically configure measurements systems

Jason Gevargizian (KU) MSRR April 25, 2019 8 / 68

MSRR Architecture

Jason Gevargizian (KU) MSRR April 25, 2019 9 / 68

Measurer, General Purpose Measurement System

MSRR measurement system

Novel lightweight general-purpose measurer

Provides core functionality to sample process state

Attesters invoke measurer via the MSRR Evidence Querying Language
(MSRR-EQL)

Specified by a high-level measurement policy language

e.g. MSRR Policy Language (MSRR-PL)

Jason Gevargizian (KU) MSRR April 25, 2019 10 / 68

Measurer, Basic Usage Example

Example demonstrating attester queries of the MSRR measurer

Targeting features of a brief C program

Each attester-measurer exchange in a Scheme-like command-line
short form

Utilized by MSRR-EQL Interactive Interpreter

In practice, remote EQL queries are performed over JSON-RPC

Jason Gevargizian (KU) MSRR April 25, 2019 11 / 68

Measurer, Basic Usage Example, Target Program

Example (simple target application in C)

#include <stdio.h>

#include <unistd.h>

int main() {

int c = 0;

while (1) {

printf("c=%d\n",c);

c++;

sleep(1000);

}

}

Jason Gevargizian (KU) MSRR April 25, 2019 12 / 68

Measurer, Basic Usage Example, Exchange 1

Launch the target executable and attach!

Query

(launch_as_target "/path/to/example_binary")

Result

(void)

Void result indicates no failure

Measurer is now attached and ready for sampling

Jason Gevargizian (KU) MSRR April 25, 2019 13 / 68

Measurer, Basic Usage Example, Exchange 2

Sample the call stack immediately!

Query

(measure (callstack))

Result

(sample

(call_graph_value "main"

(call_graph_value "sleep"

(call_graph_value "__nanosleep_nocancel"))))

On-demand measurement are served immediately

Result is one sample holding a call graph value

Jason Gevargizian (KU) MSRR April 25, 2019 14 / 68

Measurer, Basic Usage Example, Exchange 3

Store a measurement of variable C each time line 8 is reached!

Query

(hook

(reach (method_offset_location "main.c" "main" 8) true)

(action (store (measure (var "c")))))

Result

(void)

Monitoring measurement are registered for later

Hook associates some event to some action

Event = reach of desired instruction

Action = store a sampling of c

Jason Gevargizian (KU) MSRR April 25, 2019 15 / 68

Measurer, Basic Usage Example, Exchange 4

Retrieve the stored samples!

Query

(retrieve)

Result

(sample_set

(sample (int_value 33))

(sample (int_value 34)))

Sample set contains two measurements of c

In practice, the low-level EQL queries are complicated

Though, EQL queries are produced automatically from MSRR-PL

Jason Gevargizian (KU) MSRR April 25, 2019 16 / 68

Measurer, MSRR-EQL

MSRR Evidence Query Language (MSRR-EQL)

Interface for attester to request samples

Communicated over JSON-RPC

Specifies what, how, & when/where to sample

MSRR-EQL Function Modules

Admin and Setup configure measurer; attach/detach target procecesses

Measurement: take samples, store samples, retreive samples

Features: specify properties of target application for sampling

Snapshots: create and manage execution state snapshots of target

Events and Hooks: register and manage monitoring measurements

Locations: specify various code locations for reach events

Control Functions: control flow logic for advanced measurements

Jason Gevargizian (KU) MSRR April 25, 2019 17 / 68

Function Arguments Return Description
Admin & Setup

launch as target string void Launch executable and attach measurer.
release target - void Detach measurer from target.
set target string void Attach measurer to a process by PID.
shut down - void Terminate measurer.

Measurement

measure feature sample Measure a specific feature of target.
retrieve - sample set Retrieve buffered measurements.
store sample void Buffer a measurement for later retrieval.
store string, sample void Buffer a measurement with a label.

Feature

callstack - feature Create a feature representing the callstack.
mem string, string feature Create a feature for a memory address with specified format.
reg string feature Creates a feature for a specific register.
var string feature Creates a feature for a specific target variable, by source identifier.

Snapshots

disable auto snap - void Disable automatic snapping.
enable auto snap integer void Enable automatic snapping when feature count exceeds threshold.
snap string void Create a snapshot of target with given label.
to snap string, action * Evaluate an EQL query on the specified snapshot.

Events & Hooks

action * action Create an object for any expression.
delay integer, boolean event Create a timer event with a specified duration.
disable string void Disable a given hook by label.
enable string void Enable a given hook by labeel.
hook string, event, action void Create a hook that evaluates an action when an event occurs.
kill string void Kill a given hook by label.
reach location, boolean event Create an event that triggers upon target reaching a specified code location.

Locations

file line location string, integer location Create a location for a file and line number.
method entry location string, string location Create a location for the entry point of a method.
method exit location string, string location Create a location for the exit point of a method.
method offset location string, string, integer location Create a location for a line at an offset from the top of a method.

Control Functions

eq *, * boolean Evaluates the equivalence of the arguments.
if boolean, *, * * Evaluate one of two expressions depending upon some condition.
not boolean boolean Return the boolean complement of the inputl.
seq *,*, ... [*, *, ...] Evaluate a sequence of expressions.

Jason Gevargizian (KU) MSRR April 25, 2019 18 / 68

Measurer, Snapshot Measurements

Direct measurements operate on the target process

Large requests can impose significant slowdown

Snapshot measurements strategy copies target state

Measurements queried upon the snapshot itself

Utilizing Linux fork system call

Automatic snapshot mode uses snap threshold

Fork Implications

Upon a fork, the original process memory is marked copy-on-write.
Therefore, only the data that is overwritten by the process during sampling
needs to be copied.

Jason Gevargizian (KU) MSRR April 25, 2019 19 / 68

Measurer, Snapshot Measurements

Jason Gevargizian (KU) MSRR April 25, 2019 20 / 68

Measurer, Context & Layers

Jason Gevargizian (KU) MSRR April 25, 2019 21 / 68

Policy Language, MSRR-PL

MSRR Policy Language (MSRR-PL) is a high-level policy language

Write application specific measurement policies for MSRR

Make the the process of writing measurers structured

Measurement systems that are more predictable, scalable, and
testable.

Produces to the MSRR-EQL queries

Main Components

Expected Behavior Definition Encapsulate the expected behavior of an
application

Sampling Schedule Schedule measurement requests which evidence the
expected behavior

Jason Gevargizian (KU) MSRR April 25, 2019 22 / 68

Policy Language, Components

Jason Gevargizian (KU) MSRR April 25, 2019 23 / 68

Policy Language, Expected Behavior Definition

Describes subset of the expected behavior of a target

Expresses general facts independent of the measurer

Comprised of a set of rules

Rules describe specific properties of the target application

A policy has one expected behavior definition

Example (Rules in written language)

1 For all instructions, local variable X must be greater than Y.

2 At instruction I1, the local variable password must equal
‘password123’ while local variable logged in equals ‘true’.

Jason Gevargizian (KU) MSRR April 25, 2019 24 / 68

Policy Language, Sampling Schedules

Specify how the measurer should be invoked

To evidence the expected behavior definition

Determine how often specific rules should be sampled

A policy has many Sampling Schedules

Only one schedule can be active at a time

Example (Multiple Schedules)

A single expected behavior definition may be associated with two
schedules: one that samples for each rule at a moderate frequency and
another that only measures one rule, yet does so very frequently.

Jason Gevargizian (KU) MSRR April 25, 2019 25 / 68

Policy Language, Example

Let’s write a simple policy

For this simple C program

Observe that x is
incremented by two

Observe x should always be
even

Let’s encapsulate the
evenness of x in a policy

Example (Target Program)

#include <stdio.h>

#include <unistd.h>

int main() {

int x = 2;

while (1) {

printf("x=%d\n",x);

x+=2;

sleep(3);

}

}

Jason Gevargizian (KU) MSRR April 25, 2019 26 / 68

Policy Language, Example, Validation Function

Start with the expected behavior definition

We need one rule with a definition of evenness

Example (Definition of evenness in C)

bool is_even(int x) {

return x % 2 == 0;

});

ValidationFunction are used in MSRR-PL

Essentially a lambda of type SampleSet − > bool

SampleSet is a collection of Samples

Samples hold data taken by measurer

Jason Gevargizian (KU) MSRR April 25, 2019 27 / 68

Policy Language, Example, Validation Function

Example (Validation Function)

Policy policy;

policy.behavior_definition

.validation_functions["is_even_validation_function"] =

new ValidationFunction(

[](SampleSet samples) {

int x = samples.getAsInt("x_parameter");

return x % 2 == 0;

}

);

Jason Gevargizian (KU) MSRR April 25, 2019 28 / 68

Policy Language, Example, Features

Start constructing the parameter for validation function

Declare a Feature for x using the its source identifier

Example (Feature)

policy.behavior_definition.features["feature_x"] =

new VariableFeature("x");

Jason Gevargizian (KU) MSRR April 25, 2019 29 / 68

Policy Language, Example, Locations

Specify where x shall be even

Using a Location scope

This FileRangeLocation scope captures the body of the loop

Example (Feature)

policy.behavior_definition.locations["loop_body_location"] =

new FileLineRangeLocation("main.c", 8, 10);

Jason Gevargizian (KU) MSRR April 25, 2019 30 / 68

Policy Language, Example, Occurrences

Specify when x shall be even

Defining an Occurrence scope for the Location

x should always even at our location

We define an OriginOccurrence scope

Origin occurrences are unbounded

Used as a point of reference for other occurrence scopes

Example (Feature)

policy.behavior_definition

.occurrences["every_loop_occurrence"] =

new OriginOccurrence("loop_body_location");

Jason Gevargizian (KU) MSRR April 25, 2019 31 / 68

Policy Language, Example, Rules

Last step of the expected behavior definition

Define the evenness rule

With a scoped Parameter

Parameter is our Feature scoped to our Occurence

(which in turn scopes to the associated Location)

Rule associates our one parameter to the validation function

Example (Feature)

policy.behavior_definition.parameters["x_parameter"] =

new Parameter("x_feature", "every_loop_occurrence");

policy.behavior_definition.rules["is_even_rule"] =

new Rule("is_even_validation_function", {"x_parameter"});

Jason Gevargizian (KU) MSRR April 25, 2019 32 / 68

Policy Language, Example, Sampling Schedule

Policy needs at least one sampling schedule

Our schedule will:

Take a single sample every other iteration of the loop
At a random instruction in the loop body

We define a new SamplingSchedule

Using SampleFrequency subtype EveryOtherIteration

We add a RuleSchedule for the evenness rule

Using the SamplePoint subtype RandomLineSamplePoint

Jason Gevargizian (KU) MSRR April 25, 2019 33 / 68

Policy Language, Example, Sampling Schedule

Example (Feature)

policy.sampling_schedules["default_schedule"] =

new SampleSchedule();

policy.sampling_schedules["default_schedule"]

.rule_schedules["is_even_rule_schedule"] =

new RuleSchedule(

"is_even_rule", EveryOtherIteration(),

{RandomLineSamplePoint()}

);

Jason Gevargizian (KU) MSRR April 25, 2019 34 / 68

Policy policy;

policy.behavior_definition

.validation_functions["is_even_validation_function"] =

new ValidationFunction(

[](SampleSet samples) {

int x = samples.getAsInt("x_parameter");

return x % 2 == 0;

}

);

policy.behavior_definition.features["feature_x"] =

new VariableFeature("x");

policy.behavior_definition.locations["loop_body_location"] =

new FileLineRangeLocation("main.c", 8, 10);

policy.behavior_definition

.occurrences["every_loop_occurrence"] =

new OriginOccurrence("loop_body_location");

policy.behavior_definition.parameters["x_parameter"] =

new Parameter("x_feature", "every_loop_occurrence");

policy.behavior_definition.rules["is_even_rule"] =

new Rule("is_even_validation_function", {"x_parameter"});

policy.sampling_schedules["default_schedule"] =

new SampleSchedule();

policy.sampling_schedules["default_schedule"]

.rule_schedules["is_even_rule_schedule"] =

new RuleSchedule(

"is_even_rule", EveryOtherIteration(),

{RandomLineSamplePoint()}

);

Jason Gevargizian (KU) MSRR April 25, 2019 35 / 68

Jason Gevargizian (KU) MSRR April 25, 2019 36 / 68

Policy Language, Validation Functions

ValidationFunction contains a lambda

Type SampleSet − > boolean

Samples = actual measurements taken of various features

boolean output indicates pass or fail

Example (Validation Function)

policy.behavior_definition

.validation_functions["is_positive"] =

new ValidationFunction(

[](SampleSet samples) {

int num = samples.getAsInt("num_parameter");

return x > 0;

}

);

Jason Gevargizian (KU) MSRR April 25, 2019 37 / 68

Policy Language, Location Scopes

Locations are sed to restrict a Parameter of a Rule

To some code region(s)

Basic location types

Set operation types

Example (Feature)

policy.behavior_definition.locations["foo_location"] =

new FileMethodLocation("main.c", "foo");

Jason Gevargizian (KU) MSRR April 25, 2019 38 / 68

Policy Language, Location Scopes

Basic Types

FileClassLocation (F, C) All instructions that are part of class C of file F.

FileMethodLocation (F, M) All instructions that are part of method M of
file F.

FileRangeLocation (F, I, J) All instructions that exist between line
numbers I and J of file F.

FileLineLocation (F, I) Instruction at line I of file F.

Jason Gevargizian (KU) MSRR April 25, 2019 39 / 68

Policy Language, Location Scopes

Set Operation Types

UnionLocation (L1, L2) The union of all instructions of locations L1 and
L2.

IntersectionLocation (L1, L2) The intersection of all instructions of
locations L1 and L2.

DifferenceLocation (L1, L2) The difference of all instructions of locations
L1 and L2.

SymmetricDifferenceLocation (L1, L2) The symmetric difference of all
instructions of locations L1 and L2.

Jason Gevargizian (KU) MSRR April 25, 2019 40 / 68

Policy Language, Occurrence Scopes

Occurrences used with a Location

Bound a Parameter to a relative time at specified location

Defined relative to each other

OriginOccurrence - default - unbounded point of origin

Example (Next Occurence)

policy.behavior_definition

.occurrences["l1_occurrence"] =

new OriginOccurrence("location_1");

policy.behavior_definition

.occurrences["l2_after_l1_occurrence"] =

new NextOccurrence("location_2", "l1_occurrence");

Jason Gevargizian (KU) MSRR April 25, 2019 41 / 68

Policy Language, Occurrence Scopes

Occurrence Types

OriginOccurrence (L) Any occurrence of location L. Serves as a point of
origin for other occurrences.

NextOccurrence (L, O) The immediate next occurrence of Location L
after the Occurrence O.

KthNextOccurrence (L, O, k) The k-th occurrence of location L after the
Occurrence O.

FirstOccurrence (L) The absolute first occurrence of location L.

Jason Gevargizian (KU) MSRR April 25, 2019 42 / 68

Policy Language, Sample Rates

Specify how often to sample Parameters

Sampling Rate Types

EveryIteration All matching iterations of the associated scoped parameter
is sampled.

EveryOtherIteration Every other iteration of the associated scoped
parameter is sampled.

EveryKthIteration (k) Every k-th iteration of the associated scoped
parameter is sampled.

EveryIterationAfterDelay (d) Each iteration after duration d has expired.

ChanceOfSampling (p) Each iteration has a p percent chance of sampling.

SkipSampling No iterations are sampled. Rule is disabled.

Jason Gevargizian (KU) MSRR April 25, 2019 43 / 68

Policy Language, Sample Points

Specify where to sample with Location

Sample Point Types

FileLineSamplePoint (F, L) Sample at line L of file F.

FirstLineSamplePoint Sample at the first line of the associated location
scope.

KthLineSamplePoint (K) Sample at the k-th line of the associated
location scope.

LastLineSamplePoint Sample at the last line of the associated location
scope.

RandomLineSamplePoint Sample at a random line in the location scope.

MethodEntrySamplePoint (M) Sample at the entry to method M.

MethodExitSamplePoint (M) Sample at the exit of method M.

Jason Gevargizian (KU) MSRR April 25, 2019 44 / 68

Generator, Measurement Policy Generation

Builds upon the MSRR Measurer and MSRR Policy Language

Technique to automate the generation of measurement policies

The process of producing tailored measurement systems

For some cases: eliminate manual effort

For the rest: augment manual policies

Expert effort on only most critical apps and their structures

Jason Gevargizian (KU) MSRR April 25, 2019 45 / 68

Generator, SymInfer, KLEE, & DIG

SymInfer employs symbolic execution to produce program invariants

Symbolic execution is a type of program execution

Symbolic values instead of concrete values

All paths explored instead of one

Jason Gevargizian (KU) MSRR April 25, 2019 46 / 68

Generator, Invariant Format

Example (Invariant Format)

*** programs/nla/cohendiv.c, 2 locs, invs 13 (4 eqts),

inps 187, time 300.355239153 s, rand 71:

25: a*y - b == 0, q*y + r - x == 0, -b <= -1, b - r <= 0,

r - x <= 0, -y <= -1

37: a*y - b == 0, q*y + r - x == 0, -a <= 0, r - y <= -1,

-a - r <= -1, -r <= 0, a - q <= 0

Jason Gevargizian (KU) MSRR April 25, 2019 47 / 68

Generator, Validation Function

Example (Validation Function)

policy.behavior_definition

.validation_functions["validation_function_1"] =

new ValidationFunction(

[](SampleSet samples) {

int a = samples.getAsInt("a");

int b = samples.getAsInt("b");

int q = samples.getAsInt("q");

int r = samples.getAsInt("r");

int x = samples.getAsInt("x");

int y = samples.getAsInt("y");

return a*y - b == 0 && q*y + r - x == 0 &&

-b <= -1 && b - r <= 0 && r - x <= 0 &&

-y <= -1;

}

);

Jason Gevargizian (KU) MSRR April 25, 2019 48 / 68

Experiment Specifications

System running 64-bit Fedora 24 with 32 GB of memory

Quad-core Intel Xeon 1.8 Ghz processor

Benchmarks:
1 Custom micro-benchmarks
2 Non-Linear Arithmetic (NLA) micro-benchmark suite
3 SPEC CPU 2006 benchmark suite with the reference data sets

Relevant benchmarks compiled with the -g option to produce the
DWARF symbols

Jason Gevargizian (KU) MSRR April 25, 2019 49 / 68

Experiment 1

SPEC CPU 2006 benchmarks

MSRR measurer overhead with no measurement

Attach to the target application and wait indefinitely

No discernible overhead that is within the margin of error

Key Takeaways

MSRR measurer attachment to target has negligible overhead

Jason Gevargizian (KU) MSRR April 25, 2019 50 / 68

Experiment 2

Simple micro-benchmark (computing the Fibonacci sequence)

Measure the cost of individual MSRR-EQL features

Collect approximately 22,000 samples. snap every 10,000 msec.

callstack, reg, mem, hook, and snap events have an overhead of
0.54 msec, 0.32 msec, 0.32m sec, 1.94 msec, 96.45 msec

Key Takeaways

Individual measurements have low overhead

Some (callstack and snap) depend on stack and memory usage

Suggested snap threshold in the range of 200-300

Jason Gevargizian (KU) MSRR April 25, 2019 51 / 68

Experiment 3

SPEC CPU 2006 benchmarks

Overhead imposed when sampling at different measurement
frequencies

Periods: 100 msec, 1000 msec, 10,000 msec, and at every system call

Overhead of 0.08%, 0.25%, 2.14%, and 7.95% for call-stack
measurements taken every 10,000 msec, 1000 msec, 100 msec, and at
all system calls

Standard deviations were small relative to their means

Key Takeaways

MSRR overheads are low for even high degrees of measurement

Trade-off between performance & accuracy of trust inferences

403.gcc was 115.7 because of very large call stacks

Jason Gevargizian (KU) MSRR April 25, 2019 52 / 68

Experiment 3

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

40
0.
pe
rlb
en
ch

40
1.
bz
ip
2

40
3.
gc
c.
h

42
9.
m
cf
.h
s

43
3.
m
ilc

43
5.
gr
om

ac
s

43
7.
le
sli
e3
d

44
4.
na
m
d

44
5.
go
bm

k
44
7.
de
al
II

45
0.
so
pl
ex

45
3.
po
vr
ay

45
4.
ca
lc
ul
ix

45
6.
hm

m
er

45
8.
sje
ng
.h
s

45
9.
Ge
m
sF
DT
D

46
2.
lib
qu
an
tu
m
.h
s

46
4.
h2
64
re
f.h
s

47
0.
lb
m

48
2.
sp
hi
nx
3

Ge
om

ea
n

pr
og

ra
m

 ru
n-

tim
e w

ith
 m

ea
su

re
m

en
ts

 /
No

-m
ea

su
re

m
en

t p
ro

gr
am

 ru
n-

tim
e

Benchmark

10000ms 1000ms 100ms system calls

Jason Gevargizian (KU) MSRR April 25, 2019 53 / 68

Experiment 4

Non-Linear Arithmetic (NLA) micro-benchmark suite

Automatically generated MSRR-PL policies

Sampling periods of 100 msec, 1000 msec, and 10,000 msec

Overhead of 0.53% and 5.29% for call-stack measurements taken
every 1000 msec and 100 msec

Overhead at 10,000 msec was statistically insignificant

Average standard deviation was 0.67%

All standard deviations fell in the range of 0.13% and 3.51%

Key Takeaways

Automatically generated MSRR-PL policies produce low-overhead
measurers

For both lax and taxing sampling schedules

Many types of measurements will tend to have negligible overhead

Most measurements with occurrence periods on the order of seconds
E.g. Those involving human interaction

Jason Gevargizian (KU) MSRR April 25, 2019 54 / 68

Experiment 4

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

co
he
nc
u.
c

co
he
nd
iv.
c

dij
ks
tra

.c
div

bi
n.c

eg
cd
.c

fe
rm
at
1.
c

fe
rm
at
2.
c

fre
ire
1.c

fre
ire
2.c

ge
o1
.c

ge
o2
.c

ge
o3
.c

ha
rd
.c

kn
ut
h.
c

lcm
2.c

m
an
na
div

.c
pr
od
4b
r.c

pr
od
bi
n.c

ps
1.c

ps
2.c

ps
3.c

ps
4.c

ps
5.c

ps
6.c

sq
rt1

.c
lcm

1.c
Ge
om

ea
n

pr
og

ra
m

 ru
n-

tim
e w

ith
 m

ea
su

re
m

en
ts

 /
No

-m
ea

su
re

m
en

t p
ro

gr
am

 ru
n-

tim
e

Benchmark

10000ms 1000ms 100ms

Jason Gevargizian (KU) MSRR April 25, 2019 55 / 68

Experiment 5

Produced several representative policies:
bluffinmuffin, a Texas Hold’em card game simulator
27 MSRR auto-generated NLA policies
Two policies for the DreamChess program

Report code metrics: lines of code, token count, cyclomatic
complexity number
36.9 lines of code and 505.8 tokens on average for all policies
Lines of code and token count scaled linearly with number of params
Mean CCN was 3.14 at a per-method average and 4.85 at a
per-method maximum

Key Takeaways

Automatic and manual polices generally have low complexity

CCNs were well below McCabe’s original suggested limit of 10

Complexity depends on property, little is introduced by MSRR-PL

Optimizations for size and dev time in syntax aids and templating

Jason Gevargizian (KU) MSRR April 25, 2019 56 / 68

Experiment 5, Lines of Code

0

20

40

60

80

100

120

140

co
he
nc
u

co
he
nd
iv

dij
ks
tra

div
bi
n

eg
cd

eg
cd
2

eg
cd
3

fe
rm
at
1

fe
rm
at
2

fre
ire
1

fre
ire
2

ge
o1

ge
o2

ge
o3

ha
rd

va
lid
_b
oa
rd

va
lid
_m

ov
e

kn
ut
h

lcm
1

lcm
2

m
an
na
div

ca
rd
_r
ep
ea
t

pr
od
4b
r

pr
od
bi
n

ps
1

ps
2

ps
3

ps
4

ps
5

ps
6

sq
rt1

.c
Ge
om

ea
n

Lin
es

 o
f C

od
e

Benchmark

Jason Gevargizian (KU) MSRR April 25, 2019 57 / 68

Experiment 5, Tokens Count

0

500

1000

1500

2000

2500

3000

co
he
nc
u

co
he
nd
iv

dij
ks
tra

div
bi
n

eg
cd

eg
cd
2

eg
cd
3

fe
rm
at
1

fe
rm
at
2

fre
ire
1

fre
ire
2

ge
o1

ge
o2

ge
o3

ha
rd

va
lid
_b
oa
rd

va
lid
_m

ov
e

kn
ut
h

lcm
1

lcm
2

m
an
na
div

ca
rd
_r
ep
ea
t

pr
od
4b
r

pr
od
bi
n

ps
1

ps
2

ps
3

ps
4

ps
5

ps
6

sq
rt1

.c
Ge
om

ea
n

Nu
m

be
r o

f T
ok

en
s

Benchmark

Jason Gevargizian (KU) MSRR April 25, 2019 58 / 68

Experiment 5, Cylcomatic Complexity

0

5

10

15

20

25

30

35

co
he
nc
u

co
he
nd
iv

dij
ks
tra

div
bi
n

eg
cd

eg
cd
2

eg
cd
3

fe
rm
at
1

fe
rm
at
2

fre
ire
1

fre
ire
2

ge
o1

ge
o2

ge
o3

ha
rd

va
lid
_b
oa
rd

va
lid
_m

ov
e

kn
ut
h

lcm
1

lcm
2

m
an
na
div

ca
rd
_r
ep
ea
t

pr
od
4b
r

pr
od
bi
n

ps
1

ps
2

ps
3

ps
4

ps
5

ps
6

sq
rt1

.c
Ge
om

ea
n

Cy
clo

m
at

ic
Co

m
pl

ex
ity

 N
um

be
r

Benchmark

Average Maximum

Jason Gevargizian (KU) MSRR April 25, 2019 59 / 68

DreamChess Case Study

MSRR applied to DreamChess
chess game simulator

Appraiser acting on behalf of
‘gaming authority’ or ‘referee’

Goal is to verify legal games

Money, prestigious chess titles,
gaming provider credentials at
stake

Let’s develop a measurer to
validate legal chess moves

Jason Gevargizian (KU) MSRR April 25, 2019 60 / 68

DreamChess, Code Snippets

#define WHITE_PAWN 0

#define BLACK_PAWN 1

#define WHITE_KNIGHT 2

#define BLACK_KNIGHT 3

#define WHITE_BISHOP 4

#define BLACK_BISHOP 5

#define WHITE_ROOK 6

#define BLACK_ROOK 7

#define WHITE_QUEEN 8

#define BLACK_QUEEN 9

#define WHITE_KING 10

#define BLACK_KING 11

#define NONE 12

typedef struct board

{

int turn;

int square[64];

int captured[10];

int state;

} board_t;

Jason Gevargizian (KU) MSRR April 25, 2019 61 / 68

DreamChess, Validation Function

Example (Validation Function)

policy.behavior_definition

.validation_functions["move_validation_function"] =

new ValidationFunction(

[](SampleSet samples) {

vector<int> squares_initial =

samples.getAsVector<int>("initial_board");

vector<int> squares_final =

samples.getAsVector<int>("successor_board");

vector<int> squares_difference =

subtract_vectors(squares_initial, squares_final);

return count_nonzero(squares_difference)==2;

});

Jason Gevargizian (KU) MSRR April 25, 2019 62 / 68

DreamChess, Features & Scopes

Example (Feature & Scopes)

policy.behavior_definition.features["squares_feature"] =

new VariableFeature("board->square");

policy.behavior_definition.locations["make_move_location"] =

new FileMethodLocation("board.c", "make_move");

policy.behavior_definition

.occurrences["initial_occurrence"] =

new OriginOccurrence("make_move_location");

policy.behavior_definition

.occurrences["successor_occurrence"] =

new NextOccurrence(

"make_move_location", "initial_occurrence"

);

Jason Gevargizian (KU) MSRR April 25, 2019 63 / 68

DreamChess, Parameters & Rule

Example (Parameter & Rule)

policy.behavior_definition

.parameters["initial_board"] =

new Parameter("squares_feature", "initial_occurrence");

policy.behavior_definition

.parameters["successor_board"] =

new Parameter(

"squares_feature", "successor_occurrence"

);

policy.behavior_definition.rules["valid_move_rule"] =

new Rule(

"move_validation_function",

{"initial_board", "successor_board"}

);

Jason Gevargizian (KU) MSRR April 25, 2019 64 / 68

DreamChess, Sampling Schedule

Example (Sampling Schedule)

policy.sampling_schedules["default_schedule"] =

new SampleSchedule();

policy.sample_schedules["default_schedule"]

.rule_schedules["valid_move_rule"] =

new RuleSchedule(

"valid_move_rule", EveryIteration(),

{FirstLineSamplePoint(), FirstLineSamplePoint()}

);

Jason Gevargizian (KU) MSRR April 25, 2019 65 / 68

DreamChess, EQL Results

(sample_set

(sample (int_value

6 2 4 8 10 4 2 6

0 0 0 0 0 0 0 0

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

1 1 1 1 1 1 1 1

7 3 5 9 11 5 3 7

))

(sample (int_value

6 2 4 8 10 4 2 6

0 0 0 0 12 0 0 0

12 12 12 12 12 12 12 12

12 12 12 12 0 12 12 12

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

1 1 1 1 1 1 1 1

7 3 5 9 11 5 3 7

)))

Jason Gevargizian (KU) MSRR April 25, 2019 66 / 68

Final Thoughts

Explore techniques to spend less energy to build higher quality
measurers

MSRR Measurer eliminates the need redevelop core measurement
functionality

MSRR-PL expedites and systematizes the writing of per-application
measurers

MSRR generator demonstrates how static analysis tools can produce
policy coverage very cheaply

Jason Gevargizian (KU) MSRR April 25, 2019 67 / 68

Questions?

Jason Gevargizian (KU) MSRR April 25, 2019 68 / 68

