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Abstract

Measurers are critical to a remote attestation (RA) system to verify the integrity

of a remote untrusted host. Runtime measurers in a dynamic RA system sample

the dynamic program state of the host to form evidence in order to establish trust

by a remote system (appraisal system). However, existing runtime measurers are

tightly integrated with specific software. Such measurers need to be generated

anew for each software, which is a manual process that is both challenging and

tedious.

In this paper we present a novel approach to decouple application-specific mea-

surement policies from the measurers tasked with performing the actual runtime

measurement. We describe the MSRR (MeaSeReR) Measurement Suite, a system

of tools designed with the primary goal of reducing the high degree of manual

effort required to produce measurement solutions at a per application basis.

The MSRR suite prototypes a novel general-purpose measurement system, the

MSRR Measurement System, that is agnostic of the target application. Further-

more, we describe a robust high-level measurement policy language, MSRR-PL,

that can be used to write per application policies for the MSRR Measurer. Fi-

nally, we provide a tool to automatically generate MSRR-PL policies for target

applications by leveraging state of the art static analysis tools.

In this work, we show how the MSRR suite can be used to significantly reduce

the time and effort spent on designing measurers anew for each application. We

describe MSRR’s robust querying language, which allows the appraisal system

to accurately specify the what, when, and how to measure. We describe the

capabilities and the limitations of our measurement policy generation tool. We

evaluate MSRR’s overhead and demonstrate its functionality by employing real-

world case studies. We show that MSRR has an acceptable overhead on a host of

applications with various measurement workloads.
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Chapter 1

Introduction

An entity is said to be trusted, or trustworthy, from a point of reference, if

it meets two criteria: (1) the entity can be unambiguously identified, from the

point of reference and (2) the entity can be observed, from the reference point, as

behaving in accordance with previously known expectations [30, 34].

Remote attestation provides mechanisms for untrusted entities to prove their

integrity to a remote party. Such mechanisms are integral for communicating

entities to establish trust in a distributed computing environment [20].

In remote attestation, an appraisal system seeks to establish trust of a target by

requesting evidence. An attestation system (attester) on the target entity answers

this request by invoking measurement systems (measurers) to gather evidence

from the relevant features of the target entity. The attestation system takes the

gathered evidence and compiles it into an attestation, or proof, as to the facts of

interest to the appraising entity [10, 11].

Evidence can take many forms, and it can offer critical insight to a wide

array of properties about an entity of interest. Often, evidence will include static

and configuration information, runtime measurements, and even so-called meta-
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evidence. What evidence is relevant, when, and under what conditions it shall

be sufficient to establish trust, depends on the nature of the appraisal system’s

inquiry and the expediency of the trust-contingent interactions to follow.

Most remote attestation techniques provide integrity evidence by only mea-

suring the static properties of the target hardware/software system [49]. Static

software properties typically include a cumulative hash constructed during the

measured boot process, and other static state of the running software such as code

regions. However, programs from trusted vendors are still vulnerable to runtime

security attacks, such as buffer overflow attacks. Static remote attestation tech-

niques cannot measure the integrity of the software state that can dynamically

change after the programs begin execution.

Dynamic remote attestation attempts to remedy this limitation with static

remote attestation based systems [24, 28]. These dynamic remote attestation ap-

proaches measure runtime properties of the executing software, often expressed as

boolean propositions that must be true during a normal execution of the program,

and are specific to each program. Measurement policies for dynamic remote attes-

tation reason about the properties and relationships between dynamically varying

program state that is held in architecture registers, structures on the call stack,

and objects on the stack, heap, or the global region.

Runtime properties vary greatly from software to software. Even in cases

where applications are similar in purpose, for example two different virus checkers,

attestation critical structures and program variables, and their properties and

relationships, may differ significantly. As such, measurement functionality must

be tailored to each critical application on the target entity.

Existing runtime measurement systems are commonly built with their target
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applications in mind. These measurement systems are very brittle and cannot

be utilized to gather evidence from any other target softwares. This limitation

includes, often, different releases of the same application [28], because even small

refactors or extensions to said software can lead to changes in trust critical fea-

tures, their locations, windows of measurement, expected states, et cetera.

Establishing behavioral expectations and customizing measurement systems

to gather meaningful data to evidence said expectations is difficult. The process

requires an expert, typically the developer or a motivated appraiser, to analyze

the application’s source in order to detail program behavioral expectations critical

for establishing trust and to identify critical program structures and variables that

can be sampled to form evidence. Such an expert must be (a) well informed in

the domain of the target application and its expected behavior and (b) trained to

be able to write quality measurement systems in order to create an accurate and

efficient measurer to collect evidence for said application.

1.1 Problem Definition

We believe that the high cost of building customized measurement systems for

user-level applications prohibits widespread adoption of dynamic remote attesta-

tion in trusted computing.

As it stands, the tailoring of measurement systems to each new target ap-

plication is very difficult. Specifically, the process of determining trust-critical

expected behavior for a target application is manual, requires the attention of an

expert, and is consequently preventatively expensive. Furthermore, the process

of writing the measurement systems to actually gather the evidence needed, at

runtime, to establish the aforementioned expected behavior also is difficult and

3



requiring of such an expert.

As it stands, there is not a single general purpose measurement system with a

well-defined and common evidence querying interface that exists for native appli-

cations. There is no unified way to be able to easily write measurement policies

at a high level, in order to simplify the life of the expert. There are no tools,

static analysis or otherwise, to automatically generate program expectations that

can be readily supplied to a measurement system for the purposes of automating,

completely or partially, the process of writing the per application measurement

policies.

The problem this paper seeks to address is that lack of framework, infrastruc-

ture, and automatic tools in the current state of the art remote attestation and

measurement technologies. With the functionality of these desired missing com-

ponents combined, the ability to automatically generate a full dynamic attestation

system is afforded. And, consequently, manual effort by niche experts could be

significantly reduced and, in many cases, eliminated.

1.2 Contributions

We contribute the MSRR Measurement Suite. The MSRR measurement suite

is a set of tools to designed to eliminate and reduce the manual effort required by

an expert in the process of building per application measurers.

The MSRR methodology focuses on the decoupling of program-specific poli-

cies, measurement policies, from the measurement system itself. As such, the

low-level mechanics common to measurement systems are provided and made ac-

cessible via the MSRR Evidence Querying Language (MSRR-EQL). In this way,

measurement system writers need only to spend effort on the components of the

4



measurement system that actually vary from software to software: id est, the

measurement policies.

The MSRR method provides an a clear and concise high-level measurement

policy language, MSRR Policy Language (MSRR-PL), to further reduce the man-

ual effort required by measurement writers. This policy language allows one to

capture both the expected behavior of the target application and an associated

sampling schedule to drive the actual sampling by the relevant measurement sys-

tem.

The MSRR suite also provides a tool to automatically generate program policy

rules utilizing state of the art static analysis techniques. This allows one to achieve

a layer of rule coverage for any set of applications, automatically and for very little

cost. In many cases, this can eliminate the need for an expert entirely. In the

more demanding or challenging cases, this automatic technique can be used in

tandem with the expert to greatly reduce the expert’s scope of work.

The notable features of the MSRR Measurement Suite are as follows:

1. General Purpose Measurement System

TheMSRR Measurement System is a novel lightweight general purpose mea-

surer. This measurement system provides the core measurement capabilities

common to all measurers and makes them accessible via a low-level querying

language, the MSRR Evidence Querying Language (MSRR-EQL).

2. Measurement Policy Language

The MSRR Policy Language (MSRR-PL) is a high-level policy language

that can be leveraged to efficiently write application specific measurement

policies for MSRR. The Measurement Policy language allows one to easily

5



describe what is to be measured and when. Furthermore, the policy language

specifies the validation criteria for subsequent appraisal; that is, the logic

that defines the expected values and relationships of trust critical features.

A policy encapsulates both the expected behavior definition of the target

application and a sampling schedule to drive the actual sampling by the

measurement system.

3. Measurement Policy Generation

The MSRR Policy Generator is a tool to leverage state of the art static

analysis techniques which find program invariants in order to automatically

generate policies and configure remote attestation systems. This tool can

be used to generate complete policies from scratch, and it can be used in

tandem with manual policies written by an expert

The techniques we have employed in our prototypes can be used to signifi-

cantly reduce the time and effort required to develop application specific runtime

measurers. Using the full suite, a complete measurement system can be generated

automatically. In cases where more coverage is required, the automatic policies

generated by the MSRR Policy Generator can be augmented with manually poli-

cies. To this end, the MSRR Policy Language provides the ability to write such

augmentations easily.

1.3 Outline

The remainder of this dissertation is organized as follows. We begin by pre-

senting background material in chapter 2. In chapter 3, we describe MSRR Mea-

surement System, its capabilities, and its MSRR Evidence Querying Language

6



interface. In chapter 4, we describe the MSRR Policy Language, its features, and

provide real policy examples. In chapter 5, we describe the MSRR Policy Gener-

ator, its usage, and its limitations. In chapter 6, we demonstrate the performance

of our suite with a series of experiments and subsequent analyses. In chapter 7,

we demonstrate our suite’s expressiveness with more real world examples and case

studies. In chapter 8, we discuss future work. In chapter 9, we summarize our

contributions.
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Chapter 2

Background & Related Work

In this chapter we present the background for this work and other related

approaches for remote attestation. We will discuss trust, remote attestation, the

role of measurement in remote attestation, and the various types of measurement

systems.

2.1 Trust and Remote Attestation

Trust is a critical ingredient to the effective and safe communication of var-

ious entities, each with varied agendas, features, and quite often vulnerabilities.

In order to establish trust, one must prove its own integrity by establishing its

identity to the observer. Once one’s identity has been strongly and unambigu-

ously confirmed, one must then prove that it is behaving in accordance with some

previously known set of expectations, as determined by its alleged hardware and

software configurations [30].

Remote attestation is a mechanism that provides the process for untrusted

entities to prove their integrity to a remote party, or appraising entity. These
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such mechanisms are essential to establish trust in the increasingly diverse and

distributed computing environments [20].

As such, remote attestation can be considered a fault tolerance technique.

Fault tolerance techniques focus on failure detection, mitigation of said failures,

and further failure avoidance.[2, 3]

During remote attestation, an appraisal system (appraiser) seeks to establish

trust of a target entity by requesting information about its hardware and software

configurations. This information serves as evidence in the context of the attesta-

tion, or proof, to establish trust. An attestation system (attester) on the target

entity is charged with compiling the evidence and returning it to the appraiser.

The attester facilitates this task by invoking measurement systems (measurers)

to gather the evidence from the relevant features of the target entity. Finally, the

appraiser receives the attestation response back from the attester and determines

wether or not the evidence satisfies the expectations set forth prior to the remote

attestation process.

2.1.1 Components of a Remote Attestation Scenario

The key components in a typical remote attestation scenario and their inter-

actions are as follows:

• Appraising Entity / Point of Reference

The appraising entity seeks to establish trust in another entity.

– Appraisal System

The appraisal system is a piece of software that resides on the apprais-

ing entity that seeks to make an appraisal of some other entity. An

9



appraisal is to evaluate the trustworthiness of an entity by requesting

and subsequently examining evidence from a remote machine. The ap-

praisal system has with it a set of criteria to describe the expected

trustworthy behavior, aka the expected behaviors, of the target entity,

against which it will evaluate the evidence.

• Target Entity

The target entity is the subject of an appraisal which seeks to prove its

trustworthiness to the appraising entity.

– Attestation System (Attester)

The attestation system, or attester, is a piece of software that resides

on the target entity. The attester communicates with the appraisal

system in order to establish trust with the appraising entity. Specif-

ically, it receives requests for evidence from remote appraisal systems

and responds with an attestation. The attestation is a proof which

comprises relevant evidence for the given appraisal.

To facilitate this task, the attester queries local measurement systems

to gather evidence from various features of the target entity. In some

cases, the attester must make nested attestation requests of other de-

pendent or related systems to which parts of its evidence are dependent.

– Measurement System (Measurer)

The measurement system is a piece of software that resides on the target

entity which collects measurements of trust critical features, including

but not limited to user-space applications, as requested by the local

attester. The measurements take the form of data samples and, in

10



the context of a remote attestation, they function as evidence, either

evidence of trustworthiness or otherwise.

– Target Application

The target application is any piece of software on the target entity that

is either directly or indirectly of interest to the remote appraisal system

in establishing trust. This software piece is the subject of measurement

by the measurement system(s).

Though, measurement systems can sample other aspects of an entity,

runtime application measurers, as discussed later in this chapter, are

the primary concern of this paper.

By way of remote attestation, to establish trust, an appraisal system must first

establish that the target is indeed the entity it intends to appraise. Strong iden-

tification unambiguously binds an identity to a target entity and any subsequent

information that said entity provides. Second, an appraisal system must deter-

mine that the target entity is running software that satisfies previously known

expectations. Furthermore, it must be established that said software is running

on hardware that is within expectations. Going forward, the appraisal system

must continually establish that the aforementioned components have not become

corrupted or compromised, either erroneously or as the result of a deliberate at-

tack.

As such, evidence must confirm the initial configuration and continually con-

firm trust in subsequent running state throughout the life of the desired trust

relationship between appraising entity and the target entity. Furthermore, evi-

dence also must confirm the measurement and attestation systems with so-called

metaevidence.
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Figure 2.1. Architecture of a simple remote attestation scenario

Measurement systems are the primary concern of this paper and are described

in section 2.2 in more detail.

Figure 2.1 illustrates a basic remote attestation scenario. It shows the key

components of a remote attestation scenario, the appraiser, the attester, the

measurer, and the (target) application. The figure also indicates the types of

messages passed between these components.

2.2 Measurement Systems

This work is primarily concerned with the measurement system component in

the larger context of remote attestation. While measurement systems take many

forms, this work is specifically concerned with addressing the unique difficulties

and costs of runtime application measurement techniques. These unique difficul-

ties and the current deficiencies in the state of the art measurement systems, which

were foreshadowed in chapter 1, will now be described in detail in this section.

In this section, we will first discuss static measurement systems. Then, we will

proceed to discuss the focus of this work: dynamic measurement systems.

12



2.2.1 Static Measurement

To establish trust during remote attestation, the appraisal system needs to

identify the remote system. Then, it must request and subsequently verify evi-

dence regarding the remote entity’s hardware and software configuration. [6, 18,

38]. The evidence supplied by many remote attestation approaches measures only

the static properties of the machine and the running software.

Sailer et al.’s integrity measurement architecture (IMA) was one of the first

instantiations of the Trusted Computing Groups’ measured boot attestation pro-

cess [49]. Measured boot employs trusted hardware on the target machine, such as

a TPM (trusted platform module) chip [19], to measure and hash each successive

software component, by the preceding software, as it is launched during system

boot. Each software hash extends a running hash to create a hash chain that

succinctly stores the specific order of the specific software components launched

at startup.

In measured boot, each successive component is measured and hashed with

a running hash. The very first measurement of this type is performed with a

special operation known as SENTER on Intel and SKINIT on AMD. Upon each

iteration, the newly computed hash replaces the old running hash. As such, a hash

chain is created that evidences definitively a specific set of software components

in a particular sequence. The running hash is safely stored in a trusted platform

module or a virtual trusted platform module, TPM and vTPM respectively. The

expected system hash is known to the appraisal system in advance and can be

compared readily to measured evidence from target in order to establish trust in

the initial configuration.

Property-based static analysis approaches have been proposed by others, often
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as an alternative to the relatively brittle binary measurements of strategies such as

measured boot [26, 42]. SWATT [52] and Pioneer [53] employ pure software-based

attestation techniques that depend on verification functions that are specially

designed such that any tampering attempt noticeably increases their running time.

However, both techniques can only attest static code/data. While SWATT can

verify the memory contents of an embedded device with a simple CPU, Pioneer

can handle complex CPUs to attest a program’s binary code. Likewise, there

are other works that share the limitation of only being able to perform static or

load-time integrity measurement [23, 33].

The static methods described in this section are very effective at describing

initial state. Moreover, some of these techniques can be generalized for and applied

to various types of software components, regardless of their unique features and

even regardless of size. However, they are not sufficient to establish trust nor

maintain trust throughout the runtime life of a piece of software.

Static techniques can not guarantee the accuracy of trust inferences in the

face of potential errors and malicious attacks that may occur throughout the

life of a target application. Measurements have with it a notion of freshness.

Measurements lose their freshness due to the increasing uncertainty of change with

respect to time elapsed since sampling. As such, other measurement functionality

is needed to establish trust throughout runtime.

2.2.2 Dynamic Measurement

After trust is established in the initial configuration of a target entity, the tar-

get must continue to provide evidence to remain in trustworthy standing with the

appraisal system. As discussed in the previous section, static measurement tech-
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niques cannot provide this integrity evidence for the dynamic program properties

and verify that applications are behaving as expected at runtime.

Several works have studied runtime integrity measurement techniques. Flicker

utilizes hardware support for late launch to bind and attest the integrity of ex-

ecuted code with its input/output [32]. BIND cryptographically attaches an in-

tegrity proof for a program with the output it produces [54]. However, these

techniques are not generalized to handle other generic dynamic program state.

PRIMA extends IMA with information flow integrity measurement on SELinux-

like systems with a mandatory access control policy [22]. PRIMA prevents high

integrity processes from accessing low integrity data, without intervention and

alteration. Semantic remote attestation employs a trusted managed-language vir-

tual machine to attest certain properties of the client programs [20] running under

its control, including dynamic state at specific program points.

DynIMA combines load-time integrity measurement with dynamic tracking

techniques that instrument program code to perform integrity-related runtime

checks [12]. DynIMA only supports dynamic checks that are generic to all binaries,

requiring no program specific knowledge. Furthermore, no measurement interface

is exposed.

Redas provides dynamic RA by measuring certain structural invariants, gener-

ated by tools like GCC, and certain global data invariants detected by Daikon [14,

24]. Redas employs operating system modifications and can only perform continu-

ous measurements at certain pre-defined program points, specifically system calls

and the malloc family of functions.

The Java Measurement Framework (JMF) provides a measurement framework

to sample the dynamic program state as directed by the security policies for appli-
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cations running within a Java Virtual Machine. Furthermore, Java Measurement

Framework defines a policy language to manually write program-specific runtime

integrity policies [58].

Several systems measure the Linux kernel runtime integrity. Copilot moni-

tors certain well-known regions of Linux kernel memory using an external PCI

card [40]. Another technique dynamically attests the Linux kernel control-flow in-

tegrity [41]. Linux kernel integrity monitoring, or LKIM, verifies the consistency

of known critical kernel data structures at runtime [28]. These techniques develop

custom measurement frameworks that only apply to the Linux kernel.

The cost of designing measurement systems like the aforementioned property-

based measurement systems is very high. Unlike simple hashing, these measure-

ment tools target specific software, in this case specific operating systems, and

they cannot be used to target other software, not even other operating systems.

Furthermore, they cannot even be guaranteed to function meaningfully between

separate releases of the same operating system because critical program features,

such as the locations and configurations of data structures, may change.

The costs associated with these richer measurement systems are compounded

when targeting user-space applications. Runtime measurers must also be tailored

to each specific user-space application and maintained over said application’s life

cycle. While the costs of kernel targeting measurers like LKIM and PIONEER

can be amortized across their large code bases, smaller user-space applications do

not benefit. As such, manually customizing measurers for user-space applications

prohibitively increases development time.

Furthermore, the expected values that describe runtime behaviors are costlier

to generate than they are with simple hashes. A hash is generalizable, for all
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intents and purposes, to any software regardless of features or scale. The golden

value, or expected outcome, can be computed easily and stored very compactly for

future appraisals. Runtime measurements, however, target much richer features

that vary significantly between applications and even separate releases of a single

application. As such, the expected outcomes also vary significantly.

The burden of generating outcomes for runtime measurement scenarios often

falls to manual specification by an expert. Such an expert must have the neces-

sary knowledge and training in two domains. First, they must be well informed

in the purpose and implementation of the target application. Second, they must

be well informed and trained to identify and adequately evidence critical pro-

gram features for trust based decision making. Consequently, this manual process

makes the generation of expected outcomes and ultimately the prospect of runtime

measurement in general very undesirable.
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Chapter 3

Measurement System

Measurement systems need to be able to analyze the execution state of ar-

bitrary pieces of software. These measurements systems are very complex and

challenging to write. A large portion of the cost of developing measurement solu-

tions for specific applications can be attributed to the challenge of building from

scratch the core measurement functionality that is common to the measurement

needs of all applications. In this section, we address this common functionality

and the lack of general purpose measurement systems with a defined and common

evidence querying interface for native applications.

This chapter introduces the MSRR Measurement System. The MSRR mea-

surement system is a novel lightweight measurer that is agnostic of the target

application. MSRR provides the core functionality to sample the execution state

of a process. This measurement system decouples the application specific poli-

cies, which are discussed in chapter 4, such that an expert may focus on writing

high-level policies, rather than building an entire measurement system from the

ground up for each user-level application.
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3.1 MSRR Architecture & Capabilities

The MSRR Measurement System is a prototype measurement system that

is application agnostic. The MSRR Measurer is driven by a low-level querying

language, the MSRR Evidence Querying Language (MSRR-EQL or EQL), that

allows attestation systems to invoke it to gather evidence for would-be appraisals

by a remote appraisal system.

While the MSRR Evidence Query Language can be invoked directly, it has

been designed to be used with a higher-level measurement policy language, such

as the MSRR Policy Language which is described in the chapter 4.

This section describes the measurer architecture in detail, its usage and capa-

bilities, including the details of the MSRR Evidence Query Language.

3.1.1 Measurement System Role in MSRR System

The measurement system, in the context of a remote attestation scenario such

as the one described in section 2.1, serves as a slave to the attestation system. The

attestation system invokes the measurer, as needed to form evidence for remote

appraisals, via the Evidence Querying Language to direct the measurer to attach

to specific target applications and to gather evidence. The measurement system

interrupts the target application, samples its execution state, and releases it; all

as needed to serve the attestation system.

In order to serve measurement, the measurement system requires access to

meta-information, specifically application debug symbols, which are generated

at compile time at a per-application basis. This debug information provides the

measurement system with necessary meta-information to leverage source-level ref-

erences to code regions and application features in the EQL and resolve them to
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Figure 3.1. Architecture of the MSRR tool suite

their concrete memory addresses during the actual runtime of the target process.

The EQL and the debug information is described in detail in subsection 3.1.5

and subsection subsection 3.1.10, respectively.

Therefore, the MSRR Measurement System, is a piece of software that op-

erates on behalf of the attestation system to sample data from the application.

It has access only to the queries provided by the attestation system, the debug

information of the target application, and the execution state of the target appli-

cation.

The measurement system is powerful in that it has the ability to stop, instru-

ment the target’s code, read and write to the applications data. As such, these

functions have been limited in the followings ways. The measurement system is

limited to communicate in response to the attester only, as a remote-procedure-
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call slave to the attestation system. The measurement system may not alter the

outcomes of the target application. However, it is permitted to halt the operation

of the target application in order to take measurements. In order to stop and mea-

sure the target application at desired code regions, the measurer may temporarily

instrument the target application.

That said, a measurer must never change the outcomes of the target applica-

tion. Any and all changes must be transient. Furthermore, the interruption and

slowdown of the target application should be minimized. And, the above impacts

of the target are only permissible for the measurement system when serving the

attestation evidence queries, and nothing more.

As follows from the slave relationship, the measurement system itself is un-

aware of the intent of the target application and consequently the expected be-

havior. The expected behavior is addressed by the measurement policies which

influence the measurer only indirectly through the appraiser and attester. The

measurement policy language is discussed in chapter 4.

Figure 3.1 illustrates the architecture of the entire MSRR suite. The lower half

of the figure contains the remote attestation scenario describe in section 2.1 with

the MSRR Measurement System inserted in the place of the generic measurer.

The upper portion of the figure demonstrates the build context which illustrates

the source of both the application binary and the debug symbols which are used

by the target entity. Note that the policy language related nodes refer to separate

components of the MSRR Measurement Suite, which are discussed in chapter 4

and chapter 5.
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3.1.2 Measurement System Usage & Example

This section provides an example of the usage of the MSRR Measurement

System to provide some mental scaffolding for the remaining sections that detail

the framework. This example will show how an attester can request measurements

of a simple program written in C by sending MSRR-EQL queries to the MSRR

measurer.

The example will show each attester-measurer exchange. For each step, we will

show the EQL query from the attestation system to the measurement system and

the resulting response. We show the EQL query first in a command-line short

form, for convenience, and then follow it with the full JSON-RPC invocation.

After, the EQL query, we show the result from the measurer, also in both in both

the command-line short form and the full JSON-RPC.

The command-line short form is used by the interactive interpreter detailed in

subsection 3.1.7.

Example Code The following measurement exchanges will assume the target

process is executing the following simple program written in C.

Listing 3.1 Measurer example: simple target application in C

1 <stdio.h>

2 <unistd.h>

3

4 main() {

5 c = 0;

6

7 (1) {

8 printf("c=%d\n",c);

9 c++;

10 sleep (1000);

11 }

12 }
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Exchange 1 - Attach measurer to target process This exchange shows the

attestation system requesting measurement system to launch the target applica-

tion and initiate communication with it.

Query (launch as target ”/path/to/example binary”)

JSON-

RPC 1 {

2 "jsonrpc" : "2.0",

3 "params" :

4 {

5 "path" : "/path/to/example\_binary",

6 "type" : "launch_as_target_expr"

7 },

8 "method" : "eval",

9 "id" : 1

10 }

Result (void)

JSON-

RPC 1 {

2 "jsonrpc": "2.0",

3 "result": { "type" : "void_result" },

4 "id": 1

5 }

As demonstrated here, all exchanges will have a unique id, which ensures that

the responses are properly mapped back to the corresponding request.

The void value returned, for methods that can fail, indicate that the oper-

ation was successful. In the event of a failure, an error value is returned with

failure details. Success, in the case of the set target function indicates that the
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measurement system has been attached to the target and that it is ready for

measurement.

Exchange 2 - Sample the call stack immediately The next exchange uses

the MSRR-EQL interface to request an on-demand measurement that samples

the target application’s call stack.

Query (measure (call stack))

JSON-

RPC 1 {

2 "jsonrpc": "2.0",

3 "params":

4 {

5 "feature" : { "type" : "call_stack_feature" },

6 "type" : "measure_expr"

7 },

8 "method": "eval",

9 "id": 2

10 }

Result (sample

(call graph value ”main”

(call graph value ”sleep”

(call graph value ” nanosleep nocancel” ))))
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JSON-

RPC 1 {

2 "jsonrpc": "2.0",

3 "result":

4 {

5 "data" : {

6 "method_name" : "main",

7 "children" :

8 [{

9 "method_name": "sleep",

10 "children" :

11 [{

12 "method_name":

13 "__nanosleep_nocancel",

14 "children" : [],

15 "type" : "call_graph_value"

16 }],

17 "type" : "call_graph_value"

18 }],

19 "type" : "call_graph_value"

20 },

21 "label" : null ,

22 "occurrence" : null ,

23 "type" : "sample_result"

24 },

25 "id": 2

26 }

On demand-measurements are the simplest types of measurements. The mea-

surer attempts to serve them and reply back to the attestation system immedi-

ately, either with the sampled record itself or an error such as a feature out-of-scope

error.
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In this case, the measurement was successful and the measurement system

responded with an instance of the call graph object, which contains the stack

frames of the target at the time of measurement.

Exchange 3 - Store a measurement of variable C in function main Our

next example has the attestation system requesting the measurement system to

register a monitoring measurement. This monitoring measurement will sample

the value of a local variable, in this case c, every time the target application

reaches a specific code location.

Command (hook

(reach (method offset location ”main.c” ”main” 8) true)

(action (store (measure (var ”c”)))))
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JSON-RPC

1 {

2 "jsonrpc": "2.0",

3 "params":

4 {

5 "event" :

6 {

7 "location" :

8 {

9 "file_name" : "main.c",

10 "function_name" : "main",

11 "offset" : 8,

12 "type" : "method_offset_location"

13 },

14 "repeat" : ,

15 "type" : "reach_location_event"

16 },

17 "action" :

18 {

19 "expr" :

20 {

21 "feature" : {

22 "identifier" : "c",

23 "type" : "variable_feature"

24 },

25 "label" : null ,

26 "type" : "store_expr"

27 },

28 "type" : "action_expr"

29 },

30 "type" : "hook_expr"

31 },

32 "method": "eval",

33 "id": 3

34 }

Response (void)
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JSON-RPC

1 {

2 "jsonrpc": "2.0",

3 "result": { "type" : "void_result" },

4 "id": 3

5 }

Monitoring measurements are created with the use of the EQL hook expres-

sion. Hooks in MSRR associate some event descriptor (event) and an action

(action). In this case the event is a reach function and the action is the store of

the measurement of a specific local variable.

A reach event is a trigger that fires every time the target application reaches

a specific code location. In this case, we have specified an instruction offset 5 of

the main method, which happens to be the following instruction:

1 printf("c=%d\n",c);

The response of this exchange is a void result, which indicates that the hook

was registered successfully.

Exchange 4 - Retrieve stored samples. In this exchange, the attestation sys-

tem requests the measurement system to send all samples that have been taken

and stored from previous monitoring measurements. Provided that the location

specified in exchange 3 has already been reached, we should get at least one sam-

ple of variable c.
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Query (retrieve)

JSON-

RPC 1 {

2 "jsonrpc" : "2.0",

3 "params" : { "type" : "retreive_expr" },

4 "method" : "eval",

5 "id" : 4

6 }
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Result (sample set

(sample (int value 33))

(sample (int value 34)))

JSON-

RPC 1 {

2 "jsonrpc": "2.0",

3 "result":

4 {

5 "samples" : [

6 {

7 "data" : {

8 "value" : "33",

9 "type" : "int_value"

10 },

11 "label" : null ,

12 "occurrence" : null ,

13 "type" : "sample_result"

14 },

15 {

16 "data" : {

17 "value" : "34",

18 "type" : "int_value"

19 },

20 "label" : null ,

21 "occurrence" : null ,

22 "type" : "sample_result"

23 }

24 ],

25 "type" : "sample_set_result"

26 },

27 "id": 4

28 }

The measurement system returns a set of samples from its sample buffer. In

this example we retrieved two samples of c.
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Example Follow-up & Take aways In practice, these low-level queries be-

come quite complicated in order to serve the needs of complex relationships be-

tween the many aspects of a target applications. Fortunately, these queries are

handled automatically by the attestation system in an effort to form a cohesive

proof for an appraisal. This process, in the context of the full MSRR Measure-

ment Suite, is inevitably produced through the high-level MSRR Policy Language

measurement policies, which are described in chapter 4. As such, the measure-

ment writer will only need to concern themselves with MSRR-PL, and even then,

only when they desire to augment the automatically generated MSRR-PL policies

as described in chapter 5.

For more information on the evidence query language, refer to the detailed

description in subsection 3.1.5. Furthermore, chapter 7 will provide realistic ex-

amples in the context of the full MSRR suite as case studies.

3.1.3 Measurement Types

In this section we present a classification of the measurement types supported

by the MSRR Measurement System. The two main categories of supported mea-

surement types are: on-demand measurements and monitoring measurements.

On-demand measurements are those that are sampled immediately, at the

time of request. The measurement system immediately interrupts the target ap-

plication, samples the requested state of the target application, and then returns

the results back to the attestation system.

In the event that a measurement cannot be performed immediately, such as

when a target feature is undeclared or out of scope, the measurement fails. Upon

such failure, the measurement system responds immediately with an error value.

31



In practice, on-demand measurements are typically those triggered by an ex-

ternal event to the target application. For example, something on the end of the

attestation system or appraisal system could change in such a way that it warrants

the need for a fresh sample of some previously measured feature or perhaps a first

measurement of a previously ignored feature.

Monitoring measurements are those that can be executed either periodically

or upon some trigger, typically a reoccurring one. In either case, these measure-

ments are registered with the measurement system immediately upon receipt of

the request. At this time, the measurement system responds simply to indicate

success or failure of the registry of such measurement.

Once registered, the measurement system serves the monitoring measurements

in accordance with their specification; that is, when their trigger fires. The samples

taken in service of monitoring measurements are stored into a buffer for later

retrieval, along with meta-information including a timestamp and a label which

associates the sample to a specific iteration of the given monitoring measurement.

In practice, event-triggered measurements tend to comprise the bulk of mea-

surement. In accordance with our policy language and the types of remote attes-

tation systems that they inform, a host of monitoring measurements are registered

upon attaching to the target application. From that point forward, the appraisal

system periodically retrieves the buffered samples to determine validity/trust-

worthiness of the target application in accordance with said policy. The policy

language is described in detail in chapter 4.
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3.1.4 Supporting Remote Communications

We expose the MSRR Measurement System’s functionality as a JSON-RPC

API that the Evidence Query Language communicates over. To this end, the EQL

and all of its associated types, expressions, and results are JSON-able.

JSON is a popular format for object serialization that is considered more

condensed and easier to read than XML [1, 29]. Considering this and the require-

ment that the MSRR measurer be invocable by the attester, but not the other

way around, the remote procedure call specification over JSON was suitable for

MSRR. Moreover, the session-less one-time remote procedure calls approach lends

itself well to allowing the measurer to serve multiple attesters, as might be the

case in real world remote attestation scenarios.

In the MSRR-EQL, the JSON serializations of each type are implemented in a

consistent and sane manner. All types, expressions, results, errors, and otherwise

possess a “type” property. The type property defines what MSRR data structure,

following a consistent naming pattern.

All datatypes are represented in snake case, and if they inherit from anything,

that term is at the end. For example, a hook expression, or as implemented,

HookExpr, has the type of “hook expr” in the JSON form. A measurement sample

result is implemented with the class name SampleResult, and its JSON type is

“sample result.” All types in the MSRR suite take this form.

For examples of the EQL, please see the simple step-by-step introduction in

subsection 3.1.2, the details EQL description in subsection 3.1.5, or the case stud-

ies in chapter 7.
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3.1.5 MSRR Evidence Querying Language

The MSRR Measurement System has a robust querying language, MSRR Ev-

idence Query Language (MSRR-EQL), that provides the interface for the attes-

tation systems. The evidence querying language allows the attestation system

to specify in detail what features of the target application to sample, how the

measurer should sample them, and when/where to make those samples. This

section provides a detailed overview of the EQL.

Table 3.3 shows the categories of the EQL commands and lists the selection of

functions that were prototyped for this work. The first column in the table lists

the command name followed by its arguments in the second column. The third

column lists the type of the data returned by the command. The last column

briefly describes the actions performed by each command.

The MSRR Evidence Querying Language’s functionality is classified into the

following categories.

Admin and Setup: These commands allow the appraisal system to attach/de-

tach the measurer to the target program and setup the internal state of the

measurer.

Measurement: These commands create measurement instances. The measure

command launches an on-demand measurement, while the store/retrieve

commands buffer and dump samples from monitoring measurements.

Features: These functions are used to describe various properties of the target

application that can be subject to sampling. Features are the subjects of

and delivered as parameters to the measurement commands.

Snapshots: These commands create and manage snapshots of the target appli-
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Function Arguments Return Description
Admin & Setup
launch as target string void Launch executable and attach measurer.
release target - void Detach measurer from target.
set target string void Attach measurer to a process by PID.
shut down - void Terminate measurer.
Measurement
measure feature sample Measure a specific feature of target.
retrieve - sample set Retrieve buffered measurements.
store sample void Buffer a measurement for later retrieval.
store string, sample void Buffer a measurement with a label.
Feature
call stack - feature Create a feature representing the call stack.
mem string, string feature Create a feature for a memory address with specified

format.
reg string feature Creates a feature for a specific register.
var string feature Creates a feature for a specific target variable, by source

identifier.
Snapshots
disable auto snap - void Disable automatic snapping.
enable auto snap integer void Enable automatic snapping when feature count exceeds

threshold.
snap string void Create a snapshot of target with given label.
to snap string, action * Evaluate an EQL query on the specified snapshot.
Events & Hooks
action * action Create an object for any expression.
delay integer, boolean event Create a timer event with a specified duration.
disable string void Disable a given hook by label.
enable string void Enable a given hook by labeel.
hook string, event, ac-

tion
void Create a hook that evaluates an action when an event

occurs.
kill string void Kill a given hook by label.
reach location,

boolean
event Create an event that triggers upon target reaching a

specified code location.
Locations
file line location string, integer location Create a location for a file and line number.
method entry location string, string location Create a location for the entry point of a method.
method exit location string, string location Create a location for the exit point of a method.
method offset location string, string, in-

teger
location Create a location for a line at an offset from the top of

a method.
Control Functions
eq *, * boolean Evaluates the equivalence of the arguments.
if boolean, *, * * Evaluate one of two expressions depending upon some

condition.
not boolean boolean Return the boolean complement of the inputl.
seq *,*, ... [*, *, ...] Evaluate a sequence of expressions.

Table 3.3. Extensible function interface for the MSRR evidence
query language

cation process. Application snapshots are used in a special optimization

that MSRR provides which allows potential savings in performance for par-

ticularly expensive measurement tasks. This optimization is discussed in

subsection 3.1.8.
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Events and Hooks: These commands allow for the registration and manage-

ment of monitoring measurements by constructing events and hooks to per-

form such measurements.

Locations: These functions are used to specify various code locations for the

reach event command.

Control Functions: These commands provide a higher-level interface to create

more sophisticated measurements that will only be triggered if and when

certain program properties (themselves, determined through earlier mea-

surements) or conditions exist.

Our MSRR implementation allows for the straightforward extension of this

command interface.

The MSRR queries utilize values of type void, boolean, integer, string,

feature, sample, sample set, event, action, and location.

The void, boolean, integer, and string types function as expected.

Measurement functions use the feature type to describe a feature in the target

application to measure. The sample type has two main components, the data

component and a type descriptor. The sample set is a set of samples. The data

component is the raw data taken in the sample. The type component captures

the type of the raw data, which corresponds to the original feature’s type in the

source language. For example, a measurement may sample an int (C integer) of

value 5; the resulting sample instance would house 5 in the data field and type

integer in its type field. The event type is used to create event functions that

trigger measurements periodically or when certain conditions are met. The action

describes any EQL expression as an object to be explicitly executed later, like a
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parameterless lambda expression; action is currently used by the hook function to

invoke other MSRR commands when the corresponding event is triggered. Reach

functions use the location type to identify a code region to take samples.

There is a special data type called error for error handling. Any function will

return an error upon failure. The error type includes with it details relating to

the specific failure.

For examples of the EQL in use, please refer to the initial example in subsec-

tion 3.1.2 or the additional examples in chapter 7.

3.1.6 Supporting Monitoring Measurements

Monitoring measurements are those that can be registered in advance for later

sampling. These can be a delayed one-time measurement or a recurring measure-

ment. They can be triggered by timers or upon the target reaching critical code

regions.

In order to support these measurements, the MSRR measurer requires a few

capabilities. It needs to be able to store measurements in a buffer for later re-

trieval. It must expose, in the EQL, a method to retrieve stored measurements.

The measurer must also maintain each active monitoring measurement, as hooks,

in a registry for later firing, and to allow them to be disabled or removed.

The monitoring measurement samples are stored in a sample buffer along with

meta-information to await eventual retrieval by the attestation system. The meta-

information includes a timestamp of the measurement, a reference to the hook

expression that engendered it, and a sample identifier unique to that monitoring

measurement. Upon retrieval, the sample is sent with the metadata so that the

attestation system can determine which samples belong to which iterations of the

37



monitoring measurement, in order to apply them together as a coherent set of

parameters to relevant rules. Rules and rule applications are described as part of

measurement policies in chapter 4.

Measurements are registered by the hook command. The hook command ex-

pects a type of event and a type of action, which is simply any expression in the

EQL language passed as an object to be evaluated explicitly later.

An event can be either a timer event or one of many location reach related

events.

For timer events, all timer hooks are registered into the active hook set in

the MSRR Measurement System context with their corresponding action expres-

sion. Upon expiry of the timer, the action’s corresponding expression is evaluated.

Then, non-recurring timers are evicted from the active set.

For location-reach events, the hook is registered as well into a set of active

hooks. Additionally, the low-level backend is invoked to set up the proper controls

for the target application. This process is detailed further in the implementation

subsection 3.2.3. In the registry, we store a reference to any information needed

to relate the hook entry with the backed controls such that when one is disabled

or removed, both shall be.

In some cases, more complicated events can be registered. Consider a case

where one wishes to take a measurement at location L1, but only at the first

occurrence of L1 immediately after each occurrence of another location L2. Ex-

amples like these can be performed using the control logic provided by the EQL;

specifically, by nesting the hooks and sequencing them with commands that sub-

sequently disable the hooks.

In kind with many real world remote attestation policies, these types of MSRR-
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EQL queries can get very complicated. Fortunately, when the whole MSRR suite

is leveraged, the measurer developers only needs to focus manual effort at the high

level of the MSRR Policy Language.

3.1.7 Evidence Querying Language Interactive Client

Along with the MSRR Measurement System, we provide the MSRR Evidence

Querying Language Interactive Client. The EQL Interactive Client is a tool that

allows one to connect to an MSRR Measurement System from a command line

terminal and execute EQL queries directly.

This tool has been useful for debugging and extending the MSRRMeasurement

System itself. We believe that it may also prove useful for scenarios that this work

does not consider, such as those outside of remote attestation where the high-

level driving of the MSRR-PL is not required, and yet the sampling of various

application features is a requirement.

3.1.8 Snapshot & Release Optimization

Measurements in the MSRR Measurement System are, by default, considered

direct measurements. Direct measurements are those that stall the target piece

of software for the duration of sampling. In some cases, measurements can be

very large or complex such that they impose a significant overhead and slowdown

of the target application processes. For such large measurements, we have im-

plemented an optimization strategy that utilizes a unique type of measurement

called snapshot measurements.

The following is the typical workflow for a direct measurement. Upon receiving

a measurement request, depending on its type, MSRR either performs an imme-
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diate sampling or schedules a sampling event. To ensure coherency, the actual

measurement interrupts and stalls the target application for the duration of the

querying and processing of all data requested. In other words, data relevant for a

specific expected behavioral rule (as seen in chapter 4) applications must be taken

from the same sampling point.

Typical Measurement Workflow:

1. The measurer receives a measurement request from the attestation system.

2. The measurer interrupts the target application.

3. The measurer searches for and collects the desired data, if available.

4. The measurer releases the target program.

5. The measurer packages the data and sends the results to the attestation

system.

The snapshot measurement strategy is reserved for heavy-weight measure-

ments. This strategy takes a full snapshot of the target application and then

releases it. The actual measurement query is then performed on the snapshot

itself. As such, for heavy measurements or composite measurements, the naive

full snapshot actually improves performance.
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Figure 3.2. Measurement execution timeline comparison for direct
measurement and snapshot measurement strategies

Snapshot and Release Workflow:

1. The measurer receives a measurement request from the attestation system.

2. The measurer interrupts the target application.

3. The measurer takes a snapshot of the target application’s state.

4. The measurer releases the target program.

5. The measurer collects the relevant data from the snapshot and decommis-

sions it.

6. The measurer packages the data and sends the results back to the attestation

system.

Figure 3.3 compares the direct and snapshot measurement strategies for several
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scenarios. The snapshot measurement strategy is provided to lower the measure-

ment overhead when direct measurement is likely to interrupt the target program

for longer than the cost of taking the snapshot. In Figure 3.3, the measurement

system receives the following measurement requests: first, a measurement request

forM1 and later a measurement request for the simultaneous measurements {M2,

M3}. The first case uses direct sampling exclusively. The second example em-

ploys snapshot sampling. However, the snapshot measurement for M1 produces no

performance benefit but snapshot for {M2, M3} does. The last case demonstrates

the ideal use-case, where direct measurement is used for M1 and snapshot mea-

surement is taken for the {M2, M3} request. Snapshot measurements, currently,

need to be explicitly requested through the EQL snapshot commands.

3.1.9 Necessities for Performing Measurement

In order to perform measurement, the MSRR Measurement System must have

access to the execution state of the target process. The measurer must also be

privileged to be able read the memory of the target process. Additionally, the

measurer must be able to halt and resume the target process to perform measure-

ment, in order to ensure atomicity of related sets of measurements.

While arbitrary immediate interrupts can be performed relatively easily, the

measurement system must also be able to halt the target application at specific

locations. To perform this task, the measurement system must be authorized and

able to temporarily instrument the target application. This is discussed further

in the implementation section.

As such, we have designed the measurement system to handle these capabili-

ties. Furthermore, we assume that the measurement system process will have the
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necessary level of privilege on the host machine to carry out its duties.

3.1.10 Necessities for Informing Measurement

The ability to access execution state alone is not sufficient to serve measure-

ment requests, if the MSRR Measurement System does not have the information

needed to make sense of the target state. To facilitate this, the MSRR Measure-

ment System assumes that meta-information is present, either residing with the

measurer or the target binary, which details critical pieces of information about

the target application’s code, identifiers, types, variables, etc., in order to serve

MSRR-EQL queries.

Our MSRR Measurement System gets this information in the from of the

debug information that modern compilers have been generating and perfecting

as debuggers have evolved. These debug symbols are easily produced by such a

compiler and can be packaged with the target binary or even be stripped away

and made available to MSRR Measurer via other means.

These debug symbols allow the EQL to express measurements at the high

source-level identifiers and code regions. Then, the measurer resolves these source-

level references down to their concrete memory locations at runtime by using the

debugging information.

The details of the debugging information is described in subsection 3.2.4.

3.1.11 Security/Verifiability Implications

A concern in the realm of remote attestation and measurement is the prob-

lem of establishing trust in the measurement system and the measurement sam-

ples it produces. Such verification is often approached by a technique known as
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meta-measurement, in which a separate meta-measurement system measures the

application measurers themselves.

However, the techniques employed by MSRR focuses on reducing the manual

effort of building tailored measurement systems from the ground up. To this end,

this work does not explore meta-measurement and considers it beyond the scope.

3.2 Implementation

We have implemented the MSRR Measurement System in layers. The EQL

interface along with the general measurement context resides in the top layer

which sits on top of a modified, faceless, version of the GNU Project Debugger,

GDB [15, 16], which peers into the target application. In between these two

layers, resides a middle layer that associates the two in such a way that, should

the backend need to change, the top layer need not be modified.

This sections describes in detail the MSRR Measurement context, the middle

layer, and the modifications made to GDB.

3.2.1 Measurer Layers

The MSRR Measurement System’s implementation is broken up into three

separate layers. Due to the fact that the measurement system leverages an existing

system, the GNU Project Debugger (GDB), to instrument and read the memory

of the target application, we have separated the main measurer context from the

GDB backend. As such, the MSRR context forms the top layer and GDB forms

the bottom layer. An adapter layer sits between the two to relate the general

measurement context with the symbolic debugger backend.

Figure 3.3 illustrates the MSRR Measurement System in the context of a
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Figure 3.3. Architecture of the MSRR measurement system

simple attestation scenario.

Upper Layer: Measurement Context & Interface The top layer contains

the general measurement context; that is, everything independent of the specific

backend. As such, the measurement context layer contains the MSRR Evidence

Query Language interpreter. It also contains most of the measurement state,

including the measurement buffers and the monitoring measurement hook-event
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registries.

Lower Layer: Debugger Backend This layer is the component that is in

charge of controlling the target application, reading its memory, and utilizing

the debug info. In short, it is the layer that does all interfacing with the target

application.

We have prototyped the MSRR Measurer using the GNU Project Debugger,

GDB [15, 16]. GDB provides the functionality to control the execution of the tar-

get application, to read its memory, and to interpret the DWARF debug symbols.

In an effort to make the MSRR future-proof, we have abstracted the GDB

backend into its own layer and have setup a middle layer to minimize modifications

made to the backend/GDB and the measurer context in the event should such a

backend change.

That said, GDB has been modified slightly to be able to function in our system.

Specifically, its own frontend and top level control structure has been stripped

away. As such, the middle layer interfaces with the many functions in GDB’s

backend that inevitably, in its original case, serves their own command structure.

Middle Layer: Adaptor The middle layer serves as an adapter for the Mea-

surement Context Layer and the debugger backend. As such, it implements a

specific interface; that is, the set of commands the top layer needs to function.

The middle layer in turn invokes the proper backend functions and manages any

state that the backend might need. For example, for each hook registered in

the measurement context, the middle layer stores the associated backend/GDB

breakpoint identifiers to properly handle the setting and deletion of such.
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3.2.2 GDB Considerations

We have implemented MSRR as an extension of the GNU Project Debugger,

GDB [15, 16]. Consequently, our current implementation benefits from GDB’s

extensive capabilities and infrastructure, but also inherits GDB’s limitations.

GDB utilizes the DWARF debug symbols to drive its measurement capabil-

ities [13]. As such, MSRR Measurement System requires its meta-information

about the target application, as discussed in subsection 3.1.1, to be in the DWARF

format. The DWARF data enables the measurement system to easily find various

program features using source code level descriptors, and simplifies policy gen-

eration, either manually by an expert or by other automated means, using the

descriptors found in the code source. The DWARF debug information is detailed

further in subsection 3.2.4.

Our GDB-based MSRR measurement system utilizes hardware features, OS

interfaces, and program instrumentation to provide its measurement capabilities.

For instance, the EQL’s code region reach event functions employ GDB’s break-

point functionality. GDB implements breakpoints using either the built-in hard-

ware breakpoints, if available, or as software breakpoints using program instru-

mentation to replace a program instruction with a trap. Likewise, the MSRR

Measurer utilizes GDB’s syscall feature to pause the program at system calls for

measurements which target interfaces exposed by the OS.

The overhead of code instrumentation in the measurement system is limited

because the instrumentation is only inserted during the measurement period, and

does not need to permanently slow down the entire program execution.
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3.2.3 Tracking Monitoring Measurements

The monitoring measurements, those that are registered and executed later

upon some event, are tracked via registries that exist in the measurement context

layer. The registries are sets of hook objects that can be either active or disabled.

Hook objects are essentially pair associations of some event to some EQL

action. Timed events are fired when their timers go off and, if non-recurring, are

removed from the active set. Recurring timed events are reset after each firing.

Upon the firing of a timed event, the measurer context layer sends a request

to interrupt the target application immediately. The GDB backed serves this

request by sending an interrupt signal to the target application. The EQL action

expression is interpreted in the measurer context and the backend is invoked

accordingly to sample any measurements therein. Finally, once measurement is

complete, the target is sent a signal to continue.

Location reach events are implemented with a hook entry in the registry as

well. When the hook is registered, the GDB backend is invoked to instrument the

target application with a trap just before the target location, which in the context

of GDB is called a breakpoint. Each breakpoint gets a unique identifier which

MSRR stores a copy of in the middle layer to maintain an association between an

MSRR hook and the corresponding GDB breakpoint.

The middle layer then listens for an event from GDB that would signal a break-

point has been reached. Upon the reaching of a breakpoint, the GDB identifier

is translated back to the originating hook and the corresponding EQL action is

executed.

48



3.2.4 DWARF Debug Symbols

The MSRR Measurement System is prototyped with the GDB backend and,

as such, utilizes the DWARF (Debugging With Attributed Record Format) debug

symbols to drive its measurement capabilities [13]. The DWARF data format

records the necessary information to empower the measurement system to find

various program features using source code level descriptors. This greatly simpli-

fies both the evidence query language interface and the policy language, described

in chapter 4, that is build upon it.

DWARF debug symbols can be produced optionally by most state of the art

compilers, for example by using the ‘-g’ option with GCC. We assume that the

DWARF debug symbols are available to the measurer and the appraiser, even if

they were stripped from the target binary program.

The DWARF format uses Debugging Information Entries (DIE) to describe

various features of a target application. Each DIE is comprised of a tag, to identify

the feature, and a series of attributes which describe the feature. Each attribute

is key-value pair.

Listing 3.6 DWARF format example: target C program

1 a;

2 foo()

3 {

4 b;

5 c;

6 }

Listing 3.7 DWARF format example: debug information entries

1 <1>: DW_TAG_subprogram

2 DW_AT_name = foo

3 <2>: DW_TAG_variable

4 DW_AT_name = b
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5 DW_AT_type = <4>

6 DW_AT_location = (DW_OP_reg0)

7 <3>: DW_TAG_variable

8 DW_AT_name = c

9 DW_AT_type = <4>

10 DW_AT_location = (DW_OP_fbreg: -12)

11 <4>: DW_TAG_base_type

12 DW_AT_name =

13 DW_AT_byte_size = 4

14 DW_AT_encoding =

15 <5>: DW_TAG_variable

16 DW_AT_name = a

17 DW_AT_type = <4>

18 DW_AT_external = 1

19 DW_AT_location = (DW_OP_addr: 0)

Listing 3.7 shows the DWARF debug information entries that describe the

variables from the program shown in Listing 3.6. Keep in mind that debug infor-

mation entries are used to describe other aspects as well; such entries have been

omitted from the listing.

In the figure, we can see the sample C program with a few source level identi-

fiers: three integer variables with ids a, b, & c; and a function with identifier foo.

The DIEs are DW TAG variable and DW TAG subprogram for the variables and the

function, respectively. Under each DIE, we can see the nested attributes listed.

For example, each of them list the source identifier with the attribute DW AT NAME.

In addition to the identifier, the type information, and the location is also shown

for the variable related DIEs.

3.2.5 Performing the Snapshot Measurement

As described in section subsection 3.1.8, we employ an optimization strategy

for large and composite measurements called the snapshot and release strategy.

The snapshot and release strategy allows one to run expensive measurements in
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parallel with the execution of the target application, after a full memory snapshot

is taken.

To implement this we have utilized the Linux fork system call to construct a

new child process that retains a full snapshot of the original program’s processor

and data state [45]. The actual measurement happens on the child snapshot. The

original target application is allowed to continue after the fork command returns.

In order to fork the target application, we leverage the LD PRELOAD func-

tionality in linux. The LD PRELOAD option exploits the linux dynamic linker to

allow one to bind symbols before any other dynamic libraries load [8]. In MSRR,

we use this functionality to hijack the entry method and add a signal handler for

a custom signal to the target application. This signal handler forks the target

application. After the fork, the original process is allowed to return to its normal

execution. The child process waits indefinitely, allowing its memory to be read at

will by an MSRR measurer.

At the same time, the MSRR Measurement System spawns a new MSRR

Measurer from itself as a child. The original measurer acts as the child measurer’s

attester, and in this way it serves it the nested measurement intended for the

snapshot of the target.

Upon completion of the snapshot related measurements, both the child mea-

surer and the child application process snapshot are disposed.

An advantage of implementing the snapshot measurement via a call to fork is

that the target application’s memory does not need to be exhaustively copied, at

least not in realistic cases. That is, upon a fork, all of the applications memory

is marked for copy-on-write [45] and, as such, only the data that the original

application process modifies between snapshot time and the end of measurement
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is actually copied.

3.2.6 EQL Interactive Client

The Evidence Querying Language Interactive Client is implemented using a

human readable Scheme-like language to allow the user to easily write simple test

queries. The interactive client makes requests via the same method that a real

attestation system would and, as far as the Measurer is concerned, is treated in

kind.

Listing 3.8 Example usage of the MSRR interactive client

1 (set_target 1001)

2 >> ( )

3

4 (measure (var "c"))

5 >> (sample (int_value 7))

6

7

8 (measure (var "c"))

9 >> (sample (int_value 11))

10

11 (shutdown)

12 >> ( )

Above is a short use case of the interactive client. In this example, the client

sends a query to the measurer to attach to some application which is incrementing,

iteratively, some local variable C. The client is then used to sample the variable

C with direct measurements. Finally, the client sends the command to terminate

the MSRR Measurement System.
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Chapter 4

Measurement Policy Language

Measurement policies describe how a measurer should be used to properly and

efficiently sample critical program features of a target application. Even with

a good application measurement system, such as the one this work proposes in

chapter 3, much effort must be expended in understanding the target application

and in specifying an attestation system to properly drive the measurer to sample

accordingly.

The MSRR Measurement System exposes a powerful low-level querying lan-

guage that is not intended to be invoked directly when writing attestation systems

or their corresponding measurement policies. For this purpose, a higher level lan-

guage, a policy language, that can be compiled or interpreted into the given low-

level Evidence Querying Language is essential to making measurement strategies

feasible for remote attestation.

This chapter presents the MSRR Measurement Policy Language, or MSRR-

PL. The MSRR Measurement Policy Language is a high-level policy language

that allows a measurement system writer save much time and effort by describing

complicated policies in simple terms. Furthermore, MSRR-PL makes the process
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of writing measurement systems much mores structured and disciplined, making

measurer behavior more efficient, predictable, and finally testable.

In essence, MSRR-PL provides a high-level interface to the MSRR evidence

querying language, MSRR-EQL. This allows one to effectively describe complex

measurements, their relationships, and the conditions for successful validations of

the eventual samples.

We have implemented the MSRR Policy Language as a domain specific lan-

guage in C++. This chapter is divided into two sections. The first sectiont

describes the language, its usage, and its functionality. The second section details

key components of the implementation.

4.1 Architecture and Capabilities

The MSRR Policy Language is a prototype policy language designed to de-

scribe measurement policies at a high level. The MSRR Policy Language has been

implemented with a backend that produces the low-level MSRR Evidence Query

Language instructions for the MSRR Measurement System. However, with the

proper adapters in place, this policy language can be used to describe policies for

future measurers and their own evidence querying languages.

In this section we describe the language itself, via example, and then we con-

tinue on to discuss many of the features that the policy language provides.

4.1.1 Components of a Measurement Policy

A measurement policy serves two purposes. The first is to describe some

critical subset of the expected behavior of a target application. The second is

to describe how the measurement system should be instructed to evidence the
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Figure 4.1. Roles of the expected behavior definition and the sam-
pling schedule in the context of a remote attestation scenario

expected behavior.

As such, a measurement policy in the MSRR policy language is broken up

into two somewhat overlapping parts: the Expected Behavior Definition and the

Sampling Schedule.

Figure 4.1 shows how the two major components of a measurement policy are

used by the components of a typical remote attestation scenario.

Expected Behavior Definition The expected behavior definition describes

some subset of the expected behavior of a target application. This component

of the measurement policy is measurement system independent, in the sense that
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it expresses facts about a program’s behavior generally speaking. At runtime for

a remote attestation system, the appraiser has access to the expected behavior

definition of the target application; the measurement system however does not

use it directly.

The expected behavior definition is comprised of rules. Rules can vary in

scope, but they are designed to capture a specific property of a target applica-

tion. In spoken language, a rule might read something like “For all instructions,

local variable X must be greater than Y” or “At instruction I1, the local variable

password must equal ‘password123’ while local variable logged in equals ‘true’.”

Sampling Schedule The sampling schedule describes how the measurement

system should be instructed to properly evidence the associated expected behavior

definition. The sampling schedule essentially determines how often specific rules

should be sampled, under what conditions, or if they should be sampled at all.

For a single expected behavior definition, there may be multiple schedules.

However, a single measurement system can be subject to only one schedule per

expected behavior definition at a time. For example, a single expected behavior

definition may have two schedules: one that samples for each rule periodically at

a relatively moderate frequency and another that only measures one of the rules,

yet does so very frequently.

Sampling schedules are comprised of sampling directives for each expected

behavior definition rule and said rule’s parameters. These are directives that

express the frequency that each rule is measured and dictate concrete locations of

sampling for each rule parameter.
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4.1.2 Basic Usage and Example

This section provides an example of how one might use the MSRR-PL to write

a simple measurement policy for a simple program written in C. We will show

each section of the policy written step-by-step with explanations of the language

features that are used along the way.

Example Code The measurement policy that we will write will describe a

simple property of the following C application.

Listing 4.1 MSRR-PL example: simple target application in C

1 <stdio.h>

2 <unistd.h>

3

4 main() {

5 x = 2;

6

7 (1) {

8 printf("x=%d\n",x);

9 x+=2;

10 sleep (3);

11 }

12

13 }

Observe that in the C program above, the variable x is incremented by two,

each iteration of the while loop, and therefore should always be even. So, we will

write a simple policy in MSRR-PL to encapsulate that (A) the variable x should

always be even and (B) that the measurer should take periodic samples in order

to evidence that fact.

The remainder of this section will, step by step, build the full policy for this

scenario. First, we will define the expected behavior and then we will define a

sampling schedule.
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Describing Properties - Validation Functions First we need to define the

property that must be true. Id est, we must describe the evenness of local variable

x. We do this in MSRR-PL with a validation function.

A validation function is essentially any n-ary function that evaluates to a

boolean. Generally, such a function for evenness could be expressed as follows:

Listing 4.2 Definition of evenness written in C

1 is_even( x ) {

2

3 x % 2 == 0;

4

5 } );

The MSRR Policy Language differs from this standard C function, but the

basic pattern is the same. In MSRR-PL, all validation functions expect a C++

lambda of type SampleSet to type bool.

The SampleSet is an MSRR collection that houses samples, which are of type

Sample, taken by the MSRR Measurement System. While the Sample object

contains meta-data useful in other contexts of measurement, we are only concerned

with two attributes for the time being.

The specific sample can be accessed with a custom label: “x parameter” was

chosen below for the measurement of local variable X. In this case, we are only

concerned with the value property of the Sample, which is assumed to be of MSRR

type IntValue.

As such, we can initialize a new policy and then add a new validation function

to it as follows:

Listing 4.3 MSRR-PL example: evenness validation function

1 Policy policy;

2
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3 policy.behavior_definition

4 .validation_functions["is_even_validation_function"] =

5 ValidationFunction(

6 []( SampleSet samples) {

7 x = samples.getAsInt("x_parameter");

8 x % 2 == 0;

9 }

10 );

Describing the Subjects of a Property - Features Validations function

expect a sampling of some feature of the target application as an input. We must

now use the Feature datatype of MSRR-PL to declare the feature, local variable

X, that will eventually be sampled and passed to the validation function when the

system goes live.

This can be done as follows:

Listing 4.4 MSRR-PL example: variable feature X

1 policy.behavior_definition.features["feature_x"] =

2 VariableFeature("x");

Describing the Location Scopes of the Property - Locations The vali-

dation function is useful for describing a true-false property about an application,

but in most cases these such properties must be scoped to some code region of

the target application.

We do this with the MSRR-PL location scope datatypes. Location scopes can

take many forms. In this case, we will use the FileRangeLocation datatype to

capture the body of the loop in the example program. The FileRangeLocation

describes a specific range of instructions, by line numbers, within a specific file.

Assuming the file is named “main.c”, the location can be described as follows:
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Listing 4.5 MSRR-PL example: loop body location scope

1 policy.behavior_definition.locations["loop_body_location"] =

2 FileLineRangeLocation("main.c", 8, 10);

Describing the Occurrence Scopes of the Property - Occurrence Scopes

So far, we have described a simple property for evenness. We have described the

feature that should be even. We have used location scopes to describe where it

should be even. Now, we must describe when it should be even.

Occurrence scopes let us specify when a specific code location is relevant for

sampling. In this example, the answer is trivial: anytime that we are within the

loop body.

To encapsulate ‘anytime’ for a given location, we will use the Origin Occurrence

type. An origin occurrence is an unbounded occurrence scope that is used by other

scopes as a point of origin/reference. The other occurrence scopes and how they

are used with each other is described in subsection 4.1.6.

As such, we describe the occurrence scope as follows:

Listing 4.6 MSRR-PL example: loop body occurrence scope

1 policy.behavior_definition

2 .occurrences["every_loop_occurrence"] =

3 OriginOccurrence("loop_body_location");

Associating a property with a what, when, and where - Rules Now we

need to associate the feature and its scopes to the validation function to form a

measurement policy rule.

To do this, we will first construct a scoped parameter with the Parameter type.

A scoped parameter expects a feature definition and an occurrence scope, which

60



contains within it a reference to its location scope. Then, we will define a new

rule with both the validation function and its single parameter.

This is done as follows:

Listing 4.7 MSRR-PL example: scoped parameter and rule

1 policy.behavior_definition.parameters["x_parameter"] =

2 Parameter("x_feature", "every_loop_occurrence");

3

4 policy.behavior_definition.rules["is_even_rule"] =

5 Rule("is_even_validation_function", {"x_parameter"});

Describing the Sampling Schedule As of the last step, we have successfully

described the expected behavior of the application with our single rule. Now, we

must specify the schedule for which the measurement system will actually take

samples to evidence said expectations. This is accomplished using the Sampling

Schedule datatype.

Sampling schedules can vary greatly, resulting in a spectrum of configurations

with an inversely proportionate relationship between performance impact and

completeness of the measurement sample profile. For a single rule, one schedule

may be very intense and demand frequent sampling. Another schedule, for the

same rule may skip many sampling opportunities, thus decreasing overhead while

increasing the risk of missing potential bad states.

For this example, we will construct a schedule to take a single measurement

every other time that the execution enters the relevant code regions of the rule.

Furthermore, we will set it up so that the actual instruction at which the sample

is taken each iteration is random within the loop body.

To do so, we must first create a new sampling schedule which we will call

‘default schedule.’ Then, we will add a rule schedule to the sampling schedule
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which will determine how the ‘is even rule’ is sampled. A rule schedule is merely

the portion of a sampling schedule that covers a single rule. A full sampling

schedule is nothing more than a set of rule schedules.

Rule schedules are defined with a sample rate specifier and, for each parameter,

a specific sample point. The sample rate specifier allows one to control how

frequently a rule is actually sampled. The sample point allows one to control

where in a parameter’s associated location scope to actually take the sample.

The schedule for this example will look as follows:

Listing 4.8 MSRR-PL example: sampling schedule and rule schedule

1 policy.sampling_schedules["default_schedule"] =

2 SampleSchedule ();

3

4 policy.sample_schedules["default_schedule"]

5 .rule_schedules["is_even_rule_schedule"] =

6 RuleSchedule(

7 "is_even_rule", EveryOtherIteration (),

8 {RandomLineSamplePoint ()}

9 );

Full Policy Example We now have constructed a complete policy. This policy

has a single rule which describes the evenness property for a local variable in the

main iterative loop of the target program. We have defined a single sampling

schedule which takes samples at a random location within the loop body, every

other iteration of the loop. The full example is displayed in Listing 4.9.

Listing 4.9 MSRR-PL example: full policy

1 Policy policy;

2

3 // Build Behavior Definition

4

5 policy.behavior_definition
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6 .validation_functions["is_even_validation_function"] =

7 ValidationFunction(

8 []( SampleSet samples) {

9 x = samples.getAsInt("x_parameter");

10 x % 2 == 0;

11 }

12 );

13

14 policy.behavior_definition.features["x_feature"] =

15 VariableFeature("x");

16

17 policy.behavior_definition.locations["loop_body_location"] =

18 FileLineRangeLocation("main.c", 8, 10);

19

20 policy.behavior_definition.occurrences["every_loop_occurrence"] =

21 OriginOccurrence("loop_body_location");

22

23 policy.behavior_definition.parameters["x_parameter"] =

24 Parameter("x_feature", "every_loop_occurrence");

25

26 policy.behavior_definition.rules["is_even_rule"] =

27 Rule("is_even_validation_function", {"x_parameter"});

28

29 // Build Sampling Schedule

30

31 policy.sampling_schedules["default_schedule"] =

32 SampleSchedule ();

33

34 policy.sample_schedules["default_schedule"]

35 .rule_schedules["is_even_rule_schedule"] =

36 RuleSchedule(

37 "is_even_rule", EveryOtherIteration (),

38 {RandomLineSamplePoint ()}

39 );

4.1.3 Policy Language Functions & Definition

This section gives an overview of the MSRR Policy Language definition. In

the following sections, the specific categories of MSRR-PL features are described
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Figure 4.2. Language feature association diagram for the MSRR
policy language

in detail.

The MSRR Policy Language is comprised of two major components, the Ex-

pected Behavior Definition and the Sampling Schedule. The types of MSRR-PL

are detailed below in BNF-like form and highlighted in Figure 4.2.
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Listing 4.10 Grammar definition for the MSRR policy language

1 Policy := ExpectedBehaviorDefinition SamplingSchedule*

2

3 ExpectedBehaviorDefinition := Rule*

4

5 Rule := ValidationFunction Parameter*

6

7 ValidationFunction := []( SampleSet)->boolean

8

9 Parameter := Occurrence Feature

10

11 Occurrence := OriginOcccurrence Location

12 | NextOccurrence Location Occurrence

13 | KthNextOccurrence Location Occurrence

14 | FirstOccurrence Location

15

16 Location := FileLineLocation string integer

17 | FileRangeLocation string integer integer

18 | FileMethodLocation string string

19 | FileClassLocation string string

20 | UnionLocation Location Location

21 | IntersectionLocation Location Location

22 | DifferenceLocation Location Location

23 | SymmetricDifferenceLocation Location Location

24

25 Feature := CallStackFeature

26 | VariableFeature string

27 | RegisterFeature string

28 | MemoryFeature string string

29

30 SamplingSchedule := RuleSchedule*

31

32 RuleSchedule := SampleRate SamplePoint*

33

34 SampleRate := EveryIteration

35 | EveryOtherIteration

36 | EveryKthIteration integer

37 | EveryIterationAfterDelay integer

38 | ChanceOfSampling integer

39 | SkipSampling

40

41
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42 SamplePoint := FileLineSamplePoint string integer

43 | FirstLineSamplePoint

44 | KthLineSamplePoint integer

45 | LastLineSamplePoint

46 | RandomLineSamplePoint

47 | MethodEntrySamplePoint string string

48 | MethodExitSamplePoint string string

4.1.4 Validation Functions

The validation function captures the propositional logic that describes the

expected states and relationships of said states for some set of features of the

target application. The validation function type of MSRR Policy Language, at

its core, contains a lambda function of any set of inputs to boolean. The inputs

are the measurements taken from various features in the target application, and

the boolean result expresses wether said features were as expected or ‘good’ with

respect to each other.

The validation function is exclusively part of the expected behavior definition.

That is, it is used by appraisal system to verify that the samples meet the criteria

of the policy.

4.1.5 Location Scopes

Location scopes are used to restrict a parameter of a rule to some code region.

There are several types of scopes, listed below, which allow one to select some set

of instructions via source level features such as the name of a class.

The MSRR Policy Language also provides various set operation types which

allow locations to be used together to select more complicated code region sets,

such as those with noncontiguous instructions.
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The following location types have been implemented to serve the needs of our

prototype measurement suite:

• Basic Types

– FileClassLocation (F, C) - All instructions that are part of class C

of file F.

– FileMethodLocation (F, M) - All instructions that are part of

method M of file F.

– FileRangeLocation (F, I, J) - All instructions that exist between

line numbers I and J of file F.

– FileLineLocation (F, I) - Instruction at line I of file F.

• Location Operation Types

– UnionLocation (L1, L2) - The union of all instructions of locations

L1 and L2.

– IntersectionLocation (L1, L2) - The intersection of all instructions

of locations L1 and L2.

– DifferenceLocation (L1, L2) - The difference of all instructions of

locations L1 and L2.

– SymmetricDifferenceLocation (L1, L2) - The symmetric differ-

ence of all instructions of locations L1 and L2.

4.1.6 Occurrence Scopes

Occurrence scopes are used with a location scope to bound a parameter to a

relative time at, or occurrence of, a specified location.
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Occurrence scopes are relative specifiers that are meaningful with respect to

each other. The default occurrence scope is the OriginOccurrence scope. An

origin occurrence can be considered a point of reference to which other occur-

rence scopes can be related. In other words, the origin occurrence scope itself is

unbounded, time-wise, and other occurrences are bound to it.

The NextOccurrence occurrence scope is used to describe the next occurrence

of a location, following some other occurrence.

For example, consider a scenario where one wishes to sample and compare

iterations of some iterator i in a loop, at location first loop instruction. To

do so, the OriginOccurrence of first loop instruction can be used to sample

the initial value of i. To sample the successor value of i, the NextOccurrence

scope can be defined at first loop instruction and bound relatively to the

origin occurrence previously defined.

• OriginOccurrence (L) - Any occurrence of location L. Serves as a point

of origin for other occurrences.

• NextOccurrence (L, O) - The immediate next occurrence of Location L

after the Occurrence O.

• KthNextOccurrence (L, O, k) - The k-th occurrence of location L after

the Occurrence O.

• FirstOccurrence (L) - The absolute first occurrence of location L.

4.1.7 Sample Rates

The SampleRate type serves as a specifier as part of a rule schedule. Sample

rates determine how often the parameter set of a rule shall be sampled. We have
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implemented the following sample rates for the purposes of the MSRR prototype:

• EveryIteration - All matching iterations of the associated scoped param-

eter is sampled.

• EveryOtherIteration - Every other iteration of the associated scoped pa-

rameter is sampled.

• EveryKthIteration (k) - Every k-th iteration of the associated scoped

parameter is sampled.

• EveryIterationAfterDelay (d) - Each iteration after duration d has ex-

pired.

• ChanceOfSampling (p) - Each iteration has a p percent chance of sam-

pling.

• SkipSampling - No iterations are sampled. Rule is disabled.

4.1.8 Sample Points

The SamplePoint type serves as part of a rule schedule and are associated

with a specific parameter of said rule schedule’s expected behavior definition rule.

A sample point specifies where in the location scope’s range or ranges to take

the samples. We have prototyped the following methods to serve our prototypes

needs:

• FileLineSamplePoint (F, L) - Sample at line L of file F.

• FirstLineSamplePoint - Sample at the first line of the associated location

scope.
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• KthLineSamplePoint (K) - Sample at the k-th line of the associated

location scope.

• LastLineSamplePoint - Sample at the last line of the associated location

scope.

• RandomLineSamplePoint - Sample at a random line in the location

scope.

• MethodEntrySamplePoint (M) - Sample at the entry to method M.

• MethodExitSamplePoint (M) - Sample at the exit of method M.

4.1.9 Expressiveness Statement

The MSRR Measurement Policy language is prototyped to be a robust, general

purpose solution for describing program behavior and specifying sample schedules.

We have modeled the measurement system to be able to express as, simply as pos-

sible, a host of measurement policies that exist today in state of the art research.

At the time of this writing, we believe that MSRR-PL is an effective tool to ex-

press the measurement needs and policies described in current remote attestation

measurement works; this is explored further in chapter 6 and chapter 7. However,

remote attestation and measurement is a rapidly growing area of research. With

this in mind, we have designed the MSRR Policy Language to be easily extensible

such that we can accommodate future measurement needs.

4.2 Implementation

We have implemented the MSRR Policy Language as a domain specific lan-

guage in C++. This prototype policy language is a high-level format that has
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been implemented with a low-level backend that produces the MSRR Evidence

Query Language commands for the MSRR Measurement System. This section de-

scribes in detail the features of MSRR-PL and the adaptation to the MSRR-EQL

backend.

4.2.1 MSRR-PL to MSRR-EQL backend

The MSRR Policy Language provides a way of describing measurement poli-

cies at a high level. Ultimately, this high level form must translate to the low

level invocations of a measurement system. For MSRR-PL, we have implemented

a backend that produces MSRR-EQL queries to invoke MSRR Measurement Sys-

tem.

For a specific Sampling Schedule and a corresponding Expected Behavior Def-

inition, MSRR-PL library can produce the EQL queries to register the periodic

measurements that take the right samples and at the right frequencies. This is

done by creating the a combination of EQL hook expressions, often nested, to

instruct the measurer to sample according to the schedule.

Listing 4.11 and Listing 4.12 demonstrates a MSRR-PL policy and the cor-

responding MSRR-EQL queries, respectively. The example is a policy where a

baseline measurement is made of some local variable x and subsequent measure-

ments of x are expected to be greater than the baseline.

Listing 4.11 Baseline example: MSRR-PL policy definition

1 Policy policy;

2

3 // Build Behavior Definition

4

5 policy.behavior_definition

6 .validation_functions["baseline_validation_function"] =

7 ValidationFunction(
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8 []( SampleSet samples) {

9 x_baseline = samples.getAsInt("x_baseline");

10 x_sample = samples.getAsInt("x_ongoing");

11 x_sample > x_baseline;

12 }

13 );

14

15 policy.behavior_definition.features["x_feature"] =

16 VariableFeature("x");

17

18 policy.behavior_definition.locations["x_location"] =

19 FileLineLocation("myfile.c", 7);

20

21 policy.behavior_definition.occurrences["baseline_occurrence"] =

22 FirstOccurrence("x_location");

23

24 policy.behavior_definition.occurrences["ongoing_occurrence"] =

25 FirstOccurrence("x_location");

26

27 policy.behavior_definition.parameters["x_baseline"] =

28 Parameter("x_feature", "baseline_occurrence");

29

30 policy.behavior_definition.parameters["x_ongoing"] =

31 Parameter("x_feature", "ongoing_occurrence");

32

33 policy.behavior_definition.rules["baseline_rule"] =

34 Rule(

35 "baseline_validation_function",

36 {"baseline_occurrence", "ongoing_occurrence"}

37 );

38

39 // Build Sampling Schedule

40

41 policy.sampling_schedules["default_schedule"] =

42 SampleSchedule ();

43

44 policy.sample_schedules["default_schedule"]

45 .rule_schedules["baseline_rule_schedule"] =

46 RuleSchedule(

47 "baseline_rule", EveryIteration (),

48 {

49 FirstInstructionSamplePoint (),
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50 FirstInstructionSamplePoint ()

51 }

52 );

Listing 4.12 Baseline example: MSRR-EQL expression

1 (seq

2 (store "x_baseline" (measure (var "x")))

3 (hook

4 (reach (file_line_location "myfile.c" 7) )

5 (action (store "x_ongoing" (measure (var "x"))))))

4.2.2 Supporting Successor Measurements

Successor measurements are those that describe a measurement taken after

the occurrence of a specific code region. Successor events can be useful for many

different scenarios, as we have found this variations of this basic pattern reappear

throughout our work. The following scenarios are both short examples of successor

measurements:

• A rule that expects local variable X at location L1 to be greater than X at

the next occurrence of location L1.

• A rule that expects some property to be true at the first occurrence of

location L2, immediately after some occurrence of location L1.

Successor measurements are implemented in MSRR Policy Language using

the NextOccurrence occurrence scope. The NextOccurrence is a OccurrenceScope

that takes another OccurrenceScope as an input.

Listing 4.13 and Listing 4.14 demonstrates a MSRR-PL policy expressing this

successor measurement relationship. In this example some local variable x and

the immediate subsequent measurements of x are sampled and compared.
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Listing 4.13 Successor example: MSRR-PL policy definition

1 Policy policy;

2

3 // Build Behavior Definition

4

5 policy.behavior_definition

6 .validation_functions["successor_validation_function"] =

7 ValidationFunction(

8 []( SampleSet samples) {

9 x_initial = samples.getAsInt("x_initial");

10 x_successor =

11 samples.getAsInt("x_successor");

12 x_initial > x_successor;

13 }

14 );

15

16 policy.behavior_definition.features["x_feature"] =

17 VariableFeature("x");

18

19 policy.behavior_definition.locations["x_location"] =

20 FileLineLocation("myfile.c", 7); policy

21

22 policy.behavior_definition

23 .occurrences["initial_occurrence"] =

24 OriginOccurrence("x_location");

25

26 policy.behavior_definition

27 .occurrences["successor_occurrence"] =

28 NextOccurrence(

29 "x_location", "initial_occurrence"

30 );

31

32 policy.behavior_definition.parameters["x_initial"] =

33 Parameter("x_feature", "initial_occurrence");

34

35 policy.behavior_definition.parameters["x_successor"] =

36 Parameter("x_feature", "successor_occurrence");

37

38 policy.behavior_definition.rules["successor_rule"] =

39 Rule(

40 "successor_rule", {"x_initial", "x_successor"}

41 );

74



42

43 // Build Sampling Schedule

44

45 policy.sampling_schedules["default_schedule"] =

46 SampleSchedule ();

47

48 policy.sample_schedules["default_schedule"]

49 .rule_schedules["successor_rule_schedule"] =

50 RuleSchedule(

51 "successor_rule", EveryIteration (),

52 {

53 FirstInstructionSamplePoint (),

54 FirstInstructionSamplePoint ()

55 }

56 );

Listing 4.14 Successor example: MSRR-EQL expression

1 (hook

2 (reach (file_line_location "myfile.c" 7) )

3 (action (seq

4 (store "x_initial" (measure (var "x")))

5 (hook

6 (reach (file_line_location "myfile.c" 7) )

7 (action (store "x_successor" (measure (var "x"))))))))
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Chapter 5

Measurement Policy Generation

Utilizing the measurement system and measurement policy language discussed

in the previous chapters, an expert tasked with developing application measure-

ment solutions can save significant time and effort. The MSRR Measurement

System provides the core measurement features which eliminate the need for the

expert to build the measurement system from the ground up. Furthermore, the

MSRR Policy Language gives the expert a high-level way of describing measure-

ment policies so that they may better and more efficiently address those key parts

of a given measurement system that are dependent on the target application.

These techniques provide a large improvement from the status quo, however,

the task of writing measurement policies, even when armed with a good policy

language, is difficult. The expert still must learn both the domain of each target

application and the domain of measurement with regards to remote attestation.

The extent, that such an individual is trained and skilled in these regards, is to

the extent that the measurement systems they produce can adequately represent

and evidence ‘good state’ and to do so in an efficient manner.

This section builds upon the tools provided in the previous chapters by proto-
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typing a system to automate the generation of certain types measurement policies

and, consequently, the process of producing tailored measurement solutions. Us-

ing state of the art static analysis techniques, we provide ways in which an expert

can generate various types of rules and thus measurement policies. In the best

case, the needs of a given attestation scenario will be satisfied by the automati-

cally generated measurement system. In such cases, manual effort by an expert

is eliminated. Even in cases where additional rule coverage is required, the auto-

matic rules produced herein give the expert a blanket of initial coverage for ‘free’

thus minimizing their burden and allowing them to focus their efforts on the ap-

plications, and the features of said applications, that need the most trust-related

attention.

This chapter describes the measurement policy generator that has been pro-

totyped to utilize symbolic execution via SymInfer. First, we discuss the static

analysis tools that we leverage. Then we describe how these tools have been incor-

porated by the MSRR suite. We demonstrate these techniques with an example

of fully automated policy generation. And, finally, we discuss in more detail the

practical impacts of these tools; their advantages and their limitations.

5.1 Symbolic Execution

The MSRR suite leverages the static analysis technique known as symbolic

execution in order to discover expected states of the target application. These

expected states enable us to form program invariants which can be scoped to

form rules in the measurement policy.

Symbolic execution is a type of program execution where so-called symbolic

values are used in the place of the concrete values that facilitate normal execution.

77



The symbolic values represent ranges of possible concrete values, come execution

time [25].

Symbolic execution is non-deterministic. That is to say that, upon each pro-

gram branch, symbolic execution explores both branches. Upon entering a branch,

a path condition is applied which constrains the symbolic values to the new set of

possible values.

Symbolic execution has been utilized to find state for bug finding and input

generation, and to establish other properties of programs [5, 7, 17, 39, 43, 44, 51,

55].

Figure 5.1 demonstrates symbolic execution by displaying a trace, for each

source-level instruction, the corresponding symbolic execution state information.

The source level instructions are show in C on the right. The symbolic execution

state is shown on the left. Each state has, starting from the left, the current path

condition (PC) and then any new symbolic value assignments (‘=’) or conditional

statement (‘...?’). The symbolic values take the form i#. For example, variables

x, y, and z start with unique symbolic values i1, i2, and i3, respectively. After

the assignments to z, in either branch body, z begins to share the same symbolic

value i1 or i2, depending on which branch was taken.

The path condition starts out as true: in other words, ‘no conditions’. After

the branch of x < y, the path condition reflects the would-be concrete conditionals

via the corresponding symbolic values i1 < i2 upon the true case. In the false

case, the path condition becomes the complement: i1 ≥ i2.

Symbolic execution has been leveraged to generate states for a target appli-

cation [9], which can be leveraged to produce expected states and thus expected

behavior. Symbolic execution allows for the production of program invariants [4].
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Program invariants are properties that hold true for a specific range of a target

application; these take the form of boolean propositions that are scoped to specific

code instructions or instruction ranges.

Candidate program invariants can be derived via an analysis of the path con-

ditions at critical points of the target application. The path conditions bound

variables to possible ranges of target values, which can be used to form the per-

formance envelope. The following section discusses how symbolic execution is

used with other tools to produce a final set of invariants.

5.2 SymInfer, KLEE, & DIG

We prototype MSRR suite using the SymInfer tool which is designed to lever-

age symbolic execution to produce program invariants. SymInfer takes a program

source as an input and will calculate program invariants at specific source-level

instructions [36]. The results are boolean expressions which have been found to

be true at the target code location for all possible inputs.

SymInfer uses an approach called CounterExample Guided Invariant Detection

(CEGIR). CEGIR is a hybrid dynamic and static approach where candidate pro-

gram invariants are inferred dynamically and then spurious candidates are refuted

via static analysis. [35]

SymInfer implements CEGIR using symbolic execution via several tools. While

the SymInfer was originally presented to work for Java programs using Sym-

bolic PathFinder(SPF) [43], SymInfer also supports the symbolic execution tool

KLEE [5] which we use in MSRR to produce symbolic states for C programs.

First, KLEE is used to produce a set of symbolic states. Then, concrete states

are generated from the symbolic states using the Dynamic Invariant Generator
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Figure 5.1. Symbolic state productions for a simple symbolic exe-
cution example

(DIG) [37]. From these concrete states, DIG infers expressive nonlinear candidate

program invariants. Finally, SymInfer uses KLEE’s symbolic states one more time

to verify or refute the candidate invariants [36].

5.3 SymInfer to MSRR-PL Rule Translation

SymInfer leverages KLEE and DIG to produce program invariants for specified

source level instructions. The conversion from these to MSRR-PL rules is a fairly

straightforward process. The invariants take the form of a series of comparisons

that can be conjoined to form the body of the MSRR-PL Validation Function.

Then, said function’s scoped parameters can be bound to the specific instruction,

or instructions, upon which the SymInfer invariant was produced.

The remainder of this section will demonstrate MSRR’s use of SymInfer with

an example from the NLA micro-benchmark suite. The NLA benchmark suite
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is a collection of small math programs gathered by RodrÃguez-Carbonell and

Kapur [36, 46, 47, 48].

Source Program We will use ‘cohendiv.c’, an application which computes in-

teger division. Cohendiv is part of the NLA micro-benchmark suite.

Listing 5.1 Rule translation example: cohendiv.c target application

1 mainQ( x, y){

2 //Cohen’s integer division

3 // returns x % y

4

5 assert(x>0 && y>0);

6

7 q=0;

8 r=x;

9 a=0;

10 b=0;

11 (1) {

12 ////%%% traces: int x, int y, int q, int r

13 (!(r>=y)) ;

14 a=1;

15 b=y;

16

17 (1){

18 // assert(r>=2*y*a && b==y*a && x==q*y+r && r>=0);

19 //%%% traces: int x, int y, int q, int a, int b, int r

20 (!(r >= 2*b)) ;

21

22 a = 2*a;

23 b = 2*b;

24 }

25 r=r-b;

26 q=q+a;

27 }

28 // assert(r == x % y);

29 // assert(q == x / y);

30 // assert(x == q*y+r);

31 //%%% traces: int x, int y, int r, int q, int a, int b

32 q;

33 }
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34

35 main( argc , **argv){

36 mainQ(atoi(argv [1]), atoi(argv [2]));

37 0;

38 }

The source of cohendiv is shown above. Special comments have been inserted

as annotations for SymInfer. The comments which start ‘%%%traces’ indicate to

SymInfer to calculate a program invariant at said location. Additionally, each such

comments includes the local variables via C type and identifier, to be considered

in the formation of the program invariant.

SymInfer Output For cohendiv.c, we can run SymInfer to produce the follow-

ing output file:

Listing 5.2 Rule translation example: SymInfer output

1 *** programs/nla/cohendiv.c, 2 locs , invs 13 (4 eqts), inps 187,

2 time 300.355239153 s, rand 71:

3 25: a*y - b == 0, q*y + r - x == 0, -b <= -1, b - r <= 0,

4 r - x <= 0, -y <= -1

5 37: a*y - b == 0, q*y + r - x == 0, -a <= 0, r - y <= -1,

6 -a - r <= -1, -r <= 0, a - q <= 0

Policy Generation Output From the SymInfer output, we generate a rule for

each invariant listed.

As discussed in chapter 4, a rule in MSRR-PL is essentially a validation func-

tion associated with scoped parameters as inputs. The scoped parameters are all

target features which are scoped to a specific location and relative occurrence.

As such, the validation function becomes the conjunction of the set of nu-

merical comparisons that comprises the invariants for the target line. Moreover,

the parameters for such a validation function are simply the local variables us-
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ing the same source-level identifier that are shown in the SymInfer output. The

parameters are scoped to the specific file and line in said output.

The validation function will take the following form for the first invariant.

First invariant:

Listing 5.3 Rule translation example: First invariant

1 25: a*y - b == 0, q*y + r - x == 0, -b <= -1, b - r <= 0,

2 r - x <= 0, -y <= -1

MSRR-PL Validation function:

Listing 5.4 Rule translation example: MSRR-PL validation function

1 policy.behavior_definition

2 .validation_functions["validation_function_1"] =

3 ValidationFunction(

4 []( SampleSet samples) {

5 a = samples.getAsInt("a");

6 b = samples.getAsInt("b");

7 q = samples.getAsInt("q");

8 r = samples.getAsInt("r");

9 x = samples.getAsInt("x");

10 y = samples.getAsInt("y");

11 a*y - b == 0 && q*y + r - x == 0 &&

12 -b <= -1 && b - r <= 0 && r - x <= 0 &&

13 -y <= -1;

14 }

15 );

The scoped parameters will take the following form:

Listing 5.5 Rule translation example: features, scopes, parameters

1 policy.behavior_definition.features["a_feature"] =

2 VariableFeature("a");

3

4 policy.behavior_definition.locations["location_1"] =

5 FileLineLocation("cohendiv.c", 25);

6

7 policy.behavior_definition.occurrences["occurrence_1"] =
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8 OriginOccurrence("location_1");

9

10 policy.behavior_definition.parameters["a_parameter"] =

11 Parameter("a_feature", "occurrence_1");

The full rule for the first invariant is below:

Listing 5.6 Rule translation example: full MSRR-PL policy

1 Policy policy;

2

3 // Build Behavior Definition

4

5 policy.behavior_definition

6 .validation_functions["validation_function_1"] =

7 ValidationFunction(

8 []( SampleSet samples) {

9 a = samples.getAsInt("a");

10 b = samples.getAsInt("b");

11 q = samples.getAsInt("q");

12 r = samples.getAsInt("r");

13 x = samples.getAsInt("x");

14 y = samples.getAsInt("y");

15 a*y - b == 0 && q*y + r - x == 0 &&

16 -b <= -1 && b - r <= 0 && r - x <= 0 &&

17 -y <= -1;

18 }

19 );

20

21 policy.behavior_definition.features["a_feature"] =

22 VariableFeature("a");

23 policy.behavior_definition.features["b_feature"] =

24 VariableFeature("b");

25 policy.behavior_definition.features["q_feature"] =

26 VariableFeature("q");

27 policy.behavior_definition.features["r_feature"] =

28 VariableFeature("r");

29 policy.behavior_definition.features["x_feature"] =

30 VariableFeature("x");

31 policy.behavior_definition.features["y_feature"] =

32 VariableFeature("y");

33
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34 policy.behavior_definition.locations["location_1"] =

35 FileLineLocation("cohendiv.c", 25);

36

37

38 policy.behavior_definition.occurrences["occurrence_1"] =

39 OriginOccurrence("location_1");

40

41 policy.behavior_definition.parameters["a_parameter"] =

42 Parameter("a_feature", "occurrence_1");

43 policy.behavior_definition.parameters["b_parameter"] =

44 Parameter("b_feature", "occurrence_1");

45 policy.behavior_definition.parameters["q_parameter"] =

46 Parameter("q_feature", "occurrence_1");

47 policy.behavior_definition.parameters["r_parameter"] =

48 Parameter("r_feature", "occurrence_1");

49 policy.behavior_definition.parameters["x_parameter"] =

50 Parameter("x_feature", "occurrence_1");

51 policy.behavior_definition.parameters["y_parameter"] =

52 Parameter("y_feature", "occurrence_1");

53

54 policy.behavior_definition.rules["rule_1"] =

55 Rule(

56 "validation_function_1",

57 {

58 "a_parameter", "b_parameter", "q_parameter",

59 "r_parameter", "x_parameter", "y_parameter"

60 }

61 );

62

63 // Build Sampling Schedule

64

65 policy.sampling_schedules["default_schedule"] =

66 SampleSchedule ();

67

68 policy.sample_schedules["default_schedule"]

69 rule_schedules["rule_1_schedule"] =

70 RuleSchedule(

71 "rule_1", EveryIteration (),

72 {

73 FirstSamplePoint (), FirstSamplePoint (),

74 FirstSamplePoint (), FirstSamplePoint (),

75 FirstSamplePoint (), FirstSamplePoint ()
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76 }

77 );

5.4 Discussion & Limitations

In the best case, the requirements for trust are such that this technique is

sufficient to automatically generate measurement policies that can be used to

eliminate the expert and their manual effort from the process of writing application

specific measurers entirely. In such cases, the entire process of generating an

application specific measurement system is automatic.

However, in some cases, the types of measurement policies that the automatic

generation system produces, and the rule coverage of such, may not be sufficient

for the specific trust requirements of a given remote attestation system. In such,

cases the MSRR policy generation tool can be used to get initial rule coverage for

free and allow the expert to focus on the other areas of the policy.

This may be the case for certain types of policies because of the nature of

human written policies contrasted with those automatically discovered through

invariant inference. The human-written policies tend to be conceptually driven

in nature. These will take forms similar to the likes of human-written unit tests

which attempt to encapsulate the intentions or purpose of a specific component of

the software. These such policies might describe high-level notions such as, in a

game of Chess, what type of move is considered legal, in accordance with the rules

of a standard game of chess. This example and others are discussed in chapter 7.

In contrast, the automatically generated policies will take non-conceptual

forms. This process will be better at finding low-level relationships between target

features. These sorts of policies are better at getting lots of ground coverage that
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are agnostic of high-level conceptual and program-purpose related features.

All things considered, we believe that automatic techniques such as the one

we employed in this chapter are be best suited for garnering high degrees of

rule coverage at a very low cost. Most systems have a host of heterogeneous

applications that would otherwise be prohibitively expensive, out of the sheer

enormity of scope, to get meaningful rule coverage from the manual effort of

experts. This automatic technique is excellent in such cases to provide high degrees

of coverage and to allow experts to go either completely uninvoked or to focus their

efforts on the most trust critical subsets of the target entity.
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Chapter 6

Suite Fitness & Performance

Benchmarking

The MSRR measurement suite is a set of tools designed to work in unison to

dramatically reduce the time and effort spent generating tailored measurement

solutions for arbitrary target applications. To this end, we believe we have been

successful in bringing together state of the art techniques along with new strate-

gies to facilitate such improvements. Furthermore, we believe that the tools and

techniques we provide are reasonably applicable, expressive, and efficient.

This chapter will discuss the fitness of the MSRR tools, both in regards to

their ability to eliminate manual work and, where appropriate, the extent to

which the tools do so efficiently, both in their own performance and the degree to

which they minimize impact on the performance of the target application. To this

end, we offer several experiments which comment upon the fitness of the various

components of the MSRR approach.

This chapter will be organized as follows. First, we will discuss the goals and

metrics for which such a system should be judged. The following sections will
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each describe an experiment targeting the aforementioned goals, the results, and

any related discussion and analysis. The final section will summarize the findings,

both the advantages and the limitations for the MSRR suite.

6.1 Goals & Metrics

The MSRR Measurement Suite is designed to lessen the manual effort required

by would-be experts in writing measurement systems. To this end, the software

components must be able to perform the various tasks pursuant to the goals, and

the language components must be able to express the desired range of functions

and features pursuant to the same. Moreover, for the software components, there

is also the question is how efficiently do they perform their tasks or express their

content. Likewise, the language components are better to the extent the are

efficient in usability, clarity, and conciseness.

In this section, we will address both the measurement system and the measure-

ment policy language discussed in this work in regards to their goals for fitness.

General Purpose Measurement System The MSRR Measurement System

is the component that provides the core measurement features. It is the software

piece that is directed by the attestation system in order to control and record

execution state of the target application.

Such a dynamic measurement system should actively maintain trust through-

out the life of a target application. Such a measurer must be lightweight and as

unintrusive to the target applications as possible.

The bottom line for the MSRR Measurement System is to ensure that it can

capture state, and do so with a minimum or at least reasonable overhead to
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the target application. In the following sections, we present experiments which

target specifically the overhead of the measurement system in various contexts.

Moreover, we record performance data of the measurement system under different

loads, to express the performance impact generally. We also take detailed data to

explore the specific performance impacts of some of the key measurement types,

including the snapshot measurement.

Measurement Policy Language The MSRR Policy Language is used to write

measurement specific policies so that a measurement system may be driven ac-

cordingly. Such a policy language has two main roles, as discussed in detail in

chapter 4: (A) it must encapsulate the expected behavior of the target applica-

tion and (B) it must describe a schedule for the runtime sampling of the target

application, in order to evidence said expected behaviors.

The question of ‘what constitutes a good or fit policy language’ is an open

research question, especially at anything more than a very high level. This is

primarily due to the relative infancy of the literature with regards to dynamic

measurement for arbitrary applications. As such, the kinds of policies themselves

that will prove most useful in the near future and beyond is only starting to come

into view. Furthermore, even with a good understanding of what a quality policy

language should look like, the task of evaluating said quality is daunting given that

there are few policy languages to compare to, and none that suite the general case,

as does MSRR-PL.

That said, like with any specification language beyond the realm of measure-

ment, the following attributes are universally desirable: A more expressive lan-

guage is better; that is, we want to be able to, ideally, express all possible good

measurement policies. Furthermore, we want to express such while also being
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both concise and easy to understand.

In an attempt to best demonstrate MSRR-PL’s success and failings in re-

gards to these universal language values, we have selected several example poli-

cies. Using these examples as language benchmarks, we analyze possible MSRR

representations of them and discuss the efficiency and ease to which they can be

written. Moreover, we provide quantitative metrics where possible and analyze

qualitatively in either case.

6.2 Experimental Methodologies

We conduct our experiments on a system running 64-bit Fedora 24 with 32

GB of memory and quad-core Intel Xeon 1.8 Ghz processor. We employ custom

micro-benchmarks, the Non-Linear Arithmetic (NLA) micro-benchmark suite [36,

46, 47, 48], and programs from the SPEC CPU 2006 benchmark suite with the

reference data sets [21]. We compiled the benchmarks with the -g option to

produce the DWARF symbols for use by our measurement system. We have used

default settings for all other options. Unless otherwise stated, each benchmark-

configuration is executed 10 times, and the average program runtime is used.

6.3 Experiment 1

Our first experiment is designed to evaluate MSRR Measurement System’s

overhead when it is attached to the target application and is ready to collect

measurements, but receives no requests from the attestation system during the

process life-time. In this scenario, we found that MSRR does not impose any

discernible overhead that is within the margin of error for any of our benchmarks.
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6.4 Experiment 2

The second experiment uses a simple micro-benchmark (computing the Fi-

bonacci sequence) to measure the cost of individual measurement events. We

create a timed monitoring measurement (using delay) to sample the program

call stack (call stack), a specific machine register (reg), and a stack memory

variable (mem) every 10 msec. We create another event-based continuous measure-

ment to measure the cost of the hook mechanism. The hook stops the program

at a specified program location and immediately returns without collecting any

measurement.

The experimental setup is designed to collect approximately 22,000 samples of

any one measurement type during a single program run. We also create a timed

event to measure the overhead of the snapshot utility that calls snap every 10,000

msec.

These measurement functions are described in detail in subsection 3.1.5. The

snapshot measurement is used for the optimization which is discussed in subsec-

tion 3.1.8.

The baseline executes the micro-benchmark without any measurement. Each

active run activates a single measurement type during program execution. The

time difference between the active and baseline program runs, divided by the

number of events invoked gives us the estimate of the cost of each event. We find

that the call stack, reg, mem, hook, and snap events have an overhead of 0.54

msec, 0.32 msec, 0.32m sec, 1.94 msec, 96.45 msec, respectively, on our system.

The cost of some events, especially call stack and snap, may vary depending

on the client program’s call stack depth and memory usage.
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6.5 Experiment 3

The third experiment evaluates the overhead imposed by the MSRR framework

when sampling the entire call stack of a user-application at different measurement

frequencies.

The experiment performs the following sequence of steps.

1. Start the target process with LD PRELOAD of a custom library which halts

the program before entry into the target program’s main function.

2. The measurer daemon is launched.

3. The attester program is launched.

4. The attester initiates communication with the measurer daemon.

5. The attester directs the measurer to begin monitoring the call stack at the

configured frequency.

6. The attester directs measurer to modify the hold flag to allow the program

to enter main and commence normal execution.

7. The measurer takes periodic measurements of the call stack until the pro-

gram terminates. Measurements are recorded into the measurement store.

*Note the measurer’s ability to modify the data of the target is reserved to

evaluation scenarios like these. In a classical remote attestation scenario, the

application can only be temporarily halted and sampled by measurer, as described

in subsection 3.1.1.

Measurements are collected at periodic intervals of 100 msec, 1,000 msec,

10,000 msec, and at every system call.
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Figure 6.1. MSRR overhead when invoked to periodically sample
the application call stack

Figure 6.1 shows the ratio of the program runtime when measurements are

taken for various configurations to the program runtime with no measurer at-

tached. We found that the measurer imposes an overhead of 0.08%, 0.25%, 2.14%,

and 7.95% for call stack measurements taken every 10,000 msec, 1,000 msec, 100

msec, and at all system calls, respectively and on average (geometric mean) over

all benchmark programs. The standard deviations were small relative to their

means. The average standard deviation was 0.38% and all standard deviations

fell in the range of 0.01% and 3.65%.

Distinct benchmarks have both a different system call invocation rate and

different average call stack depths. These differences cause the large variation

in the overhead imposed by MSRR for call stack samples at system call sites

for different programs. The timer-based events trigger the measurements at a

uniform rate (100 msec, 1,000 msec, or 10,000 msec) for all benchmarks. For

these timer-based experiments, the largest overhead was on benchmark 403.gcc

at a measurement period of 100 msec. The average execution time for 403.gcc

94



was 115.7% of the execution time without any measurement. We found that the

higher overhead is mainly because 403.gcc routinely has higher call stack depths

than most other benchmarks.

The delay duration represents a tradeoff between performance and accuracy

of trust based inferences. Id est, more frequent measurements decreases the like-

lihood that transient corruptions, as may be the result of an attack, are not

represented by the evidence. Even with very high frequency measurements, our

measurer performs reasonably with small overhead.

6.6 Experiment 4

This section exercises the policy language and policy generation components

using the Non-Linear Arithmetic (NLA) micro-benchmark suite. The NLA bench-

mark suite was originally used by SymInfer to demonstrate its own capabilities to

infer program invariants from a host of programs.

For each program in the NLA suite, SymInfer infer can generate program

invariants. And, we have in turn used MSRR to generate MSRR-PL policies.

As such, we can reasonably infer that MSRR can generate policies from all

SymInfer outputs, to the extent that SymInfer’s own selection of the NLA bench-

mark suite as a representative set is accurate.

Using the policies generated from the NLA micro-benchmark suite, we per-

formed a live experiment with the MSRR measurement system in order to demon-

strate the overhead of the autogenerated policies. Specifically, the fourth exper-

iment evaluates the overhead imposed by the MSRR framework when sampling

as directed by the autogenerated policies for each NLA benchmark, and at dif-

ferent measurement frequencies which have been encoded via different sampling
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Figure 6.2. MSRR overhead when invoked periodically to sample
call stacks for automatically generated policies

schedules.

The experiment performs the same sequence of steps as Experiment 3, in

section 6.5. Measurements schedules are designed to collect samples at periodic

intervals of 100 msec, 1,000 msec, and 10,000 msec.

Figure 6.2 shows the ratio of the program runtime when measurements are

taken for various configurations to the program runtime with no measurer at-

tached. We found that the measurer imposes an overhead of 0.53% and 5.29% for

call stack measurements taken every 1,000 msec and 100 msec, respectively and

on average (geometric mean) over all benchmark programs. For a period of 10,000

msec, the overhead was statistically insignificant. The standard deviations were

small relative to their means. The average standard deviation was 0.67% and all

standard deviations fell in the range of 0.13% and 3.51%.

96



0

20

40

60

80

100

120

140

co
he
nc
u

co
he
nd
iv

dij
ks
tra

div
bi
n

eg
cd

eg
cd
2

eg
cd
3

fe
rm
at
1

fe
rm
at
2

fre
ire
1

fre
ire
2

ge
o1

ge
o2

ge
o3

ha
rd

va
lid
_b
oa
rd

va
lid
_m

ov
e

kn
ut
h

lcm
1

lcm
2

m
an
na
div

ca
rd
_r
ep
ea
t

pr
od
4b
r

pr
od
bi
n

ps
1

ps
2

ps
3

ps
4

ps
5

ps
6

sq
rt1

.c
Ge
om

ea
n

Lin
es

 o
f C

od
e

Benchmark

Figure 6.3. Number of lines of code for the benchmark measurement
policies written in the MSRR Policy Language
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Figure 6.4. Number of tokens for the benchmark measurement poli-
cies written in the MSRR Policy Language

6.7 Experiment 5

In this section, we have produced several measurement policies in the MSRR

Measurement Policy Language. Using these examples, we perform industry stan-

dard code metrics to find insight into the qualities of the MSRR-PL policies.
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Figure 6.5. Average and maximum cyclomatic complexity, by
method, for the benchmark measurement policies written in the MSRR
Policy Language

We have curated a varied selection of measurement scenarios, and ultimately

policies. We borrow a policy written for the Java Measurement Framework (JMF)

for the bluffin-muffin Texas Hold’em card game simulator [56, 59]. We utilize

the policies generated by the MSRR policy generation tool, for each of the 27

benchmarks in the NLA micro-benchmark suite. We employ two custom examples

for the DreamChess program [57], which are described in detail as case studies

in chapter 7.

For each benchmark policy, we write or rewrite the policy in MSRR-PL using

industry standard best practices. Then, we report following industry standard

metrics for measuring code complexity:

• Lines of Code - The number of lines of code in the policy language definition.

• Token Count - The number of C++ tokens used in the policy language

definition.
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• Cyclomatic Complexity Number (CCN) - A control flow graph derived com-

plexity estimation metric [31].

Cyclomatic complexity is code metric used in the industry to increase testa-

bility and maintainability of software code. Method complexity measures such as

cyclomatic complexity are highly related to the likelihood of error presence in a

software [50].

A limit of a cyclomatic complexity number (CCN) 10 is suggested for software

development compliance. McCabe suggests that code which exceeds the limit

should either be refactored or a rationale should be provided as to why the high

complexity is appropriate [60].

The cyclomatic complexity is calculated analyzing the source code’s control

flow graph and by counting the number of edges, nodes, and exit points therein.

Cyclomatic complexity is calculated with the following formula [27, 31]:

M = E −N + 2P

M is the complexity number. E is the number of edges in the control flow

graph. N is the number of nodes. P is the number of exit points.

In our experiment, cyclomatic complexity was calculated at a per-method level.

Figure 6.5 shows the average and maximum per-method cyclomatic complexity

number for each measurement policy.

We found that the MSRR-PL policies had an average (geometric mean) of

36.9 lines of code for all benchmark policies and 505.8 tokens for all benchmark

policies. The lines of code and number of tokens scale linearly with respect to the

number of parameters of the validation function. We found that the MSRR-PL

definitions had an average (geometric mean) of 3.14 CCN per-method averages
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and 4.85 CCN per-method maximums.

6.8 Findings Summary

The MSRR Measurement Suite is designed with the express purpose of reduc-

ing and eliminating, where possible, the significant manual effort required to de-

velop tailored application-specific measurement solutions. To this end, we believe

we have succeeded with our prototypes. Not only does our system lessen manual

effort, for the various tasks on the application measurer development pipeline,

the evidence suggests that we do so efficiently in regards to the simplicity of our

solutions and low impact of the tools.

In this section, we will now restate the goals and summarize the findings.

General Purpose Measurement System A measurement system should be

lightweight and as unintrusive to the target applications as possible.

Our findings show that the MSRR Measurement System can capture state

with a reasonable overhead to the target application for a variety of workloads,

both in policy type and sample rates. Each of the non-snap EQL features imposed

a very low overhead when measured individually. And, for even higher frequencies

of measurement, the slowdown was reasonable.

The snapshot measurement, which is proposed for the optimization strategy

discussed in subsection 3.1.10, will likely be most useful for data intensive applica-

tions, such as those that interface with relational databases where massive batch

measurements may be required to verify rules involving mass data relationships.

In such cases, we anticipate that the cost of direct measurements will easily exceed

the threshold to make the snapshot optimization the preferred approach.
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Measurement Policy Language A measurement policy should express as

many types of measurement policies as possible, while also balancing with it con-

ciseness and maintainability.

Based on the representative subset of benchmark policies that we have cu-

rated, the measurement policy language prototype is able to express polices of the

nature of those that have surfaced as of yet in the remote attestation community.

Furthermore, these policies have been demonstrated to have low complexity on

each of the common industry code metrics that we measured, which correlates to

higher maintainability and lower likelihood of error introduction upon refactor.

The average cyclomatic complexity fell are below the maintainability limit of

10 originally proposed by McCabe [60]. The few examples that exceeded the

threshold the were automatically generated via the measurement policy genera-

tor. Those examples had validation functions with many numerical comparisons

coming from the SymInfer produced program invariants. The higher complexity

readings in this case introduces no concerns for maintainability because of the

fact that these validation functions were produced automatically and can easily

be recomputed automatically upon target application refactor.

Our findings also indicate that much of the code across all of our policies follow

simple patterns. This is promising in that manual policy writing can be aided

further via policy template generation tools which produce much of the repetitive

code structures for the developer. Furthermore, advanced language features such

as forms of ‘syntactic sugar’ that can decrease the verbosity and repetitiveness of

the policy declarations would decrease the source size of the policies and increase

development velocity.
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Chapter 7

Examples and Case Study

In this chapter we present a few examples to illustrate the full usage of the

MSRR suite, in the context of remote attestation and using real world applica-

tions.

7.1 Simple Attestation System

This section describes a very simple attester/appraiser software that can ini-

tialize an MSRR-PL policy and then utilize it by periodically retrieving measure-

ments and verifying the rules.

In a real-world remote attestation scenario, the appraiser would be separated

from the attestation system and would reside on a remote machine. As such,

instead of making a decision on the attester’s own, the attester would be send-

ing measurements as evidence back to the appraiser for the trust-based decision

making.

Listing 7.1 Example of a simple attester utilizing a MSRR-PL policy

1 // build a policy like one of the earlier examples

2 Policy policy = build_policy ();
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3

4 // connect to the measurer

5 Measurer measurer = Measurer( ip_address , port );

6

7 // apply the sampling schedule to the measurer

8 measurer.apply_schedule(policy.schedule );

9

10 // begin main appraisal loop

11 ( ) {

12

13 // wait before retrieving samples

14 sleep (1000);

15

16 // send a retrieve samples so far

17 SampleSet samples = measurer.retreive_samples ();

18

19 // apply rules to the samples

20 vector <ApplicationResult > ars =

21 policy.apply_rules(samples );

22

23 // handle the results accordingly

24 cout << "Rule Applications: ";

25 (ApplicationResult ar : ars) {

26 cout << (ar.pass ? "PASS" : "FAIL") << ",";

27 }

28 cout << "\n";

29 }

In Listing 7.1, the build policy function can be replaced with any policy, such

as those seen in previous chapters or in the following case study.

7.2 DreamChess Case Study

In this section, we present a detailed use case of the MSRR suite for a real

world scenario. To this end, we have selected an application that is illustrative

in nature and easy understand, both for the purposes of understanding its design

concerns and how such concerns relate to the questions of expected behavior
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and establishing trust in the context of remote attestation. This application is

DreamChess, a software designed to simulate chess games [57].

For this application, we discuss some key properties of the application that

we wish to verify against potential malicious modification and attack. For each

property, we demonstrate how our system can be used to describe the properties

in measurement policies. And, for each policy, we show how the policy is used

at runtime to invoke the measurement system to detect any aberrations from the

expected values and relationships.

7.2.1 DreamChess Scenario

We employ DreamChess, which is an open source chess game for Windows,

Mac, and Linux. DreamChess ships with the chess engine Dreamer [57]. The

trust framework is tasked with ensuring that the game of chess is being played

correctly and fairly. This is an example of an application where an attestation

protocol would be designed and measurement system employed to evidence said

correctness of play.

For context, you may think of the appraiser in this case as an agent or com-

ponent of some “gaming authority” which acts as a referee of online chess games.

The goal for this “referee” is to establish that games are played fairly. To make the

scenario interesting, money, prestigious chess titles, and even the gaming service

provider’s reputation could all be at stake.

DreamChess describes the game board (see Figure 7.1), in a structure called

board. The structure contains an integer array square of size 64, to represent

the spaces of the board. The first eight elements of the array correspond to the

first row of spaces on the board, which are {a1, b1, c1, d1, e1, f1, g1, h1}. The
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Figure 7.1. Starting configuration of a standard chess board with
row and column labels

next 8 elements correspond to the next row, {a2, b2, c2, d2, e2, f2, g2, h2}, and

so on. There is a unique integer value reserved for each game piece and color

combination, and an additional value reserved for a blank space. See Listing 7.2

for the flags and the C definition of board.

Listing 7.2 DreamChess examples: relevant code regions [57]

1 WHITE_PAWN 0

2 BLACK_PAWN 1

3 WHITE_KNIGHT 2

4 BLACK_KNIGHT 3

5 WHITE_BISHOP 4

6 BLACK_BISHOP 5

7 WHITE_ROOK 6

8 BLACK_ROOK 7

9 WHITE_QUEEN 8

10 BLACK_QUEEN 9
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11 WHITE_KING 10

12 BLACK_KING 11

13 NONE 12

14

15 [ . . . ]

16

17 board

18 {

19 turn;

20 square [64];

21 captured [10];

22 state;

23 } board_t;

7.2.2 MSRR-PL Policies for DreamChess

For DreamChess, we would like to describe some performance envelope and

encapsulate that into an MSRR-PL policy. To do this, we can approach it in a

similar manner as does a unit tester does when they have specific units of a piece

of software upon which they would like to establish rules.

At the center of the operation of the chess simulation is the method where

the player’s “moves” are applied. In this method, the board changes state from

one play state to another which makes this method a reasonable place to begin

describing MSRR-PL rules.

The remainder of this section will identify properties for this critical region

of DreamChess that we would like to encapsulate in MSRR-PL rules. These

properties will be considered our ‘goals’. For the goals, we will define a rule in

MSRR-PL. And at the end of the section, a complete policy will be shown.
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7.2.3 Rule 1 - Is the Chess Board in a Valid State?

The referee/appraiser may wish to determine that the board itself is a valid

chess board, at any given time. For this section, we will make encapsulating this

property in an MSRR-PL rule our goal.

To achieve this, we must answer the question of ‘What is a valid chess board?’

We must then answer ‘How are such boards represented in the DreamChess

source?’ And finally, we must establish a rule that expresses the relationships

of DreamChess’s source features to encapsulate this valid-boardness property.

So, what is a valid chess board, generally speaking? A valid chess board

abides by the rules of a standard chess game and in truth is rather complicated.

In a game of chess, pieces move around on the board. Some may eventually be

removed from play. The Kings must be in play and not in ‘check’ so long as the

game persists. Some pieces can never reach certain squares. Some pieces can

transform into others.

The bottom line is that the notion of a valid chess board, to a high degree

of accuracy, is counterproductively complex for the purposes of this example.

However, a simplified definition of valid suffices to get the benefits of the MSRR-

PL demonstration. That said, for this MSRR-PL rule, we will simplify the reality

and thus the validation function logic to say the following: A chess board shall be

considered ‘valid’ if there are no more than 8 pawns of black and no more than 8

pawns of white.

Listing 7.3 Valid board example: MSRR-PL policy definition

1 Policy policy;

2

3 // Build Behavior Definition

4

5 policy.behavior_definition
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6 .validation_functions["board_validation_function"] =

7 ValidationFunction(

8 []( SampleSet samples) {

9 vector < > squares =

10 samples.getAsVector < >("squares_parameter");

11

12 !(

13 count_if(squares , BLACK_PAWN) > 8 &&

14 count_if(squares , WHITE_PAWN) > 8

15 );

16 }

17 );

18

19 policy.behavior_definition.features["squares_feature"] =

20 VariableFeature("board ->square");

21

22 policy.behavior_definition.locations["make_move_location"] =

23 FileMethodLocation("board.c", "make_move");

24

25 policy.behavior_definition.occurrences["make_move_occurrence"] =

26 OriginOccurrence("make_move_location");

27

28 policy.behavior_definition.parameters["squares_parameter"] =

29 Parameter("squares_feature", "make_move_occurrence");

30

31 policy.behavior_definition.rules["valid_board_rule"] =

32 Rule("board_validation_function", {"squares_parameter"});

33

34

35 // Build Sampling Schedule

36

37 policy.sampling_schedules["default_schedule"] =

38 SampleSchedule ();

39

40 policy.sample_schedules["default_schedule"]

41 .rule_schedules["valid_board_rule_schedule"] =

42 RuleSchedule(

43 "valid_board_rule", EveryIteration (),

44 {FirstLineSamplePoint ()}

45 );

Listing 7.3 demonstrates this rule. The validation function has the logic which
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encapsulates the expected states of a valid board. The remaining code, as with

previous examples, is in charge of setting up the MSRR-PL Scoped Parameter of

the board (technically the ‘square’ int array within struct board), associating it

with the validation function, and finally establishing the sampling schedule.

A measurement request and response for this rule would look as follows.

Query (retreive)

JSON-

RPC 1 {

2 "jsonrpc" : "2.0",

3 "params" :

4 {

5 "type" : "retreive_expr"

6 },

7 "method" : "eval",

8 "id" : 4

9 }
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Result (sample set (sample (int value

6 2 4 8 10 4 2 6

0 0 0 0 0 0 0 0

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

1 1 1 1 1 1 1 1

7 3 5 9 11 5 3 7

)))

JSON-

RPC 1 {

2 "jsonrpc": "2.0",

3 "result":

4 {

5 "samples" : [

6 {

7 "data" : {

8 "value" : [

9 6,2,4,8,10,4,2,6,

10 0,0,0,0,0,0,0,0,

11 12,12,12,12,12,12,12,12,

12 12,12,12,12,12,12,12,12,

13 12,12,12,12,12,12,12,12,

14 12,12,12,12,12,12,12,12,

15 1,1,1,1,1,1,1,1,

16 7,3,5,9,11,5,3,7

17 ],

18 "type" : "int_value"

19 "array" : ,

20 },

21 "label" : "board",

22 "occurrence" : -1,

23 "type" : "sample_result"

24 }

25 ],

26 "type" : "sample_set_result"

27 },

28 "id": 4

29 }

110



7.2.4 Rule 2 - Is the Chess Move Valid?

A referee/appraiser might also be interested in ensuring that each and every

move made during play is valid. For this section, we will make encapsulating the

behavior of a valid move in an MSRR-PL rule our goal.

To this end, a policy can be constructed to take a baseline board measurement

at the start of play and then a new measurement of the board upon the conclusion

of each move operation. The difference between each successive board state will

determine whether or not the move was valid.

Like before, to write a rule we must answer a few questions. In this case:

What is a valid move in the game of chess, generally? How is this represented in

the DreamChess source? How can we write a rule that relates the source features

of DreamChess to distinguish valid moves from invalid moves?

As with the valid board concept, the concept of a valid move is more complex

than is worth representing with complete accuracy in this demonstrative exercise.

Chess describes an initial set of moves that can be made for each piece type,

which are varied. Moreover, there are special exceptions such as castling and piece

promotion. Consequently, as with the previous example, we will use a simplified

reality to get the maximum benefit of the demonstration without needing to dive

deep in the idiosyncrasies of chess.

For the purposes of this rule, we shall define a valid move as follows: A valid

move shall be defined as one that leads to a board difference in exactly two spaces.

The intuition here is that, in basic move scenarios, a piece is removed from its

starting space and then replaces the contents of another space.

As such, the rule can be described as follows:
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Listing 7.4 Valid move example: MSRR-PL policy definition

1 Polipolicycy policy;

2

3 // Build Behavior Definition

4

5 policy.behavior_definition

6 .validation_functions["move_validation_function"] =

7 ValidationFunction(

8 []( SampleSet samples) {

9 [] squares_initial =

10 samples.getAsVector < >("initial_parameter");

11 [] squares_final =

12 samples.getAsVector < >("successor_parameter");

13

14 [] squares_difference = subtract_array(

15 squares_initial , squares_final

16 );

17

18 count_nonzero(squares_difference )==2;

19 }

20 );

21

22 policy.behavior_definition.features["squares_feature"] =

23 VariableFeature("board ->square");

24

25 policy.behavior_definition.locations["make_move_location"] =

26 FileMethodLocation("board.c", "make_move");

27

28 policy.behavior_definition.occurrences["initial_occurrence"] =

29 OriginOccurrence("make_move_location");

30

31 policy.behavior_definition.occurrences["successor_occurrence"] =

32 NextOccurrence("make_move_location", "initial_occurrence");

33

34 policy.behavior_definition.parameters["initial_parameter"] =

35 Parameter("squares_feature", "initial_occurrence");

36

37 policy.behavior_definition.parameters["successor_parameter"] =

38 Parameter("squares_feature", "successor_occurrence");

39

40 policy.behavior_definition.rules["valid_move_rule"] =

41 Rule(
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42 "move_validation_function",

43 {"initial_parameter", "successor_parameter"}

44 );

45

46 // Build Sampling Schedule

47

48 policy.sampling_schedules["default_schedule"] =

49 SampleSchedule ();

50

51 policy.sample_schedules["default_schedule"]

52 .rule_schedules["valid_move_rule"] =

53 RuleSchedule(

54 "valid_move_rule", EveryIteration (),

55 {FirstLineSamplePoint (), FirstLineSamplePoint ()}

56 );

The command to register the monitoring measurement is below.

Query (retreive)

JSON-

RPC 1 {

2 "jsonrpc" : "2.0",

3 "params" :

4 {

5 "type" : "retreive_expr"

6 },

7 "method" : "eval",

8 "id" : 4

9 }
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Result (sample set

(sample (int value

6 2 4 8 10 4 2 6

0 0 0 0 0 0 0 0

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

1 1 1 1 1 1 1 1

7 3 5 9 11 5 3 7

))

(sample (int value

6 2 4 8 10 4 2 6

0 0 0 0 0 0 0 0

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

12 12 12 12 12 12 12 12

1 1 1 1 1 1 1 1

7 3 5 9 11 5 3 7

)))
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JSON-

RPC 1 {

2 "jsonrpc": "2.0",

3 "result":

4 {

5 "samples" : [

6 {

7 "data" : {

8 "value" : [

9 6,2,4,8,10,4,2,6,

10 0,0,0,0,0,0,0,0,

11 12,12,12,12,12,12,12,12,

12 12,12,12,12,12,12,12,12,

13 12,12,12,12,12,12,12,12,

14 12,12,12,12,12,12,12,12,

15 1,1,1,1,1,1,1,1,

16 7,3,5,9,11,5,3,7

17 ],

18 "type" : "int_value"

19 "array" : ,

20 },

21 "label" : "board_initial",

22 "occurrence" : -1,

23 "type" : "sample_result"

24 },

25 {

26 "data" : {

27 "value" : [

28 6,2,4,8,10,4,2,6,

29 0,0,0,0,0,0,0,0,

30 12,12,12,12,12,12,12,12,

31 12,12,12,12,12,12,12,12,

32 12,12,12,12,12,12,12,12,

33 12,12,12,12,12,12,12,12,

34 1,1,1,1,1,1,1,1,

35 7,3,5,9,11,5,3,7

36 ],

37 "type" : "int_value"

38 "array" : ,

39 },

40 "label" : "board_final",

41 "occurrence" : -1,

42 "type" : "sample_result"

43 }

44 ],

45 "type" : "sample_set_result"

46 },

47 "id": 4

48 }
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Chapter 8

Future Work

The MSRR measurement suite described in this paper is an effort to reduce

the costly manual effort required of experts which, by and large, prohibit the

widespread adoption of application-level measurement system in trusted comput-

ing. As we have demonstrated, progress has been made on a several fronts herein;

however, this is area of study is in its infancy and there is much room to improve.

Here are a few avenues for future work that we feel are most imminent and

compelling.

Improvements to the Policy Language We envision a more ideal policy

language implemented in a standalone system which can drive multiple measure-

ment systems. Furthermore, we feel that policy languages are complex in nature

and to maximize clarity, future iterations should become a completely indepen-

dent, hand-crafted, language rather than a DSL embedded in C++, which for the

purposes of this prototype was most readily applicable and prudent.

As discussed in chapter 6, a policy language like MSRR-PL can become an even

more powerful tool for measurer development with the introduction of ‘syntactic
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sugar‘ to decrease verbosity of policies and increase development velocity. Fur-

thermore, partial generation tools which produce templates for measurer writers

would also be advisable for an industry policy language.

Another avenue for the policy language would be to extend the validation func-

tions and rule applicator functionality such that they support degrees of failure

and degrees of passing. As prototyped, MSRR-PL supports rules that dichotomize

into states into good and bad, or pass and fail. However, types of failures and

degrees of severity will certainly prove useful for remote attestation in that it shall

provide remote appraisers more information to make better informed decisions as

to how to treat the target.

Autogeneration Techniques The difficult problem of automatically generat-

ing good measurement policies, of a similar nature and par to those written by

a qualified expert, is likely to be the most challenging aspect of research into

dynamic measurement, and the most rewarding.

In this paper we have explored the adaptation of symbolic execution techniques

to the formation of behavioral expectations and finally measurement policies. We

would like to see the leveraging of other techniques, both individually and in uni-

son. We suspect that a system that produces policies via a host of static analysis

approaches will function best to facilitate a strong ‘cocktail’ of measurement pol-

icy types. These automatic policies would form a strong base layer to potentially

be augmented with developer written policies.

We suspect that there is much to be leveraged from the industry practices

of unit testing, in regards to the structuring and formation of rule abstractions

which evidence expected behavior. There is potential to capitalize further on the

extensive work spent developing unit tests in current industry standard practices
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such as test driven development (TDD). It is probable that with minimal transfor-

mation, unit tests themselves may be selected to form the logic for measurement

policies.

Moreover, simple techniques such as a ‘function mirroring’ approach could

prove very scalable and very beneficial in regards to the autogeneration of mea-

surement policies. The basic idea is that functions from the target application

can be transformed, fairly easily and naively, into measurement policy validation

functions. Using these mirroring validation functions, rules can be generated to

sample the application at the original function’s entry and exit points to sam-

ple the live inputs and outputs of the function. The validation function itself

will simply recompute the output from the live inputs to compare its calculation

with the value computed live, in order to determine that the expected behavior

is preserved.

Verifying Measurement System Integrity One critical consideration in re-

mote attestation that we have left out of the scope of this work is the prospect that

the measurements themselves must be verifiable to establish trust. This can be

approached in various ways, ranging from proofs embedded in the protocol of the

measurement itself to the technique of meta-measurement. In meta-measurement,

an additional order of measurement service providers are utilized to measure and

verify the measurers of the first order, like the MSRR Measurement System.
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Chapter 9

Conclusions

In this work we have presented the MSRR Measurement Suite. The MSRR

Measurement Suite is a system of tools that have been prototyped to demonstrate

the ways in which the high cost of manual effort by qualified measurement experts

can be reduced. To this end, we believe that we have been successful on several

fronts.

We have prototyped a novel general purpose measurement system which con-

tains the core measurement functionality common to all measurement scenarios.

In this way, we have eliminated the need to build new measurement systems

from the ground up for each new target application. This measurement system is

lightweight and incurs a reasonable overhead on the target application.

We have employed a high-level, easy to use, first of its kind measurement policy

language. This policy language allows one to describe expected behaviors for a

target application and to specify sampling schedules to evidence such. Using this

policy language and the measurement system, an expert can much more easily

produce tailored measurement solutions at a per-application basis.

We have leveraged state of the art static analysis tools to generate policies
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automatically. The types of policies produced allow one to achieve, in the absence

of an expert, a layer of high policy coverage for an entire system’s application set,

automatically. Furthermore, these generated policies can be complemented with

the conserved and focused attention of an expert on critical application properties

where concept-driven policy rules are desired.

In summary, we believe that the techniques we have prototyped with our suite

are important steps in decreasing the cost of the synthesis of policies and tools

to achieve reliable, efficient, and widespread adoption of remote attestation for

user-space applications.
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[26] Ulrich Kühn, Marcel Selhorst, and Christian Stüble. Realizing property-
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[47] E. Rodŕıguez-Carbonell and D. Kapur. Generating all polynomial invariants

in simple loops. J. Symb. Comput., 42(4):443–476, April 2007.
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